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Abstract—Mass spectrometry, commonly used for protein
identification, generates a massive number of spectra that need
to be matched against a large database. In reality, most of
them remain unidentified or mismatched due to unexpected post-
translational modifications. Open modification search (OMS) has
been proposed as a strategy to improve the identification rate by
considering changes in spectra, but it expands the search space
exponentially. In this work, we propose HyperOMS, an algorithm-
hardware co-design for boosted OMS, to cope with the enlarged
database and expanded search space. HyperOMS encodes spectral
data into binary vectors and performs the efficient OMS in high-
dimensional space. We accelerate the HyperOMS algorithm using
a DRAM-based PIM accelerator, which combines processing-using-
memory and near-memory processing technologies. In order to
maximize the parallelization and efficiency of the accelerator, we
optimize the data allocation and devise an approximation strategy
for similarity computation. Experimental results show that the
HyperOMS accelerator yields up to 3.8x speedup and 119X
higher energy efficiency compared to running HyperOMS on
GPU, and up to 99 x speedup and 1984 x higher energy efficiency
over the state-of-the-art OMS tool, ANN-SoLo [1], while providing
comparable search quality to competing tools.

Index Terms—Processing-in-memory, Spectral library search,
Mass spectrometry-based proteomics, Hyperdimensional comput-
ing

I. INTRODUCTION

ROTEOMICS plays an essential role in understanding the
molecular mechanisms of proteins, which are responsible
for various tasks in a life of a cell. Protein biomarkers
are used to predict disease progression and severity. It can
provide early diagnosis and aid the therapeutic strategy design.
Mass spectrometry (MS) is one of the most popular and
reliable approaches to identifying and quantifying proteins
and peptides in biological samples. A typical tandem mass
spectrometry (MS/MS) experiment generates millions of spectra
data. Researchers determine peptide annotations of the MS/MS
spectra via spectral library searching. Peptide sequences are
assigned to experimental MS/MS spectra by matching them
against a spectral library of known peptides (see Fig. 1).
The spectral library searching is challenging since conven-
tional similarity metrics, such as cosine similarity, cannot be
used to identify MS/MS spectra pairs [2] . Proteins undergo
one or more post-translational modifications (PTMs), which
change their mass and MS/MS fragmentation pattern. PTMs
can be introduced during sample preparation as an artifact
of MS measurement, or biologically relevant PTMs arise in
vivo. However, spectral libraries mainly contain reference
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Fig. 1: Overview of spectral library search. Standard search uses a narrow
precursor m/z tolerance, while OMS uses a wide precursor m/z tolerance
during the searching.
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spectra for unmodified peptides, so PTMs make experimental
spectra difficult to identify as they no longer exactly match the
reference spectra.

Open modification searching (OMS) has been emerged to
circumvent this limitation and identify modified spectra [3].
Standard spectral library searching only compares experimental
spectra to reference spectra with a similar precursor mass, i.e.,
the mass of the unfragmented peptide, as matching peptides
should have an identical mass. In contrast, OMS performs
spectra matching on a wider range of reference spectra. It
compares modified query spectra to their unmodified reference
variants, even when their precursor mass differs due to PTMs.
The higher identification capability of OMS enables the study
of more complex protein interactions [4].

Compared to standard searching, the OMS suffers from low
speed due to the drastically increased search space [5]. This
problem is further exacerbated by the increasing spectral data
due to the cost reduction in the MS experiment (2x in recent
two years) [6], [7]. Also, large spectral libraries created by
repository-scale mining of open MS data become available [8].
For example, the size of human HCD (higher energy collisional
dissociation) spectral libraries hold 2.15 million data points,
which is 4x larger than the previous NIST-HCD [8]. MassIVE
repository [9] contains 6.8 billion spectra, which corresponds
to over 560TB in size (as of March 2024).

Several tools have been introduced to efficiently perform
OMS [1], [5], [10]-[12]. These tools use various techniques
to refine the search space, such as fragment ion indexing [10],
nearest neighbor searching [1], [5], or tag-based filtering [11].
For example, the state-of-the-art OMS tool ANN-SoLo per-
forms nearest neighbor searching using GPU and computes
shifted cosine similarities on candidates [1]. The current
solutions involve a complex execution pipeline, have limited
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data parallelism, and necessitate high-precision floating-point

(FP32) arithmetic for optimal search quality, such as shifted

cosine similarity [5].

Our previous work [13] proposed hyperdimensional com-
puting (HDC)-inspired massively parallel OMS algorithm that
encodes spectra into high-dimensional (HD) binary vectors. It
addresses the search space challenges in OMS by approximating
possible MS peak changes; spectra can be identified with a
single similarity computation. Therefore, [13] simplifies the
execution pipeline and maximizes the computation efficiency
and parallelism by replacing FP32 operations with simple
Boolean arithmetic, achieving up to 17x speedup and 6.4x
energy efficiency improvement on NVIDIA Geforce GTX
1080Ti GPU. Nevertheless, as novel spectral libraries keep
growing in size, we face a “memory wall”, with the runtime
dominated by IO operations and limited GPU memory capacity.
Our profiling results show that running [13] on GPU is bound
by memory bandwidth (see Section IV-Al).

Memory-centric computing systems, like the processing-in-
memory (PIM), are being developed as potential solutions to
the “memory wall” problem. They offer extensive parallelism
with scalable memory bandwidth, and reduce overhead caused
by data movement between processor and memory. Several
accelerators [14]-[16] use near-memory processing (NMP)
technique, which integrates computing logic and buffer in
an advanced IC package and exposes large internal memory
bandwidth. Meanwhile, other PIM-based accelerators, like
those described in [17], [18], process data inside memory
cells using analog technology, specifically categorized as
processing-using-memory (PuM). Several studies [19]-[21]
demonstrated that the integration of PuM and NMP technology
can effectively manage each stage of the algorithm. However,
implementing existing OMS solutions that use high-precision
floating-point arithmetic [1], [5], [11], [12], on current memory-
centric architectures is challenging since they require costly
peripheral circuits, such as analog-to-digital/digital-to-analog
converters [22] and floating-point units [23]. Our previous
work [13], uses lightweight Boolean arithmetic with high
parallelism and a simplified execution pipeline, which can
minimize the necessity of peripheral circuits. This approach is
ideal for PIM-based hardware acceleration due to its memory-
centric and highly parallel nature.

In this work, we propose a novel DRAM-based PIM acceler-
ator that maximizes the efficiency of HyperOMS. Specifically,
we develop an accelerator with PuM-NMP hybrid processing
on DRAM that provides significantly higher internal memory
bandwidth, lower data movement cost, and extensive data
parallelism. To summarize, our contributions are as follows:
o We propose a novel HDC-inspired hardware-friendly OMS

algorithm that encodes spectra to a binary vector. Our method

reflects the spatial and value locality of peaks in the spectrum,
making the encoded data resilient to peak shifts and intensity
changes.

o Based on the GPU profiling result, we identify that Hyper-
OMS algorithm is a memory-intensive workload. Thus, we
design a DRAM-based HyperOMS accelerator that combines
PuM and NMP technologies for extended memory bandwidth.
To the best of our knowledge, this is the first work that

exploits DRAM technology to accelerate an HDC-based

algorithm.

o To address hardware utilization challenges that come from the
filtering step in OMS, we introduce a scheme for optimizing
data organization. The proposed data organization scheme
effectively tackles the issue of bank under-utilization that
arises during reference filtering, resulting in 3.7 x speedup.

o For the first time, HyperOMS tackles a large-scale pattern-
matching problem with HD vectors. To alleviate the pressure
from large dimensionality in our algorithm, we introduce a
strategy that computes a sub-vector similarity only unless
the result is larger than the given threshold to accommodate
more parallelism on the NMP hardware. We show that it
can reduce the execution time by 1.8x with only 0.4%
identification loss.

e Our evaluation result demonstrates that the HyperOMS
accelerator provides up to 3.8x (99x) speedup and 119x
(1984 x) enhanced energy efficiency over HyperOMS running
on GPU (ANN-SoLo on GPU [1]).

