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ABSTRACT

Prediction of the autogenous shrinkage referred to as the reduction
of apparent volume of concrete under seal and isothermal condi-
tions is of great significance in the service life analysis and design
of durable concrete structures, especially with the increasing use
of concrete with low water-to-cement ratios. However, due to the
highly complex mechanism of autogenous shrinkage, it is hard to
design accurate mechanistic models for it. Existing state-of-the-art
models for autogenous shrinkage do not perform well for several
reasons such as not being able to capture faster shrinkage change at
early ages (swelling), coefficients used are derived using statistical
optimization methods to fit certain databases only, and mechanism
to identify the most influencing factors on autogenous shrinkage is
not present. Moreover, it is also challenging to deploy a machine
learning framework directly to perform predictive analysis due to
the sparse and noisy nature of the available experimental dataset. In
this paper, we study and propose a method to combine the physics-
based knowledge and the predictive ability of deep regression neural
networks to mitigate the shortcomings of the existing models. We
introduce a novel data augmentation technique that utilizes physics
based knowledge to improve the accuracy while maintaining the
characteristics of autogenous shrinkage in its predictions simul-
taneously. Using state-of-the-art B4 model, a genetic algorithm,
and a deep neural network trained using raw data for comparison,
we show that the proposed methods help improve the accuracy
of the model as compared to other methods. We also observe that
the proposed method is able to successfully learn and predict the
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swelling component of the shrinkage strain curve as well, which
cannot be predicted using the existing state-of-the-art models.
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1 INTRODUCTION

While the inception of concrete dates back thousands of years, it is
still one of the most highly used materials in the construction indus-
try. Concrete shrinkage is of particular interest to researchers as it
plays a major role in the sustainability, durability and serviceability
of concrete structures [22]. Concrete shrinkage refers to the reduc-
tion in volume through time. It is the time-dependent deformation
of concrete, which is caused by water movement within a concrete’s
porous structure and chemical reactions. It can lead to cracks that
directly affect durability and serviceability. There are many types
of shrinkage that affect concrete such as drying shrinkage, autoge-
nous shrinkage, chemical shrinkage, carbonation shrinkage, ther-
mal shrinkage, and plastic shrinkage [41]. In this work, we mainly
focus on the autogenous shrinkage [28] which refers to reduction
of apparent volume of concrete under seal and isothermal condi-
tions [25, 38]. Autogenous shrinkage has always been neglected as
it causes relatively minor deformations in conventional concrete
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compared to those caused by other types of shrinkage [8]. However,
with the increasing use of high-performance concrete (HPC), auto-
genous shrinkage is becoming more and more important [25, 32]
since the internal moisture for HPC is insufficient to fully hydrate
cement particles due to a low water-to-cement ratio and hence
the probability of autogenous shrinkage may increase [37, 39]. In
addition to autogenous shrinkage, another phenomenon called as
swelling can also occur in the cement. Swelling [6, 37] is the in-
crease in volume of concrete caused by the hydration reaction,
usually occurring at short time scales.

Although autogenous shrinkage has comparatively less visibility
in the field of concrete shrinkage, several studies proposing mod-
els to predict autogenous shrinkage have been published in this
field [7, 11, 16, 17, 23, 33]. Among the models proposed to predict
autogenous shrinkage (ACL, B3, GL00, MC10, MC99, B4), the re-
calibrated B4 model [23], a statistically obtained model using the
available datasets is shown to perform the best. However, none of
them agree well with all the experimental observed phenomena.
The main reasons are 1) the mechanism of autogenous shrinkage
is not well understood, so we do not have a clear theory on how
the autogenous shrinkage mechanisms work in cementitious ma-
terials exactly or how it can be correlated with microstructural
characteristics, 2) some factors have not been taken into account
such as temperature and the type of supplementary cementitious
materials, 3) some models cannot exactly capture the interaction
among different factors and often ignore the connection between
various shrinkage mechanisms [39]. It is also challenging to deploy
a machine learning framework directly to perform predictive anal-
ysis [2, 3, 10, 18, 19, 26, 30] due to the sparse and noisy nature of
the available experimental dataset.

