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Abstract—Mass spectrometry, commonly used for protein
identification, generates a massive number of spectra that need
to be matched against a large database. In reality, most of
them remain unidentified or mismatched due to unexpected post-
translational modifications. Open modification search (OMS) has
been proposed as a strategy to improve the identification rate by
considering changes in spectra, but it expands the search space
exponentially. In this work, we propose HyperOMS, an algorithm-
hardware co-design for boosted OMS, to cope with the enlarged
database and expanded search space. HyperOMS encodes spectral
data into binary vectors and performs the efficient OMS in high-
dimensional space. We accelerate the HyperOMS algorithm using
a DRAM-based PIM accelerator, which combines processing-using-
memory and near-memory processing technologies. In order to
maximize the parallelization and efficiency of the accelerator, we
optimize the data allocation and devise an approximation strategy
for similarity computation. Experimental results show that the
HyperOMS accelerator yields up to 3.8× speedup and 119×
higher energy efficiency compared to running HyperOMS on
GPU, and up to 99× speedup and 1984× higher energy efficiency
over the state-of-the-art OMS tool, ANN-SoLo [1], while providing
comparable search quality to competing tools.

Index Terms—Processing-in-memory, Spectral library search,
Mass spectrometry-based proteomics, Hyperdimensional comput-
ing

I. INTRODUCTION

PROTEOMICS plays an essential role in understanding the

molecular mechanisms of proteins, which are responsible

for various tasks in a life of a cell. Protein biomarkers

are used to predict disease progression and severity. It can

provide early diagnosis and aid the therapeutic strategy design.

Mass spectrometry (MS) is one of the most popular and

reliable approaches to identifying and quantifying proteins

and peptides in biological samples. A typical tandem mass

spectrometry (MS/MS) experiment generates millions of spectra

data. Researchers determine peptide annotations of the MS/MS

spectra via spectral library searching. Peptide sequences are

assigned to experimental MS/MS spectra by matching them

against a spectral library of known peptides (see Fig. 1).

The spectral library searching is challenging since conven-

tional similarity metrics, such as cosine similarity, cannot be

used to identify MS/MS spectra pairs [2] . Proteins undergo

one or more post-translational modifications (PTMs), which

change their mass and MS/MS fragmentation pattern. PTMs

can be introduced during sample preparation as an artifact

of MS measurement, or biologically relevant PTMs arise in
vivo. However, spectral libraries mainly contain reference
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Fig. 1: Overview of spectral library search. Standard search uses a narrow
precursor m/z tolerance, while OMS uses a wide precursor m/z tolerance
during the searching.

spectra for unmodified peptides, so PTMs make experimental

spectra difficult to identify as they no longer exactly match the

reference spectra.

Open modification searching (OMS) has been emerged to

circumvent this limitation and identify modified spectra [3].

Standard spectral library searching only compares experimental

spectra to reference spectra with a similar precursor mass, i.e.,

the mass of the unfragmented peptide, as matching peptides

should have an identical mass. In contrast, OMS performs

spectra matching on a wider range of reference spectra. It

compares modified query spectra to their unmodified reference

variants, even when their precursor mass differs due to PTMs.

The higher identification capability of OMS enables the study

of more complex protein interactions [4].

Compared to standard searching, the OMS suffers from low

speed due to the drastically increased search space [5]. This

problem is further exacerbated by the increasing spectral data

due to the cost reduction in the MS experiment (2× in recent

two years) [6], [7]. Also, large spectral libraries created by

repository-scale mining of open MS data become available [8].

For example, the size of human HCD (higher energy collisional

dissociation) spectral libraries hold 2.15 million data points,

which is 4× larger than the previous NIST-HCD [8]. MassIVE

repository [9] contains 6.8 billion spectra, which corresponds

to over 560TB in size (as of March 2024).

Several tools have been introduced to efficiently perform

OMS [1], [5], [10]–[12]. These tools use various techniques

to refine the search space, such as fragment ion indexing [10],

nearest neighbor searching [1], [5], or tag-based filtering [11].

For example, the state-of-the-art OMS tool ANN-SoLo per-

forms nearest neighbor searching using GPU and computes

shifted cosine similarities on candidates [1]. The current

solutions involve a complex execution pipeline, have limited
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data parallelism, and necessitate high-precision floating-point

(FP32) arithmetic for optimal search quality, such as shifted

cosine similarity [5].

Our previous work [13] proposed hyperdimensional com-

puting (HDC)-inspired massively parallel OMS algorithm that

encodes spectra into high-dimensional (HD) binary vectors. It

addresses the search space challenges in OMS by approximating

possible MS peak changes; spectra can be identified with a

single similarity computation. Therefore, [13] simplifies the

execution pipeline and maximizes the computation efficiency

and parallelism by replacing FP32 operations with simple

Boolean arithmetic, achieving up to 17× speedup and 6.4×
energy efficiency improvement on NVIDIA Geforce GTX

1080Ti GPU. Nevertheless, as novel spectral libraries keep

growing in size, we face a “memory wall”, with the runtime

dominated by IO operations and limited GPU memory capacity.

Our profiling results show that running [13] on GPU is bound

by memory bandwidth (see Section IV-A1).

Memory-centric computing systems, like the processing-in-

memory (PIM), are being developed as potential solutions to

the “memory wall” problem. They offer extensive parallelism

with scalable memory bandwidth, and reduce overhead caused

by data movement between processor and memory. Several

accelerators [14]–[16] use near-memory processing (NMP)

technique, which integrates computing logic and buffer in

an advanced IC package and exposes large internal memory

bandwidth. Meanwhile, other PIM-based accelerators, like

those described in [17], [18], process data inside memory

cells using analog technology, specifically categorized as

processing-using-memory (PuM). Several studies [19]–[21]

demonstrated that the integration of PuM and NMP technology

can effectively manage each stage of the algorithm. However,

implementing existing OMS solutions that use high-precision

floating-point arithmetic [1], [5], [11], [12], on current memory-

centric architectures is challenging since they require costly

peripheral circuits, such as analog-to-digital/digital-to-analog

converters [22] and floating-point units [23]. Our previous

work [13], uses lightweight Boolean arithmetic with high

parallelism and a simplified execution pipeline, which can

minimize the necessity of peripheral circuits. This approach is

ideal for PIM-based hardware acceleration due to its memory-

centric and highly parallel nature.

In this work, we propose a novel DRAM-based PIM acceler-

ator that maximizes the efficiency of HyperOMS. Specifically,

we develop an accelerator with PuM-NMP hybrid processing

on DRAM that provides significantly higher internal memory

bandwidth, lower data movement cost, and extensive data

parallelism. To summarize, our contributions are as follows:

• We propose a novel HDC-inspired hardware-friendly OMS

algorithm that encodes spectra to a binary vector. Our method

reflects the spatial and value locality of peaks in the spectrum,

making the encoded data resilient to peak shifts and intensity

changes.

• Based on the GPU profiling result, we identify that Hyper-

OMS algorithm is a memory-intensive workload. Thus, we

design a DRAM-based HyperOMS accelerator that combines

PuM and NMP technologies for extended memory bandwidth.

To the best of our knowledge, this is the first work that

exploits DRAM technology to accelerate an HDC-based

algorithm.

