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View Synthesis of Dynamic Scenes Based on
Deep 3D Mask Volume

Kai-En Lin"Y, Guowei Yang ", Lei Xiao

Abstract— Image view synthesis has seen great success in re-
constructing photorealistic visuals, thanks to deep learning and
various novel representations. The next key step in immersive
virtual experiences is view synthesis of dynamic scenes. However,
several challenges exist due to the lack of high-quality training
datasets, and the additional time dimension for videos of dynamic
scenes. To address this issue, we introduce a multi-view video
dataset, captured with a custom 10-camera rig in 120FPS. The
dataset contains 96 high-quality scenes showing various visual
effects and human interactions in outdoor scenes. We develop a
new algorithm, Deep 3D Mask Volume, which enables temporally-
stable view extrapolation from binocular videos of dynamic scenes,
captured by static cameras. Our algorithm addresses the temporal
inconsistency of disocclusions by identifying the error-prone areas
with a 3D mask volume, and replaces them with static background
observed throughout the video. Our method enables manipulation
in 3D space as opposed to simple 2D masks, We demonstrate better
temporal stability than frame-by-frame static view synthesis meth-
ods, or those that use 2D masks. The resulting view synthesis videos
show minimal flickering artifacts and allow for larger translational
movements.

Index Terms—Computer vision, view synthesis.

1. INTRODUCTION

ECENT advances in view synthesis have shown promising
Rresults in creating immersive virtual experiences from
images. Nonetheless, in order to reconstruct compelling and inti-
mate interaction with the virtual scene, the ability to incorporate
temporal information is much needed. In this paper, we study a
specific setup where the input videos are from static, binocular
cameras and novel views are mostly extrapolated from the input
videos, similar to the case in StereoMag [2]. We believe that
this case is useful as dual- and multi-camera smartphones are
gaining traction and it could also prove to be interesting for
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3D teleconferencing, surveillance or playback on virtual reality
headsets. Moreover, we can acquire the dataset from a static
camera rig as shown in Fig. 1. Although we can apply state-of-
the-art image view synthesis algorithms [1], [2], [3], [4] on each
individual video frame, the results lack temporal consistency
and often show flickering artifacts. The issues mostly come from
the unseen occluded regions as the algorithm predicts them on
a per-frame basis. The resulting estimations are not consistent
across the time dimension, which causes some regions to become
unstable when shown in a video.
In this paper, we address the temporal inconsistency when
extrapolating views by exploiting the static background infor-
mation across time. To this end, we employ a 3D mask volume,
which allows manipulation in 3D space as opposed to a 2D mask,
to reason about moving objects in the scene and reuse static back-
ground observations across the video. As shown in Fig. 4, we
first promote the instantaneous and background inputs into two
sets of multiplane images (MPI) [2] via an MPI network. Then,
we warp the same set of input images to create a temporal plane
sweep volume, providing information about the 3D structure
of the scene. The mask network converts this volume to a 3D
mask volume which allows us to blend between the two sets of
MPIs. Finally, the blended MPI volume can render novel views
with minimal flickering artifacts. To train this network, we also
introduce a new multi-view video dataset to address the lack of
publicly available data. We build a custom camera rig comprised
of 10 action cameras and capture high-quality 120FPS videos
with the static rig (see Fig. 1). Our dataset contains 96 dynamic
scenes of various outdoor environments and human motions.
We show that the proposed method generates temporally stable
results against previous state-of-the-art methods, while only
using two input views.
Our contributions can be summarized as:
* amulti-view video dataset composed of 96 dynamic scenes
(Section III);

¢ a novel 3D volumetric mask able to segment dynamic
objects from static background in 3D, producing higher-
quality and temporally stable results than state-of-the-art
methods (Section IV-B);

® a synthetic dataset to evaluate complex background (Sec-
tion V-C);

e experiments including comparison to recent NeRF-based
dynamic view synthesis methods (Sections V-B and V-C).

This paper is an extended version of Deep 3D Mask Volume
for View Synthesis of Dynamic Scenes [5]. In this journal
version, we conduct further experiments to evaluate concurrent

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 1.

Our custom camera rig. Top left figure shows the configuration we use for evaluation in Section V. We show the input stereo image sequences from camera

4 and camera 5 in the middle. The rightmost column shows the crops of rendered novel view at camera 0. Artifacts appear when the novel view is translated by a
larger distance. We use the conventional MPI method [1] as our baseline algorithm. Note how the area on top of the person’s head is distorted and shows “stack of
cards” artifacts. This type of artifact flickers in a dynamic video as the network hallucinates the disocclusion per-frame.

NeRF-based methods [6], [7], [8] in Section V-B. These meth-
ods target a monocular dynamic camera setup different from
our static stereo camera setup. A moving monocular camera
effectively provides multiple viewpoints of the static scene com-
ponents. On the contrary, static stereo cameras can only supply
two viewpoints and thus their methods do not perform as well as
our proposed method. To show experiments in a more controlled
environment and allow for more complex backgrounds, we
created a new synthetic dataset to evaluate the performance in
Section V-C. We demonstrate how our method can tackle the
dynamic background with multiple actors. Moreover, we detail
how different loss functions would affect the visual results in
Section V-D, as well as large distance view extrapolation in
Section V-E and extension to more input views in Section V-F.

II. RELATED WORK

Our goal is to achieve temporally stable view synthesis on
dynamic scenes. We are inspired by several previous methods
in view synthesis and space-time synthesis.