Our goal in this work is to design a deep learning framework
that can maximize the predictive ability of the model where the
prediction follows the physics behind the nature of the shrink-
age strain curve by using only compositional features as model
input. We introduce the idea of training the model using data aug-
mented from physics-based knowledge for deep regression net-
works. Several works have proposed various data augmentation
methods to improve the performance of the model [14, 15, 24, 36].
Work in [36] uses the theory of normal variance-mean mixtures to
derive a data-augmentation scheme for a class of common regular-
ization problems for non-Gaussian regression. Discacciati et. al. [15]
proposes a command, penlogit for approximate bayesian logistic
regression using penalized likelihood estimation via data augmen-
tation where the proposed command automatically adds specific
prior-data records to a dataset. The method employed in [14] pro-
poses a time series augmentation method, using generative models
and checks the viability of augmenting multivariate time series
with exogenous inputs. [24] deploys a framework called MixRL,
where a data augmentation meta learning framework for regression
learns how many nearest neighbors it should be mixed with for
each example to maximize the model performance using a small
validation set which is achieved using Monte Carlo policy gradient
reinforcement learning.

There has also been a major focus to incorporate physics-based
knowledge during different phases of training models to improve
the performance [4, 29, 31, 40]. Work in [4] used a comprehen-
sive physics based mathematical model based on an unsteady, two
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dimensional solid fuel and the gas domains to predict the regres-
sion rate in solid fuels for hybrid propulation. Majda et. al. [29]
introduced a new class of physics constrained multi-level quadratic
regression models to build reduced stochastic models from data
of nonlinear systems which has advantages such as incorporat-
ing memory effects in time and the nonlinear noise from energy
conserving nonlinear interactions. Physics-informed CoKriging
proposed in [40] is a GPR-based multi-fidelity method, a modi-
fied version of the recently developed physics-informed Kriging
(PhIK) which integrates simulation results and observation data
efficiently. [31] developed a diagnostic tool for operations and main-
tenance cost reduction application where physics-based diagnostic
models are used for reactor feed pumps and motors which uses
data augmented from real-time plant data for model training.

There are also some works that study the effect of both the
data augmentation and physics-based model training [5, 12, 13, 34].
Work in [12] leverages sensor physics along with large amounts of
readily available background data by inserting observations of tar-
get signatures under clutter-free conditions into a cluttered scene in
a way consistent with the physics governing the sensor to improve
discrimination performance. Omigbodun et. al. [34] introduces a
new physics-based data augmentation for false-positive reduction
in the automatic detection of lung nodules, which can emulate new
computed tomography data acquisition protocols in two forms. Se-
mantic physics-based data augmentation method proposed in [5]
performs segmentation on the esophagus in both planning CT and
cone beam CT using 3D convolutional neural networks that can
generalize well across modalities thus improving the accuracy of
treatment setup and response analysis. [13] uses a novel physics-
based data augmentation strategy by synthesizing a large dataset
of perfectly/inherently registered pCT and synthetic-CBCT pairs
for locally advanced lung cancer patient cohort, which are then
used in a multitask three-dimensional (3D) deep learning frame-
work to simultaneously segment and translate real weekly CBCT
images to high-quality pCT-like images. Although data augmenta-
tion and physics-based model training has been widely used with
data that are images/continuous in nature or work that have access
to physics-based instruments or computational technique to per-
form acquisition protocols different from the training set to acquire
large amount of dataset, to the best of our knowledge, no previ-
ous work investigates physics-based data augmentation method
using only the limited dataset with experimental noises for building
deep regression networks composed of fully connected layers for
numerical vector inputs.

In this paper, we analyze and propose a efficient model train-
ing method performed using data augmented from physics-based
knowledge for deep regression networks composed of fully con-
nected layers using numerical vectors as inputs. We propose a novel
physics-based data augmentation method where we utilize a scien-
tific formula based on domain knowledge and understanding. We
compare the proposed model trained using data augmented from
physics-based knowledge against state-of-the-art B4 model, statis-
tical equation obtained using genetic algorithm, and deep learning
model trained using the raw experimental dataset. First, we focus
on the design problem of predicting the autogenous shrinkage from
an input vector composed of compositional features with NU data-
base [22] containing experimental shrinkage strain test curves that
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does not have swelling component. We also perform a study where
we observe the impact of number of data augmented per curve
to perform the physics-based data augmentation of the training
dataset and deploy genetic algorithm to perform symbolic regres-
sion and derive a mathematical equation to predict autogenous
shrinkage to compare against our proposed method.