• To address hardware utilization challenges that come from the

filtering step in OMS, we introduce a scheme for optimizing

data organization. The proposed data organization scheme

effectively tackles the issue of bank under-utilization that

arises during reference filtering, resulting in 3.7× speedup.

• For the first time, HyperOMS tackles a large-scale pattern-

matching problem with HD vectors. To alleviate the pressure

from large dimensionality in our algorithm, we introduce a

strategy that computes a sub-vector similarity only unless

the result is larger than the given threshold to accommodate

more parallelism on the NMP hardware. We show that it

can reduce the execution time by 1.8× with only 0.4%
identification loss.

• Our evaluation result demonstrates that the HyperOMS

accelerator provides up to 3.8× (99×) speedup and 119×
(1984×) enhanced energy efficiency over HyperOMS running

on GPU (ANN-SoLo on GPU [1]).

The rest of this paper is organized as follows. Section II

describes the background of MS spectral library searching

and related work. Section III specifies the algorithmic details

of HyperOMS. Next, Section IV describes the HyperOMS

accelerator and our optimization schemes. Our evaluation

environment and results are described in Section V. Finally,

Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Spectral Library Searching in MS-based Proteomics

MS is used to study the biological process in proteomics

via the analysis of protein expression or state in cells or tissue.

Proteins are ubiquitous building blocks of life, and they are

composed of peptides, which are chains of amino acids, which

can be described as a string of letters.

During MS data acquisition, peptides are ionized to receive

a charge, and their mass-over-charge (m/z) is measured.

First intact ions are measured in an MS scan using data-

dependent acquisition, and the resulting MS spectrum contains

the corresponding m/z values. The most intense peaks in the

MS spectrum are selected. It is further analyzed in MS/MS

scans, i.e., the second mass spectrometer. Ions with matching

m/z are isolated and fragmented to generate MS/MS spectra.

Fragmentation occurs along the peptide backbone in between

its constituent amino acids. Peptides are split into their possible

amino acid subsequences. We record the m/z and intensity

values of all fragments, and the measured spectrum forms a

unique fingerprint of the measured peptide. Thus, each MS/MS

spectrum consists of peaks (m/z and intensity pairs), spectrum
charge, precursor m/z (intact m/z from the preceding MS

scan) (see Fig. 1-•1 ).

Spectral library searching determines which peptide corre-

sponds to the measured spectra. (Fig. 1-•2 ). A spectral library

contains reference spectra, each with known peptide labels. We

first select the reference candidates with a similar precursor

m/z to a query spectrum. Next, similarities between the query

and all candidates are computed. Finally, the query spectrum is

assigned the same peptide label as its highest-scoring reference

match. Here, we apply a false discovery rate (FDR) filter on
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search results [24] (Fig. 1-•3 ), which is called target–decoy

strategy [24] in MS/MS analysis to reduce false positives.

Decoy spectra that cannot exist are added to the spectral library

besides the real (target) spectra. Decoy spectra selected by the

search tool are filtered out. The number of target SSMs and

decoy SSMs at a specific score can be used to compute the

FDR. Typically, an FDR threshold of 1% is used to minimize

the number of incorrect identifications. The quality of different

search tools can be compared by the number of identified
spectra at a fixed FDR threshold.

A standard searching strategy can identify directly match-

ing spectra. It assumes that precursor m/z of query and matched

reference spectra are similar (narrow precursor m/z tolerance).

However, as spectral libraries mainly contain unmodified

reference spectra, they cannot be used to identify modified ones.

Modified ones have a different intact mass, as the modifications

induce mass shifts. Open modification searching addresses

these issues by (1) using a wide precursor m/z tolerance

that exceeds mass shifts induced by modifications to select

reference candidates [3], and (2) using alternative spectrum

similarity measures that take peak shifts due to modifications

into account [5]. Using a wide precursor m/z tolerance enables

finding (partial) matches between unmodified reference spectra

and their modified variants. However, a large number of

candidates need to be evaluated for each query spectrum, which

can be computationally demanding.

B. Accelerated Spectral Library Searching

OMS has recently become an increasingly popular search

strategy, and there have been several studies to accelerate

searches on parallel hardware platforms other than CPU.

Several studies have focused on accelerating spectral library

searching using GPUs for efficient spectrum–spectrum similar-

ity computation [25]. [26] used a CPU-FPGA architecture in

which multiple FPGAs are used for scalability and parallelism.

However, none of these studies have tackled the OMS. ANN-

SoLo [1] is a state-of-the-art OMS tool that uses GPU-powered

nearest neighbor searching. ANN-SoLo vectorizes spectra

and creates approximate nearest neighbor searching using

FAISS [27] on GPUs. The result is transferred back to the

host side. The shifted cosine similarity score between those

candidates and queries to derive the most similar reference

spectra. However, GPU-based ANN-SoLo [1] suffers from

limited memory capacity and high data movement cost when

handling large databases, i.e., repository-scale spectral library

searching. Unlike previous approaches, the proposed accelerator

tackles these challenges with PIM technologies and offers

scalable memory bandwidth, memory capacity, and promising

efficiency.

C. Memory-centric Computing and HDC

Previous works have proposed a memory-centric architecture

to alleviate the “memory wall” challenge by moving data

operations closer to the memory module. There are various

choices to realize the computation: (1) integrating computing

logic near the bank IO or near-subarray circuits [15], [28],

or (2) computing within the memory array using memory

commands [29]–[31].

Fig. 2: Overview of OMS process using HyperOMS.

Besides, existing works have shown that running HDC on

PIM hardware is much faster and more energy-efficient than

on other parallel hardware platforms like GPUs. For instance,

[18], [32]–[34] used ReRAM and recently, [35] used FeFET

to enable HDC-based machine-learning.

However, as we tackle the large-scale search problem, these

technologies are not suitable. The accelerator needs to support a

large memory capacity as well as high in-memory computation

parallelism for large-scale mass spectrometry data. Among

various memory types for PIM, DRAM has more mature

manufacturing techniques, making it practical to implement

DRAM-based PIM for our use case. Additionally, DRAM

provides faster writing speed and high-density memory at a

low cost and is easier to scale up. Furthermore, it offers higher

internal data parallelism, as it allows for the activation and

access of more than thousands of bit lines simultaneously [16].

As such, we exploit DRAM to accelerate the HyperOMS

algorithm in memory-centric architectures.

III. HYPEROMS ALGORITHM

In this section, we introduce the HyperOMS algorithm.

HyperOMS encodes spectral data into binary HD vectors

called hypervectors (HVs) and performs OMS on them.

During the encoding process, HyperOMS captures the positions

and intensities of peaks while also considering their spatial

and value locality. Although peaks may be shifted or have

varying intensities due to PTMs, the similarity between a

query spectrum and a matching reference spectrum remains

stable. Additionally, since a binary vector representation is

used, HyperOMS enables searching using a simple Hamming

similarity computation.

Fig. 2 shows the flow of HyperOMS. It starts with a data

preprocessing step, a common step for OMS. It refines and

vectorizes raw spectra and compresses them, resulting in

spectrum vectors. HyperOMS encodes spectrum vectors into

HV during the encoding step. Next, the Hamming similarity

search step finds the most similar spectra by filtering reference

spectra according to the query’s precursor m/z and spectrum

charge and computing Hamming similarity between query HVs

and candidate reference HVs.

