2024 Design, Automation & Test in Europe Conference (DATE 2024)

HygHD: Hyperdimensional Hypergraph Learning

Jaeyoung Kang*, You Hak Lee*, Minxuan Zhou, Weihong Xu, and Tajana Rosing
University of California San Diego, USA
{j5kang, yh1004, miz087, wexu, tajana}@ucsd.edu

Abstract—Hypergraphs can model real-world data that has
higher-order relationships. Graph neural network (GNN)-based
solutions emerged as a hypergraph learning solution, but they face
non-uniform memory accesses and accompany memory-intensive
and compute-intensive operations, making the acceleration with
near-data processing challenging. We propose a hyperdimensional
computing (HDC)-based hypergraph learning framework called
HygHD, which consists of highly parallelizable and lightweight
HDC operations. HygHD accelerates both the training and
inference on ferroelectric field-effect transistor (FeFET)-based
processing-in-memory (PIM) hardware. Furthermore, we devise
a hardware-friendly block-level concatenation and fine-grained
block-level scheduler for high efficiency. Our evaluation results
show that HygHD offers comparable accuracy to existing GNN-
based solutions. Also, HygHD on GPU is up to 443 x (7.67 x) faster
and 142x (2.78x) more energy efficient in training (inference)
than the fastest GNN-based approach [1] on GPU. The HygHD
accelerator further accelerates the HygHD algorithm, providing
an average speedup of 40.0x (3.41x) on training (inference)
compared to the HygHD GPU implementation.

Index Terms—Hyperdimensional Computing, Hypergraph
Learning, FeFET, Processing-in-memory

I. INTRODUCTION

Hypergraphs can express complex higher-order entity rela-
tionships beyond traditional graphs. Unlike a graph that only
considers pairwise relations between nodes using edges, an edge
in hypergraph representation (hyperedge) can connect more
than two nodes. Hypergraphs can capture and model many-
to-many relationships. It has been used to model various real-
world data, including co-citation/co-authorship relationships [1],
social networks [2], and protein interactions [3].

Graph neural network (GNN) has become prevalent as it can
analyze latent relationships between entities and perform ma-
chine learning (ML). Hypergraph learning has emerged because
of its flexibility in the representation of complex relationships.
However, hypergraph learning remains a challenging problem
due to its complexity, e.g., Laplacian matrix computation [4].
Several graph convolutional network (GCN)-based methods
have been proposed to represent a hypergraph in embedding
space, such as HGNN [5], HyperGCN [1] that approximates
hypergraph to utilize GCN and HNHN [6] that reflects nodes
and hyperedges to the resulting representation through nonlinear
activation in an iterative manner. However, these models are
memory and compute-intensive during the forward pass and
the back-propagation, respectively. Also, graph processing has
highly random data access. Given its heterogeneous nature, the
acceleration of hypergraph learning is challenging.

Besides, brain-inspired hyperdimensional computing (HDC)
has shown its superior capability to embed the relationship
between data with lightweight and parallelizable arithmetic

*Equal contribution

operations. HDC models human cognition, which involves the

simultaneous activity of a massive number of neurons, with

a high-dimensional (HD) vector dubbed hypervector (HV). It

enables memorization and association of information using

element-wise addition and multiplication on HVs, respectively.

Previously, [7], [8] redesigned graph ML problems with HDC

operations. The end-to-end algorithm is memory-intensive,

making the acceleration with processing in-memory (PIM)
hardware feasible [8]. It offers scalable memory bandwidth
and reduces data movement overhead. However, existing studies
only work on simple graphs and are challenging to apply to real-
world data like hypergraphs that have higher-order relations.
In this paper, we present an HDC-based hypergraph learning

solution called HygHD. We show a novel and effective
hypergraph HDC encoding strategy. In turn, we present how
HygHD performs the training of the vertex classification of
hypergraph learning only with element-wise vector addition.
As HygHD is based on the HDC principle and trains without
back-propagation, it is easily parallelizable and faster than
existing GNN-based approaches [1], [5], [6]. Furthermore,
we show that the HygHD algorithm is memory-intensive and
accelerate it on PIM architecture to maximize efficiency. The
main contributions of the paper are summarized as follows:

o We propose a hypergraph encoding strategy using the HDC
concatenation. HygHD merges the information of member
nodes into an HV for each hyperedge and preserves the sim-
ilarity between a hyperedge and its members. The proposed
algorithm trains the model without back-propagation and
achieves comparable accuracy to existing solutions.

