2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC) | 979-8-3503-9354-5/24/$31.00 ©2024 IEEE | DOI: 10.1109/ASP-DAC58780.2024.10473968

6A-4

PRIMATE: Processing in Memory Acceleration for Dynamic
Token-pruning Transformers

Yue Pan', Minxuan Zhou', Chonghan Lee?, Zheyu Li?, Rishika Kushwah?, Vijaykrishnan Narayanan?, Tajana Rosing!
'University of California San Diego, La Jolla, CA, United States
2Pennsylvania State University, State College, PA, United States
{yup014, miz087, tajana} @ucsd.edu
{cv15361, zil5126, rqk5510, vijay } @psu.edu

Abstract—Attention-based models such as Transformers represent the
state of the art for various machine learning (ML) tasks. Their superior
performance is often overshadowed by the substantial memory require-
ments and low data reuse opportunities. Processing in Memory (PIM) is
a promising solution to accelerate Transformer models due to its massive
parallelism, low data movement costs, and high memory bandwidth
utilization. Existing PIM accelerators lack the support for algorithmic
optimizations like dynamic token pruning that can significantly improve
the efficiency of Transformers. We identify two challenges to enabling
dynamic token pruning on PIM-based architectures: the lack of an
in-memory top-k token selection mechanism and the memory under-
utilization problem from pruning. To address these challenges, we propose
PRIMATE, a software-hardware co-design PIM framework based on
High Bandwidth Memory (HBM). We initiate minor hardware modifi-
cations to conventional HBM to enable Transformer model computation
and top-k selection. For software, we introduce a pipelined mapping
scheme and an optimization framework for maximum throughput and
efficiency. PRIMATE achieves 30.6 x improvement in throughput, 29.5x
improvement in space efficiency, and 4.3 x better energy efficiency com-
pared to the current state-of-the-art PIM accelerator for Transformers.

I. INTRODUCTION

Attention-based models like Transformers have gained tremendous
ground in many applications in recent years. Large Language Models
(LLMs) like ChatGPT have shown astonishing capabilities in un-
derstanding and responding to human prompts, but with enormous
requirements in computing and memory. Researchers have been
exploring solutions from the realms of algorithms and architectures
to mitigate LLMs’ high costs.

Dynamic token pruning algorithms have been introduced to reduce
the computation requirements of Transformers [12], [22]. Taking
advantage of redundancy in human language and images, unimportant
tokens can be progressively pruned based on their importance.
Figure 1 and 2 visualize the dynamic token pruning process. This
technique achieves a speedup of 2.3 to 2.7x with 2.6 to 3.2X in
GPU memory reduction [12]. Importantly, token pruning often results
in comparable or higher accuracy across a wide range of NLP and
vision tasks, as can be seen from the Pareto frontier in Figure 3.

Both ASIC and Processing in Memory (PIM) solutions have been
extensively explored as hardware accelerators for Transformers. By
integrating compute units directly into memory, PIM significantly
reduces the data movement cost during computation, which domi-
nates latency and energy in traditional architectures. PIM also exploits
the massive parallelism and high internal bandwidth of memory to
support high-throughput processing. Previous works [19], [27] have
shown a software-hardware co-designed PIM architecture can provide
better throughput and power consumption than GPU and TPU for
Transformers. However, they lack the support for algorithmic opti-
mizations like dynamic token pruning. One Resistive RAM (ReRAM)
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Fig. 1: Dynamic token pruning on text data (SST-2 dataset) and an image
(CUB 2011 Bird). Redundant keywords/patches (in red) are progressively
pruned during the inference.
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Fig. 2: Overview of Dynamic Token-pruning Transformer on vision tasks.

based architecture was proposed with token pruning support [24], but
it suffers from numerical instabilities of ReRAM and requires on-
chip re-computation of attention scores, complicating dataflow and
introducing additional overhead.