The rest of this paper is organized as follows. Section II
describes the background of MS spectral library searching
and related work. Section III specifies the algorithmic details
of HyperOMS. Next, Section IV describes the HyperOMS
accelerator and our optimization schemes. Our evaluation
environment and results are described in Section V. Finally,
Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK
A. Spectral Library Searching in MS-based Proteomics

MS is used to study the biological process in proteomics
via the analysis of protein expression or state in cells or tissue.
Proteins are ubiquitous building blocks of life, and they are
composed of peptides, which are chains of amino acids, which
can be described as a string of letters.

During MS data acquisition, peptides are ionized to receive
a charge, and their mass-over-charge (m/z) is measured.
First intact ions are measured in an MS scan using data-
dependent acquisition, and the resulting MS spectrum contains
the corresponding m/z values. The most intense peaks in the
MS spectrum are selected. It is further analyzed in MS/MS
scans, i.e., the second mass spectrometer. Ions with matching
m/z are isolated and fragmented to generate MS/MS spectra.
Fragmentation occurs along the peptide backbone in between
its constituent amino acids. Peptides are split into their possible
amino acid subsequences. We record the m/z and intensity
values of all fragments, and the measured spectrum forms a
unique fingerprint of the measured peptide. Thus, each MS/MS
spectrum consists of peaks (m/z and intensity pairs), spectrum
charge, precursor m/z (intact m/z from the preceding MS
scan) (see Fig. 1-@).

Spectral library searching determines which peptide corre-
sponds to the measured spectra. (Fig. 1-@). A spectral library
contains reference spectra, each with known peptide labels. We
first select the reference candidates with a similar precursor
m/z to a query spectrum. Next, similarities between the query
and all candidates are computed. Finally, the query spectrum is
assigned the same peptide label as its highest-scoring reference
match. Here, we apply a false discovery rate (FDR) filter on
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search results [24] (Fig. 1-@), which is called target—decoy
strategy [24] in MS/MS analysis to reduce false positives.
Decoy spectra that cannot exist are added to the spectral library
besides the real (target) spectra. Decoy spectra selected by the
search tool are filtered out. The number of target SSMs and
decoy SSMs at a specific score can be used to compute the
FDR. Typically, an FDR threshold of 1% is used to minimize
the number of incorrect identifications. The quality of different
search tools can be compared by the number of identified
spectra at a fixed FDR threshold.

A standard searching strategy can identify directly match-
ing spectra. It assumes that precursor m/z of query and matched
reference spectra are similar (narrow precursor m/z tolerance).
However, as spectral libraries mainly contain unmodified
reference spectra, they cannot be used to identify modified ones.
Modified ones have a different intact mass, as the modifications
induce mass shifts. Open modification searching addresses
these issues by (1) using a wide precursor m/z tolerance
that exceeds mass shifts induced by modifications to select
reference candidates [3], and (2) using alternative spectrum
similarity measures that take peak shifts due to modifications
into account [5]. Using a wide precursor m/z tolerance enables
finding (partial) matches between unmodified reference spectra
and their modified variants. However, a large number of
candidates need to be evaluated for each query spectrum, which
can be computationally demanding.

B. Accelerated Spectral Library Searching

OMS has recently become an increasingly popular search
strategy, and there have been several studies to accelerate
searches on parallel hardware platforms other than CPU.
Several studies have focused on accelerating spectral library
searching using GPUs for efficient spectrum—spectrum similar-
ity computation [25]. [26] used a CPU-FPGA architecture in
which multiple FPGAs are used for scalability and parallelism.
However, none of these studies have tackled the OMS. ANN-
SoLo [1] is a state-of-the-art OMS tool that uses GPU-powered
nearest neighbor searching. ANN-SoLo vectorizes spectra
and creates approximate nearest neighbor searching using
FAISS [27] on GPUs. The result is transferred back to the
host side. The shifted cosine similarity score between those
candidates and queries to derive the most similar reference
spectra. However, GPU-based ANN-SoLo [1] suffers from
limited memory capacity and high data movement cost when
handling large databases, i.e., repository-scale spectral library
searching. Unlike previous approaches, the proposed accelerator
tackles these challenges with PIM technologies and offers
scalable memory bandwidth, memory capacity, and promising
efficiency.

C. Memory-centric Computing and HDC

Previous works have proposed a memory-centric architecture
to alleviate the “memory wall” challenge by moving data
operations closer to the memory module. There are various
choices to realize the computation: (1) integrating computing
logic near the bank IO or near-subarray circuits [15], [28],
or (2) computing within the memory array using memory
commands [29]-[31].
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Fig. 2: Overview of OMS process using HyperOMS.

Besides, existing works have shown that running HDC on
PIM hardware is much faster and more energy-efficient than
on other parallel hardware platforms like GPUs. For instance,
[18], [32]-[34] used ReRAM and recently, [35] used FeFET
to enable HDC-based machine-learning.

However, as we tackle the large-scale search problem, these
technologies are not suitable. The accelerator needs to support a
large memory capacity as well as high in-memory computation
parallelism for large-scale mass spectrometry data. Among
various memory types for PIM, DRAM has more mature
manufacturing techniques, making it practical to implement
DRAM-based PIM for our use case. Additionally, DRAM
provides faster writing speed and high-density memory at a
low cost and is easier to scale up. Furthermore, it offers higher
internal data parallelism, as it allows for the activation and
access of more than thousands of bit lines simultaneously [16].
As such, we exploit DRAM to accelerate the HyperOMS
algorithm in memory-centric architectures.

III. HYPEROMS ALGORITHM

In this section, we introduce the HyperOMS algorithm.
HyperOMS encodes spectral data into binary HD vectors
called hypervectors (HVs) and performs OMS on them.
During the encoding process, HyperOMS captures the positions
and intensities of peaks while also considering their spatial
and value locality. Although peaks may be shifted or have
varying intensities due to PTMs, the similarity between a
query spectrum and a matching reference spectrum remains
stable. Additionally, since a binary vector representation is
used, HyperOMS enables searching using a simple Hamming
similarity computation.

Fig. 2 shows the flow of HyperOMS. It starts with a data
preprocessing step, a common step for OMS. It refines and
vectorizes raw spectra and compresses them, resulting in
spectrum vectors. HyperOMS encodes spectrum vectors into
HYV during the encoding step. Next, the Hamming similarity
search step finds the most similar spectra by filtering reference
spectra according to the query’s precursor m/z and spectrum
charge and computing Hamming similarity between query HVs
and candidate reference HVs.