o To the best of our knowledge, this is the first hardware
acceleration solution of hypergraph learning. We develop a
ferroelectric field-effect transistor (FeFET)-based PIM accel-
erator, which accelerates hypergraph learning in-memory.

e We propose a block-level concatenation to enhance the
accelerator efficiency. It avoids unnecessary read transactions
and reduces peripheral circuits, yielding 1.31x speedup on
average compared to the naive concatenation.

o We present block-level scheduling for output HV generation.
The scheduler is compatible with block-level concatenation
and can flexibly assign blocks, yielding up to 1.24 x speedup
over the HygHD with the existing cluster-level scheduler.
Our evaluation results show that HygHD is, on average,

566x (33.6x) faster and 231x (10.4x) more energy efficient

on the training (inference) stage compared to the state-of-the-art

GNN-based solutions [1], [5], [6] on GPU. Also, our HygHD

PIM accelerator further improves speed and energy efficiency

of training (inference) by 40x (3.41x) and 15395x (73003 x)

on average, respectively, over the GPU implementation.

979-8-3503-4859-0/DATE24/© 2024 EDAA

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 18:58:32 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

=

5 v 0.(2/
« @ s (V)
BL Driver DL Driver
Cell Cell Cell Cell
FeFET
Cell
| apc 1 aoc |
L] e

Fig. 1: (a) FeFET schematic (b) I-V characteristics of a FeFET cell [9]
(c) Computation block schematic (d) Similarity block schematic

ML Driver
Sense Am|
Decoder

MCAM MCAM
Cell Cell

:
Cell

II. BACKGROUND AND RELATED WORK
A. Hyperdimensional Computing Preliminaries

HDC represents data with HV and mimics the behavior of
human memory by applying lightweight operations on HVs.
Reasoning is done by measuring the similarity of two HVs,
i.e., 0(Hy, Hy). Hamming distance or cosine similarity is used
as a metric. Bundling mimics memorization, which is realized
by element-wise vector addition. The resulting HV shows
much higher similarity to operands than to a random HV.
Binding associates two different pieces of information using
Hadamard product. The resulting HV is orthogonal to operands.
Concatenation (||) combines multiple HVs into a single HV by
extracting partial elements (equal size) from operands and con-
catenating them together. It effectively combines the operands’
information with the same contribution. Consider the concatena-
tion of three HVs, A = (ag,...,ap—1), B = (bo,...,bp_1),

and C = (cg,...,¢p—1), where D is the HV dimension-
ality. ||(A,B,C) is the concatenation of (ao,...,a|p/3))
(bLD/?)J-‘rl?' . "b|_2*D/3J)’ and (C_2*D/3J+17' .. ,CD_l).

B. Graph-based Machine Learning with HDC

The work in [7] encodes a graph to an HV and solves the
graph classification with HDC operations and the PageRank
algorithm. RelHD [8] generates an HV for each node that
reflects neighbor information and node features and solves
node classification using lightweight HDC operations. The
authors accelerate the algorithm with a FeFET-based PIM
accelerator that can efficiently handle in-memory computing
on multi-bit HVs. However, these solutions are incapable of
handling real-world data that has higher-order relations between
entities, e.g., hypergraphs. Furthermore, the PIM accelerator in
[8] is vulnerable to overflow as it uses binding operations and
does not support concatenation operations that require more

fine-grained control of FeFET memory blocks.
C. FeFET-based PIM

FeFET has emerged as a more suitable memory device for
PIM because it is easier to integrate with CMOS, more scalable,
and has better read/write energy efficiency than ReRAM [10].
The FeFET is a transistor integrating a Fe oxide layer into
a gate dielectric stack of MOSFET [9] (see Fig. 1(a)). The
ferroelectric oxide acts as an insulator. We can adjust the
polarization of it with the gate voltage, and the threshold
voltage (Vi) varies accordingly. We can represent 8 status (3
bits) in one cell by switching V4, [11] as shown in Fig. 1(b).

Previous studies have demonstrated the feasibility of perform-
ing addition and multiplication operations using FeFET [8],
[11]. A multi-bit Content Addressable Memory (MCAM) has
been proposed for HDC similarity search [8], [12]. In HygHD,
a computation block utilizes FeFET-based addition, while a
similarity block employs the FeFET MCAM for similarity
checks (see Fig. 1(c),(d)).