This work focuses on DRAM-based (HBM) PIM technologies
which can support larger capacity than SRAM [23] with high
bandwidth, lower latency, and higher numerical stability than non-
volatile memory designs [6], [24]. However, current designs like [27]
face two challenges in enabling token pruning: the lack of top-
k selection mechanisms and the memory underutilization problem
from pruning. In this work, we address these challenges and propose
PRIMATE, a novel in-memory hardware-software co-design accel-
eration framework that synergizes PIM and Dynamic Token-pruning
Transformer. With PRIMATE, we achieve up to 30.6x improvement
in throughput, 29.5x better space efficiency, and 4.3 x better energy
efficiency compared to the current state-of-the-art [27] on popular
Transformer models and workloads.

II. BACKGROUND AND RELATED WORK
A. Transformer and Dynamic Token Pruning

The token pruning strategy is to prune tokens based on an impor-
tance score of each token. To arrive at this score, we take the dot
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product between @ and K vectors to get the attention probabilities.
Then, we normalize them using a softmax function and use the
normalized attention probabilities to compute a weighted sum of the
V' vector as shown in Figure 2. During dynamic token pruning, we
use the attention probabilities as importance scores to keep the top-
k most important tokens after each encoder layer. Different from
other approaches [16], [25] that prune tokens at the end of each
encoder layer, our approach prunes tokens before the feedforward
layer within each encoder layer, achieving additional reductions in
compute and memory costs. During training, we introduce arbitrary
token pruning ratios to enable the model to adapt to various token
drop scenarios. We also employ a multi-objective evolutionary search
on the trained model to determine layer-wise pruning ratios that
achieve the optimal accuracy-efficiency trade-offs. After these efforts,
token-pruning models offer comparable or even higher accuracy than
the original model with significantly less computing requirements, as
seen from the Pareto frontier in Figure 3.

B. Processing In-Memory

Figure 4 shows the architecture of a High Bandwidth Memory
(HBM), a high-end commodity DRAM product. The basic unit of
memory is a bank, which consists of 2D cell arrays and peripherals
to transfer data between DRAM cells and 10s. The memory cells
are grouped into a set of subarrays, each of which consists of a row
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of mats. Each mat has local sense amplifiers (row buffers) sensing a
horizontal wordline (WL) via a set of vertical bitlines (BLs). Sense
amplifiers in mats of a subarray form the subarray row buffer. Upon
receiving a DRAM access, the bank activates the corresponding WL
in the subarray row buffer and transfers the whole WL to the bank-
level sense amplifiers via the data lines (DLs).

There have been several DRAM-based PIM technologies that
support operations in different levels of DRAM architecture in-
cluding near-bank processing (NBP) [11], near-subarray processing
(NSP) [13], and processing using-memory (PuM) [3]. Many previous
works have utilized different PIM technologies to accelerate machine
learning workloads [5], [13], [27]. Specifically, Newton [5] proposes
near-bank multipliers and adder trees in HBM to accelerate vari-
ous ML operators. DRISA [13] integrates near-subarray 1-bit logic
(e.g., full adder) that exploits subarray-level parallelism. However,
when accelerating Transformers, Newton’s bank-level processing has
limited throughput, while DRISA’s near-subarray processing can-
not efficiently process long-vector reduction (accumulation). Tran-
sPIM [27] proposed a hybrid method that exploits the subarray-
level computation for element-wise arithmetic and the near-bank logic
for efficient accumulation to accelerate Transformers. TransPIM [27]
uses bit-serial PuM technology [3] that only introduces negligible
area overhead in commercial HBM while providing high throughput.

Figure 4 illustrates the HBM architecture that supports bit-serial
PuM and NBP. Specifically, PuM directly generates the result of
computation between different WLs by exploiting the charge-sharing
effect of the DRAM mechanism [17]. Figure 4 also shows an example
of a 1-bit full-addition that adds one row (bit) of A and B to generate
1 row (bit) of C. We need row clone (RC) operations to backup
operands and write back the result. The sum and carry generation
is implemented using Activate-Activate-Precharge (AAP) operations
[17]. An n-bit multiplication using the bit-serial PIM requires around
7n? AAP operations. Bit-serial PIM can parallelize the computation
for whole DRAM rows (e.g., 8K) and exploit the subarray-level
parallelism [9] to provide extensive throughput. Due to the bit-serial
layout, the NBP unit also works in a bit-serial manner that fully
exploits the internal data links.