A. Data Preprocessing

The preprocessing step (1) refines the raw spectra by remov-
ing redundant peaks and (2) vectorizes refined spectra (see
Fig. 3(a)). First, raw spectra are refined to gather meaningful
peaks (@). We remove peaks whose intensity is below 1%
of the most intense peaks. Low-intensity peaks are considered
noise. In turn, we retain 50 to 150 most intensive peaks of the
spectra. Existing studies [1], [5], [12] have shown that we can
effectively refine spectra in this manner.
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Fig. 3: Data preprocessing and stages of HyperOMS algorithm.

Next, we vectorize the filtered spectra (@). The peaks are
discretized by binning the m/z range to represent a spectrum
into a sparse vector of floating-point intensity values, called a
spectrum vector. If multiple peaks are assigned to the same
m/z bin, we sum their intensity values. A large bin width can
lead to a loss of information when peaks are grouped into a
single bin. For example, the mass range between 0 m/z and
2000 m/z and bin width 0.04 (based on the resolution of the
mass spectrometer) results in a dimensionality of 50, 000. The
resulting spectrum vectors have sparsity less than 1%; there are
50 to 150 peaks for each spectrum vector and its dimensionality
is 20,000 to 50,000. We compress spectrum vectors in a
compressed sparse row (CSR) format (@). The preprocessing
step is normally run offline, and the output is stored as a binary
file for future use. In the following, we discuss the HyperOMS
algorithm, which first encodes spectrum vector to HV and
performs Hamming similarity search on hypervectors.

B. Encoding: Spectrum Vectors to Hypervectors

HyperOMS encodes the data into a binary vector represen-
tation, which can enhance the computation efficiency. There
have been several efforts to represent raw data in an HD
binary vector, using Locality Sensitive Hashing (LSH) [18],
[36] or HDC [18], [37], [38]. However, these strategies do
not reflect the characteristics of OMS, including peak shifts
and intensity changes. For example, they treat each feature
position (corresponding to peak indices in the spectrum vector)
as orthogonal. Peak shifts can lead to significant changes in
similarity. Conversely, the proposed encoding takes both spatial
locality (for peak shift) and value locality (for peak intensity
change from instrument error or noise) of each feature into
account. As a result, we can preserve similarity despite peak
changes.

Fig. 3(b) shows the encoding process of HyperOMS. Unique
position HVs F are assigned for each index in a spectrum vector,
i.e., F; corresponds to index i, and F € {F{,F,,... Fs}
where f is the dimensionality of spectrum vector. Similarly,
we use level HVs L to capture different intensity values in
each index. We quantize intensity range into @ levels, and
L; is assigned to each quantization level ¢ where ¢ € [0, Q).
Given two sets of HVs, F and L, a spectrum vector is encoded
into an HV T as follows. Let IP be the set of peaks in the
spectrum vector, consisting of tuples (i, ), with ¢ the peak
index and j the step value of its intensity. I is computed
as I = Z(i, Jep F; © L;, where © indicates element-wise

100
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Fig. 4: Position HV generation. (a) Strategy overview. (b) Pairwise similarity
(Hamming similarity normalized by the HV dimension size) between position
HVs.

multiplication. In turn, we binarize the I for the computational
efficiency on hardware; all positive elements are mapped to
+1 and —1 otherwise. The final representation of the HV is
a binary vector. Spectrum vectors corresponding to the query
and reference spectra are encoded to query HVs and reference
HVs, respectively. Encoding of reference spectra is done only
once. The reference HVs are reused for subsequent runs since
they are already identified and unlikely to change.

1) Reflecting Spatial Locality: We introduce a novel position
HV generation method to reflect the spatial locality. Previous
studies [38] have used a permutation-based or random genera-
tion method, which makes F; and F; (i # j) nearly orthogonal.
However, they are vulnerable to peak shifts that accompany
changes in ¢; the change of position HV results in significant
similarity value changes of matched pairs.

Fig. 4(a) shows the proposed position HV generation strategy.
We randomly generate F; = {+1,—1}". In turn, we flip «
components in random positions. As more flips occur, the
similarity between the original vector and the flipped vector
decreases. For example, the similarity (d;) between F; and
F, is larger than the similarity (62) between F; and F;. The
proposed encoding method reflects the characteristics of peak
shifts in OMS well: (1) neighboring positions should have
spatial locality to deal with peak shifts, while (2) distant
positions need to have adequate orthogonality since a dramatic
peak shift rarely occurs in nature. The peak shift changes the
index value corresponding to the intensity in the spectrum
vector. With the proposed method, position HVs do not change
significantly even if peak shifts occur; thus, the resulting
representation can be tolerable to them. As depicted in Fig. 4(b),
for F; and F;, the pairwise similarity has a high value when
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Algorithm 1 Hamming Similarity Search Stage in HyperOMS

1: procedure HAMMING SIMILARITY SEARCH

2 for c in list of all charge values C do

3 Load reference HVs R with spectrum charge ¢

4: Load query HVs Q with spectrum charge ¢

5: z <— None

6 Compute Hamming distance matrix H

7 for Hamming distances h,,.) of query q do

8 T < argmax; h(q ;) With narrow precursor m/z
tolerance

9: if = is None then

10: x < argmax; h(,; with wide precursor
m/z tolerance

11: end if

12: end for

13: end for

14: end procedure

i~ j and is maximum when ¢ = j (diagonal elements). Note
that we scaled down the f to 128 and D to 256 for better
visibility.

2) Reflecting Value Locality: The intensity information
of the spectrum vectors is captured. We use the level HVs
generation method used in [37], [38]. We allocate a single
bit to each of the HV components, ie., L; € {—1,1}P. L
that is assigned to each quantization level needs to reflect the
closeness of the intensity. The similarity between L; and L; 4
should be higher than the similarity between L; and L; 0.
For instance, for the target level p in percentage, L), we can
represent this by flipping (D/2) x (p/100) elements of L.

C. Hamming Similarity Search

As shown in Algorithm 1, HyperOMS finds the matched
reference HV that is most similar to the query HV. It
uses Hamming similarity (defined by the number of equal
components in vector pairs) as a similarity metric. Here,
reference spectra that need to be compared primarily need to
satisfy spectrum charge and precursor m/z condition per query
as discussed in Section II. We gather reference spectra that (1)
have the same spectrum charge as the query spectra (Algorithm
1-L.2) and (2) satisfy the precursor m/z tolerance (precursor m/z
difference between query and reference) condition (Algorithm
1-L8, L10).

OMS assumes that precursor m/z of selected reference
spectra and query spectra can have a large difference. A wide
precursor m/z tolerance is used to match modified spectra to
their unmodified variants. However, we may miss the case of
a reference spectrum with a similar precursor m/z that can
pass through the FDR filter with high similarity. To avoid
such misidentifications, we adopt cascade search [39]. A
narrow precursor m/z tolerance is used for standard search
and FDR filtration is applied (Fig. 3(c)-@). In turn, remaining
unidentified spectra are processed with a wide precursor m/z
tolerance (Fig. 3(c)-@®). Unlike existing tools, HyperOMS
implements two steps of the cascade search in parallel as
they share same similarity value (Algorithm 1-L8, L10). The
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spectrum identifications are merged at the end since both steps
are computationally independent.

