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Abstract—Attention-based models such as Transformers represent the
state of the art for various machine learning (ML) tasks. Their superior
performance is often overshadowed by the substantial memory require-
ments and low data reuse opportunities. Processing in Memory (PIM) is
a promising solution to accelerate Transformer models due to its massive
parallelism, low data movement costs, and high memory bandwidth
utilization. Existing PIM accelerators lack the support for algorithmic
optimizations like dynamic token pruning that can significantly improve
the efficiency of Transformers. We identify two challenges to enabling
dynamic token pruning on PIM-based architectures: the lack of an
in-memory top-k token selection mechanism and the memory under-
utilization problem from pruning. To address these challenges, we propose
PRIMATE, a software-hardware co-design PIM framework based on
High Bandwidth Memory (HBM). We initiate minor hardware modifi-
cations to conventional HBM to enable Transformer model computation
and top-k selection. For software, we introduce a pipelined mapping
scheme and an optimization framework for maximum throughput and
efficiency. PRIMATE achieves 30.6× improvement in throughput, 29.5×
improvement in space efficiency, and 4.3× better energy efficiency com-
pared to the current state-of-the-art PIM accelerator for Transformers.

I. INTRODUCTION

Attention-based models like Transformers have gained tremendous

ground in many applications in recent years. Large Language Models

(LLMs) like ChatGPT have shown astonishing capabilities in un-

derstanding and responding to human prompts, but with enormous

requirements in computing and memory. Researchers have been

exploring solutions from the realms of algorithms and architectures

to mitigate LLMs’ high costs.

Dynamic token pruning algorithms have been introduced to reduce

the computation requirements of Transformers [12], [22]. Taking

advantage of redundancy in human language and images, unimportant

tokens can be progressively pruned based on their importance.

Figure 1 and 2 visualize the dynamic token pruning process. This

technique achieves a speedup of 2.3× to 2.7× with 2.6× to 3.2× in

GPU memory reduction [12]. Importantly, token pruning often results

in comparable or higher accuracy across a wide range of NLP and

vision tasks, as can be seen from the Pareto frontier in Figure 3.

Both ASIC and Processing in Memory (PIM) solutions have been

extensively explored as hardware accelerators for Transformers. By

integrating compute units directly into memory, PIM significantly

reduces the data movement cost during computation, which domi-

nates latency and energy in traditional architectures. PIM also exploits

the massive parallelism and high internal bandwidth of memory to

support high-throughput processing. Previous works [19], [27] have

shown a software-hardware co-designed PIM architecture can provide

better throughput and power consumption than GPU and TPU for

Transformers. However, they lack the support for algorithmic opti-

mizations like dynamic token pruning. One Resistive RAM (ReRAM)

Fig. 1: Dynamic token pruning on text data (SST-2 dataset) and an image
(CUB 2011 Bird). Redundant keywords/patches (in red) are progressively
pruned during the inference.
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Fig. 2: Overview of Dynamic Token-pruning Transformer on vision tasks.

based architecture was proposed with token pruning support [24], but

it suffers from numerical instabilities of ReRAM and requires on-

chip re-computation of attention scores, complicating dataflow and

introducing additional overhead.

This work focuses on DRAM-based (HBM) PIM technologies

which can support larger capacity than SRAM [23] with high

bandwidth, lower latency, and higher numerical stability than non-

volatile memory designs [6], [24]. However, current designs like [27]

face two challenges in enabling token pruning: the lack of top-

k selection mechanisms and the memory underutilization problem

from pruning. In this work, we address these challenges and propose

PRIMATE, a novel in-memory hardware-software co-design accel-

eration framework that synergizes PIM and Dynamic Token-pruning

Transformer. With PRIMATE, we achieve up to 30.6× improvement

in throughput, 29.5× better space efficiency, and 4.3× better energy

efficiency compared to the current state-of-the-art [27] on popular

Transformer models and workloads.

