
HygHD: Hyperdimensional Hypergraph Learning

Jaeyoung Kang∗, You Hak Lee∗, Minxuan Zhou, Weihong Xu, and Tajana Rosing
University of California San Diego, USA

{j5kang, yhl004, miz087, wexu, tajana}@ucsd.edu

Abstract—Hypergraphs can model real-world data that has
higher-order relationships. Graph neural network (GNN)-based
solutions emerged as a hypergraph learning solution, but they face
non-uniform memory accesses and accompany memory-intensive
and compute-intensive operations, making the acceleration with
near-data processing challenging. We propose a hyperdimensional
computing (HDC)-based hypergraph learning framework called
HygHD, which consists of highly parallelizable and lightweight
HDC operations. HygHD accelerates both the training and
inference on ferroelectric field-effect transistor (FeFET)-based
processing-in-memory (PIM) hardware. Furthermore, we devise
a hardware-friendly block-level concatenation and fine-grained
block-level scheduler for high efficiency. Our evaluation results
show that HygHD offers comparable accuracy to existing GNN-
based solutions. Also, HygHD on GPU is up to 443× (7.67×) faster
and 142× (2.78×) more energy efficient in training (inference)
than the fastest GNN-based approach [1] on GPU. The HygHD
accelerator further accelerates the HygHD algorithm, providing
an average speedup of 40.0× (3.41×) on training (inference)
compared to the HygHD GPU implementation.

Index Terms—Hyperdimensional Computing, Hypergraph
Learning, FeFET, Processing-in-memory

I. INTRODUCTION

Hypergraphs can express complex higher-order entity rela-

tionships beyond traditional graphs. Unlike a graph that only

considers pairwise relations between nodes using edges, an edge

in hypergraph representation (hyperedge) can connect more

than two nodes. Hypergraphs can capture and model many-

to-many relationships. It has been used to model various real-

world data, including co-citation/co-authorship relationships [1],

social networks [2], and protein interactions [3].

Graph neural network (GNN) has become prevalent as it can

analyze latent relationships between entities and perform ma-

chine learning (ML). Hypergraph learning has emerged because

of its flexibility in the representation of complex relationships.

However, hypergraph learning remains a challenging problem

due to its complexity, e.g., Laplacian matrix computation [4].

Several graph convolutional network (GCN)-based methods

have been proposed to represent a hypergraph in embedding

space, such as HGNN [5], HyperGCN [1] that approximates

hypergraph to utilize GCN and HNHN [6] that reflects nodes

and hyperedges to the resulting representation through nonlinear

activation in an iterative manner. However, these models are

memory and compute-intensive during the forward pass and

the back-propagation, respectively. Also, graph processing has

highly random data access. Given its heterogeneous nature, the

acceleration of hypergraph learning is challenging.

Besides, brain-inspired hyperdimensional computing (HDC)

has shown its superior capability to embed the relationship

between data with lightweight and parallelizable arithmetic

∗Equal contribution

operations. HDC models human cognition, which involves the

simultaneous activity of a massive number of neurons, with

a high-dimensional (HD) vector dubbed hypervector (HV). It

enables memorization and association of information using

element-wise addition and multiplication on HVs, respectively.

Previously, [7], [8] redesigned graph ML problems with HDC

operations. The end-to-end algorithm is memory-intensive,

making the acceleration with processing in-memory (PIM)

hardware feasible [8]. It offers scalable memory bandwidth

and reduces data movement overhead. However, existing studies

only work on simple graphs and are challenging to apply to real-

world data like hypergraphs that have higher-order relations.

In this paper, we present an HDC-based hypergraph learning

solution called HygHD. We show a novel and effective

hypergraph HDC encoding strategy. In turn, we present how

HygHD performs the training of the vertex classification of

hypergraph learning only with element-wise vector addition.

As HygHD is based on the HDC principle and trains without

back-propagation, it is easily parallelizable and faster than

existing GNN-based approaches [1], [5], [6]. Furthermore,

we show that the HygHD algorithm is memory-intensive and

accelerate it on PIM architecture to maximize efficiency. The

main contributions of the paper are summarized as follows:

• We propose a hypergraph encoding strategy using the HDC

concatenation. HygHD merges the information of member

nodes into an HV for each hyperedge and preserves the sim-

ilarity between a hyperedge and its members. The proposed

algorithm trains the model without back-propagation and

achieves comparable accuracy to existing solutions.