III. HYGHD ALGORITHM

We introduce the HygHD algorithm, a novel approach to
mapping hypergraphs to HD space. Fig. 2(a) shows the flow
of the HygHD algorithm. We show how node features and
hyperedges are encoded into an HV and present HDC-based
training and inference for hypergraph vertex classification.

A. Node Feature Encoding

In the node feature encoding stage, HygHD encodes the
feature vector of each node to an HV called node HV, N, with
D dimensionality (see Fig. 2(b)). Different HDC encoding
strategies can be used based on the feature vector characteristics.
For dense feature vectors, position-level encoding [13] or non-
linear encoding [14] can be used. For several datasets that use a
bag-of-words (BoW) model, which represents the presence of a
feature, i.e., {0, 1}". The BoW model can be encoded to a HV
by (1) generating nearly orthogonal HVs P, = {—1,+1}" for
feature f; and (2) summing the generated HVs corresponding
to feature indices that have non-zero values in the feature
vector [8]. For example, in Fig. 2(b), node HV of v; (N,,) is
P + Py, , (orange boxes in Fig. 2(b)).

B. Hyperedge Encoding

We encode hyperedges to hyperedge HVs, E. To encode
a hyperedge into an HD space, we use the concatenation
operation. Previous studies [7], [8] utilized binding operations
to combine connected entities. However, the binding oper-
ation is unsuitable for capturing the unique characteristics
of hyperedges. The binding operation combines two HVs
with different characteristics to generate an orthogonal HV
that possesses a new property. However, using the binding
operation to embed hyperedges into the HD space is not
effective because the resulting hyperedge HV would lack the
individual characteristics of each connected node HV as they
are all orthogonal to each other. Moreover, the binding operation
increases the required bit-width per element of the HV if we
use multi-bit HVs for high accuracy.

Fig. 2(c) shows the mapping of the hyperedge into HD
space using concatenation operation. First, the number of nodes
connected to a given hyperedge is determined. The HV of each
node is then sliced into segments corresponding to the number
of connected nodes in the hyperedge. Finally, relevant segments
from the sliced node HVs are selectively combined to construct
the HV representation of the hyperedge. In the example in
Fig. 2(c), E., can be computed with ||(N,,,N,,,N,,).

C. Training the HDC model

Through the node feature and hyperedge encoding stages,
we can represent node features and hyperedges in HVs. In the
following, we show how HygHD solves vertex classification
in a hypergraph, which has been tackled in existing works [1],

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 18:58:32 UTC from IEEE Xplore. Restrictions apply.

. : Class 0 Node

: Class 1 Node

N Node HV ‘

Hyperedge H

(a) HygHD Overview Prediction

r
O: Query Node Query _
v, (Unlabeled) Node - :
e o P T LI

Py,
Bundling

Ny, [TTL.IT]

(b) Node Feature Encoding

Node Feature

Fumwd'”g

[e——Dp —
(c) Hyperedge Encoding

[¢—— b — €

Fig. 2: HygHD algorithm overview.

[5], [6]. It aims to predict the classes of unlabeled nodes based
on the topology, feature vectors of nodes, and labeled nodes.
During the training, we bundle node HVs (IN) and hyperedge
HVs (E) that belong to the same class. The HDC model
memorizes and learns patterns from N and E. First, we add the
node HV and hyperedge HVs that are connected to each node;
for node k, we compute the bundled HV Hj, as Ny, +Zj€B E;,
where B is the set of indices for the hyperedges connected to
node k. The representative HV for each class is generated by
bundling the corresponding H, i.e., C; = > jeL H;, where L
is the set of indices of nodes labeled class .
D. Inference

An unlabeled node in the test set has its node features
and hyperedges. We build H for each query node using the
same method used in the training. In turn, we measure the
similarity between class HVs and H,, for the query node ¢. The
class that shows the highest similarity is predicted as the label
of a query. Our training strategy leverages the contributions
of both the hyperedges and the node features. If a match is
found, incorporating a part of the node’s HV directly into
the configuration of the hyperedge HV leads to a substantial
increase in value during the similarity check.

IV. HYGHD PIM ACCELERATOR

The proposed algorithm can effectively speed up hypergraph
learning due to the simplicity of HDC operations. Besides, this
has a low operational intensity (=1 ops/byte for each HygHD
phase), implying that the algorithm is memory-intensive.
FeFET-based PIM accelerators are state-of-the-art hardware
for HDC [8], [11] that have shown high efficacy in various
HDC operations on multi-bit HVs. However, the existing
FeFET-based PIM accelerators for HDC cannot efficiently
support HygHD algorithm due to the lack of support for
concatenation operation as well as the incompatible scheduler.
To this end, we devise a novel FeFET-based PIM acceleration
that can effectively handle the HDC concatenation and develop
a scheduler to maximize hardware utilization.