C. Token-based Data Flow

Like TransPIM [27], we adopt token-based dataflow. This approach
maps data and computation to memory based on the correspond-
ing input token at the bank granularity. For each Transformer
encoder/decoder layer, token-based flow first distributes the input
sequence to all banks, where each bank computes the @), K, and
V' vectors with multiple heads for its allocated tokens and the pre-
allocated fully connected weights. The self-attention layer consists
of two steps. Each bank first computes attention scores between
its allocated tokens using computed @) and K values. Then, each
bank broadcasts its K values to all other banks to compute global
attention scores. We also adopt the lightweight inter-bank connection
of previous work [27] to accelerate data broadcast. We compute
the attention scores for different heads, each applying a softmax
operation. We multiply the multi-head attention score matrix with
multi-head V' vectors using a similar broadcast phase to calculate
the attention output matrix following the token-based layout. Then,
the feed-forward layers are processed similarly to the fully connected
layer. To enable the token-based data flow, each bank has a dupli-
cation of Transformer weights including fully-connected operations
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and feed-forward operations. All other operations use the intermediate
data corresponding to tokens that can stay in the memory during the
whole process.

III. PRIMATE OVERVIEW
A. Limitations of Current PIM Acceleration

The existing PIM-based accelerator and token-based data flow
cannot efficiently support dynamic token pruning. First, to decide
which tokens to prune, we need a top-k selection mechanism based
on the token importance score. The current SOTA PIM Transformer
accelerator [27] requires frequent intra-memory data movements for
attention score accumulation and relies on the host CPU to perform
top-k selection. Per our experiment with SOTA [27], relying on the
CPU for top-k selection incurs up to 25% penalty of the overall
latency. Second, before pruning, the memory is configured with a
data layout efficient for full-token computation under the token-
based dataflow. However, the remaining tokens after pruning are
scattered across the memory, causing spatial under-utilization and
larger communication overhead. Due to the delicate data layout
requirement of PIM, it is hard to reclaim the memory occupied by
pruned tokens, leading to less effective memory savings. One remedy
is to aggregate the remaining tokens after every layer. However,
our experiments in section VI-D show unsatisfactory throughput
with this method due to the sub-optimal token-to-bank mappings
(details in Section VI-A). For these reasons, existing PIM acceler-
ators for Transformers [27] can only provide 1.5x speedup when
the workload allows 3.2x theoretical speedup (69% computation
pruned). Therefore, the inefficiencies of existing PIM accelerators
at processing Dynamic Token-pruning Transformer necessitates a
novel PIM-based architecture that is efficient at supporting the token
pruning mechanism.

B. The PRIMATE SW-HW Co-design Framework

To tackle the aforementioned challenges, we propose PRIMATE.
First, we design and implement Top-k Engines (TEs), a near-channel
accumulation and token selection mechanism that introduce minimal
area and power overhead to the HBM. Second, we propose a
pipeline scheduling and mapping method to mitigate the under-
utilization caused by pruning and leverage inter-layer parallelism
when processing a stream of input sequences. Given a pruning
configuration, we partition memory into adequately sized blocks for
specific layers to enable high spatial utilization throughout inference.
Additionally, we propose a framework that progressively optimizes
the pipeline mapping scheme for given configurations of memory,
model, and token pruning for overall throughput and efficiency. These
optimizations are translated into routines of memory instructions and
are deployed at runtime.