• To the best of our knowledge, this is the first hardware

acceleration solution of hypergraph learning. We develop a

ferroelectric field-effect transistor (FeFET)-based PIM accel-

erator, which accelerates hypergraph learning in-memory.

• We propose a block-level concatenation to enhance the

accelerator efficiency. It avoids unnecessary read transactions

and reduces peripheral circuits, yielding 1.31× speedup on

average compared to the naive concatenation.

• We present block-level scheduling for output HV generation.

The scheduler is compatible with block-level concatenation

and can flexibly assign blocks, yielding up to 1.24× speedup

over the HygHD with the existing cluster-level scheduler.

Our evaluation results show that HygHD is, on average,

566× (33.6×) faster and 231× (10.4×) more energy efficient

on the training (inference) stage compared to the state-of-the-art

GNN-based solutions [1], [5], [6] on GPU. Also, our HygHD

PIM accelerator further improves speed and energy efficiency

of training (inference) by 40× (3.41×) and 15395× (73003×)

on average, respectively, over the GPU implementation.

2024 Design, Automation & Test in Europe Conference (DATE 2024)

 979-8-3503-4859-0/DATE24/© 2024 EDAA
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 18:58:32 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: (a) FeFET schematic (b) I-V characteristics of a FeFET cell [9]
(c) Computation block schematic (d) Similarity block schematic

II. BACKGROUND AND RELATED WORK

A. Hyperdimensional Computing Preliminaries

HDC represents data with HV and mimics the behavior of

human memory by applying lightweight operations on HVs.

Reasoning is done by measuring the similarity of two HVs,

i.e., δ(H1,H2). Hamming distance or cosine similarity is used

as a metric. Bundling mimics memorization, which is realized

by element-wise vector addition. The resulting HV shows

much higher similarity to operands than to a random HV.

Binding associates two different pieces of information using

Hadamard product. The resulting HV is orthogonal to operands.

Concatenation (‖) combines multiple HVs into a single HV by

extracting partial elements (equal size) from operands and con-

catenating them together. It effectively combines the operands’

information with the same contribution. Consider the concatena-

tion of three HVs, A = (a0, . . . , aD−1), B = (b0, . . . , bD−1),
and C = (c0, . . . , cD−1), where D is the HV dimension-

ality. ‖(A,B,C) is the concatenation of (a0, . . . , a�D/3�),
(b�D/3�+1, . . . , b�2∗D/3�), and (c�2∗D/3�+1, . . . , cD−1).
B. Graph-based Machine Learning with HDC

The work in [7] encodes a graph to an HV and solves the

graph classification with HDC operations and the PageRank

algorithm. RelHD [8] generates an HV for each node that

reflects neighbor information and node features and solves

node classification using lightweight HDC operations. The

authors accelerate the algorithm with a FeFET-based PIM

accelerator that can efficiently handle in-memory computing

on multi-bit HVs. However, these solutions are incapable of

handling real-world data that has higher-order relations between

entities, e.g., hypergraphs. Furthermore, the PIM accelerator in

[8] is vulnerable to overflow as it uses binding operations and

does not support concatenation operations that require more

fine-grained control of FeFET memory blocks.
C. FeFET-based PIM

FeFET has emerged as a more suitable memory device for

PIM because it is easier to integrate with CMOS, more scalable,

and has better read/write energy efficiency than ReRAM [10].

The FeFET is a transistor integrating a Fe oxide layer into

a gate dielectric stack of MOSFET [9] (see Fig. 1(a)). The

ferroelectric oxide acts as an insulator. We can adjust the

polarization of it with the gate voltage, and the threshold

voltage (Vth) varies accordingly. We can represent 8 status (3

bits) in one cell by switching Vth [11] as shown in Fig. 1(b).