A. Hardware Architecture

Fig. 3 illustrates the architecture of HygHD PIM accelerator.
Previous work [8] proposed a FeFET-based PIM accelerator
for HDC algorithm on simple graphs. It organizes the memory
space into a multi-level hierarchy consisting of 2D cell blocks,
clusters, and tiles that process HDC operations with the row-
wise FeFET operations, including both arithmetics and search

HV shards across CB

© Allocate&schedule
input HVs

0 Generate output HVs

© Similarity check with
the output HVs

E] Input cluster group

[] output cluster group

Fig. 3: HygHD accelerator design (CB: computation block, SB:
similarity block, HVA: HV adder).

operations, as well as HV adders (HVAs), each attached to
a cluster of blocks. However, the previous hardware does
not support the HDC concatenation. If the concatenation
is implemented naively, it requires additional circuits for
component (element)-level control of HVs. In addition, existing
schedulers schedule operand blocks at the cluster level, which
can cause longer critical paths due to limited parallelism. To
this end, we propose a block-level FeFET-based PIM. Our
design enables more efficient computation of operations specific
to HygHD and reduces latencies through fine-grained block-
level scheduling. The blocks in HygHD accelerator consist of
computation blocks and similarity blocks. The similarity block
is utilized for similarity check during the inference, while all
other operations are carried out within the computation block.

B. Dataflow

HygHD hardware divides the memory space into input
clusters and output clusters since all stages of HygHD follow a
similar dataflow pattern. The output cluster group stores a single
copy of the result of the current stage, while the input cluster
group stores multiple replicates of input data to maximize
parallelization. Therefore, the size of the output cluster group
(i.e., the number of allocated blocks) depends on the number of
HVs generated in the stage, while the size of the input cluster
group is determined by the product of the number of input HVs
and the computation parallelism. Considering the dimension of
the HV exceeds the column size of a single block in general,
HVs are divided and distributed across several blocks, and
elements of different HVs are aligned in the same column
inside clusters. After the allocation, the operations are executed
according to the predetermined schedule for each process.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 18:58:32 UTC from IEEE Xplore. Restrictions apply.

D: Hypervector element [] : Accessed FeFET rows for read operation

Block0 Blockl Block2 Block3 Block0 Blockl Block2 Block3

" ERERC e SR EEE
[L TP T) T I
[11 T s [L]
Additional S&A required ‘ ‘

n [(0 M = L B

(a) Original Concatenation (b) Block-level Concatenation

Fig. 4: An example of block-level HDC concatenation.

Input cluster 0

Input cluster 1

block-level

process

cluster-level

[compufe N1

time

process

(a) Block-level scheduled blocks (b) Timing diagram comparison

Fig. 5: The proposed block-level scheduler.

The input clusters compute various HD operations, including
element-wise arithmetic and concatenation using a combination
of FeFET blocks and HVAs. The computation results are sent
to the output cluster via the interconnect network.

C. Block-level Concatenation

HygHD uses the concatenation to represent a hyperedge.
The HV of each node is sliced into segments corresponding
to the number of nodes connected by the edge, and these
segments are then combined to form the HV of the hyperedge.
A naive approach for implementing the concatenation operation
(H = ||(Hy,Hy, H3)) in hardware is illustrated in Fig. 4(a)).
The relevant segments of the HV for each node are read at block
levels. Subsequently, these segments are connected to the sliced
HV of the other node through the shift-and-add operation and
then written to the output HV (i.e., the HV of the hyperedge).
However, implementing the HDC concatenation in hardware is
not well-suited for the PIM structure that processes data at a
block level. This is due to the additional requirements of read
and add&shift operations, which cause inefficiencies in terms
of both hardware utilization and processing speed.

We propose a hardware-friendly block-level HDC concate-
nation. As depicted in Fig. 4(b), the block-level concatenation
involves slicing the HV of the node at the block level and
connecting these blocks to create the HV of the hyperedge.
We can eliminate additional read transactions and add&shift
operations. Due to the fact that the dimension of the HV is
typically over 4000 while the block size is usually 64, imple-
menting the hyperedge HV using block-level concatenation

has minimal impact on accuracy.
D. Block-level Scheduler

Efficient scheduling plays a significant role in optimizing
hardware performance in the HygHD accelerator. When multi-
ple output HVs require input HVs from the same block, the
operations need to run in serial, leading to increased latencies.
By scheduling internal operations in HygHD stages in advance
with the proper order, we can improve overall efficiency.