A. View Synthesis

View synthesis is a complicated problem which has become a
popular field of research in computer vision and graphics. Earlier
lines of work utilize dense sampling from the scene to create
light fields [17], [18]. Image-based rendering techniques [19],
[20] exploit proxy geometry of the scene to produce novel
view renderings. Later extensions on this topic introduce better
modeling of the scene structure [21] and hand-crafted heuris-
tics [22], [23]. As deep learning became dominant, learning-
based methods [24], [25], [26], [27], [28] have shown promising
results. Recently, a class of research works focuses on combining
novel representations [1], [2], [3], [9], [29], [30], [31], [32],
[33], [34] with a differentiable rendering pipeline to produce
high-quality results. Another exciting advance is neural radiance
fields (NeRF) [29], which encodes the 3D scene structure in a
compact continuous 5D volumetric function. Although NeRF
has shown promising view synthesis results, it has to overfit to

the given scene with enough samples (10 or more), requiring
time-consuming per-scene training. Rendering time could take
up to 30 s for one image, whereas our pipeline allows inference
and rendering in less than 2 s without dedicated optimization, us-
ing only binocular input views. Instead, in this paper we focus on
a specific layered representation, multiplane images (MPI) [1],
[2], [3], [10], [35], as it provides good generalizability across
various scenes and efficiency capable of real-time rendering.
Our proposed method directly tackles the temporal instability
introduced in MPIs when the disoccluded areas lead to different
estimations across time.

B. Space-Time Synthesis

Space-time synthesis is a more complicated problem since it
not only involves movement of the novel viewpoint in space,
but also incorporates differences of time. A body of work
covers appearance changes such as relighting while changing
views [27], [36], [37], [38], [39]. However, these methods focus
on the lighting change with respect to a static scene, treating
dynamic objects in the scene as outliers. On the other hand,
some methods directly target dynamic scenes [10], [11], [13],
[15], [40]. While our method utilizes MPIs similar to Broxton
etal. [10], they employ dense sampling of 46 cameras to recon-
struct light fields of the viewing volume, essentially interpolating
between cameras. Our method focuses on the stereo case similar
to StereoMag [2], targeting extrapolation from stereo inputs
like dual-camera smartphones. In addition, unlike depth-based
methods [11], [13], we do not require any explicit depth maps
to render novel viewpoints. As depth-based methods often yield
flickering and require hole-filling, we instead use a represen-
tation more suitable for rendering. Another issue that these
methods do not address is the lack of generalizability. Bansal et
al. [13] is trained on limited data which could make the learned
network overfit to a small number of scenes. Moreover, while
Yoon et al. [11] uses a pretrained network to ensure generaliz-
ability on unseen scenes, it still requires human-generated masks
for foreground and background separation. We capture various
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TABLE I
COMPARISON OF DIFFERENT MULTI-VIEW DATASETS

Dataset Scene count Rigid rig Large disparity Views Dynamic Public Remarks

Real Forward-Facing [1] 65 X v 25 X X Loosely gridlike formation
Spaces [9] 100 v v 16 X v Strictly gridlike formation
Immersive LF Video [10] 130 v v 46 v X Spherical formation
Dynamic Scene [11] 8 v v 12 v v Few temporal frames
Single Image LF [12] ~2000 v X 196 X v Small baseline light fields
RealEstate 10K [2] ~10000 X v 1 X v Static scenes

OpendD [13] 6 X v 15 v v Free-viewpoint capture
MannequinChallenge [14] ~2000 X v 1 X v Mostly static scenes
X-Fields [15] 8 v v 5 v v Few temporal frames
KITTI [16] 400 v v 2 v v Binocular setup on cars
Ours 96 v v 10 v v Publicly released

dynamic scenes with human interactions to train our network
and ensure that it is generalizable across different unseen scenes.
Also, our network utilizes the background information extracted
from video and uses it to directly segment the foreground and
background in 3D space without any human input.

Concurrently, there are several NeRF-based algorithms [6],
[7], [8] which demonstrate state-of-the-art performance on
monocular video inputs with a moving camera. For static parts
of the scene, a moving camera provides multi-view cues to the
network and they can be reconstructed in the same process as the
original NeRF [29]. For dynamic parts of the scene, NSFF [7]
learns an implicit representation of the scene flow and warps
the sampled points to render the scene at different timesteps.
Similarly, NeRFlow [6] also uses an MLP network to learn
the underlying scene flow but it incorporates a neural ODE to
enforce consistency across continuous time. Non-rigid NeRF [§]
optimizes for a canonical volume model, then it uses defor-
mation fields to generate renderings at different timestamps.
Although these methods work well for a single moving camera,
they are not able to acquire good 3D geometry for a pair of
static cameras. As demonstrated in Section V-B, our MPI-based
method is able to utilize better geometry priors to provide
high-quality results during extrapolation with less distortion and
flickering.

III. DATASET

High-quality video datasets are crucial for learning-based
novel-view video synthesis algorithms. The ideal datasets would
contain a diversity of scenes, captured at multiple synchronized
views. In this work we introduce a novel multi-view video
dataset. We discuss the limitations of existing datasets compared
to our dataset in Section III-A. We describe our data capture
and generation process in Section III-B. Finally, we discuss the
statistics and advanced properties of our dataset in Section I1I-C.

A. Multi-View Video Dataset

As shown in Table I, we evaluate several properties which are
important to train a generalized view synthesis network. Specif-
ically, arigid camerarig is preferred as it can provide good pose
priors and ensure the accuracy of the estimated camera poses. On

the contrary, unstructured captures like Real Forward-Facing [1]
and Open4D [13] do not use pose priors and utilize structure
from motion, which could produce varying accuracy depending
on scene geometry and the texture presented. In addition, rigid
camera rigs allow for capture of dynamic scenes with multiple
simultaneous camera views. On account of the above reasons,
our dataset is captured with a custom camera rig that is rigid and
robust enough to offer good pose priors.

Number of views is also an important factor for a multi-view
dataset since different combinations of input and target cam-
era pairs provide diversity in baselines and camera motions.
X-Fields [15] and KITTI [16] provide limited views and camera
motions and thus are not as useful for video view synthesis
tasks. Our dataset offers 10 different camera views in a gridlike
formation (see Fig. 1). For our binocular view synthesis task,
we choose 2 views out of 10 and 1 from the rest to construct
a training pair. The most important feature is to have enough
temporal frames and dynamic movements for training. Most
datasets fail at this part as they target the image view synthesis
task instead of a video one. Although the Dynamic Scene Dataset
presented by Yoon et al. [11] targets the dynamic scenes, it uses
frame skips to keep salient movements. Thus, the movements
shown in the dataset are not smooth and fail to provide enough
training samples. To address this issue, our dataset is captured in
120 FPS and synchronized as a post-process (see Section III-B),
making it easy to perform and evaluate view synthesis at different
framerates.