Previous studies have demonstrated the feasibility of perform-

ing addition and multiplication operations using FeFET [8],

[11]. A multi-bit Content Addressable Memory (MCAM) has

been proposed for HDC similarity search [8], [12]. In HygHD,

a computation block utilizes FeFET-based addition, while a

similarity block employs the FeFET MCAM for similarity

checks (see Fig. 1(c),(d)).
III. HYGHD ALGORITHM

We introduce the HygHD algorithm, a novel approach to

mapping hypergraphs to HD space. Fig. 2(a) shows the flow

of the HygHD algorithm. We show how node features and

hyperedges are encoded into an HV and present HDC-based

training and inference for hypergraph vertex classification.
A. Node Feature Encoding

In the node feature encoding stage, HygHD encodes the

feature vector of each node to an HV called node HV, N, with

D dimensionality (see Fig. 2(b)). Different HDC encoding

strategies can be used based on the feature vector characteristics.

For dense feature vectors, position-level encoding [13] or non-

linear encoding [14] can be used. For several datasets that use a

bag-of-words (BoW) model, which represents the presence of a

feature, i.e., {0, 1}F . The BoW model can be encoded to a HV

by (1) generating nearly orthogonal HVs Pfi = {−1,+1}D for

feature fi and (2) summing the generated HVs corresponding

to feature indices that have non-zero values in the feature

vector [8]. For example, in Fig. 2(b), node HV of v1 (Nv1) is

Pf0 +PfF−2
(orange boxes in Fig. 2(b)).

B. Hyperedge Encoding

We encode hyperedges to hyperedge HVs, E. To encode

a hyperedge into an HD space, we use the concatenation

operation. Previous studies [7], [8] utilized binding operations

to combine connected entities. However, the binding oper-

ation is unsuitable for capturing the unique characteristics

of hyperedges. The binding operation combines two HVs

with different characteristics to generate an orthogonal HV

that possesses a new property. However, using the binding

operation to embed hyperedges into the HD space is not

effective because the resulting hyperedge HV would lack the

individual characteristics of each connected node HV as they

are all orthogonal to each other. Moreover, the binding operation

increases the required bit-width per element of the HV if we

use multi-bit HVs for high accuracy.

Fig. 2(c) shows the mapping of the hyperedge into HD

space using concatenation operation. First, the number of nodes

connected to a given hyperedge is determined. The HV of each

node is then sliced into segments corresponding to the number

of connected nodes in the hyperedge. Finally, relevant segments

from the sliced node HVs are selectively combined to construct

the HV representation of the hyperedge. In the example in

Fig. 2(c), Ee1 can be computed with ‖(Nv1 ,Nv2 ,Nv4).
C. Training the HDC model

Through the node feature and hyperedge encoding stages,

we can represent node features and hyperedges in HVs. In the

following, we show how HygHD solves vertex classification

in a hypergraph, which has been tackled in existing works [1],

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 18:58:32 UTC from IEEE Xplore. Restrictions apply.

Ee1

Nv1

Nv2

Nv4

Fv1Fv1

f0 f1 fF−2 fF−1

PfF−1

PfF−2

Pf0

Nv1

Fig. 2: HygHD algorithm overview.

[5], [6]. It aims to predict the classes of unlabeled nodes based

on the topology, feature vectors of nodes, and labeled nodes.

During the training, we bundle node HVs (N) and hyperedge

HVs (E) that belong to the same class. The HDC model

memorizes and learns patterns from N and E. First, we add the

node HV and hyperedge HVs that are connected to each node;

for node k, we compute the bundled HV Hk as Nk+
∑

j∈B Ej ,

where B is the set of indices for the hyperedges connected to

node k. The representative HV for each class is generated by

bundling the corresponding H, i.e., Ci =
∑

j∈L Hj , where L
is the set of indices of nodes labeled class i.
D. Inference

An unlabeled node in the test set has its node features

and hyperedges. We build H for each query node using the

same method used in the training. In turn, we measure the

similarity between class HVs and Hq for the query node q. The

class that shows the highest similarity is predicted as the label

of a query. Our training strategy leverages the contributions

of both the hyperedges and the node features. If a match is

found, incorporating a part of the node’s HV directly into

the configuration of the hyperedge HV leads to a substantial

increase in value during the similarity check.