Algorithm 1 Block-level scheduling

1: Goal: Set a scheduling dictionary SD (keys: output HVs; values: block-
cluster dictionaries BC'D (keys: input blocks; values: input clusters))

2: Initialize SD

3: Generate a dictionary OID (keys: output HVs; values: input blocks)

4: for Ny, in (output HVs) do

5 input blocks <— OID[N}]

6 Initialize BC' D

7 for C'B; in (input blocks) do

8 for cluster in (input clusters) do

9: Find the cluster (target_cl) that has the least usage of C'B;.

10: end for

11: Update BC'D with {CB;: target_cl}

12 end for

13 Update SD with {Ny: BCD}

14: end for

15: return SD

The existing scheduling method [8] is not suitable for
HygHD. This is because it tries to assign all input blocks
to a single cluster based on the output HV, which can lead to
suboptimal scheduling decisions in HygHD. Let us consider
a scenario with only two input clusters (input cluster 0 and
1) shown in Fig. 5(a). Both input clusters contain a copy of
computation blocks (CBO-CBS5). When output HV N requires
CBO0-2, the cluster-level scheduler assigns these computation
blocks within the same cluster (input cluster 1 in Fig. 5(a)).
Besides, when output HV N requires CB2-3, the cluster-level
scheduler realizes that CB2 overlaps in the input cluster 1 and
decides to perform this operation on the other cluster (input
cluster 0). At the same time, if output HV Ny also requires
CBO0 and CB3-4, we cannot proceed with the operation for No
in parallel with the cluster-level scheduling.

We propose a block-level scheduler shown in Algorithm 1.
This approach aims to allocate blocks to clusters in a way
that minimizes the total latency across all blocks (L7, L8)
in a greedy manner. It schedules each input CB, searching
the cluster that has the least usage of the input CB (L9). For
example, in the same case with the cluster-level scheduling
(Fig. 5(a)), CBO can be allocated to cluster 0, while CB2-3
can be assigned to cluster 1 for N». Consequently, N, N,
Ny can be computed in parallel (Fig. 5(b)).

The block-level control offers several advantages: more
parallelism, elimination of the need for sorting output vectors
for scheduling order, and improved compatibility with block-
level concatenation. Note that blocks involved in the operation
of a particular output HV can be assigned to multiple clusters.

V. EVALUATION
A. Experimental Setup

System Environment: We implemented the HygHD on
NVIDIA RTX 4090 and used nvidia-smi to measure power
consumption. HygHD on GPU adopts the state-of-the-art GPU
optimizations for HDC [15], [16]. For the HygHD accelerator
evaluation, we integrate latency and energy consumption
estimates to a PyTorch Geometric-based simulator. We use
the FeFET device with 45nm technology in [8], [11], [17],
[18], and estimate latency and energy consumption in FeFET
blocks and peripheral circuits such as shift-and-add and ADCs
using NeuroSim [19]. We synthesized the HVA with Synopsys

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 18:58:32 UTC from IEEE Xplore. Restrictions apply.

TABLE I: System specifications of HygHD.
HygHD

Blocks 64x64 3 FeFET cells, 8 columns/ADC, Add&Shift
Clusters 1024 blocks, HVA, 8KB SRAM
Tiles 128 clusters, interconnect bandwidth = 16GB/s

Computation Blocks
tADD=86.8ns, tRD=42ns, tWR=82ns
eADD=5.725pJ, eRD=0.483pJ, eWR=0.618pJ
FeFET CAM Cells in Similarity Blocks
tSearch=1.5ns (64bit), eSearch=0.069fJ/bit
Area and Power of Components

FeFET blocks 1.26mm?2/460.8mW
ADC 0.93mm?/1.54W
DAC 0.066mm?2/1.54W
Add & Shift 0.36mm?/307.2mW
HVA & SRAM 0.057mm?/27.34mW
TABLE II: Dataset attributes
Co-citation \ Co-authorship | Text
Cora CiteSeer | Pubmed Cora DBLP 20News
(CR-C) (CS-0) (PB-C) (CR-A) (DBLP-A) (20N-U)
V] 2708 3312 19717 2708 43413 16242
|| 1579 1079 7963 1072 22535 100
| F| 1433 3703 500 1433 1425 100
Ic| 7 6 3 7 6 4
max |e| 5 26 171 43 20 2241

