
SpecHD: Hyperdimensional Computing Framework
for FPGA-based Mass Spectrometry Clustering

Sumukh Pinge∗, Weihong Xu∗, Jaeyoung Kang∗, Tianqi Zhang∗, Niema Moshiri∗, Wout Bittremieux†, Tajana Rosing∗
∗University of California San Diego, La Jolla, CA 92093, USA

{spinge, wexu, j5kang, tiz014, a1moshir, tajana}@ucsd.edu
†University of Antwerp, 2000 Antwerpen, Belgium

wout.bittremieux@uantwerpen.be

Abstract—Mass spectrometry-based proteomics is a key enabler
for personalized healthcare, providing a deep dive into the complex
protein compositions of biological systems. This technology has
vast applications in biotechnology and biomedicine but faces
significant computational bottlenecks. Current methodologies often
require multiple hours or even days to process extensive datasets,
particularly in the domain of spectral clustering. To tackle these
inefficiencies, we introduce SpecHD, a hyperdimensional comput-
ing (HDC) framework supplemented by an FPGA-accelerated
architecture with integrated near-storage preprocessing. Utilizing
streamlined binary operations in an HDC environment, SpecHD
capitalizes on the low-latency and parallel capabilities of FPGAs.
This approach markedly improves clustering speed and efficiency,
serving as a catalyst for real-time, high-throughput data analysis
in future healthcare applications. Our evaluations demonstrate
that SpecHD not only maintains but often surpasses existing
clustering quality metrics while drastically cutting computational
time. Specifically, it can cluster a large-scale human proteome
dataset—comprising 25 million MS/MS spectra and 131 GB of
MS data—in just 5 minutes. With energy efficiency exceeding
31× and a speedup factor that spans a range of 6× to 54× over
existing state-of-the-art solutions, SpecHD emerges as a promising
solution for the rapid analysis of mass spectrometry data with
great implications for personalized healthcare.

Index Terms—Mass spectrometry, Proteomics, Spectral Cluster-
ing, HD computing, FPGA, Personalized Healthcare.

I. INTRODUCTION

Mass spectrometry (MS) is a cornerstone technique in

proteomics research, holding a pivotal role in the advancement

of personalized medicine. At its essence, MS offers an intricate

view into protein compositions, enabling researchers to dissect

the protein compositions of various biological samples. Such

insights are foundational to tailoring medical treatments to

individual patients, harnessing the specificity of their molecular

profiles. With the progressive evolution of MS technologies,

there has been a significant surge in data production, with

monthly datasets reaching terabytes. Repositories like MassIVE,

holding over 500TB of data as of September 2023, exemplify

this growth and hold the potential to revolutionize personalized

medicine through the discovery of patient-specific biomarkers

[1]. However, the intricacies of MS data go beyond volume,

encompassing a transformation process that converts a biological

sample into digital spectral representations (Fig. 1). This data is

subsequently structured into digital formats, such as mzML, mgf,

etc. In these formats, m/z ratios are paired with ion intensities,

turning spectral peaks into vectors that are well-suited for

database searching [2], [3], a task similar to pattern matching in

personalized drug discovery datasets. This step matches observed

spectra with known peptide sequences, identifying proteins in the

sample and bridging raw data to biologically relevant insights.

In personalized healthcare, this identification aids in pinpointing

disease-specific biomarkers and precise treatment interventions.

Fig. 1: MS data-analysis pipeline

Despite the prowess of MS, the sheer volume of spectra gener-

ated in typical MS experiments poses significant computational

challenges, especially in tasks like spectral clustering. In MS/MS

spectra, clustering groups alike data into representative consen-

sus spectra. This streamlining not only cuts redundancy and

expedites database searching, a major bottleneck in proteomic

analysis, but also refines the peptide identification process,

potentially halving its runtime [4]. In personalized healthcare

settings, the benefits of clustering are evident as expedited

data analysis directly impacts the quality and timeliness of

patient care; however, despite its advantages, spectral clustering

remains underutilized due to its time-consuming nature and

limitations of current tools. In response, we present SpecHD,

rooted in HDC principles. Designed for FPGA-accelerated MS

clustering, SpecHD integrates the HD representation to ensure

streamlined binary operations, efficiently harnessing the FPGA’s

parallel processing, low-latency, and robust computational

capabilities. Moreover, it adeptly addresses the often-overlooked

computational demands of data preprocessing in MS workflows.