II. BACKGROUND AND RELATED WORK

A. Transformer and Dynamic Token Pruning

The token pruning strategy is to prune tokens based on an impor-
tance score of each token. To arrive at this score, we take the dot
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Fig. 4: The HBM-based architecture with PIM and NBP.

product between Q and K vectors to get the attention probabilities.

Then, we normalize them using a softmax function and use the

normalized attention probabilities to compute a weighted sum of the

V vector as shown in Figure 2. During dynamic token pruning, we

use the attention probabilities as importance scores to keep the top-

k most important tokens after each encoder layer. Different from

other approaches [16], [25] that prune tokens at the end of each

encoder layer, our approach prunes tokens before the feedforward

layer within each encoder layer, achieving additional reductions in

compute and memory costs. During training, we introduce arbitrary

token pruning ratios to enable the model to adapt to various token

drop scenarios. We also employ a multi-objective evolutionary search

on the trained model to determine layer-wise pruning ratios that

achieve the optimal accuracy-efficiency trade-offs. After these efforts,

token-pruning models offer comparable or even higher accuracy than

the original model with significantly less computing requirements, as

seen from the Pareto frontier in Figure 3.

B. Processing In-Memory

Figure 4 shows the architecture of a High Bandwidth Memory

(HBM), a high-end commodity DRAM product. The basic unit of

memory is a bank, which consists of 2D cell arrays and peripherals

to transfer data between DRAM cells and IOs. The memory cells

are grouped into a set of subarrays, each of which consists of a row

of mats. Each mat has local sense amplifiers (row buffers) sensing a

horizontal wordline (WL) via a set of vertical bitlines (BLs). Sense

amplifiers in mats of a subarray form the subarray row buffer. Upon

receiving a DRAM access, the bank activates the corresponding WL

in the subarray row buffer and transfers the whole WL to the bank-

level sense amplifiers via the data lines (DLs).

There have been several DRAM-based PIM technologies that

support operations in different levels of DRAM architecture in-

cluding near-bank processing (NBP) [11], near-subarray processing

(NSP) [13], and processing using-memory (PuM) [3]. Many previous

works have utilized different PIM technologies to accelerate machine

learning workloads [5], [13], [27]. Specifically, Newton [5] proposes

near-bank multipliers and adder trees in HBM to accelerate vari-

ous ML operators. DRISA [13] integrates near-subarray 1-bit logic

(e.g., full adder) that exploits subarray-level parallelism. However,

when accelerating Transformers, Newton’s bank-level processing has

limited throughput, while DRISA’s near-subarray processing can-

not efficiently process long-vector reduction (accumulation). Tran-

sPIM [27] proposed a hybrid method that exploits the subarray-

level computation for element-wise arithmetic and the near-bank logic

for efficient accumulation to accelerate Transformers. TransPIM [27]

uses bit-serial PuM technology [3] that only introduces negligible

area overhead in commercial HBM while providing high throughput.

Figure 4 illustrates the HBM architecture that supports bit-serial

PuM and NBP. Specifically, PuM directly generates the result of

computation between different WLs by exploiting the charge-sharing

effect of the DRAM mechanism [17]. Figure 4 also shows an example

of a 1-bit full-addition that adds one row (bit) of A and B to generate

1 row (bit) of C. We need row clone (RC) operations to backup

operands and write back the result. The sum and carry generation

is implemented using Activate-Activate-Precharge (AAP) operations

[17]. An n-bit multiplication using the bit-serial PIM requires around

7n2 AAP operations. Bit-serial PIM can parallelize the computation

for whole DRAM rows (e.g., 8K) and exploit the subarray-level

parallelism [9] to provide extensive throughput. Due to the bit-serial

layout, the NBP unit also works in a bit-serial manner that fully

exploits the internal data links.