Our proposed physics-based data augmentation method achieves
significantly better result in terms of test error than the state-of-the-
art B4 model, statistical equation obtained using genetic algorithm,
and deep learning model trained using the raw data. We also per-
form a stringent test by evaluating the performance of the proposed
method on the full dataset by including the test curves which show
swelling and found that our proposed approach consistently out-
performs the B4 model and deep learning model trained using the
raw data on the prediction tasks. Finally, we use feature importance
function of multiple machine learning algorithms to find out the
most influential compositional factors of autogenous shrinkage.
Overall, the proposed physics-based data augmentation method
provided more accurate model as compared to the state-of-the-art
B4 model and deep learning model trained using the raw data on
experimental datasets, and is expected to be widely useful for fast
and accurate predictive modeling on small experimental datasets
which are sparse and noisy in nature.

2 PROBLEM STATEMENT
2.1 Autogenous Shrinkage

Autogenous shrinkage [28] refers to reduction of apparent volume
of concrete under seal and isothermal conditions [25, 38]. It is de-
pendent on a complex array of factors including the mix design of
concrete, aggregate content, cement content, curing temperature,
and the type and percentage of supplementary cementitious ma-
terials. Additionally, some of these parameters are highly related
and interdependent, which causes the complexity of autogenous
shrinkage. In addition to autogenous shrinkage, another phenome-
non called as swelling can also occur in a cement. Swelling [6, 37]
is the increase in volume of concrete caused by the hydration reac-
tion, usually occurring at short time scales. Autogenous shrinkage
curves can contain both the typical decrease in strain over time
with a small increase in strain at short time scales due to swelling.

2.2 Experimental Data

Since the mechanism of autogenous shrinkage is not well under-
stood, obtaining simulation data is not possible. Hence, in order
to study and obtain a predictive model for shrinkage response
which is affected by various parameters such as compositional pa-
rameters, curing/processing conditions, etc., one must solely rely
on experimental data. Also, due to the nature of a shrinkage ex-
periment (which involves maintaining a sealed sample for a long
period of time), there is only limited data available in literature,
with few parameters reported making it harder to use predictive
modelling directly to solve the problem. The most common and
reliable reported parameters are the compositional parameters that
are water to cement ratio (w/c), aggregate to cement ratio (a/c),
specific binder percentages (SiO2, flyash, slag, filler, etc.) and
cement content/type.
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Table 1: List of different types of input features used to create
model to predict shrinkage response.

Type Notation | Description

Compositional | w/c Water to cement ratio

Feature alc Aggregate to cement ratio
c Cement mass

SiO;y, Slag | Binder weight percentage
ky Cement type

Alternate wb Water to binder ratio
Compositional = water/(cement+fly ash+SiOz)
Feature ab Aggregate to binder ratio
= aggregate/(cement+fly ash+SiO,)
Time t Shrinkage response time
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Figure 1: The figures shows what typical autogenous shrink-
age curves look like. (a) shows an example of neat curve and
(b) shows an example of noisy curve.

Table 1 depicts the list of different types of compositional pa-
rameters that are used to predict autogenous shrinkage (note that
various dimensionaless numbers can be made from composition
parameters). In this study, we use a database with experimental
shrinkage curves (NU database) [22].