IV. HYGHD PIM ACCELERATOR

The proposed algorithm can effectively speed up hypergraph

learning due to the simplicity of HDC operations. Besides, this

has a low operational intensity (≈1 ops/byte for each HygHD

phase), implying that the algorithm is memory-intensive.

FeFET-based PIM accelerators are state-of-the-art hardware

for HDC [8], [11] that have shown high efficacy in various

HDC operations on multi-bit HVs. However, the existing

FeFET-based PIM accelerators for HDC cannot efficiently

support HygHD algorithm due to the lack of support for

concatenation operation as well as the incompatible scheduler.

To this end, we devise a novel FeFET-based PIM acceleration

that can effectively handle the HDC concatenation and develop

a scheduler to maximize hardware utilization.

A. Hardware Architecture

Fig. 3 illustrates the architecture of HygHD PIM accelerator.

Previous work [8] proposed a FeFET-based PIM accelerator

for HDC algorithm on simple graphs. It organizes the memory

space into a multi-level hierarchy consisting of 2D cell blocks,

clusters, and tiles that process HDC operations with the row-

wise FeFET operations, including both arithmetics and search

Fig. 3: HygHD accelerator design (CB: computation block, SB:
similarity block, HVA: HV adder).

operations, as well as HV adders (HVAs), each attached to

a cluster of blocks. However, the previous hardware does

not support the HDC concatenation. If the concatenation

is implemented naively, it requires additional circuits for

component (element)-level control of HVs. In addition, existing

schedulers schedule operand blocks at the cluster level, which

can cause longer critical paths due to limited parallelism. To

this end, we propose a block-level FeFET-based PIM. Our

design enables more efficient computation of operations specific

to HygHD and reduces latencies through fine-grained block-

level scheduling. The blocks in HygHD accelerator consist of

computation blocks and similarity blocks. The similarity block

is utilized for similarity check during the inference, while all

other operations are carried out within the computation block.

B. Dataflow

HygHD hardware divides the memory space into input

clusters and output clusters since all stages of HygHD follow a

similar dataflow pattern. The output cluster group stores a single

copy of the result of the current stage, while the input cluster

group stores multiple replicates of input data to maximize

parallelization. Therefore, the size of the output cluster group

(i.e., the number of allocated blocks) depends on the number of

HVs generated in the stage, while the size of the input cluster

group is determined by the product of the number of input HVs

and the computation parallelism. Considering the dimension of

the HV exceeds the column size of a single block in general,

HVs are divided and distributed across several blocks, and

elements of different HVs are aligned in the same column

inside clusters. After the allocation, the operations are executed

according to the predetermined schedule for each process.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 18:58:32 UTC from IEEE Xplore. Restrictions apply.

H0

H1

H2

H

H0

H1

H2

H

Fig. 4: An example of block-level HDC concatenation.

Fig. 5: The proposed block-level scheduler.

The input clusters compute various HD operations, including

element-wise arithmetic and concatenation using a combination

of FeFET blocks and HVAs. The computation results are sent

to the output cluster via the interconnect network.
C. Block-level Concatenation

HygHD uses the concatenation to represent a hyperedge.

The HV of each node is sliced into segments corresponding

to the number of nodes connected by the edge, and these

segments are then combined to form the HV of the hyperedge.

A naive approach for implementing the concatenation operation

(H = ‖(H1,H2,H3)) in hardware is illustrated in Fig. 4(a)).

The relevant segments of the HV for each node are read at block

levels. Subsequently, these segments are connected to the sliced

HV of the other node through the shift-and-add operation and

then written to the output HV (i.e., the HV of the hyperedge).

However, implementing the HDC concatenation in hardware is

not well-suited for the PIM structure that processes data at a

block level. This is due to the additional requirements of read

and add&shift operations, which cause inefficiencies in terms

of both hardware utilization and processing speed.

We propose a hardware-friendly block-level HDC concate-

nation. As depicted in Fig. 4(b), the block-level concatenation

involves slicing the HV of the node at the block level and

connecting these blocks to create the HV of the hyperedge.