IV. HYPEROMS ACCELERATOR ARCHITECTURE
A. Motivation

1) Insights from HyperOMS on GPU: HyperOMS algorithm
is a good match for highly parallel computing platforms. We
implemented HyperOMS on GPU using GPU-based HDC
framework [40] and optimization strategies in [41]. Note that
to maximize the computation efficiency, we represent binary
HYV as a 32bit integer array using bit packing, and similarity
score computation is done by CUDA intrinsic. Our profiling
results of [13] using NSight Compute on NVIDIA RTX
4090 shown in Fig. 5(a) suggest that every stage of HyperOMS
has low ALU utilization (41% on average) compared to memory
utilization (78% on average). The roofline from Nsight
Compute in Fig. 5(b) shows that the encoding GPU kernel
is memory bound. Note that the profiler does not support
roofline analysis for the similarity computation kernel because
it does not involve floating-point computations. Furthermore,
two stages of the HyperOMS algorithm theoretically have low
computational density: the encoding step requiring 8ops/byte
and the Hamming similarity calculation requiring 16ops/byte.
This implies that these steps are limited by the memory
bandwidth. Each kernel implementation leverages the CUDA
memory hierarchy to maximize data reuse and minimize access
to the global memory for optimized performance.

2) Why we need DRAM-based PIM accelerator?: Based
on the analysis of the proposed algorithm and its GPU
implementation, we leverage a PIM technology to accelerate the
HyperOMS algorithm. Among various memory technologies for
PIM, DRAM benefits from its mature manufacturing techniques,
offering high-density memory cost-effectively and excellent
scalability. It offers not only scalable memory bandwidth but
also provides a large memory capacity to accommodate the
massive spectral data.

B. HyperOMS Accelerator Design

Existing works [19]-[21] have shown that the combination
of different PIM techniques, such as PuM and NMP, can
optimize the efficiency of the PIM accelerator. Inspired by
this, the proposed HyperOMS accelerator is a hybrid PuM-
NMP design which leverages the advantages of both PuM
and NMP. Specifically, the HyperOMS accelerator uses the
PuM technique for encoding and NMP for Hamming similarity
search, respectively. The hybrid design is based on the following
analysis. First, the encoding stage only takes a smaller portion
(less than 20% in the case of larger scale HEK293) of the total
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Fig. 6: Overview of the HyperOMS accelerator architecture. Encoding and
Hamming similarity search step is performed in PuM and NMP, respectively.

runtime (see Fig. 14). Therefore, it is acceptable to adopt the
PuM technique to avoid additional peripheral circuits at the cost
of a longer processing time compared to NMP. In comparison,
the search phase is much more time-sensitive as it takes the
majority of the time, especially in larger scale datasets (see
Fig. 14). As such, we accelerate the Hamming similarity search
using the NMP technique because the NMP-based design is
over 6x faster than the PuM-based design according to the
analysis in Section IV-D.

Fig. 6 illustrates the system diagram of the proposed
HyperOMS accelerator that is composed of three main parts:
(1) HyperOMS dispatcher, (2) encoding banks (Section IV-C),
and (3) Hamming search banks (Section IV-D2). We design
the accelerator to be compatible with the DDR4 standard [42].
Each DRAM chip has one encoding bank, and the rest of
the banks are working under the Hamming search mode. The
encoding bank handles the encoding stage of the HyperOMS
algorithm using PuM primitives. Each DRAM bank includes a
near-bank Hamming similarity search engine (HSE). HSE can
compute similarity values for multiple pairs simultaneously
by adopting the HV folding strategy (refer to Section IV-D1).
The dispatcher is implemented in the memory controller (MC),
working as the high-level scheduler and controller for query
data fetching from the host, control/address (C/A) command
generation, and query allocation to the DRAM banks. The query
data (spectrum charge, precursor m/z, and spectrum vector)
are fed into the HyperOMS accelerator via the dispatcher.

Dataflow: HyperOMS follows a map-reduce manner to
fully utilize the internal data parallelism of DRAM. The
encoding and Hamming similarity search phases are performed
locally within the encoding banks and Hamming search
banks, respectively. First, during the encoding phase (Fig. 6-
@), the dispatcher converts the peak intensities and indices
into corresponding memory addresses to perform in-memory
encoding in the encoding banks. In turn, The encoded query
HVs in the encoding banks are collected by the dispatcher
and then broadcast to Hamming search banks. The dispatcher
first performs the spectrum charge and precursor m/z filtering
(Fig. 6-@). It generates the destination memory address and
distributes the encoded query from the encoding bank to
Hamming similarity search banks based on the spectrum charge
and precursor m/z information. The address mapping table
stores two types of mapping data: (1) the memory address
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Fig. 7: In-memory encoding scheme for spectrum vectors.

of position and level HVs in the encoding bank and (2) the
mapping between the reference’s spectrum charges/precursor
m/z and their memory addresses. Each Hamming search bank
searches and finds the most similar reference HV among the
stored reference data. The local search within each bank is
performed asynchronously. After all Hamming search banks
finish their searching process, the dispatcher gathers the results
from each bank and further selects the best-matched reference
HV in the reduction step. Here, spectrum charge and precursor
m/z filtering can cause a bank under-utilization, which leads
to speed and efficiency degradation. In order to balance the
assigned workloads in banks and raise the bank utilization,
we optimize the mapping of the reference data and the query
dispatching, as described in Section I'V-E.

Memory Modifications: To enable fast Hamming similar-
ity search and extended bandwidth, HyperOMS accelerator
involves three major memory modifications. Firstly, we add
isolation transistors between subarrays to support fast inter-
subarray row copy, which results in an additional area overhead
of only about 0.8% [43]. Secondly, we implement the HSE
design, which is connected to the local buffer of the bottom
subarray in each bank. Finally, we add a new memory controller
command (similar to [44]) to support data broadcast from the
encoding banks to Hamming search banks. These modifications
effectively balance the additional overhead and computation
efficiency.

C. In-memory Encoding

The encoding process of query data is computed in the
assigned encoding banks (see the green-colored bank in Fig. 6)
in conjunction with the PuM primitives [29]-[31]. We exploit
the PuM technique since the encoding stage only needs simple
XOR and addition operations that are well supported by
existing PuM primitives [29]-[31]. Also, it needs to store
intermediate results. By utilizing the PuM technique, the
accelerator eliminates the need for a buffer to hold these
results, which is beneficial for minimizing the density impact
on DRAM. The encoding is a memory-intensive process
characterized by massive data movement that arose from
fetching the D-bit position or level HVs over |IP| times each.
The in-situ property of PuM avoids data fetching, thereby
saving memory bandwidth as well as energy. Although PuM
increases the processing time compared to NMP, the encoding
process only occupies a small fraction of the overall runtime
(see Fig. 14).