Figure 1 depicts what typical autogenous shrinkage curves in the
database look like. Ideally, there is a slight increase in the strain at
the early stage which is contributed by swelling (may not be seen
for every autogenous shrinkage curve) and then a sharp decrease
in strain followed by a plateau which is contributed by shrinkage.
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Although there are some neat curves which are available in the NU
database (as shown in Figure 1 (a)), due to various factors related
to experiment error, many of the data are very noisy (as shown in
Figure 1 (b))

Figure 2 shows the summary of the NU database used for our
study. From the 319 unique test curves plotted in Figure 2 (a), we
can observe that while a large majority of the curves follow the
typical pattern, some (that goes above the zero mark on the y-axis)
exhibit swelling. Figure 2 (b) shows the histogram of the number
of data points for each autogenous shrinkage curve, and on aver-
age, we observe 24 points per test curve. Figure 2 (c) shows the
histogram of the final time of experimental recording for each au-
togenous shrinkage curve, and the average time span during which
the shrinkage was recorded was 262 days, with few tests that span
between 1500 and 3000 days. Careful inspection of NU database
also shows that some of the curves does not have compositional
parameter data available or are too noisy and unreliable to use
directly.

2.3 Existing Predictive Model

Autogenous shrinkage is a highly complex mechanism and is hard
to model accurately. Several models have been proposed by domain
scientists to predict autogenous shrinkage such as B4 model [23].
However, they do not perform well in all cases for several reasons.
First, these models cannot capture the faster and short scale shrink-
age change at early ages which happens due to the contribution
of swelling. Second, existing models do not have a mechanism to
identify the most influential factors on autogenous shrinkage mak-
ing it harder for the statistical models to give accurate prediction
for a wide range of cases. Third, these models were generally pro-
posed based on empirical experiences and domain knowledge, and
their coefficients are often derived by using statistical optimization
methods to fit from certain databases.

From Figure 3 which shows the comparison between prediction
of B4 model and experimental data of autogenous shrinkage for test
curves without swelling, we see that they agree relatively well for
the given time span. However, when we compare the prediction of
B4 model and experimental data for those test curve which shows
swelling (which has the opposite sign to that of pure autogenous
shrinkage) as done in Figure 4, we can observe that the prediction
of B4 model of total autogenous shrinkage (sum of pure autogenous
shrinkage and swelling) is not accurate. Hence, we propose a model
which not only improves the predictive accuracy but also produces
results which follows the nature of the autogenous shrinkage curve
by incorporating the data augmented using physics-based knowl-
edge during the model training process.

3 METHOD

We next describe how we build deep regression models, composed
of multiple fully connected layers, for autogenous shrinkage predic-
tion with composition-based numerical vectors as inputs. We first
introduce state-of-the-art B4 model, a statistical model obtained
via optimum fitting of the available experimental dataset. Next, we
introduce two types of the deep learning models used in our work
based on the inputs used to train the models. First, we describe
straight network (SNet) which uses raw experimental data as the
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Table 2: Cement type factor

Cement Type N |H M L
(CEB equivalent) | (R) | (RS) | (N) | (SL)
ky 1.0 | 1.2 0.85 | 0.4

input. Second, we describe our novel B5 Network (B5Net), in which
physics guided augmented data is used to train the network. We use
the B4 model and SNet as baseline models for comparison against
the B5Net.

3.1 B4 model

Based on the available experimental datasets, Rasoolinejad et al [37]
proposed the B4 model, which characterizes the autogenous shrink-
age by a power function:

t n
€au = kyksC|——
au Yhs ( 1day)
Here ¢ is the time (in days) (measured from the moment of set), C
and n are empirical dimensionless parameters, ky is a cement factor
listed in Table 1, and kg accounts for the effect of additives such as
slag and SiO.

C=—— 8

n=p+qlnC where p=12-0.1 (%) & q=-0.14+0.005 (%)
@)

_ SiO2 Slag
ks_{1+3(Cement)}{1+2(Cement)} ©®)

Due to the limited understanding of the mechanisms by which
concrete’s main compositions affect autogenous shrinkage, the au-
thors defined, based on empirical experiences, Equations (1), (2),
and (3) to characterize the relationships between the above param-
eters (i.e, ky, ks, C and n) and concrete composition properties
(i.e.,we, ac, slag and cement). The equation was calibrated by fitting
the NU database on experimental shrinkage curves with statistical
optimization methods. The B4 model is used as a baseline to which
we will compare our data-driven methods of prediction.