Design Compiler 65nm library and scaled it to 45nm. The
design was placed and routed using Synopsys IC Compiler.
Baselines and Datasets: We compare HygHD to GCN-based
hypergraph learning solutions, HyperGCN [1], HNHN [6], and
HGNN [5], in terms of accuracy, speed, and energy efficiency.
We enable mediators and fast mode (known as FastHyperGCN)
for HyperGCN. HNHN evaluation and HGNN evaluation were
performed on hypergraph benchmark tool [20]. Baselines are
trained for 200 epochs, which is required for peak accuracy.
We use real-world datasets [1], [21]: co-citation Cora (CR-C),
CiteSeer (CS-C), and Pubmed (PB-C); co-authorship Cora (CR-
A) and DBLP (DBLP-A); 20Newsgroup (20N-U) (details in
Table I). V|, |€], |F|, and |C| denote the number of vertices,
hyperedges, features, and classes, respectively. “max |e|” is
the maximum number of nodes each hyperedge includes. Note
that we only compare HygHD and baselines on GPU since
there has been no accelerator for hypergraph learning.
HygHD and PIM Configurations: We set HV dimensionality
to 8192. Operand HVs are duplicated to enhance parallelism
in our accelerator. Our PIM architecture has the capability to
accommodate a maximum of 8 copies. In order to achieve our
desired parallelism, we need 2, 2, 4, 2, 8, and 4 tiles for CR-C,
CS-C, PB-C, CR-A, DBLP-A, and 20N-U, respectively.

B. Performance Comparison to GNN-based Solutions

We perform speedup and energy efficiency comparisons
between our HygHD and baselines on GPU. Fig. 6 shows the
speedup and energy efficiency improvement of HygHD for
training and inference phase over baselines. HygHD is 566 x
and 33.6x faster on average for training and inference than
baselines, respectively. Also, HygHD is, on average, 231x
and 10.4x more energy efficient on training and inference,
respectively, than others. For all cases, HygHD consumes
more power than baselines as it can accommodate more
parallelism through element-wise vector operations. However,
the significant reduction in execution time compensates for the
increased power consumption and enhances energy efficiency.

1E+4
1E+3

1E+3

EHANAN

= HyperGCN

= HNHN

EHyperGCN

Z g0
1E+2 B
1E+1
1E+0

£
ERDENES

Speedup (x)

-
“1EH
CRC CS-C PB-C CRA DBLP-A 20N-U - -C PBC CR-A DBLP-A 20N-U

Training Inference

1E+4 SHNHN

1E+3
1E+2
1E+1
1E+0

=EHyperGCN HAGNN

gk HHyperGON NN HGNN
Z1E02

2.7

£
EiE+ 7
= L4 . 0.45 15 0.60

E. Eff. Improv. (x)

S 1B+

CR-C CS-C PB-C

CR-A DBLP-A 20N-U CR-C CS-C PB-C CR-A DBLP-A 20N-U

1E-1

Training Inference

Fig. 6: Speed and energy efficiency of HygHD vs. baselines on GPU
TABLE III: Accuracy comparison with GNN-based methods

Accuracy (%) | CR-C CS-C PB-C CR-A DBLP-A 20N-U
HyperGCN 0.68 063 074 0.7 0.76 0.81
HNHN 065 062 077 0.63 0.86 0.81
HGNN 066 067 077 0.69 0.88 0.80
HygHD (Ours) | 0.68 0.63 077 0.72 0.86 0.76

For the training phase comparison, we included node feature
encoding and hyperedge encoding stages for HygHD. The train-
ing time for baselines includes Laplacian operations. HygHD
shows lower latency with lower energy consumption across
all datasets thanks to lightweight HDC operations. HygHD
enables the training with element-wise addition. In contrast,
GNN-based baselines accompany complex computations like
matrix multiplication, Laplacian, and back-propagation. These
operations used for GNN-based methods consume more time
and energy. Moreover, while HygHD needs only single-pass
training, all baselines require iterations (at least a few hundred
epochs) in training to achieve peak accuracy.