A. Data Preprocessing

The preprocessing step (1) refines the raw spectra by remov-

ing redundant peaks and (2) vectorizes refined spectra (see

Fig. 3(a)). First, raw spectra are refined to gather meaningful

peaks (•1 ). We remove peaks whose intensity is below 1%

of the most intense peaks. Low-intensity peaks are considered

noise. In turn, we retain 50 to 150 most intensive peaks of the

spectra. Existing studies [1], [5], [12] have shown that we can

effectively refine spectra in this manner.
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(a) Data preprocessing. (b) Encoding. (c) Hamming similarity search.

Fig. 3: Data preprocessing and stages of HyperOMS algorithm.

Next, we vectorize the filtered spectra (•2 ). The peaks are

discretized by binning the m/z range to represent a spectrum

into a sparse vector of floating-point intensity values, called a

spectrum vector. If multiple peaks are assigned to the same

m/z bin, we sum their intensity values. A large bin width can

lead to a loss of information when peaks are grouped into a

single bin. For example, the mass range between 0 m/z and

2000 m/z and bin width 0.04 (based on the resolution of the

mass spectrometer) results in a dimensionality of 50, 000. The

resulting spectrum vectors have sparsity less than 1%; there are

50 to 150 peaks for each spectrum vector and its dimensionality

is 20, 000 to 50, 000. We compress spectrum vectors in a

compressed sparse row (CSR) format (•3 ). The preprocessing

step is normally run offline, and the output is stored as a binary

file for future use. In the following, we discuss the HyperOMS

algorithm, which first encodes spectrum vector to HV and

performs Hamming similarity search on hypervectors.

B. Encoding: Spectrum Vectors to Hypervectors

HyperOMS encodes the data into a binary vector represen-
tation, which can enhance the computation efficiency. There

have been several efforts to represent raw data in an HD

binary vector, using Locality Sensitive Hashing (LSH) [18],

[36] or HDC [18], [37], [38]. However, these strategies do

not reflect the characteristics of OMS, including peak shifts

and intensity changes. For example, they treat each feature

position (corresponding to peak indices in the spectrum vector)

as orthogonal. Peak shifts can lead to significant changes in

similarity. Conversely, the proposed encoding takes both spatial
locality (for peak shift) and value locality (for peak intensity

change from instrument error or noise) of each feature into

account. As a result, we can preserve similarity despite peak

changes.

Fig. 3(b) shows the encoding process of HyperOMS. Unique

position HVs F are assigned for each index in a spectrum vector,

i.e., Fi corresponds to index i, and F ∈ {F1,F2, . . . ,Ff}
where f is the dimensionality of spectrum vector. Similarly,

we use level HVs L to capture different intensity values in

each index. We quantize intensity range into Q levels, and

Li is assigned to each quantization level i where i ∈ [0, Q].
Given two sets of HVs, F and L, a spectrum vector is encoded

into an HV I as follows. Let P be the set of peaks in the

spectrum vector, consisting of tuples (i, j), with i the peak

index and j the step value of its intensity. I is computed

as I =
∑

(i,j)∈P Fi � Lj , where � indicates element-wise

(a) (b)

Fig. 4: Position HV generation. (a) Strategy overview. (b) Pairwise similarity
(Hamming similarity normalized by the HV dimension size) between position
HVs.

multiplication. In turn, we binarize the I for the computational

efficiency on hardware; all positive elements are mapped to

+1 and −1 otherwise. The final representation of the HV is

a binary vector. Spectrum vectors corresponding to the query

and reference spectra are encoded to query HVs and reference

HVs, respectively. Encoding of reference spectra is done only

once. The reference HVs are reused for subsequent runs since

they are already identified and unlikely to change.

1) Reflecting Spatial Locality: We introduce a novel position

HV generation method to reflect the spatial locality. Previous

studies [38] have used a permutation-based or random genera-

tion method, which makes Fi and Fj (i �= j) nearly orthogonal.

However, they are vulnerable to peak shifts that accompany

changes in i; the change of position HV results in significant

similarity value changes of matched pairs.

Fig. 4(a) shows the proposed position HV generation strategy.

We randomly generate F1 = {+1,−1}D. In turn, we flip α
components in random positions. As more flips occur, the

similarity between the original vector and the flipped vector

decreases. For example, the similarity (δ1) between F1 and

F2 is larger than the similarity (δ2) between F1 and Ff . The

proposed encoding method reflects the characteristics of peak

shifts in OMS well: (1) neighboring positions should have

spatial locality to deal with peak shifts, while (2) distant

positions need to have adequate orthogonality since a dramatic

peak shift rarely occurs in nature. The peak shift changes the

index value corresponding to the intensity in the spectrum

vector. With the proposed method, position HVs do not change

significantly even if peak shifts occur; thus, the resulting

representation can be tolerable to them. As depicted in Fig. 4(b),

for Fi and Fj , the pairwise similarity has a high value when
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Algorithm 1 Hamming Similarity Search Stage in HyperOMS

1: procedure HAMMING SIMILARITY SEARCH

2: for c in list of all charge values C do
3: Load reference HVs R with spectrum charge c
4: Load query HVs Q with spectrum charge c
5: x ← None

6: Compute Hamming distance matrix H
7: for Hamming distances h(q,·) of query q do
8: x← argmaxi h(q,i) with narrow precursor m/z

tolerance

9: if x is None then
10: x ← argmaxi h(q,i) with wide precursor

m/z tolerance

11: end if
12: end for
13: end for
14: end procedure

i ≈ j and is maximum when i = j (diagonal elements). Note

that we scaled down the f to 128 and D to 256 for better

visibility.

2) Reflecting Value Locality: The intensity information

of the spectrum vectors is captured. We use the level HVs

generation method used in [37], [38]. We allocate a single

bit to each of the HV components, i.e., Li ∈ {−1, 1}D. L
that is assigned to each quantization level needs to reflect the

closeness of the intensity. The similarity between Li and Li+1

should be higher than the similarity between Li and Li+100.

For instance, for the target level p in percentage, Lp, we can

represent this by flipping (D/2)× (p/100) elements of L0.

C. Hamming Similarity Search

As shown in Algorithm 1, HyperOMS finds the matched

reference HV that is most similar to the query HV. It

uses Hamming similarity (defined by the number of equal

components in vector pairs) as a similarity metric. Here,

reference spectra that need to be compared primarily need to

satisfy spectrum charge and precursor m/z condition per query

as discussed in Section II. We gather reference spectra that (1)

have the same spectrum charge as the query spectra (Algorithm

1-L2) and (2) satisfy the precursor m/z tolerance (precursor m/z
difference between query and reference) condition (Algorithm

1-L8, L10).

OMS assumes that precursor m/z of selected reference

spectra and query spectra can have a large difference. A wide

precursor m/z tolerance is used to match modified spectra to

their unmodified variants. However, we may miss the case of

a reference spectrum with a similar precursor m/z that can

pass through the FDR filter with high similarity. To avoid

such misidentifications, we adopt cascade search [39]. A

narrow precursor m/z tolerance is used for standard search

and FDR filtration is applied (Fig. 3(c)-•1 ). In turn, remaining

unidentified spectra are processed with a wide precursor m/z
tolerance (Fig. 3(c)-•2 ). Unlike existing tools, HyperOMS

implements two steps of the cascade search in parallel as

they share same similarity value (Algorithm 1-L8, L10). The
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Fig. 5: Profiling on NVIDIA Geforce RTX 4090

spectrum identifications are merged at the end since both steps

are computationally independent.