3.2 Deep learning model

We use two types of input to train our deep learning model i.e. using
raw data and data augmentation. The base model architecture used
in this work is formed by putting together a series of seven stacks,
each composed of one or more sequences of two basic components
with the same configuration. Since the input is a numerical vector,
the model uses a fully connected layer as the initial layer in each
sequence. Next, ReLU [1] is used as the activation function after
the fully connected layer. The detailed architecture for the network
is illustrated in Figure 5.

3.2.1 Raw data. The neural network architecture uses raw ex-
perimental data as the input (wb, ab and t) and thus learns the
experimental error and noise that comes along with the limited
dataset. We refer to this network as a straight network (SNet).
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Figure 2: The figures shows the summary of the NU database used for our study. In (a) we plot all the autogenous shrinkage
curves, (b) shows histogram of the the number of data points for each autogenous shrinkage curve and (c) shows the histogram
of the final time of experimental recording for each autogenous shrinkage curve.
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Figure 3: The figures shows the actual vs predicted shrinkage
using B4 model on test curves without swelling
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Figure 4: The figures shows the actual vs predicted shrinkage
using B4 model on test curves with swelling

3.22 Data augmentation. Due to limited size and the presence of
possible experimental error in the autogenous shrinkage database,
it is challenging to deploy deep neural networks and create a model
that successfully captures the nature of the shrinkage and swelling.
The existing models used for autogenous shrinkage prediction only
takes shrinkage into account, which limits its general use. To solve
this issue, we introduce a novel technique of using B5 model-based
augmented data to train the neural network instead of raw exper-
imental data. B5 model, which superposed swelling function to
predict the autogenous shrinkage €410 is defined as follows:

e[ () ey
e =5 eap ) o e T ey

where &500 is the ultimate shrinkage value, 754, is swelling halftime
, Tqu 1s autogenous shrinkage halftime, m and n are constants, wb
is water to binder ratio, and ab is aggregate to binder ratio. wb and
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Figure 5: The base model architecture used in this work. Each

“layer” is a fully-connected neural network layer with size
depicted in each of the blocks followed by ReLU.

)

ab are relevant to concrete main compositions, which are known
a priori. However, for other parameters, ésco, Tsws Tqu, M, 1 in the
above equation, need to be determined based on the NU database.
Hence, we use the raw experimental data on the B5 model to per-
form curve fitting for each shrinkage set and calculate the value of
parameters for the B5 model. The average R? for the curve fitting
using B5 is 0.83 (some curves with very bad fits were not included).
Note that the B5 model cannot be directly used for autogenous
shrinkage prediction as most of the parameters are not determined
for general use purposes.

Figures 6 and 7 show the B5 predictions for some tests without
swelling and with swelling data respectively. Note that the five
parameters fitted are unique to each curve. We then perform data
augmentation using the B5 model and parameters for each shrink-
age set, and by default create 100 data points for each test curve.
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Figure 6: The figures shows the actual vs predicted shrinkage
using B5 model on test curves without swelling
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Figure 7: The figures shows the actual vs predicted shrinkage
using B5 model on test curves with swelling

Finally, we use the augmented data to train the network. This way,
we can make the neural network learn the nature of the shrinkage
strain curve for autogenous shrinkage by bypassing sparse and
noisy nature of the dataset.

4 EMPIRICAL EVALUATION

In this section, we present a detailed analysis and evaluation of
the proposed deep learning (DL) model trained using data aug-
mentation from physics-based knowledge. We will proceed in sev-
eral steps. First, we perform our evaluation of the proposed model
for the design problem and compare its performance against B4
model, statistical equation obtained using genetic algorithm and
DL model trained using raw data when applied to the subset of the
experimental shrinkage curves database by excluding the curves
in which swelling is observed. Next, we perform an stringent test
by evaluating the performance of the proposed method on the full
experimental shrinkage curves database. Finally, we use the feature
importance function of the machine learning algorithm to find the
most influencing compositional factors of autogenous shrinkage.
Before presenting the results, we discuss the experimental settings
and datasets used in this work.