We can eliminate additional read transactions and add&shift

operations. Due to the fact that the dimension of the HV is

typically over 4000 while the block size is usually 64, imple-

menting the hyperedge HV using block-level concatenation

has minimal impact on accuracy.
D. Block-level Scheduler

Efficient scheduling plays a significant role in optimizing

hardware performance in the HygHD accelerator. When multi-

ple output HVs require input HVs from the same block, the

operations need to run in serial, leading to increased latencies.

By scheduling internal operations in HygHD stages in advance

with the proper order, we can improve overall efficiency.

Algorithm 1 Block-level scheduling

1: Goal: Set a scheduling dictionary SD (keys: output HVs; values: block-
cluster dictionaries BCD (keys: input blocks; values: input clusters))

2: Initialize SD
3: Generate a dictionary OID (keys: output HVs; values: input blocks)
4: for Nk in (output HVs) do
5: input blocks ← OID[Nk]
6: Initialize BCD
7: for CBi in (input blocks) do
8: for cluster in (input clusters) do
9: Find the cluster (target cl) that has the least usage of CBi.

10: end for
11: Update BCD with {CBi: target cl}
12: end for
13: Update SD with {Nk: BCD}
14: end for
15: return SD

The existing scheduling method [8] is not suitable for

HygHD. This is because it tries to assign all input blocks

to a single cluster based on the output HV, which can lead to

suboptimal scheduling decisions in HygHD. Let us consider

a scenario with only two input clusters (input cluster 0 and

1) shown in Fig. 5(a). Both input clusters contain a copy of

computation blocks (CB0-CB5). When output HV N0 requires

CB0-2, the cluster-level scheduler assigns these computation

blocks within the same cluster (input cluster 1 in Fig. 5(a)).

Besides, when output HV N1 requires CB2-3, the cluster-level

scheduler realizes that CB2 overlaps in the input cluster 1 and

decides to perform this operation on the other cluster (input

cluster 0). At the same time, if output HV N2 also requires

CB0 and CB3-4, we cannot proceed with the operation for N2

in parallel with the cluster-level scheduling.

We propose a block-level scheduler shown in Algorithm 1.

This approach aims to allocate blocks to clusters in a way

that minimizes the total latency across all blocks (L7, L8)

in a greedy manner. It schedules each input CB, searching

the cluster that has the least usage of the input CB (L9). For

example, in the same case with the cluster-level scheduling

(Fig. 5(a)), CB0 can be allocated to cluster 0, while CB2-3

can be assigned to cluster 1 for N2. Consequently, N0, N1,

N2 can be computed in parallel (Fig. 5(b)).

The block-level control offers several advantages: more

parallelism, elimination of the need for sorting output vectors

for scheduling order, and improved compatibility with block-

level concatenation. Note that blocks involved in the operation

of a particular output HV can be assigned to multiple clusters.

V. EVALUATION

A. Experimental Setup

System Environment: We implemented the HygHD on

NVIDIA RTX 4090 and used nvidia-smi to measure power

consumption. HygHD on GPU adopts the state-of-the-art GPU

optimizations for HDC [15], [16]. For the HygHD accelerator

evaluation, we integrate latency and energy consumption

estimates to a PyTorch Geometric-based simulator. We use

the FeFET device with 45nm technology in [8], [11], [17],

[18], and estimate latency and energy consumption in FeFET

blocks and peripheral circuits such as shift-and-add and ADCs

using NeuroSim [19]. We synthesized the HVA with Synopsys

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 18:58:32 UTC from IEEE Xplore. Restrictions apply.

TABLE I: System specifications of HygHD.