C. Token-based Data Flow

Like TransPIM [27], we adopt token-based dataflow. This approach

maps data and computation to memory based on the correspond-

ing input token at the bank granularity. For each Transformer

encoder/decoder layer, token-based flow first distributes the input

sequence to all banks, where each bank computes the Q, K, and

V vectors with multiple heads for its allocated tokens and the pre-

allocated fully connected weights. The self-attention layer consists

of two steps. Each bank first computes attention scores between

its allocated tokens using computed Q and K values. Then, each

bank broadcasts its K values to all other banks to compute global

attention scores. We also adopt the lightweight inter-bank connection

of previous work [27] to accelerate data broadcast. We compute

the attention scores for different heads, each applying a softmax

operation. We multiply the multi-head attention score matrix with

multi-head V vectors using a similar broadcast phase to calculate

the attention output matrix following the token-based layout. Then,

the feed-forward layers are processed similarly to the fully connected

layer. To enable the token-based data flow, each bank has a dupli-

cation of Transformer weights including fully-connected operations
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and feed-forward operations. All other operations use the intermediate

data corresponding to tokens that can stay in the memory during the

whole process.

III. PRIMATE OVERVIEW

A. Limitations of Current PIM Acceleration

The existing PIM-based accelerator and token-based data flow

cannot efficiently support dynamic token pruning. First, to decide

which tokens to prune, we need a top-k selection mechanism based

on the token importance score. The current SOTA PIM Transformer

accelerator [27] requires frequent intra-memory data movements for

attention score accumulation and relies on the host CPU to perform

top-k selection. Per our experiment with SOTA [27], relying on the

CPU for top-k selection incurs up to 25% penalty of the overall

latency. Second, before pruning, the memory is configured with a

data layout efficient for full-token computation under the token-

based dataflow. However, the remaining tokens after pruning are

scattered across the memory, causing spatial under-utilization and

larger communication overhead. Due to the delicate data layout

requirement of PIM, it is hard to reclaim the memory occupied by

pruned tokens, leading to less effective memory savings. One remedy

is to aggregate the remaining tokens after every layer. However,

our experiments in section VI-D show unsatisfactory throughput

with this method due to the sub-optimal token-to-bank mappings

(details in Section VI-A). For these reasons, existing PIM acceler-

ators for Transformers [27] can only provide 1.5× speedup when

the workload allows 3.2× theoretical speedup (69% computation

pruned). Therefore, the inefficiencies of existing PIM accelerators

at processing Dynamic Token-pruning Transformer necessitates a

novel PIM-based architecture that is efficient at supporting the token

pruning mechanism.

B. The PRIMATE SW-HW Co-design Framework

To tackle the aforementioned challenges, we propose PRIMATE.

First, we design and implement Top-k Engines (TEs), a near-channel

accumulation and token selection mechanism that introduce minimal

area and power overhead to the HBM. Second, we propose a

pipeline scheduling and mapping method to mitigate the under-

utilization caused by pruning and leverage inter-layer parallelism

when processing a stream of input sequences. Given a pruning

configuration, we partition memory into adequately sized blocks for

specific layers to enable high spatial utilization throughout inference.

Additionally, we propose a framework that progressively optimizes

the pipeline mapping scheme for given configurations of memory,

model, and token pruning for overall throughput and efficiency. These

optimizations are translated into routines of memory instructions and

are deployed at runtime.

IV. PRIMATE HARDWARE ARCHITECTURE

A. Overall PIM Architecture

We base PRIMATE hardware on HBM2E [14], as illustrated in

Figure 4. We choose HBM as the basic architecture for two key

reasons. First, HBM connects stacked DRAM dies using a large num-

ber of through-silicon-vias (TSVs), providing high internal/external

bandwidth. Second, the stacked memory chips in HBM provide high

area efficiency that supports the integration of in-memory logic to

extend the functional flexibility of PIM [11]. We assume the HBM
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Fig. 5: Processing flow of in-memory top-k token selection.

stack supports in-memory bit-serial processing while adopting near-

bank units for reduction operations and inter-bank interconnect, as

bit-serial design enables the most memory bandwidth among various

PIM architectures [3]. To support dynamic token pruning, we propose

a channel-level top-k mechanism in HBM. Specifically, it consists of

multiple Top-k Engines (TE), each connecting to a channel IO link.