4.0.1 Experimental Settings. We implement deep learning models
with Python using Keras [9] framework. In this study, we implement
a 7-layered neural network as the deep neural network model archi-
tecture to perform model training as shown in Figure 5. The number
of neurons in each layers are fixed by referring to [20, 21, 27].For
genetic algorithm we use an extension of scikit-learn [35] called
gplearn to perform symbolic regression. We used mean absolute
error (MAE) as loss function and the error metric for all the results.
We used early stopping with patience of 200 which stops the train-
ing if the validation loss does not improve for 200 epochs. We use B4
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Table 3: Prediction performance benchmarking for the pre-
diction task in “Non-Swelling Dataset Analysis” for the de-
sign problem. The table shows the test MAE for all the model
used in the analysis.

Model Test MAE
B4 model 115.23
SNet 88.96
B5Net 79.86

model for comparison against our proposed model since it demon-
strates a powerful ability to predict the autogenous shrinkage from
compositional inputs alone.

4.0.2 Datasets. In this work, we create and use two datasets from
the raw experimental data [22]. First a dataset that contains both
swelling and non-swelling data, called the full dataset, and second,
a dataset that only contains non-swelling data, non-swelling data
set. For both of these datasets a 85:15 training:testing split (approx-
imately) is performed based on the number of curves. This results
in the full dataset having 218 curves for training (5368 data points)
and 41 curves for testing (916 data points). For the non-swelling
dataset, there are 135 curves for training (2640 data points) and 26
curves for testing (547 data points).

4.1 Design Problem

First, we analyze the impact of different choices of model and data
used by evaluating the proposed methods on the design problem.
We perform autogenous prediction from an input vector composed
of compositional features.

4.1.1  Non-Swelling Dataset Analysis. First, we evaluate the per-
formance of our proposed method on the non-swelling dataset, a
subset of the dataset which does not contain curves with swelling.
We perform autogenous shrinkage prediction using input vector
composed of compositional features. For physics-based data aug-
mentation, we create 100 data points for each of the curves in this
analysis.

In Table 3, we show the test MAE for all the model used in the
analysis. When performing the predictive analysis for the non-
swelling dataset, the results shows that the deep learning model
performs better as compared to the B4 models. Among the deep
learning models, B5Net which uses the data augmented using the
physics-based knowledge as input for the model training performs
better as compared to the SNet which uses raw experimental data
as input for the model training.

As the accuracy improvement gained from introducing the data
augmented using the physics-based knowledge does not seem to
be significant just by looking at the MAE of the two models, we
evaluate its significance by plotting the predicted curves obtained by
using all the models used in the analysis for some of the tests cases
in Figure 8. From Figure 8 we can clearly see the benefit of using the
proposed B5Net model as compared to B4 model and SNet. As the
B4 model does not take into account the swelling component of the
autogenous shrinkage, the prediction is quite off for the whole curve.
For SNet, as the model learns the noises and experimental error from
the raw data during the training phase, the predicted curves also
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Table 4: Prediction performance benchmarking for the pre-
diction task in “Impact of Data Augmentation” for the design
problem. The table shows the test MAE obtained using dif-
ferent number of data augmented after training B5Net used
in the analysis.

No. of Data Augmented Per Curve | Test MAE
25 data points 85.70
50 data points 83.37
75 data points 82.18
100 data points 79.86
125 data points 80.73
150 data points 81.60
175 data points 80.25
200 data points 82.72

reflect that and shows prediction which does not follow the nature
of the shrinkage strain curve for autogenous shrinkage making is
not useful for further analysis (although quantatively there is not
much difference in the MAE as compared to B5Net). These results
demonstrate that deep learning, along with our proposed B5Net
model, can help construct a robust model for predicting autogenous
shrinkage which can enforce the prediction to follow the nature of
the shrinkage strain curve for autogenous shrinkage.

4.1.2  Impact of Data Augmentation. So far, we created 100 data
points for physics-based data augmentation to train the deep learn-
ing model. Here, we first perform the data augmentation using
different values ranging from 25 to 200 data points for each of
the curve in the non-swelling dataset. We then perform the model
training of a deep learning model using the data augmented using
physics-based knowledge for autogenous shrinkage to see how the
performance of the proposed method is effected by the choice of
number of data augmentation on the accuracy of the model.