The encoding bank execution includes three steps: (1)
receiving the query data, (2) in-memory encoding, and (3)
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broadcasting encoded data to the query HV register within the
HSE of other banks. As shown in Fig. 7, the encoding bank
pre-stores the position and level HVs in a total of f 4+ @
rows. In the first step, the DRAM bank receives the row
addresses of (i,7) € P from HyperOMS dispatcher. Then
the corresponding position and level HVs, F; and Lj, are
copied to new rows. The copy process can be achieved by
the fast row copy in LISA [43]. Second, we compute the
XOR for each pair of copied position and level HVs using the
majority-based arithmetic in [29], [31]. The third step is to
aggregate the XOR results. The basic memory commands to
compute in-memory bit-wise XOR and bit-serial addition are
two back-to-back activation commands followed by a precharge
command (AAP). Specifically, n-bit bit-serial addition needs
4n 4+ 1 AAP commands (XOR is regarded as 1-bit addition).
We initialize the result rows with -|IP|/2 in bit-serial and 2’s
complement format. The mentioned three steps are repeated
|IP| times to obtain the final aggregation results. The sign bit
of the result rows is selected for the binarization. After the
encoding, the encoded query HV needs to be broadcast to the
query HV register within the HSE of other Hamming similarity
search banks. The encoded HV in a row is burst out from the
encoding bank to the HyperOMS dispatcher via the inter-bank
dataline. It helps to broadcast results at minimal cost without
conflicting with DDR4 standard [42]. Finally, the dispatcher
transmits the collected query HV to other Hamming search
banks in a sequential manner.

D. Near-memory Hamming Similarity Search

The Hamming similarity search involves calculating the
similarity between the query and reference HVs, which can
be implemented either in-memory or near-memory. If we
implement the Hamming similarity computation using the
PuM technique, it incurs a long processing latency since 5
AAP commands need to be issued by the DRAM bank to
compute the bit-wise XOR between two HVs. The DDR4-
2400 4Gb x8 needs around 390ns to perform the PuM-based
XOR operation. On the other hand, the NMP-based design
can provide shorter latency for the XOR computation and
has higher internal memory bandwidth for pattern-matching
workloads [15]. The long latency of PuM-based computation is
not favorable for Hamming similarity search as the search step
in HyperOMS accounts for the majority of the overall runtime.
Hence, we choose to accelerate it using a near-memory HSE
module as shown in Fig. 9.

To exploit the internal bandwidth of DRAM, we locate one
HSE next to the local row buffer of the last and bottom subarray
in each DRAM bank. Implementing only one HSE for each
bank avoids adding excessive area overhead to the original
DRAM. We can use one precharge and one activates command
(< 60ns) to latch the data into the local sense amplifier (SA)
and row buffer (RB). The HSE directly fetches the D-bit
latched data from local RB at one time (D is the size of RB),
and the processing latency can be hidden by the memory access
time.

Meanwhile, the HSE computes the Hamming similarity of
only one pair if it is implemented naively; the parallelism is
proportional to the number of HSE. Also, the XOR computation
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Fig. 8: Statistics of Hamming similarity values. (a) Relevance between 6p
and 0p /5. (b) Similarity between query and matched reference spectrum
(normalized to D).

of HV pairs can be computationally demanding due to its
dimensionality. As such, we devise a strategy called HV folding
to increase the parallelism within HSE and the design of HSE.

1) HV Folding: The Hamming similarity is evaluated by
XOR results between the reference HV and query HV. The
naive way to get the Hamming similarity is to count the Os of
the XOR HV. However, the high dimensionality of the XOR
HV with a few thousand bits makes it slow to count the accurate
number of 1s. We propose the HV folding scheme to reduce
the computation of the Hamming similarity and accommodate
more parallelism. The parameters for the HV folding are static,
and they are used for optimizing HSE design.

The basic idea of HV folding is to calculate only partial
bits of the XOR HV (called subsequence) and approximate the
actual Hamming similarity. Specifically, instead of calculating
the Hamming similarity (6 ) for the entire HV with dimension-
ality D, we only compute the Hamming similarity (/) of the
first K bits. Note that D is a multiple of K to make it evenly
divisible and avoid padding. Let us assume that K = D/2.
Fig. 8(a) shows the relationship between ¢p and 0p /o, which
are values obtained from randomly sampled query and reference
pairs. Here, 0 and 0p /o are roughly proportional. The trend
is similar in the K = D/4 or D/8 case. When 0p is small,
it shows high variance, while showing low variance when 6p
is large. Fig. 8(b) shows a histogram of normalized Hamming
similarity values of query and the matched reference pair
in the spectrum charge +2 of the iPRG2012 dataset used in
Section V. It has been noted that for the other datasets as well,
the matched reference and query pairs exhibit a normalized
Hamming similarity of at least 0.1. Hence, we can approximate
Op as Op,, since we pick a spectrum with a high similarity
value.

The goal of HV folding is to predict fp using O and
to handle more pairwise similarity computations in parallel
within HSE. The HSE only computes 6 if it is less than
the predefined threshold 7. Otherwise, HSE computes 6p.
When 6 successfully approximates 6p, the same reference
HV needs to be selected in either case. We define this success
rate as the folding success rate (FSR). It is essential to choose
appropriate values for K and 7" and maximize the FSR. We
discuss the hyperparameter search experiment in Section V-F.

2) Hamming Similarity Search Engine: The Hamming sim-
ilarities between query HVs and reference HVs are computed
in near-bank HSE (see blue-colored banks in Fig. 6). In the
memory subarray, each D-bit reference HV is arranged into
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Fig. 9: Near-memory HSE design.

D/K consecutive rows, with each row occupying K columns
as shown in Fig. 9. This arrangement simplifies reference
indexing and allows for continuous memory access. To further
streamline the process, we (1) organize the data by grouping
references from the same spectrum charge (see Section IV-E)
and (2) sort spectra based on their precursor m/z values
within each spectrum charge. This enables all Hamming search
banks to share the same address space of reference HVs,
with the memory controller only needing to send identical
starting and ending row addresses to all banks. Each bank
then performs an independent search within the given address
range. To achieve this, each HSE within each bank requires
its independent memory controller and address generator to
execute asynchronously. The additional overhead of the bank
controller and address generator is negligible [45].

The HSE involves loading a row of data from a DRAM bank
into a local RB with N, columns, where the RB contains C
(= Neoi/ K) subsequences, each with a length of K bits. HSE
accesses the entire row data every tgc ns and generates the
Hamming similarity before new data comes in trc to avoid
any stalls between consecutive DRAM row accesses.

The encoded query bits are broadcast to each bank through
the DQ bus and cached in the query HV register with the
same size as N.o. The query HV is then XORed with the C'
loaded reference subsequences in parallel using K-bit XOR
modules. To reduce latency, the XORed results pass through C'
adder trees, each consisting of K bit-serial adders. Although
many adders are used, the design has low hardware complexity
because most adders’ bit width is low. The obtained partial
Hamming similarities are checked to see if they satisfy the
threshold condition in HV folding. If the similarity values for
subsequences are all less than 7, the row for the next pairs
of reference HVs is loaded. Otherwise, for pairs that do not
satisfy the remaining K -bit reference HV, it continues to be
loaded and compute 6p. The results are compared with the
current best stored in the Hamming similarity (HMS) buffer,
and the HMS buffer is updated with the maximum Hamming
similarity. Meanwhile, the associated row address and column
offset are recorded in the address buffer. In the following, we
present a data organization optimization scheme that tackles the
hardware under-utilization challenges caused by the reference
HV filtration.