The channel-level TE exploits the internal bandwidth and reserves

memory space in each channel for parallel in-memory top-k selection.

We also propose a new processing flow to fully utilize the top-k

selection architecture for the PIM-accelerated Transformer.

B. Top-k Engine

We design our TE for minimal space overhead. The three key

components: accumulators, segmented top-k buffer, and bitonic sorter

and merger are illustrated in Figure 5. Each TE utilizes reserved

memory (4 KB) in the corresponding channel as the Sorted Buffer

for storing the top k values.

1) Accumulator: As introduced in Section III-A, each bank stores

the attention scores (after multi-head softmax) for a subset of tokens.

However, calculating the importance score of a token involves all

tokens in this layer. In other words, each bank stores partial sums

of attention importance for all tokens. With the current state of

the art [27], we can use the bank-level reduction logic to reduce

partial sums into one vector of size N , with N referring to the total

token count in a layer. However, we still need to accumulate partial

sums from different banks before sorting. Therefore, we add several

accumulators in TE that fully utilize the channel-level bandwidth.

Specifically, each accumulator receives 8 values from 8 banks and

reduces to 1 value. For HBM2E, the channel-level interface sends

256b for each cycle. Therefore, we add 4 accumulators in each

channel to support 8b partial sums to fulfill the bandwidth. Our

investigation shows that 8b TE provides sufficient precision to retain

the pruning pattern and the model is robust to small changes in token-

dropping schemes.

2) Segmented Top-k Buffer: For each channel-level TE, PRIMATE

reverses a memory space in the channel as the buffer for the sorted

top-k values. Each buffer is divided into multiple segments in order

to reduce the overhead of updating the buffer, as shown in Figure 5.

This is because the limited channel bandwidth cannot support reading

all values for top-k mechanisms in one cycle. Therefore, we need to

sequentially read out a small set of values and progressively update

the buffer. By using the buffer segmentation with a segment range

look-up table, we can locate the segment for each insertion and only
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update the buffer at the segment granularity, avoiding costly insertion

on all values. The operations on the Sorted Buffer are normal memory

operations that utilize data IO in HBM.

3) Bitonic Sorter and Merger: TE utilizes a hybrid strategy where

it first generates a small sorted segment of size n using a parallel

bitonic sorter, merges the segment with current top k tokens, and

inserts it back into the buffer. The top k tokens are stored in equally

sized segments where each segment has n tokens. Every insertion

will update n tokens and automatically remove the last segment.

Insertion by segment ensures regular data access pattern to the HBM

channel. The 4-stream n bitonic sorter and 64-stream bitonic merger

are generated using Spiral Project [29] and synthesized with Synopses

Design Compiler.

C. Processing Flow of Top-k Token Selection

With the token-based dataflow, the self-attention layer generates

attention scores between all tokens. For each token, the attention layer

generates N attention scores where N denotes the total number of

tokens. Therefore, each bank stores t × N attention scores, where

t is the number of tokens allocated in the bank. These attention

scores after the multi-head softmax operation are then accumulated

to prepare for top-k selection.

HBM2E channels are 256-bit wide, and we use 8-bit importance

scores as in TransPIM [27]. As shown in Figure 5, every cycle, 32

tokens are accessed and fed into 4 parallel 8-1 accumulators. Then,

a 4-stream n bitonic sorter consumes 4 accumulated tokens every

cycle. A sorted list with size n in Sorted Buffer is produced every
n
4

cycle. Next, the first token in the Sorted Buffer is compared with

the current ranges of each segment stored in a local Look Up Table

(LUT). Thus, only segments containing tokens smaller than Sorted

Buffer will be accessed sequentially and merged with the current

Sorted Buffer, and the Sorted Buffer is automatically dropped if all

segments have larger values than Sorted Buffer. A 64-stream 2 ×
n bitonic merger is used to fully saturate HBM channel bandwidth

for all accesses. Before writing back the newly merged segments to

HBM, a range detection unit scans the addresses and updates the new

range for each segment in the local LUT. If tokens for a layer are

distributed across multiple channels, we use accumulators of multiple

TEs to generate partial importance scores. Then, one of these TEs

generates the final attention importance scores and merges the top-k

values.