IV. PRIMATE HARDWARE ARCHITECTURE
A. Overall PIM Architecture

We base PRIMATE hardware on HBM2E [14], as illustrated in
Figure 4. We choose HBM as the basic architecture for two key
reasons. First, HBM connects stacked DRAM dies using a large num-
ber of through-silicon-vias (TSVs), providing high internal/external
bandwidth. Second, the stacked memory chips in HBM provide high
area efficiency that supports the integration of in-memory logic to
extend the functional flexibility of PIM [11]. We assume the HBM
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Fig. 5: Processing flow of in-memory top-k token selection.

stack supports in-memory bit-serial processing while adopting near-
bank units for reduction operations and inter-bank interconnect, as
bit-serial design enables the most memory bandwidth among various
PIM architectures [3]. To support dynamic token pruning, we propose
a channel-level top-k mechanism in HBM. Specifically, it consists of
multiple Top-k Engines (TE), each connecting to a channel IO link.
The channel-level TE exploits the internal bandwidth and reserves
memory space in each channel for parallel in-memory top-k selection.
We also propose a new processing flow to fully utilize the top-k
selection architecture for the PIM-accelerated Transformer.

B. Top-k Engine

We design our TE for minimal space overhead. The three key
components: accumulators, segmented top-k buffer, and bitonic sorter
and merger are illustrated in Figure 5. Each TE utilizes reserved
memory (4 KB) in the corresponding channel as the Sorted Buffer
for storing the top k values.

1) Accumulator: As introduced in Section III-A, each bank stores
the attention scores (after multi-head softmax) for a subset of tokens.
However, calculating the importance score of a token involves all
tokens in this layer. In other words, each bank stores partial sums
of attention importance for all tokens. With the current state of
the art [27], we can use the bank-level reduction logic to reduce
partial sums into one vector of size N, with N referring to the total
token count in a layer. However, we still need to accumulate partial
sums from different banks before sorting. Therefore, we add several
accumulators in TE that fully utilize the channel-level bandwidth.
Specifically, each accumulator receives 8 values from 8 banks and
reduces to 1 value. For HBM2E, the channel-level interface sends
256b for each cycle. Therefore, we add 4 accumulators in each
channel to support 8b partial sums to fulfill the bandwidth. Our
investigation shows that 8b TE provides sufficient precision to retain
the pruning pattern and the model is robust to small changes in token-
dropping schemes.

2) Segmented Top-k Buffer: For each channel-level TE, PRIMATE
reverses a memory space in the channel as the buffer for the sorted
top-k values. Each buffer is divided into multiple segments in order
to reduce the overhead of updating the buffer, as shown in Figure 5.
This is because the limited channel bandwidth cannot support reading
all values for top-k mechanisms in one cycle. Therefore, we need to
sequentially read out a small set of values and progressively update
the buffer. By using the buffer segmentation with a segment range
look-up table, we can locate the segment for each insertion and only
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update the buffer at the segment granularity, avoiding costly insertion
on all values. The operations on the Sorted Buffer are normal memory
operations that utilize data IO in HBM.

3) Bitonic Sorter and Merger: TE utilizes a hybrid strategy where
it first generates a small sorted segment of size n using a parallel
bitonic sorter, merges the segment with current top k tokens, and
inserts it back into the buffer. The top k tokens are stored in equally
sized segments where each segment has n tokens. Every insertion
will update n tokens and automatically remove the last segment.
Insertion by segment ensures regular data access pattern to the HBM
channel. The 4-stream n bitonic sorter and 64-stream bitonic merger
are generated using Spiral Project [29] and synthesized with Synopses
Design Compiler.

C. Processing Flow of Top-k Token Selection

With the token-based dataflow, the self-attention layer generates
attention scores between all tokens. For each token, the attention layer
generates N attention scores where N denotes the total number of
tokens. Therefore, each bank stores ¢ x N attention scores, where
t is the number of tokens allocated in the bank. These attention
scores after the multi-head softmax operation are then accumulated
to prepare for top-k selection.