IV. HYPEROMS ACCELERATOR ARCHITECTURE

A. Motivation

1) Insights from HyperOMS on GPU: HyperOMS algorithm

is a good match for highly parallel computing platforms. We

implemented HyperOMS on GPU using GPU-based HDC

framework [40] and optimization strategies in [41]. Note that

to maximize the computation efficiency, we represent binary

HV as a 32bit integer array using bit packing, and similarity

score computation is done by CUDA intrinsic. Our profiling

results of [13] using NSight Compute on NVIDIA RTX

4090 shown in Fig. 5(a) suggest that every stage of HyperOMS

has low ALU utilization (41% on average) compared to memory

utilization (78% on average). The roofline from Nsight
Compute in Fig. 5(b) shows that the encoding GPU kernel

is memory bound. Note that the profiler does not support

roofline analysis for the similarity computation kernel because

it does not involve floating-point computations. Furthermore,

two stages of the HyperOMS algorithm theoretically have low

computational density: the encoding step requiring 8ops/byte

and the Hamming similarity calculation requiring 16ops/byte.

This implies that these steps are limited by the memory

bandwidth. Each kernel implementation leverages the CUDA

memory hierarchy to maximize data reuse and minimize access

to the global memory for optimized performance.

2) Why we need DRAM-based PIM accelerator?: Based

on the analysis of the proposed algorithm and its GPU

implementation, we leverage a PIM technology to accelerate the

HyperOMS algorithm. Among various memory technologies for

PIM, DRAM benefits from its mature manufacturing techniques,

offering high-density memory cost-effectively and excellent

scalability. It offers not only scalable memory bandwidth but

also provides a large memory capacity to accommodate the

massive spectral data.

B. HyperOMS Accelerator Design

Existing works [19]–[21] have shown that the combination

of different PIM techniques, such as PuM and NMP, can

optimize the efficiency of the PIM accelerator. Inspired by

this, the proposed HyperOMS accelerator is a hybrid PuM-

NMP design which leverages the advantages of both PuM

and NMP. Specifically, the HyperOMS accelerator uses the

PuM technique for encoding and NMP for Hamming similarity

search, respectively. The hybrid design is based on the following

analysis. First, the encoding stage only takes a smaller portion

(less than 20% in the case of larger scale HEK293) of the total
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Fig. 6: Overview of the HyperOMS accelerator architecture. Encoding and
Hamming similarity search step is performed in PuM and NMP, respectively.

runtime (see Fig. 14). Therefore, it is acceptable to adopt the

PuM technique to avoid additional peripheral circuits at the cost

of a longer processing time compared to NMP. In comparison,

the search phase is much more time-sensitive as it takes the

majority of the time, especially in larger scale datasets (see

Fig. 14). As such, we accelerate the Hamming similarity search

using the NMP technique because the NMP-based design is

over 6× faster than the PuM-based design according to the

analysis in Section IV-D.

Fig. 6 illustrates the system diagram of the proposed

HyperOMS accelerator that is composed of three main parts:

(1) HyperOMS dispatcher, (2) encoding banks (Section IV-C),

and (3) Hamming search banks (Section IV-D2). We design

the accelerator to be compatible with the DDR4 standard [42].

Each DRAM chip has one encoding bank, and the rest of

the banks are working under the Hamming search mode. The

encoding bank handles the encoding stage of the HyperOMS

algorithm using PuM primitives. Each DRAM bank includes a

near-bank Hamming similarity search engine (HSE). HSE can

compute similarity values for multiple pairs simultaneously

by adopting the HV folding strategy (refer to Section IV-D1).

The dispatcher is implemented in the memory controller (MC),

working as the high-level scheduler and controller for query

data fetching from the host, control/address (C/A) command

generation, and query allocation to the DRAM banks. The query

data (spectrum charge, precursor m/z, and spectrum vector)

are fed into the HyperOMS accelerator via the dispatcher.

Dataflow: HyperOMS follows a map-reduce manner to

fully utilize the internal data parallelism of DRAM. The

encoding and Hamming similarity search phases are performed

locally within the encoding banks and Hamming search
banks, respectively. First, during the encoding phase (Fig. 6-•1 ), the dispatcher converts the peak intensities and indices

into corresponding memory addresses to perform in-memory

encoding in the encoding banks. In turn, The encoded query

HVs in the encoding banks are collected by the dispatcher

and then broadcast to Hamming search banks. The dispatcher

first performs the spectrum charge and precursor m/z filtering

(Fig. 6-•2 ). It generates the destination memory address and

distributes the encoded query from the encoding bank to

Hamming similarity search banks based on the spectrum charge

and precursor m/z information. The address mapping table

stores two types of mapping data: (1) the memory address
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Fig. 7: In-memory encoding scheme for spectrum vectors.

of position and level HVs in the encoding bank and (2) the

mapping between the reference’s spectrum charges/precursor

m/z and their memory addresses. Each Hamming search bank

searches and finds the most similar reference HV among the

stored reference data. The local search within each bank is

performed asynchronously. After all Hamming search banks

finish their searching process, the dispatcher gathers the results

from each bank and further selects the best-matched reference

HV in the reduction step. Here, spectrum charge and precursor

m/z filtering can cause a bank under-utilization, which leads

to speed and efficiency degradation. In order to balance the

assigned workloads in banks and raise the bank utilization,

we optimize the mapping of the reference data and the query

dispatching, as described in Section IV-E.
Memory Modifications: To enable fast Hamming similar-

ity search and extended bandwidth, HyperOMS accelerator

involves three major memory modifications. Firstly, we add

isolation transistors between subarrays to support fast inter-

subarray row copy, which results in an additional area overhead

of only about 0.8% [43]. Secondly, we implement the HSE

design, which is connected to the local buffer of the bottom

subarray in each bank. Finally, we add a new memory controller

command (similar to [44]) to support data broadcast from the

encoding banks to Hamming search banks. These modifications

effectively balance the additional overhead and computation

efficiency.

C. In-memory Encoding
The encoding process of query data is computed in the

assigned encoding banks (see the green-colored bank in Fig. 6)

in conjunction with the PuM primitives [29]–[31]. We exploit

the PuM technique since the encoding stage only needs simple

XOR and addition operations that are well supported by

existing PuM primitives [29]–[31]. Also, it needs to store

intermediate results. By utilizing the PuM technique, the

accelerator eliminates the need for a buffer to hold these

results, which is beneficial for minimizing the density impact

on DRAM. The encoding is a memory-intensive process

characterized by massive data movement that arose from

fetching the D-bit position or level HVs over |P| times each.