V. PRIMATE PIPELINE OPTIMIZATION

A. Pipeline Overview

To efficiently utilize available memory resources together with

nonuniform layer sizes from token pruning, we propose a pipeline

design to massively improve throughput by leveraging inter-layer par-

allelism. PRIMATE pipeline enables layers from multiple inferences

on different inputs to run simultaneously on pre-allocated memory

partitions with adequate sizes. The pipeline throughput is determined

by the critical layer with the longest runtime. Specifically, for a

particular time step τ in the pipeline, layer i is processing input

sequence INτ . Upon finishing, it forwards the hidden outputs to layer

i + 1 to continue processing the input sequence INτ , while layer

i receives its input for the next input sequence INτ+1 . After the

cold start, the pipeline is capable of producing one inference every

time step. By allocating partitions with appropriate sizes for different

layers in the Transformer model, the pipelining approach evades the

memory under-utilization problem caused by token pruning.

B. The Partition Problem

The configuration of the memory partitions dictates the perfor-

mance of the pipeline. To start, we consider two naive approaches to

the partition problem. First, we can equally distribute memory banks

to all Transformer layers. Second, we consider a weighted partitioning

based on the number of tokens (after pruning) in different layers.

For simplicity, we denote them as NP1 and NP2 (Naive Pipeline).

Through experiments, neither of the two methods comes close to

optimal. The primary factor affecting the performance of a particular

partition is a trade-off between the token density, i.e. the number

of tokens per bank, and the token quantity, i.e. the total number of

tokens the partition needs to process. Qualitatively speaking, high

token density leads to dense memory mapping that reduces the data

movement distances during computation, but it comes with higher

compute latency as the same compute units are faced with increased

load. This suggests a trade-off space between data movement cost

and compute cost for a given workload and memory. However,

considering a memory bank can hold tens of tokens, the design space

is immense. To address the design space challenge, we propose the

PRIMATE Optimization Framework (PrimateOpt) that can swiftly

navigate to an efficient solution for given configurations of memory,

workload, and pruning scheme.

C. PRIMATE Optimization Framework (PrimateOpt)

PrimateOpt consists of three optimizations: Layer-wise Explo-
ration, Global Adjustment, and Layer Merging, denoted as PO1–3

(Primate Optimization). PrimateOpt is illustrated by Figure 6.

1) Layer-wise Exploration, PO1: The global optimization for

pipeline partitioning introduces an immense design space that cannot

be solved efficiently. In this stage, we perform design space explo-

ration at the individual layer level: the framework analyzes the trade-

off between token density and quantity, and subsequently determines

the optimal tokens per bank and partition size (number of banks) for

the layer to achieve optimal performance. Then, we can construct the

partition scheme for the whole pipeline by sequentially allocating the

explored partition sizes. We denote this scheme as PO1, which offers

significantly better throughput than NP1 and NP2.

2) Global Adjustment, PO2: However, PO1 introduces a series

of issues, the first of which is the cross-stack placements of some

partitions, resulting in expensive data movements that need to cross

HBM stacks. By concatenating optimal partition sizes from layer-

wise exploration, certain partitions may be placed across two stacks

when they can, in fact, fit within one. We mitigate this problem

by performing stack alignment. To start, the framework identifies

partitions that unnecessarily cross stack boundaries by comparing

their partition size to the stack size. Then, PrimateOpt performs stack

alignment by shifting the partition and the following ones forward

(towards higher indexed banks) until it is aligned with the next

stack. However, this shifting operation introduces unmapped memory

between the aligned position of the partition and where it started

from. Here, PrimateOpt searches for suitable one or more layers

whose combined size best fills the gap, and then rearranges the found

partition(s) to fill the gap to avoid the under-utilization side effect of

stack alignments. Algorithmically, this is an iterative process that

guarantees no unnecessary stack misalignment exists upon exiting.
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TABLE I: Latency and energy values of HBM2E.

tRC tRCD tRAS tFAW eACT eLSA eGSA eIO
45 ns 16 ns 29 ns 12 ns 909 pJ 1.51 pJ/b 1.17 pJ/b 0.80 pJ/b

Partition rearrangement results in no penalty when other partitions

can fill the gaps exactly. We denote the resulting partitioning scheme

as PO2.