The inference of HygHD also shows lower latency and
energy consumption compared to baselines in most cases. Only
in PB-C and DBLP-A datasets, HyperGCN shows 0.45x and
0.6x lower energy consumption than HygHD. This is because
HyperGCN converts a hypergraph to a conventional graph
during the training phase and processes GCN over it. The
inference step reuses the hypergraph approximation. However,
in PB-C and DBLP-A, HyperGCN shows the lowest accuracy
among the others. In the DBLP-A dataset, HyperGCN results in
more than a 12%p accuracy drop compared to state-of-the-art
accuracy in the DBLP-A dataset as shown in Table III.

The dimensionality of HVs (D) in HygHD has an impact on
various factors such as accuracy, execution time, and hardware
size. When D is low, the accuracy drops as it limits the amount
of expressed and compressed information, but the hardware
size and the required number of computations are small. On the
other hand, high dimensionality can enhance accuracy, but the
computational complexity and size of the hardware increase.
When D = 8192, HygHD achieves peak accuracy.

C. HygHD on PIM vs. HygHD on GPU

Fig. 7 shows a comparison between the HygHD PIM
accelerator and the HygHD GPU implementation in terms
of their speed and energy efficiency. The proposed accelerator
performs on average 40x and 3.41x faster in training and
inference, respectively, compared to HygHD on GPU. Further-
more, HygHD on PIM is 15395x and 73003 x more energy
efficient on average for training and inference, respectively, than
HygHD on GPU. HygHD uses specialized blocks: computation
and similarity blocks for the training and inference stages,
respectively. These blocks are optimized for HDC operations

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 18:58:32 UTC from IEEE Xplore. Restrictions apply.

1E+2 1E+5

Speedup (x)
=l
K3

E. Eff. Improv. (x)
&=
S

1E43
CR-C CS-C PB-C CR-A DBLP-A 20N-U
= Training = Inference

" CR-C CS-C PB-C
= Training
(a) Speed (b) Energy efficiency
Fig. 7: HygHD on PIM vs. HygHD on GPU

CR-A DBLP-A 20N-U
u Inference

100%
80%
60%
0%
20%

0%

16

m2x mdx =8y

Speedup (x)
s w

S 3 oz 31y v oy 3
- g ¢ g ¢

H
GPU Latency Breakdown

PIM Latency Breakdown 0

CRC CS-C PB-C CRA DBLP-A 20N-U

=Node Encoding = Hyperedge Encoding = Training

(@) (b)
Fig. 8: HygHD on accelerator analysis (a) Latency breakdown of
HygHD on GPU and PIM (b) Scalability of HygHD

like bundling, concatenation, and similarity check (reasoning).
Also, with proper scheduling, we can efficiently parallelize
them. From an energy consumption perspective, GPUs are
known for high power consumption, making the large energy
efficiency gap between HygHD on PIM and GPU.
D. HygHD PIM Accelerator Analysis
Breakdown. Fig. 8(a) shows the latency breakdown of HygHD
on GPU and PIM. Compared to GPU, PIM handles hyperedge
encoding and training phases well, and the majority of latency
concentrates on node encoding. Even though there are multiple
copies (up to 8) of input operands and the scheduler controls
the execution order, the same input HV can be used a maximum
of 8 times at the same time. Besides, the node encoding phase
deals with more output HVs than their inputs (or operands),
leading to increased latency. For the PB-C case, the number
of features, which is equivalent to the number of operands, is
only 500. However, the number of vertices, which corresponds
to the output HVs, is significantly larger (19717/500 = 39x).
Cluster-level vs Block-level Scheduling. In HygHD, we use
a block-level scheduler, which efficiently manages resources
and parallelizes operations with fine-grained control of FeFET
memory blocks. Compared to the previous cluster-level sched-
uler [8], the block-level scheduler in HygHD enhances the
speed by 1.24x speedup on average across datasets.
Scalability. Processing larger hypergraphs requires higher
memory bandwidth and capacity. The proposed accelerator can
scale them by increasing CB and SB. We compare the runtime
according to the number of CB and SB. We set the number
of blocks in the multiple of minimum required blocks (2x,
4%, and 8x). As shown in Fig. 8(b), the degree of speedup
increases as we increase CB and SB: 10.1x on average in an
8x-scale scenario. It implies that our accelerator offers scalable
memory bandwidth and can easily support larger hypergraphs.
Effectiveness of Block-level Concatenation. The proposed
block-level concatenation allows HygHD to remove unneces-
sary read transactions and add&shifts and implement concatena-
tion operations with only reads and writes. Our experiment data
shows that block-level concatenation is 1.31x faster compared
to the naive approach across all datasets on average.
VI. CONCLUSION