One dataset that targets the purpose of video view synthesis is
the Immersive Light Field Video dataset proposed by Broxton
et al. [10], which contains 46 camera views and 130 differ-
ent dynamic scenes. However, the full dataset is not publicly
available to the community. Our full dataset can be found at
http://cseweb.ucsd.edu/%7eviscomp/projects/ICCV21Deep/

B. Dataset Generation

Our video dataset is captured with a custom camera rig that
consists of 10 GoPro Hero 7 Black action cameras as shown
in Fig. 1. The horizontal baseline between neighbor cameras is
approximately 10 cm and the vertical distance between rows
is around 14 cm. We captured 96 outdoor videos in 120 FPS,
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Fig. 2. Digital clock and the randomly moving QR code pattern used to
perform synchronization. We have two ways to do synchronization: (1) matching
the timestamp; (2) aligning the QR code location in all views. We use these
methods to ensure the synchronization is accurate enough.

TABLE II
NUMBER OF VIDEOS THAT CONTAIN EACH OCCLUSION TYPE AS DESCRIBED IN
SECTION III-C

Occlusion types (a) (b) (c¢) (d) Total videos

Count 9 96 42 19 96

Note that most scenes typically contain multiple types of occlusion.

with the camera rig being static for each video. As GoPros
only allow fisheye mode for high FPS captures, we calibrate
the cameras with a 17x14 checkerboard pattern (squares have
side lengths of 40 mm) and undistort the videos using a pinhole
camera model [41] implemented in OpenCV [42]. For camera
extrinsics, we choose the first frame from all views as inputs to
COLMAP [43], [44], which then does feature extraction, feature
matching, and sparse reconstruction. The reconstructed camera
poses are assumed to be fixed for the duration of each video. In
addition, to achieve synchronization, we display a digital clock
with randomly appearing QR code patterns (see Fig. 2) on a high
refresh rate screen that can be seen by all cameras at the same
time. Then, we manually edit and align the multi-view videos
according to the digital clock and QR code pattern.

C. Dataset Statistics

Our videos are mostly around 1 to 2 minutes long and all
videos are shot in 120 FPS. We cover different scenes to ensure
that the surface reflectance variety is high enough. For example,
in Fig. 3 we show that in our dataset we cover different buildings,
furniture, foliage and specularity effects. Another important
aspect of our dataset is the inclusion of different human motions,
including slower motions like walking, sitting down and faster
motions, such as running, jumping and arms waving. We now
discuss four possible types of occlusion interactions and show
the numbers of their occurrences in Table II.

a) Static Occluder and Static Background. For example, the
table in Fig. 3(c) occludes the areas behind. Most view synthesis
methods target this case as this is one of the most common
cases. We describe it as a static occluder in the scene blocking
the line-of-sight from the cameras to the background scene.
Background information can only be acquired from the views
with direct line-of-sight. As such, it is difficult to recover the
unseen regions without prior knowledge of the scene. However,
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temporal consistency in these areas is easily achievable because
inputs remain relatively unchanged throughout the video. Hal-
lucination of the disoccluded areas can also remain the same for
this case.

b) Dynamic Occluder and Static Background: Another type
of event happens when a dynamic object is moving across
the scene. For example, the person in Fig. 3(a) and (e) walks
in front of the static background. In these scenes, the camera
has line-of-sight on the background behind the person at some
point in the video. Therefore, it is relatively easy to acquire
static background information as the occluder does not block
the line-of-sight in all video frames. Combining information
from multiple frames throughout the video provides an accurate
rendering of what is behind the dynamic occluder. Temporal
consistency in this case can also be maintained by substituting
the static background for the dynamically-occluded regions. In
other words, we can perform hole-filling based on the obser-
vations from other video frames. Our proposed method takes
advantage of this prior knowledge to generate temporally-stable
view synthesis results, as opposed to previous methods.

c¢) Static Occluder and Dynamic Background: This case hap-
pens when an object moves behind a static occluder and thus
the camera does not have full visuals on it. For example, the
person walks behind a traffic sign in Fig. 3(f). In this case as it
is only a short-term occlusion, the person’s appearance can be
interpolated between different frames. However, in the case of
a larger wall, this becomes difficult to solve as extrapolating
the movement is complicated and the ambiguity could lead
to different outcomes. In general, it is difficult to accurately
predict the trajectory of the occluded object without assuming it
is moving at constant velocity. For temporal consistency, the
movement of dynamic objects can lead to instability of the
novel view prediction. Our method learns to detect the dynamic
movements and treat the static part of the scene as (a) such that
flickering artifacts are kept at a minimal level.

d) Dynamic Occluder and Dynamic Background: The last
case happens when the occluder and the background object
are both moving or the background appearance is changing.
For instance, two people walk towards each other parallel to
the camera’s image plane in Fig. 3(g). Similar to (c), how
the occluded object is moving remains ambiguous and hard
to resolve deterministically. Although we do not have a clear
idea of the occluded parts, we can still ensure it is temporally
stable when shown. We can reduce this case to (b) with the
ambiguity that the occluded object can move anywhere. And as
a result, the occluded regions look more or less similar to the
static background.

Our dataset contains diverse occlusion interactions and we
show results in Section V-B and provide an analysis in Fig. 6.

IV. DEEP 3D MASK VOLUME

Our goal is to synthesize temporally consistent novel view
videos given stereo video inputs. Consequently, we build our
algorithm upon prior work on multiplane images [1], [2] and
propose a novel mask volume structure to fully utilize the tem-
poral background information and the layered representation.
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A selection of still frames from our dataset. We captured various dynamic scenes with human motions, including walking, running, jumping, and sitting
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Overview of our pipeline. Given binocular input videos, our MPI network promotes the 2D multiview images to two 3D MPI representations; one encodes

the instantaneous information and the other encodes the background information. The mask network produces a 3D mask volume V to modulate the MPIs and
blend them together, producing the final output. Please see Section IV-B for more details.