Table 4 shows the test MAE obtained using different number
of data augmented after training B5Net. From Table 4 we can see
that initially the test MAE decreases as we increase the number of
data points augmented using physics-based knowledge till a certain
number (100 data points for this dataset). Then we see a stagnation
in the performance of the autogenous shrinkage prediction. After
this initial exploration, we use 100 data points as the number of data
points used to performed data augmentation from physics-based
knowledge for the rest of the analysis.

\ — Actual Autogenous Shrinkage oy
Predicted Autogenous Shrinkage

— Actual Autogenous Shrinkage
Predicted Autogenous Shrinkage

Shrinkage St
_—

[ 500 1000 1500 2000 ° = =
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Figure 9: The figures shows the actual (blue) vs predicted
(orange) shrinkage using equation (4) on test curves without
swelling

4.1.3 Against Genetic Algorithm. Finally, we deploy genetic al-
gorithm to perform symbolic regression and derive an statistical
equation to predict autogenous shrinkage to compare against our
proposed physics-based data augmentation method. After perform-
ing symbolic regression on the training data and simplifying the
result we get the following equation:

X0
X1 X
€gen = 0.512 (2,7182'718X1 - 2.718% 71870705941y _ 0.245X, - Z
—0.594X,; — 220 @
where Y = 2.718 % (—46.875 - %)9) ~15.625X1,Z =

—0.214

X, +2.718 %1 and X, X1, X, are the features to perform symbolic
regression. The average R? for the curve fitting using equation (4) is
0.7. Some of the examples of curve fitting performed using equation
(4) is shown in Figure 9.

After performing predictive analysis using the equation obtained
using genetic algorithm we obtain an MAE of 96.39 which shows
that although genetic algorithm provides a close-form prediction
and is able to outperform B4 model, it is still not able to perform
better compared to deep learning models SNet and B5Net (from Ta-
ble 3). Moreover, as the raw data gets more noisy, several problems
arise for the genetic algorithm, such as increase in the complexity
of the resulting equation, need to perform symbolic regression ev-
ery time the variation in the training set changes and having no
physics-based background behind the equation obtained. Also, as
we know that model trained using data augmented from physics-
based knowledge (i.e. B5 model) performs better for predicting
autogenous shrinkage, we will not use the equation obtained from
genetic algorithm for the rest of the work to perform predictive
analysis.
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Table 5: Prediction performance benchmarking for the pre-
diction task in “Full Dataset Analysis”. The table shows the
test MAE for all the model used in the analysis.

Model Test MAE
B4 model 202.23
SNet 85.30
B5Net 82.05

4.1.4  Summary of Insights. We derive the following insights from
our experiments by training different models for performing deep
regression from numerical vector inputs for autogenous shrinkage
on the design problem.

e Model Training From all the experiments performed, we
observe that it is better to use deep learning models as com-
pared to state-of-the-art B4 model and statistical equation ob-
tained using genetic algorithm when performing regression
for predicting autogenous shrinkage on small experimental
dataset. Among the deep learning models, it is better to train
the model from data augmented using the physics-based
knowledge as compared to the raw data as the model is able
to automatically mitigate the sparse and noisy nature of the
experimental datasets and capture the underlying nature of
the shrinkage strain curve accurately.

e Data Augmentation After performing model training using
different number of data points for data augmentation using
the physics-based knowledge, we find that initially test MAE
decreases as we increase the number of data augmented until
a certain point (100 data points for our dataset) and then
stagnates after that.

o Genetic Algorithm Genetic algorithm can be used to per-
form predictive analysis in absence of any physics-based
knowledge such as B5 model for our work as the model
trained using data augmented from physics-based knowl-
edge obtained using the domain expertise have shown better
performance in predicting autogenous shrinkage.

We believe that the proposed method can help build more ac-
curate and robust predictive models than the traditional models
derived based on empirical and domain knowledge. The proposed
method can also be easily adapted to perform classification by mod-
ifying the architecture, i.e., using softmax as the activation of the
last layer and cross-entropy as the loss function.

4.2 Full Dataset Analysis

For the analysis of the full dataset we first evaluate the performance
of our proposed method by predicting autogenous shrinkage using
the same input vector composed of compositional features on the
full dataset containing swelling experimental shrinkage curves as
well.