3) Layer Merging, PO3: Although PO1 and PO2 provide solu-

tions to spatial under-utilization through pipelining, the differences

between layer-wise runtimes due to progressive token pruning cause

temporal under-utilization of memory. As visualized in Figure 6,

when a faster layer finishes, it needs to stay idle waiting for the

critical, slower layer in the pipeline to finish. Only until then, layers

can forward their hidden output to their respective next, and the

pipeline progresses by a time step. To mitigate the induced temporal

under-utilization, we propose Layer Merging that combines more than

one layer into a single pipeline stage, denoted PO3. As illustrated in

Figure 6, the combined layers are still processed sequentially in the

same memory partition. We use the partition that originally belongs to

the largest layer for the combined stage to ensure optimal layout for

all. The only constraint for Layer Merging is that they are consecutive

layers in the Transformer model and exhibit sequential dependency.

We note that Layer Merging does not affect overall throughput if

critical time does not change. Thus, Layer Merging improves the

space efficiency, or throughput per GB, of the PRIMATE pipeline.

PrimateOpt is only run once before deployment for a given

configuration. The related controls are translated into routines and

are executed at runtime: between timesteps, memory instructions are

issued to handle data forwarding and ensure the forward progress of

the pipeline.

VI. RESULTS

A. Experiment Setup

1) Architecture Configuration and Simulation: We use the

HBM2E architecture with 10nm technology [14] as the hardware

platform for PRIMATE. We assume a configuration of 8 stacks, each

of which has 16GB of capacity with 16 physical channels. Each

HBM2E channel supports 256b data links to read data out from 16

banks in the channel. Banks of a channel are grouped into 2 bank

groups, each supporting 256b internal data link. Each bank reads data

from subarrays to the bank sense amplifiers via 256b data links. We

set the internal memory frequency at 500MHz and use the latency and

energy values from previous work [15]. For simulation, we translate

the Python implementation of Dynamic Token-pruning Transformer

into memory commands, including normal memory read/write, in-

memory computation, and near-memory processing. The commands

are then passed into an in-house memory simulator that is similar to

Ramulator [10]. The simulator integrates latency and energy values

for different components that are either extracted from published

work [15] or validated by our circuit simulation, as shown in Table I.

We pass the configurations of HBM memory, Transformer model,

and pruning scheme to PrimateOpt, which generates the memory

mappings to configure our simulator using various methods discussed

in this work, as summarized in Table III.

We design all extra in-memory logic in Verilog and synthesize

them with Synopsys Design Compiler. The near-bank processing and

the near-channel Top-k Engines are synthesized at 32nm. We then

scale the power and area results to 10nm using the scaling method

of previous work [20]. We also consider the overhead caused by the

difference between ASIC and DRAM processes [13] in the reported

values of this work. Our implementations are functionally verified

using Xilinx Vivado.

Baseline Comparison: We identify TransPIM [27] as our baseline

due to its recentness and superior performance than other accelerators

including GPU, TPU, other PIM accelerators [5], [13], and ASIC

Transformer accelerators [4], [22]. For a fair comparison, we model

TransPIM [27] logic in our circuit design environment based on

published specifications and integrate it with our simulation using

HBM2E configuration.