E. Data Organization Optimization

Efficient performance in the HyperOMS accelerator heavily
relies on the data allocation since two filtration steps, spectrum
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Fig. 10: (a) Uniform mapping. (b) Proposed reference data mapping scheme.
(c) Address mapping process and reference index retrieving process based on

(b).

charge and precursor m/z filter, which may cause workload
imbalance and low bank utilization. The dispatcher distributes
the encoded query HV to banks based on its spectrum charge
and precursor m/z. Therefore, we optimize HyperOMS’s data
organization in two aspects: (1) the reference data mapping
and (2) the query dispatching scheme.

1) Reference Data Mapping: The naive way to map the
reference HVs is uniformly distributing the reference data to
each bank in a round-robin manner. Fig. 10(a) gives an example
of mapping nine reference HVs from spectrum charge +2 (C2)
to +4 (C4) to two memory banks. For each spectrum charge,
HVs are sorted based on their precursor m/z. The uniform
mapping scheme allocates HVs to each bank based on spectrum
charges. Here, each bank is unable to access references HVs
from all spectrum charges, leading to low bank utilization. For
example, only one bank is activated during the search process
for query with C2 or C4 because only Bank O or Bank 1
contains HVs of C2 or C4, yielding only 50% bank utilization.

We propose the reference data mapping scheme in
Fig. 10(b) to increase bank utilization. The reference HVs
are assigned across the bank such that each DRAM bank
stores HVs from all spectrum charges. By distributing the
reference HVs to different banks, the proposed data mapping
scheme enhances the bank utilization for queries from different
spectrum charges. In this case, the total searching time is evenly
amortized to each memory bank, thus reducing the processing
latency. It also effectively reduces the overhead of the query
dispatching policy.

2) Query Dispatching Policy: The dispatcher needs to
properly allocate the given query to target banks to maximize
bank utilization. Also, it needs to generate memory commands
with addresses compatible with current DRAM standards [42]
based on the query’s spectrum charge and precursor m/z. As
such, we design query dispatching policy to cooperate with
the proposed reference data mapping scheme. As shown in
Fig. 10(c), the addresses and indexes for reference HVs are
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stored in the address mapping table within the dispatcher, which
is designed to be compatible with current DRAM standards [42].
The address mapping table needs to store the information
(spectrum charge, m/z, row address, and index) for the first
memory bank (Bank 0) since the consecutive reference HVs
across different banks share the same row address space. For
example, Ref.1 and Ref.2 of spectrum charge +2 (C2) have
identical row addresses. The dispatcher generates the starting
and ending row addresses of Hamming search based on the
filtering results of the query’s spectrum charge and precursor
m/z. The addresses with control signals are broadcast to all
search banks via the C/A bus. All Hamming search banks
perform Hamming similarity searches in parallel.

The Hamming similarity search returns the most similar
reference HV stored in each bank. The dispatcher needs to
retrieve the index of reference HVs. Fig. 10(c) shows how we
retrieve the index. Assuming Bank 1 finds C2 Ref.2 as the
best-matched result, Bank 1 returns the tuple (Row address,
offset, HMS) that represents the associated row address, column
offset, and Hamming similarity. The dispatcher first retrieves
the reference index idx = 1 in the first bank by accessing the
address mapping table. Since the dispatcher knows the bank
address, then the index (idx) of C2 Ref.2 is computed using
idz 4 Bank address + offset. The offset is used to index the
two reference HVs organized over the same DRAM row in
Fig. 9. Similarly, the reference information from other banks
can be inferred based on the returned row address and offset.

The dispatcher has an overhead from the buffer, as it needs
to store the address mapping table. Assume that the size of
reference data is IV, each entry takes 3 + 32 + [log, V| bits in
the buffer, where 3 is for spectrum charge information, 32 is for
m/z in a single FP32 number, and log, N is for index bits. Here,
the row address does not need to be explicitly stored since it is
identical to the entry address in the buffer. If we have B DRAM
banks, the required buffer size is ¥ x (3 + 32 + [log, N1).
For the HEK293 dataset in Table II with around 3 million
reference spectra, the estimated table size is 163KB for 128
banks. The buffer size decreases linearly as the number of
banks increases, which is attractive for large-scale processing.

V. EVALUATION
A. Methodology

PIM Design. The specifications for DRAM and HyperOMS
are summarized in Table I. The required number of DRAM
chips is determined by the number of reference spectra. The
reference library [46] of Kim2014 dataset [47] in Table II
contains approximately 4.2 million reference spectra, which
require 8 chips with a total of 256 DRAM banks to store all
reference data. We use the 22nm DRAM process with DDR4-
2400 standard [42], and the DRAM parameters are summarized
in Table I. Among all banks, we assign one bank for encoding
while the rest perform the Hamming similarity search. This
is because encoding consumes only 5% of the total execution
time. More DRAM banks can be added to support a larger
dataset.

The HSE components of HyperOMS are implemented using
Verilog HDL and synthesized using the Synopsys Design
Compiler, using the TSMC 28nm technology node. The clock

TABLE I: System specifications of HyperOMS.

DRAM Parameters
DDR4-2400, 4Gb x8, Rows = 2'°, Row size = 1KB
4 banks/bank group, 4 bank groups, tCLK=1.2GHz
DRAM Timing
nRC=55, nRP=16, nRAS=39, nCCDS=4, nCCDL=6
nWR=18, nWTRS=3, nWTRL=9, nRTP=12, nFAW=26
HyperOMS
Total 256 banks and 8GB (16 chips, each chip with 16 banks)
NMP Components

HSE Area per HSE: 42,680um?
Total area: 10.93mm2, Peak Power: 10,926mW
Dispatcher 256KB SRAM, Word size = 64b
Area: 0.234mm?, Power:77.4mW

is set to 1.2GHz, matching the IO clock frequency of DRAM.
To provide a fair comparison, we scale the area and power to
22nm to align with the memory technology. Moreover, since
DRAM generally uses fewer metal layers compared to the
generic ASIC, we evaluate the overhead caused by the process
difference between logic and DRAM using the method in [48].
The dispatcher uses a 256KB SRAM to store the address
mapping table, and the area and power are estimated using
CACTI-3DD [49].

We develop a Python in-house simulator to emulate the
behavior of the HyperOMS accelerator. The latency and energy
parameters of DRAM operations [29], [50] and additional
near-memory ASIC components are loaded into the developed
simulator to calculate runtime and energy consumption for
HD encoding and searching. The OMS latency and energy
numbers are calculated in two steps: First, we generate the
memory traces from HyperOMS ’s GPU implementation. Then,
the traces and HD encoding/searching parameters are used to
calculate the overall OMS latency and energy.

System Environment. The evaluation was performed on a
system equipped with Intel i7-11700K with 64GB RAM and
NVIDIA Geforce RTX 4090. Since the GPU has limited
memory, we split the reference and the query data into
batches. We set the batch size to use the maximum amount
of VRAM for GPU-based solutions. We measured the GPU
power consumption using nvidia-smi.