In this section, we start with a brief review of the multiplane
images in Section I'V-A. Then we describe our 3D mask volume
in Section IV-B. Finally we discuss our loss function design
in Section IV-D. Please refer to Fig. 4 for an overview of our
algorithm pipeline.

A. Multiplane Images

Our approach takes inspiration from recent advancements in
multiplane image representation [2], [45]. Multiplane images
(MPI) are a layered representation of the 3D scene. They consist
of D layers of RGB« images, representing the viewing frustum
from the perspective of a virtual reference camera. The planes
partition the viewing frustum according to equally-spaced dis-
parity (inverse depth) values dy,d1,...,dp_1. Each layer of
the MPI encodes color C' and transparency information « at
a specified plane depth d. We denote the MPI layer at disparity
d as a tuple of (Cy, aq). To construct such a volume, we warp
input views to the reference camera position (in our case, the

center left camera, numbered 4 in the camera rig diagram in
Fig. 1) to construct a plane sweep volume (PSV). The PSV is
then used as the input to a 3D CNN similar to the one used by
Mildenhall et al. [1] and it generates the corresponding MPI
volume. To render a novel viewpoint j from camera ¢, the MPI
layers are warped using planar homography as follows:

Widﬁj(cdaad)v (1)

where W is the warping operator. The warped MPIs are then
composited with the over operation. To be more specific, we
calculate the per-pixel transmittance ¢ from the alpha value at
location (z, y) on plane d by

t(x,y,d) = a(e,y,d) [[[1 - a(z,y, ). @
d>d

The final rendering at each pixel C;y; is computed as

Cfinal(xay) = ZC’(x,y,d)t(:z:,y,d). (3)
d
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These computations are parallelizable and their efficiency
during rendering makes the MPI a good representation for fast
view synthesis.

One observation of MPIs is that the unseen parts in the volume
are often merely repeated texture of the foreground objects [3].
This happens when the input camera baseline is not large enough
and the resulting PSV cannot provide further information about
the background. In addition, these areas typically present dif-
ferent estimations between frames. Therefore, the unseen areas
produce visible artifacts, especially in video view synthesis
(see Fig. 1). On the other hand, visible parts usually provide
temporally stable results as can be seen in Broxton et al. [10]

B. 3D Mask Volume Generation

From Section I'V-A, we observe that most artifacts are intro-
duced by the disocclusion of moving objects. In order to address
this issue, we seek to find a 3D mask volume that identifies
the dynamic components and removes the flickering artifacts
behind them accordingly. To be more specific, given a pair
of stereo image sequences of length n, {I5, I¥ .. I |1 and
{1, 1, .. I |}, we wish to derive a 3D mask V(z,y,d),
such that

1, ifX(z,y) # 1(z,y),d > D(z,y)
Vi@,y,d) = {O7 otherwise @

where I is the instantaneous frame, I denotes the background
image, and D is the scene disparity observed by the camera.
We drop the frame subscript as a shorthand for instantaneous
frame in the following discussion. In addition, we represent
the instantaneous MPI of the scene as M(z,y,d), and the
background MPI as M(, y, d).

The main purpose of the 3D mask volume V(z,y,d)
is to partition the scene M(z,y,d) into two parts: static
and dynamic. The static portion of the MPI does not
change for the whole video duration, and thus M(z,y,d) =
M(x, y,d), when V (z,y,d) = 0. The synthesized novel view
of these parts is temporally stable and requires no further mod-
ification to the algorithm. On the contrary, the dynamic objects
(V(z,y,d) = 1) could move in different directions. The disoc-
cluded areas, given mathematically by M(z, y, d) if I(z,y) #
i(x, y),d > D(z,y), often change with them, producing “stack
of card” artifacts and flickering when viewed from another angle
(see Fig. 1). However these areas in fact usually resemble the
background 1. With this knowledge, a clear separation between
the static and dynamic scene components allows us to identify
the disocclusion and minimize the temporal inconsistency by

M(z,y,d) < M(z,y,d) if (z,y) # I(z,y),d < D(z,y).

&)
Essentially, we are using the temporally-stable static background
to replace the unknown disoccluded areas. An illustration of the
mask is given in Fig. 4. In order to perform the operation in
(5), our network is composed of two networks: MPI network
generates 2 layered representations of the 3D scene, namely
Mz, y, d) and M(z, y, d); Mask network produces the 3D mask
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volume V(z,y,d) satisfying (4). We show each network in
Fig. 4 and discuss them in details as follows:

MPI Network. It is necessary to acquire 3D information from
both the instantaneous frame and throughout the whole video, so
we can then obtain the needed information behind the dynamic
occluder. To this end, we first apply a median filter A on the
image sequences

I:A({Io,ll,...,lnfl}). (6)
It is applied to both views to generate the corresponding back-
ground images.

Then, we can inversely warp I7 and I to the left camera
and construct a PSV. The PSV from the instantaneous frame is
generated as

P = {TF Wi (1%, Wi, (1F), . WPt () ()

It is then used as an input to a 3D CNN Fjy to produce the
instantaneous MPI, M = Fy(P). Similarly, we construct the
background MPI, M, using another PSV, P, generated from I~
and I%. The two MPIs, M and M, now contain the information
of the dynamic occluder and the static background.

Mask Network. We utilize another 3D CNN Gy to reason
about the relationship between the MPIs and generate a mask
volume V to satisfy (4). Inspired by background matting [46]
on 2D images, our mask network takes a similar approach but in
3D space. From (6), we define a temporal plane sweep volume
(TPSV) as follows

P = {IF, Wi (I7), .. WP (TF),
Lo (18, . o Wk (1F)) ®)

The TPSV helps the network to distinguish the dynamically-
occluded parts in the 3D scene. Then, we acquire the 3D mask
volume by V = Gy(P).