HygHD
Blocks 64×64 3 FeFET cells, 8 columns/ADC, Add&Shift

Clusters 1024 blocks, HVA, 8KB SRAM
Tiles 128 clusters, interconnect bandwidth = 16GB/s

Computation Blocks
tADD=86.8ns, tRD=42ns, tWR=82ns

eADD=5.725pJ, eRD=0.483pJ, eWR=0.618pJ
FeFET CAM Cells in Similarity Blocks
tSearch=1.5ns (64bit), eSearch=0.069fJ/bit

Area and Power of Components
FeFET blocks 1.26mm2/460.8mW

ADC 0.93mm2/1.54W

DAC 0.066mm2/1.54W

Add & Shift 0.36mm2/307.2mW

HVA & SRAM 0.057mm2/27.34mW

TABLE II: Dataset attributes

Co-citation Co-authorship Text
Cora

(CR-C)
CiteSeer
(CS-C)

Pubmed
(PB-C)

Cora
(CR-A)

DBLP
(DBLP-A)

20News
(20N-U)

|V| 2708 3312 19717 2708 43413 16242
|E| 1579 1079 7963 1072 22535 100
|F| 1433 3703 500 1433 1425 100
|C| 7 6 3 7 6 4

max |e| 5 26 171 43 20 2241

Design Compiler 65nm library and scaled it to 45nm. The

design was placed and routed using Synopsys IC Compiler.

Baselines and Datasets: We compare HygHD to GCN-based

hypergraph learning solutions, HyperGCN [1], HNHN [6], and

HGNN [5], in terms of accuracy, speed, and energy efficiency.

We enable mediators and fast mode (known as FastHyperGCN)

for HyperGCN. HNHN evaluation and HGNN evaluation were

performed on hypergraph benchmark tool [20]. Baselines are

trained for 200 epochs, which is required for peak accuracy.

We use real-world datasets [1], [21]: co-citation Cora (CR-C),

CiteSeer (CS-C), and Pubmed (PB-C); co-authorship Cora (CR-

A) and DBLP (DBLP-A); 20Newsgroup (20N-U) (details in

Table II). |V|, |E|, |F|, and |C| denote the number of vertices,

hyperedges, features, and classes, respectively. “max |e|” is

the maximum number of nodes each hyperedge includes. Note

that we only compare HygHD and baselines on GPU since

there has been no accelerator for hypergraph learning.

HygHD and PIM Configurations: We set HV dimensionality

to 8192. Operand HVs are duplicated to enhance parallelism

in our accelerator. Our PIM architecture has the capability to

accommodate a maximum of 8 copies. In order to achieve our

desired parallelism, we need 2, 2, 4, 2, 8, and 4 tiles for CR-C,

CS-C, PB-C, CR-A, DBLP-A, and 20N-U, respectively.

B. Performance Comparison to GNN-based Solutions

We perform speedup and energy efficiency comparisons

between our HygHD and baselines on GPU. Fig. 6 shows the

speedup and energy efficiency improvement of HygHD for

training and inference phase over baselines. HygHD is 566×
and 33.6× faster on average for training and inference than

baselines, respectively. Also, HygHD is, on average, 231×
and 10.4× more energy efficient on training and inference,

respectively, than others. For all cases, HygHD consumes

more power than baselines as it can accommodate more

parallelism through element-wise vector operations. However,

the significant reduction in execution time compensates for the

increased power consumption and enhances energy efficiency.

Fig. 6: Speed and energy efficiency of HygHD vs. baselines on GPU
TABLE III: Accuracy comparison with GNN-based methods

Accuracy (%) CR-C CS-C PB-C CR-A DBLP-A 20N-U

HyperGCN 0.68 0.63 0.74 0.7 0.76 0.81
HNHN 0.65 0.62 0.77 0.63 0.86 0.81
HGNN 0.66 0.67 0.77 0.69 0.88 0.80

HygHD (Ours) 0.68 0.63 0.77 0.72 0.86 0.76

For the training phase comparison, we included node feature

encoding and hyperedge encoding stages for HygHD. The train-

ing time for baselines includes Laplacian operations. HygHD

shows lower latency with lower energy consumption across

all datasets thanks to lightweight HDC operations. HygHD

enables the training with element-wise addition. In contrast,

GNN-based baselines accompany complex computations like

matrix multiplication, Laplacian, and back-propagation. These

operations used for GNN-based methods consume more time

and energy. Moreover, while HygHD needs only single-pass

training, all baselines require iterations (at least a few hundred

epochs) in training to achieve peak accuracy.