HBM2E channels are 256-bit wide, and we use 8-bit importance
scores as in TransPIM [27]. As shown in Figure 5, every cycle, 32
tokens are accessed and fed into 4 parallel 8-1 accumulators. Then,
a 4-stream n bitonic sorter consumes 4 accumulated tokens every
cycle. A sorted list with size n in Sorted Buffer is produced every
1 cycle. Next, the first token in the Sorted Buffer is compared with
the current ranges of each segment stored in a local Look Up Table
(LUT). Thus, only segments containing tokens smaller than Sorted
Buffer will be accessed sequentially and merged with the current
Sorted Buffer, and the Sorted Buffer is automatically dropped if all
segments have larger values than Sorted Buffer. A 64-stream 2 X
n bitonic merger is used to fully saturate HBM channel bandwidth
for all accesses. Before writing back the newly merged segments to
HBM, a range detection unit scans the addresses and updates the new
range for each segment in the local LUT. If tokens for a layer are
distributed across multiple channels, we use accumulators of multiple
TEs to generate partial importance scores. Then, one of these TEs
generates the final attention importance scores and merges the top-k
values.

V. PRIMATE PIPELINE OPTIMIZATION

A. Pipeline Overview

To efficiently utilize available memory resources together with
nonuniform layer sizes from token pruning, we propose a pipeline
design to massively improve throughput by leveraging inter-layer par-
allelism. PRIMATE pipeline enables layers from multiple inferences
on different inputs to run simultaneously on pre-allocated memory
partitions with adequate sizes. The pipeline throughput is determined
by the critical layer with the longest runtime. Specifically, for a
particular time step 7 in the pipeline, layer ¢ is processing input
sequence /N;. Upon finishing, it forwards the hidden outputs to layer
i + 1 to continue processing the input sequence IN,, while layer
i receives its input for the next input sequence IN,y;. After the
cold start, the pipeline is capable of producing one inference every
time step. By allocating partitions with appropriate sizes for different
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layers in the Transformer model, the pipelining approach evades the
memory under-utilization problem caused by token pruning.

B. The Partition Problem

The configuration of the memory partitions dictates the perfor-
mance of the pipeline. To start, we consider two naive approaches to
the partition problem. First, we can equally distribute memory banks
to all Transformer layers. Second, we consider a weighted partitioning
based on the number of tokens (after pruning) in different layers.
For simplicity, we denote them as NP1 and NP2 (Naive Pipeline).
Through experiments, neither of the two methods comes close to
optimal. The primary factor affecting the performance of a particular
partition is a trade-off between the token density, i.e. the number
of tokens per bank, and the foken quantity, i.e. the total number of
tokens the partition needs to process. Qualitatively speaking, high
token density leads to dense memory mapping that reduces the data
movement distances during computation, but it comes with higher
compute latency as the same compute units are faced with increased
load. This suggests a trade-off space between data movement cost
and compute cost for a given workload and memory. However,
considering a memory bank can hold tens of tokens, the design space
is immense. To address the design space challenge, we propose the
PRIMATE Optimization Framework (PrimateOpt) that can swiftly
navigate to an efficient solution for given configurations of memory,
workload, and pruning scheme.

C. PRIMATE Optimization Framework (PrimateOpt)

PrimateOpt consists of three optimizations: Layer-wise Explo-
ration, Global Adjustment, and Layer Merging, denoted as PO1-3
(Primate Optimization). PrimateOpt is illustrated by Figure 6.

1) Layer-wise Exploration, POIl: The global optimization for
pipeline partitioning introduces an immense design space that cannot
be solved efficiently. In this stage, we perform design space explo-
ration at the individual layer level: the framework analyzes the trade-
off between token density and quantity, and subsequently determines
the optimal tokens per bank and partition size (number of banks) for
the layer to achieve optimal performance. Then, we can construct the
partition scheme for the whole pipeline by sequentially allocating the
explored partition sizes. We denote this scheme as PO1, which offers
significantly better throughput than NP1 and NP2.