Workloads: We evaluate PRIMATE using 4 Transformer work-

loads, denoted W1 to W4. Among them, W1 and W2 are two ViT

models [2] targeting fine-grained image classification [7], [21]; W3

is a BERT model [1] targeting sentiment classification [18]; and

W4 is a RoBERTa model [28] used for hyperpartisan news long

document classification [8]. Table II presents the details about these

workloads. These models are trained with a technique incorporating

arbitrary token drops and an evolutionary search process to enhance

the adaptability of the model to token drops and explore optimal

accuracy-efficiency trade-offs. Pruning-wise, W1 incorporates non-

uniform token dropping resulting in 39% tokens remaining (sum of

all layers), while W2 – W4 prune 20% tokens per layer. Models used

for W1 to W4 achieve accuracy of 91.1%, 89.6%, 92.7%, and 87.1%,

respectively, which are comparable to their baseline performance

without pruning. We quantize the models to 8-bit [26] before mapping

them to memory.
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TABLE II: Workloads used for PRIMATE evaluation

Workload Model Dataset Layers Sequence len.

W1 ViT Stanford Dogs 12 786
W2 ViT CUB-200-2011 12 3137
W3 BERT SST-2 12 128
W4 RoBERTa Hyperpartisan News 12 4096

TABLE III: Notations for memory mapping schemes

BS1 Current SOTA (TransPIM [27])
BS2 TransPIM [27] with pruning and without aggregation (Sec. III-A)
BS3 TransPIM [27] with pruning and aggregation support (Sec. III-A)

NP1 Naive Pipeline: Equal partitioning of entire memory (Sec. V-B)
NP2 Naive Pipeline: Weighted partitioning by input size (Sec. V-B)
PO1 PrimateOpt: Layer-wise Exploration results (Sec. V-C1)
PO2 PrimateOpt: Global Adjustments (Sec. V-C2)
PO3 PrimateOpt: Layer merging (Sec. V-C3)

B. Comparison with Existing Transformer Accelerators

We evaluate PRIMATE using throughput (inference per second),

space efficiency (throughput per GB of memory used), and energy

efficiency (throughput per Joule). We present normalized metrics with

regard to the current SOTA TransPIM [27] in Figure 8 and 9. It

is notable that the PrimateOpt progressively improves these met-

rics through Layer-wise Exploration, Global Adjustment, and Layer

Merging. Compared to baseline [27], the PRIMATE architecture

achieves up to 30.6×, average 21× better throughput; up to 29.5×,

average 18.9× better space efficiency, and up to 4.3×, average 3.8×
better energy efficiency on W1 to W4. By beating TransPIM [27]

with significant margins, PRIMATE also offers superior performance

to other ASIC-based Transformer accelerators including A3 [4],

SpAtten [22], and GPU-based solutions.

C. Effect of In-Memory Top-k Engines

We first compare the performance of PRIMATE with SOTA [27]

without the support of in-memory top-k selection. Both architectures

execute the Transformer in a pipelined manner optimized by the Pri-

mateOpt. The baseline PIM architecture [27] sends all attention scores

to the host CPU (AMD EPYC 7742 @ 2.25 GHz) for accumulation

and top-k calculation using C++ std::sort. Our experiment shows

the PRIMATE in-memory sorting design can reduce sorting overhead

from 9.2%, 25.2%, 2.8%, 5.4% (W1 - W4) down to an average of

0.14%. PRIMATE in-memory top-k engine can offer up to 90× better

standalone sorting cost. We also find CPU-based sorting incurs much

more overheads on workloads with large token counts and smaller

vector lengths, justifying our architectural advantage on large models

like the ever-growing LLMs.

D. Effect of PrimateOpt

In this section, we refer to Figures 7 – 9 to show PRIMATE

improvements. We evaluate layerwise runtime, throughput, space

efficiency, and energy efficiency of different methods in Table III.

1) Layer-wise Exploration: Introduced in V-C1, token density and

token quantity for a partition are both vital parameters to the latency

of a layer, as they introduce a trade-off space between data movement

cost and compute cost. In PRIMATE, we use Layer-wise Exploration

to efficiently determine the optimal partition size for all layers and

sequentially construct a pipeline. Figure 7 presents the per-layer

latency of various partitioning schemes, whose details are present

in Table III. From our experiments, compared to the naive equal

partition and weighted partition schemes (NP1 and NP2), Layer-wise
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Fig. 7: Layerwise runtime comparison of different Partitioning Schemes.
The overhead of configuring the layer-specific memory layout is included.