The in-situ property of PuM avoids data fetching, thereby

saving memory bandwidth as well as energy. Although PuM

increases the processing time compared to NMP, the encoding

process only occupies a small fraction of the overall runtime

(see Fig. 14).
The encoding bank execution includes three steps: (1)

receiving the query data, (2) in-memory encoding, and (3)
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broadcasting encoded data to the query HV register within the

HSE of other banks. As shown in Fig. 7, the encoding bank

pre-stores the position and level HVs in a total of f + Q
rows. In the first step, the DRAM bank receives the row

addresses of (i, j) ∈ P from HyperOMS dispatcher. Then

the corresponding position and level HVs, Fi and Lj , are

copied to new rows. The copy process can be achieved by

the fast row copy in LISA [43]. Second, we compute the

XOR for each pair of copied position and level HVs using the

majority-based arithmetic in [29], [31]. The third step is to

aggregate the XOR results. The basic memory commands to

compute in-memory bit-wise XOR and bit-serial addition are

two back-to-back activation commands followed by a precharge

command (AAP). Specifically, n-bit bit-serial addition needs

4n+ 1 AAP commands (XOR is regarded as 1-bit addition).

We initialize the result rows with -|P|/2 in bit-serial and 2’s

complement format. The mentioned three steps are repeated

|P| times to obtain the final aggregation results. The sign bit

of the result rows is selected for the binarization. After the

encoding, the encoded query HV needs to be broadcast to the

query HV register within the HSE of other Hamming similarity

search banks. The encoded HV in a row is burst out from the

encoding bank to the HyperOMS dispatcher via the inter-bank

dataline. It helps to broadcast results at minimal cost without

conflicting with DDR4 standard [42]. Finally, the dispatcher

transmits the collected query HV to other Hamming search

banks in a sequential manner.

D. Near-memory Hamming Similarity Search

The Hamming similarity search involves calculating the

similarity between the query and reference HVs, which can

be implemented either in-memory or near-memory. If we

implement the Hamming similarity computation using the

PuM technique, it incurs a long processing latency since 5

AAP commands need to be issued by the DRAM bank to

compute the bit-wise XOR between two HVs. The DDR4-

2400 4Gb ×8 needs around 390ns to perform the PuM-based

XOR operation. On the other hand, the NMP-based design

can provide shorter latency for the XOR computation and

has higher internal memory bandwidth for pattern-matching

workloads [15]. The long latency of PuM-based computation is

not favorable for Hamming similarity search as the search step

in HyperOMS accounts for the majority of the overall runtime.

Hence, we choose to accelerate it using a near-memory HSE

module as shown in Fig. 9.

To exploit the internal bandwidth of DRAM, we locate one

HSE next to the local row buffer of the last and bottom subarray

in each DRAM bank. Implementing only one HSE for each

bank avoids adding excessive area overhead to the original

DRAM. We can use one precharge and one activates command

(< 60ns) to latch the data into the local sense amplifier (SA)

and row buffer (RB). The HSE directly fetches the D-bit

latched data from local RB at one time (D is the size of RB),

and the processing latency can be hidden by the memory access

time.

Meanwhile, the HSE computes the Hamming similarity of

only one pair if it is implemented naively; the parallelism is

proportional to the number of HSE. Also, the XOR computation
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Fig. 8: Statistics of Hamming similarity values. (a) Relevance between θD
and θD/2. (b) Similarity between query and matched reference spectrum
(normalized to D).

of HV pairs can be computationally demanding due to its

dimensionality. As such, we devise a strategy called HV folding
to increase the parallelism within HSE and the design of HSE.

1) HV Folding: The Hamming similarity is evaluated by

XOR results between the reference HV and query HV. The

naive way to get the Hamming similarity is to count the 0s of

the XOR HV. However, the high dimensionality of the XOR

HV with a few thousand bits makes it slow to count the accurate

number of 1s. We propose the HV folding scheme to reduce

the computation of the Hamming similarity and accommodate

more parallelism. The parameters for the HV folding are static,

and they are used for optimizing HSE design.

The basic idea of HV folding is to calculate only partial

bits of the XOR HV (called subsequence) and approximate the

actual Hamming similarity. Specifically, instead of calculating

the Hamming similarity (θD) for the entire HV with dimension-

ality D, we only compute the Hamming similarity (θK ) of the

first K bits. Note that D is a multiple of K to make it evenly

divisible and avoid padding. Let us assume that K = D/2.

Fig. 8(a) shows the relationship between θD and θD/2, which

are values obtained from randomly sampled query and reference

pairs. Here, θD and θD/2 are roughly proportional. The trend

is similar in the K = D/4 or D/8 case. When θD is small,

it shows high variance, while showing low variance when θD
is large. Fig. 8(b) shows a histogram of normalized Hamming

similarity values of query and the matched reference pair

in the spectrum charge +2 of the iPRG2012 dataset used in

Section V. It has been noted that for the other datasets as well,

the matched reference and query pairs exhibit a normalized

Hamming similarity of at least 0.1. Hence, we can approximate

θD as θD/2 since we pick a spectrum with a high similarity

value.

The goal of HV folding is to predict θD using θK and

to handle more pairwise similarity computations in parallel

within HSE. The HSE only computes θK if it is less than

the predefined threshold T . Otherwise, HSE computes θD.

When θK successfully approximates θD, the same reference

HV needs to be selected in either case. We define this success

rate as the folding success rate (FSR). It is essential to choose

appropriate values for K and T and maximize the FSR. We

discuss the hyperparameter search experiment in Section V-F.

2) Hamming Similarity Search Engine: The Hamming sim-

ilarities between query HVs and reference HVs are computed

in near-bank HSE (see blue-colored banks in Fig. 6). In the

memory subarray, each D-bit reference HV is arranged into
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D/K consecutive rows, with each row occupying K columns

as shown in Fig. 9. This arrangement simplifies reference

indexing and allows for continuous memory access. To further

streamline the process, we (1) organize the data by grouping

references from the same spectrum charge (see Section IV-E)

and (2) sort spectra based on their precursor m/z values

within each spectrum charge. This enables all Hamming search

banks to share the same address space of reference HVs,

with the memory controller only needing to send identical

starting and ending row addresses to all banks. Each bank

then performs an independent search within the given address

range. To achieve this, each HSE within each bank requires

its independent memory controller and address generator to

execute asynchronously. The additional overhead of the bank

controller and address generator is negligible [45].

The HSE involves loading a row of data from a DRAM bank

into a local RB with Ncol columns, where the RB contains C
(= Ncol/K) subsequences, each with a length of K bits. HSE

accesses the entire row data every tRC ns and generates the

Hamming similarity before new data comes in tRC to avoid

any stalls between consecutive DRAM row accesses.

The encoded query bits are broadcast to each bank through

the DQ bus and cached in the query HV register with the

same size as Ncol. The query HV is then XORed with the C
loaded reference subsequences in parallel using K-bit XOR

modules. To reduce latency, the XORed results pass through C
adder trees, each consisting of K bit-serial adders. Although

many adders are used, the design has low hardware complexity

because most adders’ bit width is low. The obtained partial

Hamming similarities are checked to see if they satisfy the

threshold condition in HV folding. If the similarity values for

subsequences are all less than T , the row for the next pairs

of reference HVs is loaded. Otherwise, for pairs that do not

satisfy the remaining K-bit reference HV, it continues to be

loaded and compute θD. The results are compared with the

current best stored in the Hamming similarity (HMS) buffer,

and the HMS buffer is updated with the maximum Hamming

similarity. Meanwhile, the associated row address and column

offset are recorded in the address buffer. In the following, we

present a data organization optimization scheme that tackles the

hardware under-utilization challenges caused by the reference

HV filtration.