The inference of HygHD also shows lower latency and

energy consumption compared to baselines in most cases. Only

in PB-C and DBLP-A datasets, HyperGCN shows 0.45× and

0.6× lower energy consumption than HygHD. This is because

HyperGCN converts a hypergraph to a conventional graph

during the training phase and processes GCN over it. The

inference step reuses the hypergraph approximation. However,

in PB-C and DBLP-A, HyperGCN shows the lowest accuracy

among the others. In the DBLP-A dataset, HyperGCN results in

more than a 12%p accuracy drop compared to state-of-the-art

accuracy in the DBLP-A dataset as shown in Table III.

The dimensionality of HVs (D) in HygHD has an impact on

various factors such as accuracy, execution time, and hardware

size. When D is low, the accuracy drops as it limits the amount

of expressed and compressed information, but the hardware

size and the required number of computations are small. On the

other hand, high dimensionality can enhance accuracy, but the

computational complexity and size of the hardware increase.

When D = 8192, HygHD achieves peak accuracy.

C. HygHD on PIM vs. HygHD on GPU

Fig. 7 shows a comparison between the HygHD PIM

accelerator and the HygHD GPU implementation in terms

of their speed and energy efficiency. The proposed accelerator

performs on average 40× and 3.41× faster in training and

inference, respectively, compared to HygHD on GPU. Further-

more, HygHD on PIM is 15395× and 73003× more energy

efficient on average for training and inference, respectively, than

HygHD on GPU. HygHD uses specialized blocks: computation

and similarity blocks for the training and inference stages,

respectively. These blocks are optimized for HDC operations

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 18:58:32 UTC from IEEE Xplore. Restrictions apply.

(a) Speed (b) Energy efficiency
Fig. 7: HygHD on PIM vs. HygHD on GPU

(a) (b)
Fig. 8: HygHD on accelerator analysis (a) Latency breakdown of
HygHD on GPU and PIM (b) Scalability of HygHD

like bundling, concatenation, and similarity check (reasoning).

Also, with proper scheduling, we can efficiently parallelize

them. From an energy consumption perspective, GPUs are

known for high power consumption, making the large energy

efficiency gap between HygHD on PIM and GPU.
D. HygHD PIM Accelerator Analysis

Breakdown. Fig. 8(a) shows the latency breakdown of HygHD

on GPU and PIM. Compared to GPU, PIM handles hyperedge

encoding and training phases well, and the majority of latency

concentrates on node encoding. Even though there are multiple

copies (up to 8) of input operands and the scheduler controls

the execution order, the same input HV can be used a maximum

of 8 times at the same time. Besides, the node encoding phase

deals with more output HVs than their inputs (or operands),

leading to increased latency. For the PB-C case, the number

of features, which is equivalent to the number of operands, is

only 500. However, the number of vertices, which corresponds

to the output HVs, is significantly larger (19717/500 = 39×).

Cluster-level vs Block-level Scheduling. In HygHD, we use

a block-level scheduler, which efficiently manages resources

and parallelizes operations with fine-grained control of FeFET

memory blocks. Compared to the previous cluster-level sched-

uler [8], the block-level scheduler in HygHD enhances the

speed by 1.24× speedup on average across datasets.

Scalability. Processing larger hypergraphs requires higher

memory bandwidth and capacity. The proposed accelerator can

scale them by increasing CB and SB. We compare the runtime

according to the number of CB and SB. We set the number

of blocks in the multiple of minimum required blocks (2×,

4×, and 8×). As shown in Fig. 8(b), the degree of speedup

increases as we increase CB and SB: 10.1× on average in an

8×-scale scenario. It implies that our accelerator offers scalable

memory bandwidth and can easily support larger hypergraphs.