NP1
BS1
[25] BS3BS2 PO1NP2 PO2 PO3

Workloads

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t 30.6x

16.5x

24.0x

12.9x

Fig. 8: Throughput of PRIMATE normalized to baseline. Value in red
shows final improvement after PO3.

Exploration (PO1) offers an average 1.67× and up to 2.11× reduction

in critical runtime in the pipeline for W1 to W4, respectively.

Additionally, through exploration, PO1 offers better performance at

lower memory usage, saving up to 46.7% of memory bank usage

compared to the naive schemes. From progressive pruning, we expect

a monotonically declining per-layer runtime throughout the model.

We observe that PO1 is much closer to this goal than NP1 and NP2.

2) Global Adjustment: The performance of partitions derived by

layer-wise exploration may not hold due to the placements of other

partitions as we construct the pipeline sequentially. In Figure 7,

the PO1 curve notably spikes on certain layers due to their cross-

stack placements, which introduces costly cross-stack traffic. Global

Adjustment performs stack alignment and partition rearrangement to

eliminate cross-stack partitions while maintaining utilization. Figure 8

shows that compared to PO1, PO2 brings 23.7%, 7.0%, 16.7%,

and 0% throughput improvement on W1 to W4, respectively. For

the partition placed cross-stack, Global Adjustment can provide up

to a 64.3% reduction in latency in tested workloads. Cost-wise,

Global Adjustment does not incur any additional memory usage

on W1 and W3, as other layers can exactly fill the gaps created

by stack alignment. W2 and W4 receive small, 5.3% and 4.1%

memory usage increase from stack alignment, respectively, for not

finding exact matches due to other partition sizes. Note that for W4,

its first layer happens to be the critical layer that cannot benefit

from stack alignment. Yet, Global Adjustment is still an important
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prerequisite for subsequent optimization. After this stage, we observe

the monotonically declining per-layer runtime throughout the model,

a sign of efficient memory partitioning.

3) Layer Merging: Progressive pruning results in differences in

layer runtimes that lead to stalls on the faster partitions, causing

temporal under-utilization of memory as faster partitions await slower

ones. We propose Layer Merging to allow one partition to sequen-

tially process multiple faster layers, such that the combined runtime

does not hurt critical time. Therefore, through Layer Merging,

PRIMATE achieves the same throughput (same layerwise runtime

in Figure 8) with less memory, thus a higher space efficiency.

Our experiment in Figure 9 shows that Layer Merging can bring

11.7%, 18%, 0%, and 26.2% better throughput per GB compared to

PO2. PrimateOpt algorithmically evaluates Layer Merging for given

workloads and whether it should be applied: for example, in W3,

merging any two layers results in a worse critical time that offsets the

benefits. At this point, we achieve the best throughput and efficiency

with PrimateOpt.

E. Overhead

The area for top-k engines (16 channel-level sorters) is 2.53 mm2,

2.3% of one HBM2E stack area [14], and the power is 1.3W. We note

that there is no impact on HBM capacity because the area overhead

is significantly less than the 25% threshold evaluated in [5]. The

optimizations proposed by PrimateOpt incur additional overhead in

configuring the layer-specific memory layouts and data forwarding

using memory instructions generated before runtime. At runtime,

the memory routines are run between each pipeline time step. We

carefully model these overheads and include them in our evaluations.

VII. CONCLUSION

We propose PRIMATE, a software-hardware co-design framework

that synergizes token-pruning and PIM to accelerate Transformer

models using HBM-based architecture. We evaluated PRIMATE

using 4 representative Transformer workloads and observe up to

30.6× improvement in throughput, 29.5× improvement in space

efficiency, and 4.3× better energy efficiency compared to the current

state-of-the-art PIM accelerator for Transformers [27].
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