2) Global Adjustment, PO2: However, PO1 introduces a series
of issues, the first of which is the cross-stack placements of some
partitions, resulting in expensive data movements that need to cross
HBM stacks. By concatenating optimal partition sizes from layer-
wise exploration, certain partitions may be placed across two stacks
when they can, in fact, fit within one. We mitigate this problem
by performing stack alignment. To start, the framework identifies
partitions that unnecessarily cross stack boundaries by comparing
their partition size to the stack size. Then, PrimateOpt performs stack
alignment by shifting the partition and the following ones forward
(towards higher indexed banks) until it is aligned with the next
stack. However, this shifting operation introduces unmapped memory
between the aligned position of the partition and where it started
from. Here, PrimateOpt searches for suitable one or more layers
whose combined size best fills the gap, and then rearranges the found
partition(s) to fill the gap to avoid the under-utilization side effect of
stack alignments. Algorithmically, this is an iterative process that
guarantees no unnecessary stack misalignment exists upon exiting.
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TABLE I: Latency and energy values of HBM2E.

[ trc | trop | tras | traw | eacr | ersa | easa | ero |
[ 45ns | 16ns [ 29ns | 12ns | 909 pJ [ 1.51 pi/b | 1.17 pJ/b | 0.80 pJ/b |

Partition rearrangement results in no penalty when other partitions
can fill the gaps exactly. We denote the resulting partitioning scheme
as PO2.

3) Layer Merging, PO3: Although POl and PO2 provide solu-
tions to spatial under-utilization through pipelining, the differences
between layer-wise runtimes due to progressive token pruning cause
temporal under-utilization of memory. As visualized in Figure 6,
when a faster layer finishes, it needs to stay idle waiting for the
critical, slower layer in the pipeline to finish. Only until then, layers
can forward their hidden output to their respective next, and the
pipeline progresses by a time step. To mitigate the induced temporal
under-utilization, we propose Layer Merging that combines more than
one layer into a single pipeline stage, denoted PO3. As illustrated in
Figure 6, the combined layers are still processed sequentially in the
same memory partition. We use the partition that originally belongs to
the largest layer for the combined stage to ensure optimal layout for
all. The only constraint for Layer Merging is that they are consecutive
layers in the Transformer model and exhibit sequential dependency.
We note that Layer Merging does not affect overall throughput if
critical time does not change. Thus, Layer Merging improves the
space efficiency, or throughput per GB, of the PRIMATE pipeline.

PrimateOpt is only run once before deployment for a given
configuration. The related controls are translated into routines and
are executed at runtime: between timesteps, memory instructions are
issued to handle data forwarding and ensure the forward progress of
the pipeline.

VI. RESULTS
A. Experiment Setup

1) Architecture Configuration and Simulation: We use the
HBM2E architecture with 10nm technology [14] as the hardware
platform for PRIMATE. We assume a configuration of 8 stacks, each
of which has 16GB of capacity with 16 physical channels. Each
HBM2E channel supports 256b data links to read data out from 16
banks in the channel. Banks of a channel are grouped into 2 bank
groups, each supporting 256b internal data link. Each bank reads data
from subarrays to the bank sense amplifiers via 256b data links. We
set the internal memory frequency at SOOMHz and use the latency and

energy values from previous work [15]. For simulation, we translate
the Python implementation of Dynamic Token-pruning Transformer
into memory commands, including normal memory read/write, in-
memory computation, and near-memory processing. The commands
are then passed into an in-house memory simulator that is similar to
Ramulator [10]. The simulator integrates latency and energy values
for different components that are either extracted from published
work [15] or validated by our circuit simulation, as shown in Table I.
We pass the configurations of HBM memory, Transformer model,
and pruning scheme to PrimateOpt, which generates the memory
mappings to configure our simulator using various methods discussed
in this work, as summarized in Table III.

We design all extra in-memory logic in Verilog and synthesize
them with Synopsys Design Compiler. The near-bank processing and
the near-channel Top-k Engines are synthesized at 32nm. We then
scale the power and area results to 10nm using the scaling method
of previous work [20]. We also consider the overhead caused by the
difference between ASIC and DRAM processes [13] in the reported
values of this work. Our implementations are functionally verified
using Xilinx Vivado.

Baseline Comparison: We identify TransPIM [27] as our baseline
due to its recentness and superior performance than other accelerators
including GPU, TPU, other PIM accelerators [5], [13], and ASIC
Transformer accelerators [4], [22]. For a fair comparison, we model
TransPIM [27] logic in our circuit design environment based on
published specifications and integrate it with our simulation using
HBM2E configuration.