Finally, we can calculate the final MPI M, by

M, (z,y,d) = M(z,y,d)V(z,y,d)
+M(I7yad)(1 7V(I7y7d))a (9)
for all (x, y, d). We define a shorthand version as

M,=MoV+Mo (1-V), (10)
where ® means element-wise multiplication. M, achieves (5)
as our learnable mask volume V satisfies (4) and we can then
render the outputimage I, using planar homography and the over
composite operation described in Section IV-A. Please refer to
Fig. 4 for illustrations.

One major difference between using a 3D mask volume
V(z,y,d) and a 2D mask V’(z,y) is that the former is able
to segment out the dynamic objects in the 3D space, namely (4)
and subsequently do (5). In Fig. 4, notice that the mask volume
only contains the dynamic object (jumping person in this case).
In contrast, a 2D mask V'(z, y) does not vary with respect to the
disparity d, making it impossible to manipulate the areas behind
dynamic objects.
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TABLE III
DETAILS OF EACH LAYER IN OUR 3D MASK NETWORK

Layer kernel size stride dilation in out activation input
convl_1 7 1 1 12 8 ReLU PSVs
convl_2 7 2 1 8 16 ReLU convl_1
conv2_1 3 1 1 16 16 ReLU convl_2
conv2_2 3 2 1 16 32 ReLU conv2_1
conv3_1 3 1 1 32 32 ReLU conv2_2
conv3_2 3 2 1 32 64 ReLU conv3_1
conv4_1 3 1 1 64 64 ReLU conv3_2
conv4_2 3 1 1 64 64 ReLU conv4_1

up5 - 2 128 128 - conv3_2 + conv4_2
conv5_1 3 1 1 128 32 ReLU nnup5
conv5_2 3 1 1 32 32 ReLU conv5_1

up6 2 64 64 - conv2_2 + conv5_2
conv6_1 3 1 1 64 16 ReLU nnup6
conv6_2 3 1 1 16 16 ReLU conv6_1

up7 2 32 32 - convl_1 + conv6_2
conv7_1 3 1 1 32 16 ReLU nnup7
conv7_2 3 1 1 16 8 ReLU conv7_1
conv7_3 3 1 1 8 1 Sigmoid conv7_2

C. Network Architecture

Our view synthesis pipeline utilizes two different 3D CNNs to
predict the MPI volumes and the 3D mask volume as described
in Section ['V-B. Both networks have similar structures as the one
in Mildenhall et al. [1]. However, we made some adjustments
to keep the network light for faster training and less memory
consumption. We show detailed layers for the mask network in
Table III. The MPI network has the same structure except for
some changes in the overall input and output channels to account
for different view counts.

D. Loss Function

We implement our loss function as a rendering loss, similar to
previous work on MPIs [1], [2], [3]. For the rendering loss, we
use view synthesis as the supervision task and let the algorithm
render a held-out view from the final MPI M, (see Fig. 4). The
rendering loss is as follows:

_ | FvaaXo) — Fraa gl
N b

where Fy ¢ is the VGG-19 network [47], N is the number of
elements in the image I,, and I, is the held-out ground truth
view. This perceptual loss is similar to the implementation of
Chen et al. [48]. We also considered a mask supervision loss
L., and a mask sparsity constraint £,. However, we did not find
them to be useful for temporal consistency. Ablation studies on
these two losses can be found later in Table VI, and details are
in Section V-D.

L a1

V. RESULTS

In this section, we discuss implementation details for our
network in Section V-A. Then we show comparisons to other
methods on our dataset in Section V-B. We include comparisons
on our synthetic dataset in Section V-C. To explore the effects
of different loss functions, we show the ablation studies in Sec-
tion V-D. We show that our method is able to degrade gracefully
even doing view extrapolation far outside the viewing volume
in Section V-E. Our method can also be extended to incorporate
more input views in Section V-F. Finally we discuss limitations
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of our current setup and method in Section V-G. Result videos
can be found in the supplementary materials, available online.

A. Implementation Details

Due to GPU memory constraints, we choose a two-step train-
ing scheme to train our network. We first train the MPI network
on the RealEstate10 K dataset [2], and then train only the mask
network on our own video dataset. This training scheme can
keep the memory usage within a reasonable range and the speed
fast enough.

The MPI generation network is trained by predicting a held-
out novel view and applying the rendering loss £ as supervision.
This stage is trained for 800 K steps. After the previous pretrain-
ing stage, we freeze the weights of the MPI network and train
only the mask network using the loss £. The network takes 2
random views from the 10 views as input and we randomly
choose a target camera position from the rest of the views at
each step. We select 86 out of the 96 scenes as our training
dataset and images are rescaled to 640 x 360. This second stage is
trained for 100 K steps. The learning rate is set to 5e — 4 for both
stages. Our training pipeline is implemented in PyTorch [50] and
training takes around 5 days on a single RTX 2080Ti GPU. With
resolution in 640x360, inferencing M, using our full pipeline
takes around 1.75 s, while rendering takes another 0.28 s. Note
that the rendering pipeline is implemented in PyTorch without
further optimization. In practice, it could be significantly faster
with OpenGL or other rasterizer.

B. Comparisons on Real Data

For comparison, we choose 7 unseen videos from the dataset
and subdivide them into 14 clips, focusing on salient move-
ments in the scene. The methods we chose to evaluate includes
MPI-based methods like LLFF, and also emerging NeRF-based
methods like Nonrigid-NeRF, Neural Scene Flow Field, and
NeRFlow We ran all methods on the clips with camera 4 and
5 as input and others as the target output (see Fig. 1). Error
metrics are calculated between the output and the ground truth
images. For monocular NeRF-based methods [6], [7], [8], as
they assume the input to be monocular, moving camera, and
have increasing time steps, we alternate between left and right
views to satisfy this assumption. This allows the algorithm to
treat the input as a monocular video with the camera jumping
between two viewpoints.