Workloads. We evaluated HyperOMS on three real-world
datasets. The datasets are commonly used for benchmarking
OMS tool performance [1], [5] and include decoy spectra with
the same ratio as the existing spectral libraries using the shuffle-
and-reposition method [51] for FDR filtering, which removes
false-positive identifications. iPRG2012 dataset combines
yeast spectral library [52] with the human HCD spectral library
(total spectra: 1,162,392) as the reference libraries, and the
iPRG2012 dataset [53] (total spectra: 15,867) as a query. For
HEK?293 dataset, we used the human spectral library [8] (total
spectra: 2,992, 672) and a HEK293 (Human Embryonic Kidney
293) dataset [2] (total spectra: 46, 665), as reference and query
spectra, respectively. Also, we reanalyze a sampled Kim2014
dataset [47] (total spectra: 9,976 on average) using MassIVE-
KB [46] with decoy spectra (total spectra: 4,197,746) as a
reference library. We preprocessed query and reference spectra
in a similar fashion to existing works [1], [5], [12], using the
widely used configurations listed in Table II.
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TABLE II: Spectrum preprocessing settings.

Dataset
iPRG2012 [ HEK293 [ Kim2014
Max peaks in spectra 50
Min/max m/z 101/1500
Bin Size 0.05 0.04 0.05
Precursor m/z tolerance
(narrow) 20ppm Sppm 10ppm
Precursor m/z tolerance 500Da 500Da 500Da
(wide)
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Fig. 11: Search quality comparison on the iPRG2012 dataset. (a) HyperOMS
with different HV dimensionality. (b) HyperOMS with different number of bit
flips. (¢) HyperOMS with various encoding strategies. (d) Search quality of
baseline tools.

Benchmarks. We compare the search quality of HyperOMS
to existing search tools, including (1) SpectraST [12] on CPU
and (2) the state-of-the-art OMS tool, ANN-SoLo, running on
GPU [1]. We count the number of identifications to compare
the search quality in the same way as the state of the art. All
search results are evaluated at a fixed 1% FDR threshold.

B. Impact of Encoding Configuration

HYV dimensionality. The HV dimensionality (D) plays a critical
role in search quality. A low dimensionality limits separability.
As demonstrated in Fig. 11(a), the higher D leads to a higher
number of identifications. However, the excessive D leads to
an increase in computation and capacity demand. We set the D
to 8192 (8k) which is equal to the number of columns in the
DRAM subarray, which satisfies both the hardware efficiency
and the search quality.

Flipped bits. The number of flipped bits («) controls the
balance between orthogonality and correlation between bins. A
high « increases the orthogonality of each position, and a low
a helps a more number of adjacent bins to have a correlation
(spatial locality). We measured the number of identifications
according to the ratio of flips to D, i.e., «/D. As shown in
Fig. 11(b), an adequate /D leads to high search quality. But
if we flip a small number of bits, HyperOMS cannot clearly
differentiate the peak position. Also, since the peak shifts due
to PTMs are not significant, spatial locality for a limited range
is required. In the rest of our evaluation, we use a = D/2,
which shows the highest quality.

Encoding strategy. We compare the search quality of Hyper-
OMS with the different binary encoding strategies. As discussed
in Section III-B, LSH [18], [36], ID-Level HDC encoding [37],
[38] can be used alternatively to encode raw data to HD binary
vectors. Fig. 11(c) compares the search quality of HyperOMS
with the (1) proposed encoding method, (2) ID-Level HDC
encoding that can capture the position of feature and its value,
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Fig. 12: Search result analysis from HyperOMS and baseline tools on the
HEK293 dataset. (a) Total number of identifications. (b) Venn diagram of
b1927 query search result.

and (3) random projection-based LSH approach. Our encoding
offers the best search quality compared to baselines.
Quantization level. High quantization levels may not be
flexible to the peak intensity changes due to noise and PTMs.
Low @ leads to low resolution in intensity capturing of the
encoder. The quantization level @) did not significantly affect the
search quality unless it falls in the range of [8, 32]. Therefore,
we use ) = 16.

C. Search Quality

We search the iPRG2012 dataset against the yeast spectral
library. As no ground truth information is available when
analyzing complex biological data, instead, we compare our
search quality with a list of consensus identifications produced
by multiple search tools during the iPRG2012 study [53].
Fig. 11(d) shows the search result of baseline tools. Among
7841 identifications in the iPRG2012 consensus result, Hyper-
OMS is able to correctly identify 4141 spectra (Fig. 11(b)).
SpectraST and ANN-SoLo manage to identify 3891 and 5327
identifications, respectively.

We compare the performance of HyperOMS with the results
from existing tools, including SpectraST and ANN-SoLo
using the HEK293 dataset. We use similar configurations for
all tools, listed in Table II. Fig. 12 shows the number of
identifications from the different search tools. HyperOMS offers
a higher search quality than SpectraST, i.e., more identified
spectra. ANN-SoLo managed to identify more spectra than
our HyperOMS. Nevertheless, as described in Fig. 12(b),
HyperOMS can identify spectra that other tools can find
(overlapped area). HyperOMS represents spectra in a way
robust to PTMs, which is approximated form of the original
data. Compared to ANN-SoLo, which uses floating-point
representation, HyperOMS shows slightly degraded search
quality.

The identification rate of HyperOMS can be improved by
increasing the HV capacity. This can be done by (1) increasing
the HV dimensionality D or (2) increasing the number of bits of
each component in the HV. For example, increasing D from 8k
(8192) to 16k (16384) can yield up to 10% more identifications.
However, it raises the hardware cost, computational complexity,
and energy consumption of the accelerator. Since our main
goal is to maximize the speed and energy efficiency of the
OMS while achieving reasonable quality in a biological sense,
we use a D = 8192.

A ramification of lower search quality could be missing
potentially relevant biomarker proteins in the context of a
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Fig. 13: Performance and energy efficiency comparison.

healthy versus diseased study, or missing data similarly impact-
ing other downstream biological interpretations. Nevertheless,
the HyperOMS identification rate is within the range of the
state-of-the-art in MS identification. For example, we can
typically expect an identification rate of 33-66% currently
for human samples that we have used, and HyperOMS satisfies
the expected range criterion. One advantage of HyperOMS
is that there is a search quality—efficiency trade-off that can
be tuned using the hyperparameters. The user can decide
between different search engines based on their requirements;
HyperOMS runs much faster with superior energy efficiency
compared to competing OMS tools (Section V-D). It could be
used to efficiently process extremely large proteomics datasets
consisting of tens of thousands of query files, which are being
generated increasingly often recently.

D. HyperOMS Performance Comparison on GPU

We compare the execution time and the energy consumption
of HyperOMS on GPU to the state-of-the-art OMS tool ANN-
SoLo, which offers a faster search speed with the GPU
acceleration than other baseline [1]. Note that we measured the
second run of the ANN-SoLo since the reference data is likely
to be pre-encoded in reality. ANN-SoLo saves the pre-indexed
information of the reference library on the first run and reuses
it in the subsequent run. For the HEK293 and Kim2014 dataset,
we averaged the measurements from multiple queries.