Workloads: We evaluate PRIMATE using 4 Transformer work-
loads, denoted W1 to W4. Among them, W1 and W2 are two ViT
models [2] targeting fine-grained image classification [7], [21]; W3
is a BERT model [1] targeting sentiment classification [18]; and
W4 is a RoBERTa model [28] used for hyperpartisan news long
document classification [8]. Table II presents the details about these
workloads. These models are trained with a technique incorporating
arbitrary token drops and an evolutionary search process to enhance
the adaptability of the model to token drops and explore optimal
accuracy-efficiency trade-offs. Pruning-wise, W1 incorporates non-
uniform token dropping resulting in 39% tokens remaining (sum of
all layers), while W2 — W4 prune 20% tokens per layer. Models used
for W1 to W4 achieve accuracy of 91.1%, 89.6%, 92.7%, and 87.1%,
respectively, which are comparable to their baseline performance
without pruning. We quantize the models to 8-bit [26] before mapping
them to memory.
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TABLE II: Workloads used for PRIMATE evaluation

Workload Model Dataset Layers  Sequence len.
Wi ViT Stanford Dogs 12 786
w2 ViT CUB-200-2011 12 3137
W3 BERT SST-2 12 128
W4 RoBERTa  Hyperpartisan News 12 4096

TABLE III: Notations for memory mapping schemes

BS1  Current SOTA (TransPIM [27])

BS2  TransPIM [27] with pruning and without aggregation (Sec. III-A)
BS3  TransPIM [27] with pruning and aggregation support (Sec. III-A)
NP1  Naive Pipeline: Equal partitioning of entire memory (Sec. V-B)
NP2  Naive Pipeline: Weighted partitioning by input size (Sec. V-B)
PO1  PrimateOpt: Layer-wise Exploration results (Sec. V-C1)

PO2  PrimateOpt: Global Adjustments (Sec. V-C2)

PO3  PrimateOpt: Layer merging (Sec. V-C3)

B. Comparison with Existing Transformer Accelerators

We evaluate PRIMATE using throughput (inference per second),
space efficiency (throughput per GB of memory used), and energy
efficiency (throughput per Joule). We present normalized metrics with
regard to the current SOTA TransPIM [27] in Figure 8 and 9. It
is notable that the PrimateOpt progressively improves these met-
rics through Layer-wise Exploration, Global Adjustment, and Layer
Merging. Compared to baseline [27], the PRIMATE architecture
achieves up to 30.6x, average 21X better throughput; up to 29.5x,
average 18.9x better space efficiency, and up to 4.3, average 3.8
better energy efficiency on W1 to W4. By beating TransPIM [27]
with significant margins, PRIMATE also offers superior performance
to other ASIC-based Transformer accelerators including A® [4],
SpAtten [22], and GPU-based solutions.

C. Effect of In-Memory Top-k Engines

We first compare the performance of PRIMATE with SOTA [27]
without the support of in-memory top-k selection. Both architectures
execute the Transformer in a pipelined manner optimized by the Pri-
mateOpt. The baseline PIM architecture [27] sends all attention scores
to the host CPU (AMD EPYC 7742 @ 2.25 GHz) for accumulation
and top-k calculation using C++ std: : sort. Our experiment shows
the PRIMATE in-memory sorting design can reduce sorting overhead
from 9.2%, 25.2%, 2.8%, 5.4% (W1 - W4) down to an average of
0.14%. PRIMATE in-memory top-k engine can offer up to 90x better
standalone sorting cost. We also find CPU-based sorting incurs much
more overheads on workloads with large token counts and smaller
vector lengths, justifying our architectural advantage on large models
like the ever-growing LLMs.

D. Effect of PrimateOpt

In this section, we refer to Figures 7 — 9 to show PRIMATE
improvements. We evaluate layerwise runtime, throughput, space
efficiency, and energy efficiency of different methods in Table III.