We compare with 6 baseline approaches: (1) MPI/LLFF is
our adaptation of Mildenhall et al. [1] to work with only two
input views and different camera intrinsics. It processes the
stereo input videos and renders the novel view frames on a
per-frame basis. We trained it on the same dataset as our method.
(2) 2D mask is our naive baseline method, which is similar to
our pipeline, except that it uses a foreground mask V'(z,y)
generated by the background matting method [46] with T and I
as inputs. The blended MPI M, for (2) is obtained by

M, = V'(z,y) © M+ (1 - V'(z,y)) © M,

where the 2D mask has been expanded into 3D by repeating
its values along the depth dimension. (3) IBRNet [49] uses the
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TABLE IV
COMPARISON ON OUR EVALUATION DATASET

Methods Mask STRRED|, PSNRT SSIMt
MPI/LLFF [1] X 0.2917 2552 0.8227
2D Mask 2D 0.2892 2550 0.8242
IBRNet (2-view) [49] X 2.2606 2149 06713
NeRFlow [6] X 3.2646 16.81  0.4146
NSFF [7] X 1.4230 1704 0.4197
Non-rigid NeRF [8] X 2.3941 18.11  0.4997
Ours 3D 0.1683 2622 0.8390

We compare with different baseline methods and the results show that
our 3D mask offers much better temporal stability. 2D mask does not
improve much because it fails to resolve the ambiguity in disoccluded
areas.

official implementation and their pretrained model weights, and
it takes 2 views as input on a per-frame basis. (4) NeRFlow [6]
uses the official implementation and we slightly modify the
necessary parts to allow for two alternating views as input. (5)
NSFF [7] is also adapted from the official implementation to
take two input views. (6) Non-rigid NeRF [8] uses the released
official implementation with modifications to enable two-view
inputs. For (4)-(6), we train them for 20,000 steps for each scene
and render the corresponding viewpoints. Please refer to our
supplementary materials for the video results, available online.

From Table IV, we see that our method is able to achieve
temporally-coherent rendering, while offering better visual qual-
ity and fewer distortions. Specifically, we employ the STRRED
metric [51] to evaluate stability across time. Our method signif-
icantly reduces the temporal artifacts across most scenes while
also keeping PSNR and SSIM better than the baseline methods.
For MPI/LLFF, since it does not utilize the information across
the whole video, it yields more flickering and distorted areas
as can be seen in Fig. 5. For example, in the top scene, there
is a ghosting artifact around the person’s head and it changes
frame-by-frame, resulting in flickering video. The 2D mask
method is a binary mask that naively selects the dynamic parts
in M and the background in M to produce the final MPIL. As a
result, it amplifies the stack of cards artifacts (see Fig. 5) and
also slightly worsens the visual quality as shown in Table I'V.
IBRNet [49], does not work well with 2-view input and it
produces poor results compared to ours. Concurrent monocular
NeRF-based methods [6], [7], [8] perform similarly in Table I'V.
With only two input viewpoints, they fail to represent even the
static scene components since there are not enough multi-view
cues for reconstruction. For dynamic parts of the scene, NSFF
provides more stable quality as can be seen from the STRRED
metric. In general, our proposed method provides state-of-the-art
performance over other previous and concurrent work. We show
qualitative results in Fig. 5. Each inset column corresponds to a
scene as shown on the leftmost side. We show the MPI baseline
method in row (a) and 2D mask baseline in row (b). These two
methods suffer from stack-of-card artifacts in particular in the
disoccluded regions. 2D mask fails to solve the problem and
sometimes makes it more apparent. This is because 2D mask
does not reason about the 3D geometry of the scene. For the
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more recent NeRF-based methods, we show them in row (c-f).
NeRFlow [6] provides better static scene reconstruction than
other methods. However, it produces blurred results and lacks
high-frequency details as can be seen from the second image in
row (c). On the other hand, our proposed method is able to make
the text on the person more legible and sharper, while suffering
little to no disocclusion artifacts. Non-rigid NeRF [8] suffers
from significant artifacts when rendering the images. This is
possibly due to sparse viewpoints and the network is trying
to compensate with deformation fields. NSFF [7] generates
sharper images than NeRFlow, but it suffers from blurriness
in static parts of the scene. IBRNet [49] produces noisy results
given two input views on a frame-by-frame basis. Their method
tries to blend different viewpoints with a ray transformer to
synthesize disoccluded regions. However, given two input views,
this becomes even more difficult because of the lack of samples.

To further analyze how temporal consistency is affected,
we characterize the clips with different properties including
different types of occlusion discussed in Section I1I-C and show
the results in Fig. 6. As stated earlier, several clips are selected
from the 7 scenes to show salient motions. We only include
results from MPI/LLFF [1], 2D mask and Ours, as other methods
have significantly higher STRRED. From the results, we observe
that faster movements could often result in worse temporal
consistency, like the differences between clip 1-1 and 1-2. There
is an interesting failure in 4-2 for the 2D mask method. 4-1 is
the jumping scene in Fig. 5, and 4-2 shows a person walking in
the same scene. Although the movement is slower, the person
walks past several areas with large appearance changes in 4-2.
As a result, the artifacts in the 2D mask are much more obvious,
and the video flickers more than other methods, leading to a
worse STRRED score.

C. Comparisons on Synthetic Data

In addition to real data, we also crafted a synthetic dataset and
tested different methods on it. The synthetic dataset not only can
provide us real ground truth to make proper comparisons, but
also can illustrate scenes and movements hard to capture in real
life, for example, complex moving backgrounds. The synthetic
dataset is constructed using scenes from the Habitat-Matterport
3D dataset [52] and UE4 Sun Temple [53], and the moving
characters in the scene are pre-animated characters from Adobe
Mixamo. We used Blender [54] to composite the scenes, and
replicated the 10-view camera array with parameters similar
to our GoPro setup. We deliberately set all the cameras to
have the same camera intrinsics in order to reduce unwanted
artifacts.