Table 5 shows the test MAE for all the models used in the analysis.
When performing the predictive analysis for the full dataset, the
results show that the deep learning model still performs better
as compared to the statistical models which is traditionally used
to predict autogenous shrinkage. Even among the deep learning

Gupta et al.

Table 6: Feature Importance value for four compositional
parameters associated with autogenous shrinkage using mul-
tiple machine learning algorithms.

Model Input Parameter

w/c alc c tdry
Linear Regression | -457.528 | 20.775 | -0.808 | -0.001
CART 0.056 0.628 | 0.256 | 0.060
Random Forest 0.160 0.517 | 0.259 | 0.064
XGBoost 0.152 | 0.2563 | 0.525 | 0.066

models, B5Net which uses the data augmented using the physics-
based knowledge as input for the model training performs better as
compared to the SNet which uses raw experimental data as input
for the model training.

As we can see that the test MAE between SNet and B5Net are
still close to each other, we evaluate the significance of introducing
the data augmented using the physics-based knowledge by plotting
the predicted curves obtained by using all the models used in the
analysis for some of the tests cases in Figure 10, which shows
that B5Net is able to predict the autogenous shrinkage curve more
accurately as compred to B4 model and SNet by following the
nature of the shrinkage strain curve for autogenous shrinkage.
These results demonstrate that deep learning along with physics-
based data augmentation, as encapsulated by our proposed B5Net
model, can help construct a robust model for predicting autogenous
shrinkage even with a complex and noisy dataset.

4.3 Feature Importance Analysis

Finally, we use “feature importance” function of multiple machine
learning algorithms (Linear Regression, Classification And Regres-
sion Trees (CART), Random Forest and XGBoost) to find out the
most influencing compositional factors of autogenous shrinkage
among water to cement ratio (w/c), aggregate to cement ratio (a/c),
cement content/type (c), and time it takes to remove the water con-
tent in the cement to prepare for experiment (tg,,), which are four
compositional parameters associated with autogenous shrinkage.

From Table 6, we can see that the the most influencing composi-
tional factors of autogenous shrinkage are the aggregate to cement
ratio and cement content/type such as blast-furnace slag and silica
fume. Among them aggregate to cement ratio is shown as the most
influencing compositional factor by three out of four algorithms.
The next important factor is water to cement ratio. This knowl-
edge can help domain scientist better understand the functioning of
the autogenous shrinkage and hence advance the field. We believe
that the proposed method can also be used to better understand
other small experimental datasets which can show noises related
to experimental errors.

5 CONCLUSION AND FUTURE WORK

In this work, we have studied how to predict autogenous shrinkage,
which is an unavoidable volume reduction in sealed concrete spec-
imens because of the self-desiccation of concrete. Using the NU
database, we have shown that a new model is necessary to account
for swelling as the B4 model is only applicable for non-swelling data.
We have also studied the autogenous shrinkage prediction accuracy
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Figure 10: Predicted curves for some of the test cases for “Full Dataset Analysis"

of a new analytical model, B5 model, which aims to predict the
total autogenous shrinkage with swelling. However, the empirical
parameters in the B5 model are difficult to decide due to the limited
theories. To solve this problem, we present B5Net, a model trained
from the data augmented using the physics-based knowledge for the
predictions of autogenous shrinkage and show that it can enhance
the accuracy of the model and perform prediction based on the na-
ture of the shrinkage strain curve. Additionally, we use a function
of machine learning algorithm “feature importance” to find out the
most influencing compositional factors of autogenous shrinkage.
The insights obtained from this work can help in building predic-
tive models for other with applications small experimental datasets
containing noises derived from experimental error with numerical
vector inputs. The code, data, and models developed in this work
are publicly available at https://github.com/GuptaVishu2002/B5Net
to the community to facilitate reproducibility and further building
upon this work.

In future, we plan to explore the effect of the proposed model
training from data augmentation using physics-based knowledge on
other data mining problems such as classification, and on problems
in other domain with sparse and noisy dataset. We also plan to
formulate a method to establish relationship between B5 coefficients
and compositional parameters to derive an equation between the
coefficients and compositional parameters.
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