Fig. 13 compares the end-to-end runtime. The HyperOMS
encoding is parallelized over HV dimensions and datapoints.
HyperOMS uses HD binary vector and easily parallelizable
Hamming similarity computation, while ANN-SoLo uses FP32
vector. The search process of HyperOMS on GPU achieves on
average 46x speedup ANN-SoLo [1]. However, HyperOMS
needs the encoding of query and reference spectra. Nevertheless,
for the end-to-end execution, HyperOMS on GPU gains an
average speedup of 31x over the state-of-the-art OMS tool
running on the same GPU.

HyperOMS running on the GPU requires more power than
the ANN-SoLo, as it has high parallelism. However, the
increased power consumption is compensated by reduced exe-
cution time, improving energy efficiency. Overall, HyperOMS
results in 17x energy efficiency improvement on average (see
Fig. 13).

E. Performance Improvement of HyperOMS Accelerator

We evaluated the speed and efficiency of the HyperOMS
accelerator. We set the HV folding parameter to K = D/2
and T = 0.05 based on the experiment in Section V-F. The
speed and energy consumption are shown in Fig. 13. Compared
to HyperOMS on GPU, our DRAM-based accelerator offers
2.4x, 1.9x, and 3.8x speedup on iPRG2012, HEK293, and
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Kim2014 datasets, respectively. Since modern GPUs offer
substantial memory bandwidth, the speedup from a PIM-based
accelerator can be limited. However, most computing units are
underutilized as HyperOMS is composed of bit-wise operations.
As such, our accelerator significantly improves the energy
efficiency by up to 119x, which is mainly powered by the
energy-efficient datapath and light-weight computing units.
During the search process, the query HV stays stationary in the
HSE’s register while the reference HVs only need to be fetched
from DRAM once. The in-situ similarity search in DRAM
banks and HSE dramatically reduces the required time and
energy for data movement. The HV folding scheme also saves
about 50% energy spent on Hamming similarity computation.

Unlike conventional HDC-based algorithms, we tackle the
large-scale pattern-matching problem. Hence, the search stage
rather than the encoding stage occupies a larger percentage
of the total runtime. As shown in Fig. 14, our PIM design
improves both stages. The accelerator offers 5.3x speedup
on average for the encoding stage compared to GPU. The
Hamming similarity search is 2.3 x faster than GPU because
we extended the achievable bandwidth for HSE.

F. HV Folding Parameter Search

Fig. 15(a) compares the FSR for different combinations of
K and T across datasets used for evaluation. Increasing 1’
makes the approximation in HV folding less accurate, resulting
in a low FSR. Additionally, as K decreases, we need to set
a lower T' to maintain a high FSR. However, for low T, the
chances of computing 6 increase. As shown in Fig. 15(b), the
best performance is achieved by setting K to D/2 and T to
0.05, with 97.6% of query-reference pairs has a 99.6% of FSR.
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When two subsequences are processed in parallel (K = D/2),
the probability of successful folding is 0.976% = 0.952, as
both pairs need to satisfy the threshold check in HSE. Setting
K = D/4 can improve throughput since more queries can
be processed in parallel. However, the accelerator will be
underutilized, with a probability of 1 — (0.765)* = 0.658.
Hence, we choose K = D/2 and T = 0.05. Note that the
optimal K and 7' were consistent across datasets used for our
experiment.

G. Effectiveness of Optimization Schemes

We show the effectiveness of our optimization strategies on
our 128-bank accelerator design. Fig. 16(a) shows speedup
according to the optimization schemes. The unoptimized design
denotes the HyperOMS accelerator using the uniform reference
data mapping in Fig. 10(a) and without the HV folding.

HV folding. We first examine the performance gain
by applying the HV folding scheme. For the K = D/2
case, 48.8% of Hamming similarity computation is saved,
offering nearly 2x speedup as the HSE can accommodate
more parallelism. As shown in Fig. 15, decreasing K can
lower the probability of passing the threshold check module.
We compare the execution time and the energy consumption
of the HSE with K = D/2 and K = D/4. K = D/4
allows the HSE to process four pairs in parallel. All pairs
need to pass the threshold check to maintain parallelism. In
contrast, when K = D/2, the probability of all pairs passing
the threshold check module is higher than the K = D /4 case
(see Section V-F), yielding 26% shorter execution time and
25% higher energy efficiency.

Data organization optimization. Secondly, we observe the
effectiveness of the proposed data organization optimization.
The dispatcher efficiently distributes the query to memory banks
and helps to maintain nearly full hardware utilization. It leads
to 3.7x speedup on 128-bank configuration. After applying
all optimization strategies, the cumulative speedup over the
unoptimized design is 6.7X.

H. Scalability and Overhead Analysis

Scalability. Our DRAM-based HyperOMS accelerator pro-
vides scalable memory capacity and bandwidth to effectively
handle the increasing sizes of spectral data. As shown in
Fig. 16(b), HyperOMS accelerator runs faster when the number
of banks increases. For example, the accelerator with the 128
bank configuration is 1.9x faster than the 64 bank case. Note
that increasing banks helps reduce the search time linearly
but does not change the encoding time since the number of
encoding banks is fixed, leading to a sub-linear speedup. Since

the dispatcher buffer size is mainly determined by the reference
data size and inversely proportional to the number of banks
as analyzed in Section IV-E, when we raise the number of
banks while keeping the data size unchanged, the required
buffer size decreases, which is beneficial for OMS with a large-
sized database. Considering that the HyperOMS is bounded
by memory bandwidth and needs a large memory capacity to
cope with expanding the database, the proposed accelerator is
a promising solution.

Area overhead. We use the 4Gb x8 DDR4 DRAM chip in
[54] as the baseline to study the area overhead of HyperOMS’s
peripheral circuits. The DRAM chip size [54] is scaled to
22nm. The 5.462mm? HSEs contribute to an additional 1.67%
overhead of the overall chip size. The low area overhead results
from the low-complexity bit-serial adder trees. The other area
overhead is from the isolation transistors to realize fast row
copy across subarrays. According to [43], the additional area
is less than 1%.

Energy overhead. The energy overhead of HyperOMS is
evaluated by comparing the energy consumed by each HSE
with DRAM’s row activation energy. Each HSE only incurs
additional 3.62% energy compared to the row activation energy;
each HSE only needs 16 cycles to compute the Hamming
similarity and corresponding the threshold check, implying that
the HSE is idle over 60% of the time. Thus, the infrequent
circuit switching leads to a low energy overhead.

VI. CONCLUSION

In this paper, we proposed HyperOMS, which accelerates
OMS in MS-based proteomics by leveraging HDC. HyperOMS
algorithm encodes spectra into binary HVs, considering spatial
and value locality of peaks. It maximizes the computation
efficiency by replacing floating-point operations in OMS with
Boolean operations. We further accelerate HyperOMS on
a DRAM-based PIM accelerator. The proposed accelerator
exploits PuM and NMP technologies to deal with latency-
area overhead trade-offs based on each stage’s characteristics.
In addition, we optimize the data organization and propose
HYV folding that can increase the hardware utilization and
accommodate more parallelism in the proposed accelerator.
Our evaluation results show that HyperOMS offers comparable
search quality to existing OMS tools. HyperOMS PIM accel-
erator provides up to 3.8x speedup and 119x better energy
efficiency over HyperOMS running on the GPU. Compared
to the state-of-the-art GPU-based OMS tool, the proposed
accelerator is up to 99x faster and 1,984x more energy
efficient.
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