For each scene, we rendered 60 frames of the animation, and
produced camera poses for all 10 cameras. As all the camera
poses can be directly obtained from Blender, we do not need
COLMAP [43], [44] to estimate camera poses anymore. The
background images are still obtained using median filter. Similar
to our evaluation on the real dataset, we chose cameras 4 and 5
as input. In Table V, we show the numbers of various methods.
The proposed method achieves favorable results compared to
other baselines. Additionally, we show qualitative results in
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(b) 2D Mask  (a) MPI/LLFF

(c) NeRFlow
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Fig. 5.
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We show visual results on 4 different scenes. These scenes include both fast and slow movements, such as waving, jumping and walking. The novel

viewpoint is an extrapolation from the input camera views. In the above images, each row is rendered using one method from (a) MPI/LLFF [1], (b) 2D Mask,
(c) NeRFlow [6], (d) Non-rigid NeRF [8], (e) Neural Scene Flow Field [7], (f) IBRNet [49], and (g) ours. Last row (h) is the ground truth. Our proposed method

produces results with fewer artifacts and more temporal stability.

0.8

0.7 Static occluder, static background Dynamic occluder, static background . Specularity . Fast movements
06 ) . ) .

a Static occluder, dynamic background Dynamic occluder, dynamic background ‘ Thin structures . Slow movements
05

g 0.4

%]
03
: I I II II II III II I I
01

11 12 21 22 23 31 32 41 42 51 52 61 62 7
B MPI/LLFF m2D Mask m Ours
Fig. 6. STRRED comparison on our dataset with baseline methods. We select 14 clips from 7 different scenes. 1-1, 1-2 denotes clip 1 and clip 2 from scene 1.

Fig. 7. For MPI/LLFF, the numbers are slightly worse than
our proposed algorithm, because the main difference is in the
disoccluded regions. It can be seen in the row (a) around the
moving characters. 2D mask introduces more artifacts and thus
results in worse numbers across all metrics. In row (b), 2D
mask exacerbates the artifacts and creates more visible repeated

texture in the disoccluded regions. NeRF-based methods per-
form slightly better on the synthetic dataset, as the camera
parameters are more precise. However, they still fail to produce
sharp imagery. For example, NeRFlow lacks the details on the
leftmost character in the third column in row (c¢). Furthermore,
the second column in row (d) shows blurriness and ghosting
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(b) 2D Mask (a) MPI/LLFF

(d) NR-NeRF (c) NeRFlow

(g) Ours (f) IBRNet (e) NSFF

(h) GT

Fig. 7.
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We show visual results on 4 different synthetic scenes. These scenes include moving characters and dynamic backgrounds. In the above image, each row

is rendered using one method from (a) MPI/LLFF [1], (b) 2D Mask, (c¢) NeRFlow [6], (d) Non-rigid NeRF [8], (e) Neural Scene Flow Field [7], (f) IBRNet [49],
and (g) ours. Last row (h) is the ground truth. Our proposed method (g) produces results with fewer artifacts and more temporal stability.

TABLE V
COMPARISON ON THE SYNTHETIC EVALUATION DATASET

Methods Mask STRRED] PSNRtT SSIM{T
MPI/LLFF [1] X 0.2889 26.12 0.8345
2D Mask 2D 0.5428 24.01 0.8082
IBRNet (2-view) [49] X 1.7984 21.37 0.6942
NeRFlow [6] X 1.8306 19.99 0.5996
NSFF [7] X 1.0627 19.72 0.5577
Non-rigid NeRF [8] X 3.1401 18.92 0.5947
Ours 3D 0.2812 26.13 0.8342

artifacts for Non-rigid NeRF. NSFF (e) has issues rendering
complex static scene texture in the last column. The table to the
left shows distorted edges compared to our proposed method.
IBRNet (f) still generates renderings with heavy distortions, even
though the coarse geometry seemingly matches the ground truth.
Our method (g) provides the best visual result and it is able
to generalize to unseen synthetic scenes when trained on real

data. Please refer to the supplementary video for more results,
available online.

D. Ablation Studies on Loss Function

In this sub-section, we experiment with different losses to see
if we can acquire a 3D mask volume that is more interpretable
and possesses physical meaning. Two additional loss functions
are described as follows. The first loss is a mask supervision loss
L, which forces the mask volume to match the shape of the
dynamic object in the scene. The second loss is a sparsity loss L
applied on the mask volume to encourage the network to reuse
M more. To be more specific, for the mask loss, we use the work
by Lin et al. [46], which takes the individual frame I and the
background Lin the video to generate adynamic objectmask V 4,
we later use as supervision. To supervise the mask volume, we
directly regularize the over-composited alphas from the warped
foreground MPI volume W(M ® V) to be consistent with V ;.
We denote the over-composited alpha values as m;. This mask
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Input at reference view
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o O O

O Reference View

Ours

Fig. 8.

Ours w/ Ly

Ours W/ Lg, L,

3D visualization of the masks from different loss functions. With alpha values from the instantaneous MPI, we collapse the mask volumes using over

composite to reduce plane count from 32 to 4 for better visualization. (e.g., plane 1~8 to the furthest plane,..., plane 25~32 to the nearest plane.) Note that there is
no supervision on static parts in our final loss function, so the values in those parts are unconstrained, resulting in soft blending between instantaneous frames and
the background. In general, the 3D mask achieves better temporal consistency by replacing the erroneous disoccluded parts with correct background observations.

TABLE VI
EFFECT OF DIFFERENT LOSS FUNCTIONS

Ls L. STRRED|, PSNR{ SSIM?
- 0.1683 2622 0.8390
VA 0.1745 26.18  0.8393
V4 0.1900 26.09  0.8374

Our rendering loss offers better temporal consistency and slightly
better visual quality.

loss is similar to the mask supervision loss in Lu et al. [55]
We calculate the estimated background mask mg by dilating
the foreground mask with a kernel of size (5,5) to produce
m). The background mask is then mg = 1 — m/. And the mask
supervision loss is

_ Mmoo 0 =Ve)lh

[[mo © Vgl
2([ma 1 '

2|[mo||1

Lo, (12)
Another loss is a L sparsity constraint on the mask volume
to ensure it only covers the necessary portions,

L= Y V(z,y,d)h.