The salient features of SpecHD’s contributions to MS data

processing include:

1) To the best of our knowledge, SpecHD is the first to

implement the linkage agnostic Nearest-neighbor Chain

Hierarchical Agglomerative Clustering (HAC) using FP-

GAs. This strategic alignment within the HDC framework

2024 Design, Automation & Test in Europe Conference (DATE 2024)

979-8-3503-4859-0/DATE24/© 2024 EDAA
Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 19:20:52 UTC from IEEE Xplore. Restrictions apply.

boosts MS clustering speed by 6–54× [5], [6], achieving

an energy efficiency 31× greater than current benchmarks.

2) With SpecHD, we synergistically blend near-storage MS

preprocessing with FPGA capabilities. Guided by design

space exploration, this approach advances hardware and

energy efficiency while achieving a 3-10× preprocessing

speed up compared to [5], enabling seamless data ex-

changes between the FPGA and NVMe storage.

3) Deviating from conventional tools and leveraging the HD

space, SpecHD uses an innovative approach with stream-

lined preprocessed spectral data, accelerated clustering, and

emphasizes superior clustering quality and database search

efficiency over other MS solutions.

II. RELATED WORKS

MS clustering presents unique challenges compared to tradi-

tional methods due to its high-dimensional and noisy spectral

data. Each MS spectrum holds hundreds to thousands of intensity

values, emphasizing the need for specialized algorithms attuned

to such complexities. Both PIM [7] and FPGA-based solutions,

as well as HD computing methods, lean towards K-means

[8], [9] and DBSCAN [10], with Hierarchical clustering often

overlooked despite its potential. In our MS clustering analysis,

we observed the shortcomings of K-means and DBSCAN. In

contrast, HAC [11] with complete linkage excelled, offering

versatility in cluster shapes, cluster counts, and outlier resilience,

proving uniquely suited for MS data nuances [12].

MS clustering solutions face the dual challenge of max-

imizing clustering quality while minimizing computational

time. MaRaCluster [12] uses optimized distance metrics for

better clustering quality. Falcon [13] employs hashing for

dimensionality reduction and leverages approximate nearest

neighbor algorithms for faster computations. MsCRUSH [4]

utilizes locality-sensitive hashing to minimize pairwise spectra

comparisons, while GLEAMS [6] uses a supervised deep neural

network to embed spectra for optimized clustering. However,

these approaches often make trade-offs between quality and

speed. Bridging the gap between previous methods, HyperSpec

[5] stands out as the state-of-the-art (SoA) tool, establishing

as our primary point of comparison due to its remarkable

speed and commendable clustering performance. HyperSpec

employs HDC and, by harnessing GPU acceleration, achieves

leading results in speed while preserving the clustering quality.

However, a significant concern with HyperSpec and other

GPU-based solutions is when datasets surpass the GPU’s

onboard memory capacity. This constraint inhibits efficient data

processing and frequently necessitates data transfers between the

GPU and the system memory, leading to performance overheads.

The increased power consumption of GPUs, particularly at

peak operations, also adds to operational costs [14]. Beyond

these challenges, HyperSpec is also dependent on general-

purpose libraries, offering two flavours of clustering algorithms:

DBSCAN via the cuML library and HAC using the fastcluster

library, targeting both GPU and CPU platforms, respectively.

Another critical bottleneck in MS clustering tools is the

spectra loading and preprocessing step, which notably consumes

a significant portion of the total execution time [15]. The

escalating growth of MS data poses a substantial challenge to

current clustering solutions, methods reliant on CPU and GPU

architectures, making repository-scale clustering increasingly

impractical. In contrast, FPGA architectures, being well-suited

for scalable and power-efficient solutions, can be custom-

configured to specific applications, enhancing data handling

and minimizing transfer overheads. Given these challenges,

there is a recognized need for near-storage (NS) computing

in efficient MS clustering, merging high-quality results with

computational efficiency.

III. METHODOLOGY AND FLOW

Our end-to-end HD-based framework delineates three critical

stages: MS preprocessing, MS encoding, and MS clustering.

A specialized NS framework, MSAS [15] has been employed

to enhance performance during MS preprocessing. Both the

HD encoder and our novel NN-chain HAC accelerator (Fig.5)

for MS clustering are seamlessly integrated within the FPGA

architecture. Two distinct strategies guide our approach: 1)

A comprehensive end-to-end framework, echoing established

clustering tools. Within this framework, raw data undergoes

preprocessing in the near-storage accelerator, subsequently

leveraging direct peer-to-peer (P2P) transfers to the FPGA.

The encoded output then utilizes the High Bandwidth Memory

(HBM) to harness its vast bandwidth, laying the groundwork

for the acceleration of clustering kernels. 2) An efficiency-

driven strategy within the HDC framework: raw data is encoded

once, and the preprocessed encoded spectras directly interface

the clustering kernels (via P2P). This method is chosen over

recurrently initiating the computational pipeline, advocating

for a one-time preprocessing followed by subsequent updates,

effectively bolstering real-time data analysis.