E. Data Organization Optimization

Efficient performance in the HyperOMS accelerator heavily

relies on the data allocation since two filtration steps, spectrum
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charge and precursor m/z filter, which may cause workload

imbalance and low bank utilization. The dispatcher distributes

the encoded query HV to banks based on its spectrum charge

and precursor m/z. Therefore, we optimize HyperOMS’s data

organization in two aspects: (1) the reference data mapping

and (2) the query dispatching scheme.

1) Reference Data Mapping: The naive way to map the

reference HVs is uniformly distributing the reference data to

each bank in a round-robin manner. Fig. 10(a) gives an example

of mapping nine reference HVs from spectrum charge +2 (C2)

to +4 (C4) to two memory banks. For each spectrum charge,

HVs are sorted based on their precursor m/z. The uniform

mapping scheme allocates HVs to each bank based on spectrum

charges. Here, each bank is unable to access references HVs

from all spectrum charges, leading to low bank utilization. For

example, only one bank is activated during the search process

for query with C2 or C4 because only Bank 0 or Bank 1

contains HVs of C2 or C4, yielding only 50% bank utilization.

We propose the reference data mapping scheme in

Fig. 10(b) to increase bank utilization. The reference HVs

are assigned across the bank such that each DRAM bank

stores HVs from all spectrum charges. By distributing the

reference HVs to different banks, the proposed data mapping

scheme enhances the bank utilization for queries from different

spectrum charges. In this case, the total searching time is evenly

amortized to each memory bank, thus reducing the processing

latency. It also effectively reduces the overhead of the query

dispatching policy.

2) Query Dispatching Policy: The dispatcher needs to

properly allocate the given query to target banks to maximize

bank utilization. Also, it needs to generate memory commands

with addresses compatible with current DRAM standards [42]

based on the query’s spectrum charge and precursor m/z. As

such, we design query dispatching policy to cooperate with

the proposed reference data mapping scheme. As shown in

Fig. 10(c), the addresses and indexes for reference HVs are

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edit
content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3382842

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 16,2024 at 15:43:39 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

stored in the address mapping table within the dispatcher, which

is designed to be compatible with current DRAM standards [42].

The address mapping table needs to store the information

(spectrum charge, m/z, row address, and index) for the first

memory bank (Bank 0) since the consecutive reference HVs

across different banks share the same row address space. For

example, Ref.1 and Ref.2 of spectrum charge +2 (C2) have

identical row addresses. The dispatcher generates the starting

and ending row addresses of Hamming search based on the

filtering results of the query’s spectrum charge and precursor

m/z. The addresses with control signals are broadcast to all

search banks via the C/A bus. All Hamming search banks

perform Hamming similarity searches in parallel.

The Hamming similarity search returns the most similar

reference HV stored in each bank. The dispatcher needs to

retrieve the index of reference HVs. Fig. 10(c) shows how we

retrieve the index. Assuming Bank 1 finds C2 Ref.2 as the

best-matched result, Bank 1 returns the tuple (Row address,

offset, HMS) that represents the associated row address, column

offset, and Hamming similarity. The dispatcher first retrieves

the reference index idx = 1 in the first bank by accessing the

address mapping table. Since the dispatcher knows the bank

address, then the index (idx) of C2 Ref.2 is computed using

idx + Bank address + offset. The offset is used to index the

two reference HVs organized over the same DRAM row in

Fig. 9. Similarly, the reference information from other banks

can be inferred based on the returned row address and offset.

The dispatcher has an overhead from the buffer, as it needs

to store the address mapping table. Assume that the size of

reference data is N , each entry takes 3+32+ �log2 N� bits in

the buffer, where 3 is for spectrum charge information, 32 is for

m/z in a single FP32 number, and log2 N is for index bits. Here,

the row address does not need to be explicitly stored since it is

identical to the entry address in the buffer. If we have B DRAM

banks, the required buffer size is N
B × (3 + 32 + �log2 N�).

For the HEK293 dataset in Table II with around 3 million

reference spectra, the estimated table size is 163KB for 128

banks. The buffer size decreases linearly as the number of

banks increases, which is attractive for large-scale processing.

V. EVALUATION

A. Methodology

PIM Design. The specifications for DRAM and HyperOMS

are summarized in Table I. The required number of DRAM

chips is determined by the number of reference spectra. The

reference library [46] of Kim2014 dataset [47] in Table II

contains approximately 4.2 million reference spectra, which

require 8 chips with a total of 256 DRAM banks to store all

reference data. We use the 22nm DRAM process with DDR4-

2400 standard [42], and the DRAM parameters are summarized

in Table I. Among all banks, we assign one bank for encoding

while the rest perform the Hamming similarity search. This

is because encoding consumes only 5% of the total execution

time. More DRAM banks can be added to support a larger

dataset.

The HSE components of HyperOMS are implemented using

Verilog HDL and synthesized using the Synopsys Design

Compiler, using the TSMC 28nm technology node. The clock

TABLE I: System specifications of HyperOMS.

DRAM Parameters
DDR4-2400, 4Gb ×8, Rows = 215, Row size = 1KB
4 banks/bank group, 4 bank groups, tCLK=1.2GHz

DRAM Timing
nRC=55, nRP=16, nRAS=39, nCCDS=4, nCCDL=6

nWR=18, nWTRS=3, nWTRL=9, nRTP=12, nFAW=26

HyperOMS
Total 256 banks and 8GB (16 chips, each chip with 16 banks)

NMP Components

HSE
Area per HSE: 42,680um2

Total area: 10.93mm2, Peak Power: 10,926mW

Dispatcher
256KB SRAM, Word size = 64b

Area: 0.234mm2, Power:77.4mW

is set to 1.2GHz, matching the IO clock frequency of DRAM.

To provide a fair comparison, we scale the area and power to

22nm to align with the memory technology. Moreover, since

DRAM generally uses fewer metal layers compared to the

generic ASIC, we evaluate the overhead caused by the process

difference between logic and DRAM using the method in [48].

The dispatcher uses a 256KB SRAM to store the address

mapping table, and the area and power are estimated using

CACTI-3DD [49].

We develop a Python in-house simulator to emulate the

behavior of the HyperOMS accelerator. The latency and energy

parameters of DRAM operations [29], [50] and additional

near-memory ASIC components are loaded into the developed

simulator to calculate runtime and energy consumption for

HD encoding and searching. The OMS latency and energy

numbers are calculated in two steps: First, we generate the

memory traces from HyperOMS ’s GPU implementation. Then,

the traces and HD encoding/searching parameters are used to

calculate the overall OMS latency and energy.

System Environment. The evaluation was performed on a

system equipped with Intel i7-11700K with 64GB RAM and

NVIDIA Geforce RTX 4090. Since the GPU has limited

memory, we split the reference and the query data into

batches. We set the batch size to use the maximum amount

of VRAM for GPU-based solutions. We measured the GPU

power consumption using nvidia-smi.