(z,y,d)

Weuse £ + 0.1L, + 0.25L,,, for the full combination and £ +
0.1L, for the additional sparsity constraint.

As shown in Table VI, our rendering loss still offers the most
temporally-stable results, whereas the other two losses trade
temporal consistency for better interpretability. It is reasonable
that the mask supervision loss helps the network to give a sparser

13)

Blended MPI

Instantaneous MPI Background MPI

Fig. 9. 3D visualization of the MPI volumes using our loss function £. Note
that the person on the furthest plane in M is replaced by the background in M.

and tighter prediction on the dynamic objects. However, it does
not take into account the movements of the foliage and the
shadows, producing slightly unstable results in those areas. The
sparsity constraint is able to achieve marginally better quality
than the full Ly, £,, combination as it retains some parts of
the scene which might cover the slight differences between
frames.

Mask visualization can be found in Fig. 8. From the figure,
we can observe that our mask volume removes areas around
the edges of the dynamic object and the occluded areas behind
it. Moreover, the mask softly blends the shadows cast by the
moving object. Adding L, the mask becomes sparser, ignoring
most static areas. However, as shown in Fig. 8, it still contains
some areas around the plants on the left and the building in the
back. With L, £,,, the mask has more physical meaning and the
resulting 3D mask only covers the dynamic object. This might
be useful to extract moving objects for other uses such as editing
or object insertion.
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Left Input View

Mildenhall et al. 2019

Fig. 10.
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Baseline -/

O Input View O Target View

o

O Input View O Target View

Ours

Our algorithm is able to provide better visual quality than baseline methods even when the novel viewpoint is far away from the input view. We show

results when the baseline is 2.5 and 5x baseline between input views. Note that in the 5x case, our method produces fewer artifacts compared to Mildenhall et

al. [1], offering a more graceful degradation.

Mildenhall et al. 2019

Top Left Input View

Fig. 11.

Ours - 4 Input Views

O Input View O Target View

Our proposed method can also be extended to take 4-view input. We feed 4 input views to both the MPI and mask networks to acquire our result. Here

the baseline method is also adjusted to use 4 input views instead of 2. Notice that the artifacts around the person do not appear in our result.

We further examine the 3D visualization of M, 1\7[, and M,
in Fig. 9. Note that in the blended MPI M, the occluded area
behind the person is filled with actual background information,
unlike in M, which has repeated texture of the dynamic object.
Since we do not enforce any constraints on the static parts of the
scene, our mask has random values in these areas and softly
blends them with the background MPI. This does not affect
temporal consistency too much as the difference is minor and
some areas are free space which does not contribute any color
to the MPI volume as shown in Fig. 9.

E. Large Distance View Extrapolation

InFig. 10, we show results when the target camera s translated
far more than the baseline of the input camera pair. When
large translational movement is introduced, the conventional
method [1] starts to show artifacts in the disoccluded regions.
On the contrary, our method still preserves the background

details even when the motion is larger, offering a more graceful
reduction in quality as the distance is increased.

F. Extension to More Input Views

Although our proposed method primarily targets binocular
view extrapolation, we also demonstrate that it can be extended
to utilize more input views in Fig. 11 and in the supplementary
video, available online. With more input views, it can acquire
better scene geometry for some cases where there are ambigui-
ties in the plane sweep volume. For example, some ambiguities
might occur when there is straight texture-less structure (beams
or handrails) parallel to the camera baseline. Using additional
cameras can provide more geometric information and avoid
similar situations. In Fig. 11, the main difference is that we
modify our network to take 4 input views, which convert to 4
instantaneous images and 4 background images as input to the
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Fig. 12.  From top to bottom, we show frame 0, frame 966 (last frame) and the
extracted background. Since the lighting changes drastically during this scene,
the extracted background contains a lot of ghosting artifacts.

mask network, and output the 3D mask volume as in the pipeline
shown in Fig. 4.

G. Limitations

The proposed dataset and algorithm have a few limitations:
First, we limit our camera to stay static when capturing. This
is mainly due to the limitations of synchronization and pose
estimation. Although we can achieve good synchronization with
software-based methods, there are still a few milliseconds of
error. This error could be magnified when the camera rig is
in motion and lead to bad estimates of the camera poses. The
camera poses across time would also require more calculations,
possibly leading to accumulating errors in the system. These
issues could be solved by calibrating the camera trajectory of
one of the cameras and utilizing the rigid assumption to infer
the trajectories of other cameras. Another limitation is that we
require an estimate of the static background. This is easily
achievable by applying a median filter. While it works for most of
the scenes, this method is sometimes not reliable. We show one
example in Fig. 12. In this particular case, the sun light appears
after a while in the video, casting hard shadows on the walls.
As a result, the background is difficult to determine. Another
possible case happens when a static object is moved during the
video. It is ambiguous to define the exact background for this
case as both states might take up a large portion of the video.
Thus, it might require more careful division of different states
or using a lighting-agnostic method. There are more advanced
approaches [56], [57] that can be used in the future.

VI. CONCLUSION AND FUTURE WORK

In this paper, we discuss view synthesis of dynamic scenes
with stereo input videos. The main challenge is that rendered
results are prone to temporal artifacts like flickering in the
disoccluded regions. To tackle this issue, we introduce a novel
3D mask volume extension to carefully replace the disoccluded
areas with background information acquired from the temporal
frames. Additionally, we introduce a high-quality multi-view
video dataset, which contains 96 scenes of various human inter-
actions and outdoor environments shot in 120FPS.

In future work, we would like to extend our dataset and
method to consider dynamic camera motions, and to operate
on even larger baselines. In summary, we believe video view
synthesis for dynamic scenes is the next frontier for immersive
applications, and this paper has taken a key step in that direction.
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