Effectiveness of Block-level Concatenation. The proposed

block-level concatenation allows HygHD to remove unneces-

sary read transactions and add&shifts and implement concatena-

tion operations with only reads and writes. Our experiment data

shows that block-level concatenation is 1.31× faster compared

to the naive approach across all datasets on average.
VI. CONCLUSION

We presented HygHD, an HDC-based hypergraph learning

framework. HygHD represents hyperedges as HVs using

concatenation and trains the model with only element-wise

vector additions. Furthermore, we developed a FeFET-based

PIM accelerator to accelerate the proposed algorithm. We in-

troduced hardware-friendly block-level concatenation to reduce

peripheral circuits. Also, we devised a block-level scheduler to

efficiently handle operations in the HygHD algorithm through

fine-grained control of FeFET memory blocks. Our evaluation

shows that HygHD runs up to 443× (7.67×) faster with 142×
(2.78×) improved energy efficiency in the training (inference)

stage over the fastest GNN-based hypergraph solution [1]

on GPU while showing comparable accuracy. Furthermore,

our accelerator offers, on average, 40.0× (3.41×) speedup

and 15395× (73003×) energy efficiency improvement on the

training (inference) stage compared to HygHD on GPUs.
ACKNOWLEDGMENT

This work was supported in part by PRISM and CoCoSys,

centers in JUMP 2.0, an SRC program sponsored by DARPA,

SRC Global Research Collaboration (GRC) grants, and NSF

grants #1826967, #1911095, #2003279, #2052809, #2112665,

#2112167, #2100237, and #2023-JU-3135.
REFERENCES

[1] N. Yadati et al., “Hypergcn: A new method for training graph convolu-
tional networks on hypergraphs,” NeurIPS, 2019.

[2] D. Arya et al., “Exploiting relational information in social networks
using geometric deep learning on hypergraphs,” in ICMR, 2018.

[3] K. A. Murgas et al., “Hypergraph geometry reflects higher-order dynamics
in protein interaction networks,” Scientific Reports, vol. 12, 2022.

[4] Y. Gao et al., “Hypergraph learning: Methods and practices,” IEEE
TPAMI, vol. 44, no. 5, pp. 2548–2566, 2020.

[5] Y. Feng et al., “Hypergraph neural networks,” in AAAI, 2019.
[6] Y. Dong et al., “Hnhn: Hypergraph networks with hyperedge neurons,”

arXiv preprint arXiv:2006.12278, 2020.
[7] I. Nunes et al., “Graphhd: Efficient graph classification using hyperdi-

mensional computing,” in DATE, 2022.
[8] J. Kang et al., “Relhd: A graph-based learning on fefet with hyperdi-

mensional computing,” in ICCD. IEEE, 2022.
[9] K. Ni et al., “A circuit compatible accurate compact model for

ferroelectric-fets,” in VLSIT, 2018.
[10] Y. Long et al., “A ferroelectric fet-based processing-in-memory architec-

ture for dnn acceleration,” JXCDC, 2019.
[11] A. Kazemi et al., “Mimhd: Accurate and efficient hyperdimensional

inference using multi-bit in-memory computing,” in ISLPED, 2021.
[12] ——, “In-memory nearest neighbor search with fefet multi-bit content-

addressable memories,” in DATE, 2021.
[13] M. Imani et al., “Voicehd: Hyperdimensional computing for efficient

speech recognition,” in ICRC, 2017.
[14] ——, “DUAL: Acceleration of clustering algorithms using digital-based

processing in-memory,” in MICRO, 2020.
[15] J. Kang et al., “Xcelhd: An efficient gpu-powered hyperdimensional

computing with parallelized training,” in ASP-DAC, 2022.
[16] ——, “Openhd: A gpu-powered framework for hyperdimensional com-

puting,” IEEE TC, 2022.
[17] A. Kazemi et al., “In-memory nearest neighbor search with fefet multi-bit

content-addressable memories,” in DATE, 2021.
[18] X. Yin et al., “Fecam: A universal compact digital and analog content

addressable memory using ferroelectric,” IEEE T-ED, 2020.
[19] X. Peng et al., “Dnn+neurosim: An end-to-end benchmarking framework

for compute-in-memory accelerators with versatile device technologies,”
in IEDM, 2019.

[20] H. Hwang et al., “Hyfer: A framework for making hypergraph learning
easy, scalable and benchmarkable,” in WWW W’ on Graph Learning
Benchmarks, 2021.

[21] D. Dua et al., “UCI machine learning repository,” 2017. [Online].
Available: http://archive.ics.uci.edu/ml

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 18:58:32 UTC from IEEE Xplore. Restrictions apply.