Workloads. We evaluated HyperOMS on three real-world

datasets. The datasets are commonly used for benchmarking

OMS tool performance [1], [5] and include decoy spectra with

the same ratio as the existing spectral libraries using the shuffle-

and-reposition method [51] for FDR filtering, which removes

false-positive identifications. iPRG2012 dataset combines

yeast spectral library [52] with the human HCD spectral library

(total spectra: 1, 162, 392) as the reference libraries, and the

iPRG2012 dataset [53] (total spectra: 15, 867) as a query. For

HEK293 dataset, we used the human spectral library [8] (total

spectra: 2, 992, 672) and a HEK293 (Human Embryonic Kidney

293) dataset [2] (total spectra: 46, 665), as reference and query

spectra, respectively. Also, we reanalyze a sampled Kim2014
dataset [47] (total spectra: 9, 976 on average) using MassIVE-

KB [46] with decoy spectra (total spectra: 4, 197, 746) as a

reference library. We preprocessed query and reference spectra

in a similar fashion to existing works [1], [5], [12], using the

widely used configurations listed in Table II.
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TABLE II: Spectrum preprocessing settings.

Dataset
iPRG2012 HEK293 Kim2014

Max peaks in spectra 50
Min/max m/z 101/1500

Bin Size 0.05 0.04 0.05
Precursor m/z tolerance

(narrow)
20ppm 5ppm 10ppm

Precursor m/z tolerance
(wide)
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Fig. 11: Search quality comparison on the iPRG2012 dataset. (a) HyperOMS
with different HV dimensionality. (b) HyperOMS with different number of bit
flips. (c) HyperOMS with various encoding strategies. (d) Search quality of
baseline tools.

Benchmarks. We compare the search quality of HyperOMS

to existing search tools, including (1) SpectraST [12] on CPU

and (2) the state-of-the-art OMS tool, ANN-SoLo, running on

GPU [1]. We count the number of identifications to compare

the search quality in the same way as the state of the art. All

search results are evaluated at a fixed 1% FDR threshold.

B. Impact of Encoding Configuration

HV dimensionality. The HV dimensionality (D) plays a critical

role in search quality. A low dimensionality limits separability.

As demonstrated in Fig. 11(a), the higher D leads to a higher

number of identifications. However, the excessive D leads to

an increase in computation and capacity demand. We set the D
to 8192 (8k) which is equal to the number of columns in the

DRAM subarray, which satisfies both the hardware efficiency

and the search quality.

Flipped bits. The number of flipped bits (α) controls the

balance between orthogonality and correlation between bins. A

high α increases the orthogonality of each position, and a low

α helps a more number of adjacent bins to have a correlation

(spatial locality). We measured the number of identifications

according to the ratio of flips to D, i.e., α/D. As shown in

Fig. 11(b), an adequate α/D leads to high search quality. But

if we flip a small number of bits, HyperOMS cannot clearly

differentiate the peak position. Also, since the peak shifts due

to PTMs are not significant, spatial locality for a limited range

is required. In the rest of our evaluation, we use α = D/2,

which shows the highest quality.

Encoding strategy. We compare the search quality of Hyper-

OMS with the different binary encoding strategies. As discussed

in Section III-B, LSH [18], [36], ID-Level HDC encoding [37],

[38] can be used alternatively to encode raw data to HD binary

vectors. Fig. 11(c) compares the search quality of HyperOMS

with the (1) proposed encoding method, (2) ID-Level HDC

encoding that can capture the position of feature and its value,
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Fig. 12: Search result analysis from HyperOMS and baseline tools on the
HEK293 dataset. (a) Total number of identifications. (b) Venn diagram of
b1927 query search result.

and (3) random projection-based LSH approach. Our encoding

offers the best search quality compared to baselines.

Quantization level. High quantization levels may not be

flexible to the peak intensity changes due to noise and PTMs.

Low Q leads to low resolution in intensity capturing of the

encoder. The quantization level Q did not significantly affect the

search quality unless it falls in the range of [8, 32]. Therefore,

we use Q = 16.

C. Search Quality

We search the iPRG2012 dataset against the yeast spectral

library. As no ground truth information is available when

analyzing complex biological data, instead, we compare our

search quality with a list of consensus identifications produced

by multiple search tools during the iPRG2012 study [53].

Fig. 11(d) shows the search result of baseline tools. Among

7841 identifications in the iPRG2012 consensus result, Hyper-

OMS is able to correctly identify 4141 spectra (Fig. 11(b)).

SpectraST and ANN-SoLo manage to identify 3891 and 5327
identifications, respectively.

We compare the performance of HyperOMS with the results

from existing tools, including SpectraST and ANN-SoLo

using the HEK293 dataset. We use similar configurations for

all tools, listed in Table II. Fig. 12 shows the number of

identifications from the different search tools. HyperOMS offers

a higher search quality than SpectraST, i.e., more identified

spectra. ANN-SoLo managed to identify more spectra than

our HyperOMS. Nevertheless, as described in Fig. 12(b),

HyperOMS can identify spectra that other tools can find

(overlapped area). HyperOMS represents spectra in a way

robust to PTMs, which is approximated form of the original

data. Compared to ANN-SoLo, which uses floating-point

representation, HyperOMS shows slightly degraded search

quality.

The identification rate of HyperOMS can be improved by

increasing the HV capacity. This can be done by (1) increasing

the HV dimensionality D or (2) increasing the number of bits of

each component in the HV. For example, increasing D from 8k

(8192) to 16k (16384) can yield up to 10% more identifications.

However, it raises the hardware cost, computational complexity,

and energy consumption of the accelerator. Since our main

goal is to maximize the speed and energy efficiency of the

OMS while achieving reasonable quality in a biological sense,

we use a D = 8192.

A ramification of lower search quality could be missing

potentially relevant biomarker proteins in the context of a
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Fig. 13: Performance and energy efficiency comparison.

healthy versus diseased study, or missing data similarly impact-

ing other downstream biological interpretations. Nevertheless,

the HyperOMS identification rate is within the range of the

state-of-the-art in MS identification. For example, we can

typically expect an identification rate of 33–66% currently

for human samples that we have used, and HyperOMS satisfies

the expected range criterion. One advantage of HyperOMS

is that there is a search quality–efficiency trade-off that can

be tuned using the hyperparameters. The user can decide

between different search engines based on their requirements;

HyperOMS runs much faster with superior energy efficiency

compared to competing OMS tools (Section V-D). It could be

used to efficiently process extremely large proteomics datasets

consisting of tens of thousands of query files, which are being

generated increasingly often recently.

D. HyperOMS Performance Comparison on GPU

We compare the execution time and the energy consumption

of HyperOMS on GPU to the state-of-the-art OMS tool ANN-

SoLo, which offers a faster search speed with the GPU

acceleration than other baseline [1]. Note that we measured the

second run of the ANN-SoLo since the reference data is likely

to be pre-encoded in reality. ANN-SoLo saves the pre-indexed

information of the reference library on the first run and reuses

it in the subsequent run. For the HEK293 and Kim2014 dataset,

we averaged the measurements from multiple queries.

Fig. 13 compares the end-to-end runtime. The HyperOMS

encoding is parallelized over HV dimensions and datapoints.

HyperOMS uses HD binary vector and easily parallelizable

Hamming similarity computation, while ANN-SoLo uses FP32

vector. The search process of HyperOMS on GPU achieves on

average 46× speedup ANN-SoLo [1]. However, HyperOMS

needs the encoding of query and reference spectra. Nevertheless,

for the end-to-end execution, HyperOMS on GPU gains an

average speedup of 31× over the state-of-the-art OMS tool

running on the same GPU.