We presented HygHD, an HDC-based hypergraph learning

framework. HygHD represents hyperedges as HVs using

concatenation and trains the model with only element-wise
vector additions. Furthermore, we developed a FeFET-based
PIM accelerator to accelerate the proposed algorithm. We in-
troduced hardware-friendly block-level concatenation to reduce
peripheral circuits. Also, we devised a block-level scheduler to
efficiently handle operations in the HygHD algorithm through
fine-grained control of FeFET memory blocks. Our evaluation
shows that HygHD runs up to 443x (7.67x) faster with 142x
(2.78x) improved energy efficiency in the training (inference)
stage over the fastest GNN-based hypergraph solution [1]
on GPU while showing comparable accuracy. Furthermore,
our accelerator offers, on average, 40.0x (3.41x) speedup
and 15395x (73003x) energy efficiency improvement on the

training (inference) stage compared to HygHD on GPUs.
ACKNOWLEDGMENT

This work was supported in part by PRISM and CoCoSys,
centers in JUMP 2.0, an SRC program sponsored by DARPA,
SRC Global Research Collaboration (GRC) grants, and NSF
grants #1826967, #1911095, #2003279, #2052809, #2112665,

#2112167, #2100237, and #2023-JU-3135.
REFERENCES

[1] N. Yadati et al., “Hypergen: A new method for training graph convolu-
tional networks on hypergraphs,” NeurIPS, 2019.

[2] D. Arya et al., “Exploiting relational information in social networks
using geometric deep learning on hypergraphs,” in ICMR, 2018.

[3] K. A. Murgas et al., “Hypergraph geometry reflects higher-order dynamics
in protein interaction networks,” Scientific Reports, vol. 12, 2022.

[4] Y. Gao et al., “Hypergraph learning: Methods and practices,” IEEE
TPAMI, vol. 44, no. 5, pp. 2548-2566, 2020.

[5] Y. Feng et al., “Hypergraph neural networks,” in AAAI, 2019.

[6] Y. Dong et al., “Hnhn: Hypergraph networks with hyperedge neurons,”
arXiv preprint arXiv:2006.12278, 2020.

[7]1 1. Nunes et al., “Graphhd: Efficient graph classification using hyperdi-
mensional computing,” in DATE, 2022.

[8] J. Kang et al., “Relhd: A graph-based learning on fefet with hyperdi-
mensional computing,” in /CCD. IEEE, 2022.

[91 K. Ni er al., “A circuit compatible accurate compact model for

ferroelectric-fets,” in VLSIT, 2018.

Y. Long et al., “A ferroelectric fet-based processing-in-memory architec-

ture for dnn acceleration,” JXCDC, 2019.

A. Kazemi et al., “Mimhd: Accurate and efficient hyperdimensional

inference using multi-bit in-memory computing,” in ISLPED, 2021.

, “In-memory nearest neighbor search with fefet multi-bit content-

addressable memories,” in DATE, 2021.

M. Imani et al., “Voicehd: Hyperdimensional computing for efficient

speech recognition,” in /CRC, 2017.

, “DUAL: Acceleration of clustering algorithms using digital-based

processing in-memory,” in MICRO, 2020.

J. Kang et al., “Xcelhd: An efficient gpu-powered hyperdimensional

computing with parallelized training,” in ASP-DAC, 2022.

, “Openhd: A gpu-powered framework for hyperdimensional com-

puting,” IEEE TC, 2022.

A. Kazemi et al., “In-memory nearest neighbor search with fefet multi-bit

content-addressable memories,” in DATE, 2021.

X. Yin et al., “Fecam: A universal compact digital and analog content

addressable memory using ferroelectric,” IEEE T-ED, 2020.

X. Peng et al., “Dnn+neurosim: An end-to-end benchmarking framework

for compute-in-memory accelerators with versatile device technologies,”

in JEDM, 2019.

H. Hwang et al., “Hyfer: A framework for making hypergraph learning

easy, scalable and benchmarkable,” in WWW W’ on Graph Learning

Benchmarks, 2021.

D. Dua et al., “UCI machine learning repository,” 2017. [Online].

Available: http://archive.ics.uci.edu/ml

[10]

[11]

[12]
[13]

[14]

[15]

[16]

(17]
[18]

[19]

[20]

[21]

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 18:58:32 UTC from IEEE Xplore. Restrictions apply.