1) Layer-wise Exploration: Introduced in V-CI, token density and
token quantity for a partition are both vital parameters to the latency
of a layer, as they introduce a trade-off space between data movement
cost and compute cost. In PRIMATE, we use Layer-wise Exploration
to efficiently determine the optimal partition size for all layers and
sequentially construct a pipeline. Figure 7 presents the per-layer
latency of various partitioning schemes, whose details are present
in Table III. From our experiments, compared to the naive equal
partition and weighted partition schemes (NP1 and NP2), Layer-wise
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Fig. 8: Throughput of PRIMATE normalized to baseline. Value in red
shows final improvement after PO3.

Exploration (PO1) offers an average 1.67 x and up to 2.11 X reduction
in critical runtime in the pipeline for W1 to W4, respectively.
Additionally, through exploration, PO1 offers better performance at
lower memory usage, saving up to 46.7% of memory bank usage
compared to the naive schemes. From progressive pruning, we expect
a monotonically declining per-layer runtime throughout the model.
We observe that PO1 is much closer to this goal than NP1 and NP2.

2) Global Adjustment: The performance of partitions derived by
layer-wise exploration may not hold due to the placements of other
partitions as we construct the pipeline sequentially. In Figure 7,
the PO1 curve notably spikes on certain layers due to their cross-
stack placements, which introduces costly cross-stack traffic. Global
Adjustment performs stack alignment and partition rearrangement to
eliminate cross-stack partitions while maintaining utilization. Figure 8
shows that compared to PO1, PO2 brings 23.7%, 7.0%, 16.7%,
and 0% throughput improvement on W1 to W4, respectively. For
the partition placed cross-stack, Global Adjustment can provide up
to a 64.3% reduction in latency in tested workloads. Cost-wise,
Global Adjustment does not incur any additional memory usage
on W1 and W3, as other layers can exactly fill the gaps created
by stack alignment. W2 and W4 receive small, 5.3% and 4.1%
memory usage increase from stack alignment, respectively, for not
finding exact matches due to other partition sizes. Note that for W4,
its first layer happens to be the critical layer that cannot benefit
from stack alignment. Yet, Global Adjustment is still an important
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prerequisite for subsequent optimization. After this stage, we observe
the monotonically declining per-layer runtime throughout the model,
a sign of efficient memory partitioning.

3) Layer Merging: Progressive pruning results in differences in
layer runtimes that lead to stalls on the faster partitions, causing
temporal under-utilization of memory as faster partitions await slower
ones. We propose Layer Merging to allow one partition to sequen-
tially process multiple faster layers, such that the combined runtime
does not hurt critical time. Therefore, through Layer Merging,
PRIMATE achieves the same throughput (same layerwise runtime
in Figure 8) with less memory, thus a higher space efficiency.
Our experiment in Figure 9 shows that Layer Merging can bring
11.7%, 18%, 0%, and 26.2% better throughput per GB compared to
PO2. PrimateOpt algorithmically evaluates Layer Merging for given
workloads and whether it should be applied: for example, in W3,
merging any two layers results in a worse critical time that offsets the
benefits. At this point, we achieve the best throughput and efficiency
with PrimateOpt.

E. Overhead

The area for top-k engines (16 channel-level sorters) is 2.53 mm?,

2.3% of one HBM2E stack area [14], and the power is 1.3W. We note
that there is no impact on HBM capacity because the area overhead
is significantly less than the 25% threshold evaluated in [5]. The
optimizations proposed by PrimateOpt incur additional overhead in
configuring the layer-specific memory layouts and data forwarding
using memory instructions generated before runtime. At runtime,
the memory routines are run between each pipeline time step. We
carefully model these overheads and include them in our evaluations.

VII. CONCLUSION

We propose PRIMATE, a software-hardware co-design framework
that synergizes token-pruning and PIM to accelerate Transformer
models using HBM-based architecture. We evaluated PRIMATE
using 4 representative Transformer workloads and observe up to
30.6x improvement in throughput, 29.5x improvement in space
efficiency, and 4.3 x better energy efficiency compared to the current
state-of-the-art PIM accelerator for Transformers [27].
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