HyperOMS running on the GPU requires more power than

the ANN-SoLo, as it has high parallelism. However, the

increased power consumption is compensated by reduced exe-

cution time, improving energy efficiency. Overall, HyperOMS

results in 17× energy efficiency improvement on average (see

Fig. 13).

E. Performance Improvement of HyperOMS Accelerator

We evaluated the speed and efficiency of the HyperOMS

accelerator. We set the HV folding parameter to K = D/2
and T = 0.05 based on the experiment in Section V-F. The

speed and energy consumption are shown in Fig. 13. Compared

to HyperOMS on GPU, our DRAM-based accelerator offers

2.4×, 1.9×, and 3.8× speedup on iPRG2012, HEK293, and

Fig. 14: HyperOMS runtime breakdown.

(a) (b)

Fig. 15: HV folding parameter search. (a) HV folding success rate (FSR)
according to K,T . (b) Parameter selection.

Kim2014 datasets, respectively. Since modern GPUs offer

substantial memory bandwidth, the speedup from a PIM-based

accelerator can be limited. However, most computing units are

underutilized as HyperOMS is composed of bit-wise operations.

As such, our accelerator significantly improves the energy

efficiency by up to 119×, which is mainly powered by the

energy-efficient datapath and light-weight computing units.

During the search process, the query HV stays stationary in the

HSE’s register while the reference HVs only need to be fetched

from DRAM once. The in-situ similarity search in DRAM

banks and HSE dramatically reduces the required time and

energy for data movement. The HV folding scheme also saves

about 50% energy spent on Hamming similarity computation.

Unlike conventional HDC-based algorithms, we tackle the

large-scale pattern-matching problem. Hence, the search stage

rather than the encoding stage occupies a larger percentage

of the total runtime. As shown in Fig. 14, our PIM design

improves both stages. The accelerator offers 5.3× speedup

on average for the encoding stage compared to GPU. The

Hamming similarity search is 2.3× faster than GPU because

we extended the achievable bandwidth for HSE.

F. HV Folding Parameter Search

Fig. 15(a) compares the FSR for different combinations of

K and T across datasets used for evaluation. Increasing T
makes the approximation in HV folding less accurate, resulting

in a low FSR. Additionally, as K decreases, we need to set

a lower T to maintain a high FSR. However, for low T , the

chances of computing θD increase. As shown in Fig. 15(b), the

best performance is achieved by setting K to D/2 and T to

0.05, with 97.6% of query-reference pairs has a 99.6% of FSR.
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(a) (b)

Fig. 16: Speed comparison of HyperOMS with different configurations. (a) The
cumulative effects of optimization strategies (A: Data organization optimization,
B: HV folding). (b) Impact of the number of banks.

When two subsequences are processed in parallel (K = D/2),

the probability of successful folding is 0.9762 = 0.952, as

both pairs need to satisfy the threshold check in HSE. Setting

K = D/4 can improve throughput since more queries can

be processed in parallel. However, the accelerator will be

underutilized, with a probability of 1 − (0.765)4 = 0.658.

Hence, we choose K = D/2 and T = 0.05. Note that the

optimal K and T were consistent across datasets used for our

experiment.

G. Effectiveness of Optimization Schemes

We show the effectiveness of our optimization strategies on

our 128-bank accelerator design. Fig. 16(a) shows speedup

according to the optimization schemes. The unoptimized design

denotes the HyperOMS accelerator using the uniform reference

data mapping in Fig. 10(a) and without the HV folding.

HV folding. We first examine the performance gain

by applying the HV folding scheme. For the K = D/2
case, 48.8% of Hamming similarity computation is saved,

offering nearly 2× speedup as the HSE can accommodate

more parallelism. As shown in Fig. 15, decreasing K can

lower the probability of passing the threshold check module.

We compare the execution time and the energy consumption

of the HSE with K = D/2 and K = D/4. K = D/4
allows the HSE to process four pairs in parallel. All pairs

need to pass the threshold check to maintain parallelism. In

contrast, when K = D/2, the probability of all pairs passing

the threshold check module is higher than the K = D/4 case

(see Section V-F), yielding 26% shorter execution time and

25% higher energy efficiency.

Data organization optimization. Secondly, we observe the

effectiveness of the proposed data organization optimization.

The dispatcher efficiently distributes the query to memory banks

and helps to maintain nearly full hardware utilization. It leads

to 3.7× speedup on 128-bank configuration. After applying

all optimization strategies, the cumulative speedup over the

unoptimized design is 6.7×.

H. Scalability and Overhead Analysis

Scalability. Our DRAM-based HyperOMS accelerator pro-

vides scalable memory capacity and bandwidth to effectively

handle the increasing sizes of spectral data. As shown in

Fig. 16(b), HyperOMS accelerator runs faster when the number

of banks increases. For example, the accelerator with the 128

bank configuration is 1.9× faster than the 64 bank case. Note

that increasing banks helps reduce the search time linearly

but does not change the encoding time since the number of

encoding banks is fixed, leading to a sub-linear speedup. Since

the dispatcher buffer size is mainly determined by the reference

data size and inversely proportional to the number of banks

as analyzed in Section IV-E, when we raise the number of

banks while keeping the data size unchanged, the required

buffer size decreases, which is beneficial for OMS with a large-

sized database. Considering that the HyperOMS is bounded

by memory bandwidth and needs a large memory capacity to

cope with expanding the database, the proposed accelerator is

a promising solution.

Area overhead. We use the 4Gb ×8 DDR4 DRAM chip in

[54] as the baseline to study the area overhead of HyperOMS’s

peripheral circuits. The DRAM chip size [54] is scaled to

22nm. The 5.462mm2 HSEs contribute to an additional 1.67%

overhead of the overall chip size. The low area overhead results

from the low-complexity bit-serial adder trees. The other area

overhead is from the isolation transistors to realize fast row

copy across subarrays. According to [43], the additional area

is less than 1%.

Energy overhead. The energy overhead of HyperOMS is

evaluated by comparing the energy consumed by each HSE

with DRAM’s row activation energy. Each HSE only incurs

additional 3.62% energy compared to the row activation energy;

each HSE only needs 16 cycles to compute the Hamming

similarity and corresponding the threshold check, implying that

the HSE is idle over 60% of the time. Thus, the infrequent

circuit switching leads to a low energy overhead.

VI. CONCLUSION

In this paper, we proposed HyperOMS, which accelerates

OMS in MS-based proteomics by leveraging HDC. HyperOMS

algorithm encodes spectra into binary HVs, considering spatial

and value locality of peaks. It maximizes the computation

efficiency by replacing floating-point operations in OMS with

Boolean operations. We further accelerate HyperOMS on

a DRAM-based PIM accelerator. The proposed accelerator

exploits PuM and NMP technologies to deal with latency-

area overhead trade-offs based on each stage’s characteristics.

In addition, we optimize the data organization and propose

HV folding that can increase the hardware utilization and

accommodate more parallelism in the proposed accelerator.

Our evaluation results show that HyperOMS offers comparable

search quality to existing OMS tools. HyperOMS PIM accel-

erator provides up to 3.8× speedup and 119× better energy

efficiency over HyperOMS running on the GPU. Compared

to the state-of-the-art GPU-based OMS tool, the proposed

accelerator is up to 99× faster and 1, 984× more energy

efficient.
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