Fig. 2: Top-level dataflow and Kernel organisation

A. Proposed MS Preprocessing Module

In the vast landscape of MS tools, modules such as the Spectra

Filter, Top-k Selector, and Scale and Normalization emerge as

standard features in MS preprocessing [2], [6] and are integral to

MSAS [15]. While the U280 Xilinx Alveo platform prominently

supports these functionalities, their synergy with MSAS remains

relatively unexplored. The activation of P2P holds a distinct

strategic advantage: it enables direct data exchanges between the

FPGA and NVMe storage, bypassing the need for intermediary

host memory interactions and thereby reducing bandwidth

constraints. This feature is also applicable to other Alveo

PCIe platforms, contingent upon the host system’s ability to

support a large physical address space (64GB BAR) [16]. The

MSAS accelerator, implemented using CMOS technology, is

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 19:20:52 UTC from IEEE Xplore. Restrictions apply.

integrated into the same die as the SSD’s embedded cores.

By being on the same die, the MSAS accelerator can directly

interface with the global on-chip bus, granting immediate access

to data from NAND flashes. This approach empowers it to

achieve bandwidths on par with external SSDs, paving the

way for faster, more efficient preprocessing of large-scale MS

datasets. Within MSAS, the Spectra Filter module plays a pivotal

role by filtering out peaks associated with the precursor ion

or those with intensities falling below 1% of the base peak,

preparing the ground for the Top-k Selector, which employs

a streamlined parallel bitonic network. This design minimizes

data movement overhead, filtering redundant spectral data early

in the preprocessing, thereby promoting efficiency and optimal

handling of expansive MS data. Evaluations and advantages of

this approach will be elaborated upon in Section IV.

bucketi =

⌊
(m/zi − 1.00794)× Ci

resolution

⌋
(1)

In the context of large-scale datasets, naive approaches

to pairwise spectrum comparisons can rapidly escalate into

computational bottlenecks, especially given the constraints of

on-chip memory. To mitigate this, we adopt a data organization

strategy based on precursor m/z. To manage the computational

complexity, we partition the dataset [13] into smaller, discrete

‘buckets’ calculated as in Eq. 1. Here, Ci represents the charge

state of the ith spectrum and 1.00794 is the mass of the charge.

The term ‘resolution’ is used to describe the granularity of

the mass spectrometer’s measurements, and this value can

range from 0.05 to 1. Such an approach proves advantageous

for high-throughput MS spectrometers, optimizing the use of

computational resources.

B. Proposed MS-spectra Encoder

Each spectrum comprises two vectors corresponding to the

m/z ratios and intensities, both sized by peak_count. Our

aim is to efficiently encode these spectra into a single high-

dimensional vector of size Dhv using a method that has been

proven effective for MS workloads in the HD domain due to its

capability to maintain spatial locality [2], [5]. For this purpose,

m/z values are quantized to a range represented by ID[0,f],

and intensity values to L[0,q]. Both vectors, pre-allocated

from high-dimensional memory spaces, have a size of Dhv. For

each pair of m/z and intensity values, bitwise XOR operations

are performed on the corresponding vectors from ID and L. The

results are successively accumulated into a single vector until all

peak_count pairs have been processed. A pointwise majority

function is then applied to this aggregated vector, culminating

in a refined binarized spectrum hypervector:

spectrai =
∑
(i,j)

(Ii ⊕ Lj) (2)

To accelerate the encoding process, the module employs sev-

eral hardware-level optimizations designed for FPGA platforms.

Specifically, data partitioning directives are applied to the ID
and Level memory arrays via HLS pragmas. This allows

for simultaneous multiple accesses to these arrays, thereby

facilitating loop unrolling within the hd_encoding function.

In turn, this minimizes the initiation interval, leading to a

significant boost in data throughput. Loop unrolling, enhanced by

HLS pragmas, drives parallel processing across peak_count.

The resultant HD vectors are stored in High Bandwidth Memory

(HBM), capitalizing on its massive bandwidth to optimize

both memory access and retrieval speeds for the succeeding

processing of clustering kernels. Moreover, this optimization

compresses our substantial 131GB raw MS dataset down to a

streamlined 5GB, as depicted in Fig.(8b). This compact data is

efficiently stored in the device’s HBM (8GB) for utilization in

both previously outlined strategies.

Fig. 3: Proposed HLS optimized spectra encoder

C. Kernel-Level Acceleration for NN-Chain HAC:

HyperSpec [5] represents a significant advancement in MS

clustering, yet its dependency on general-purpose libraries and

architectures might not optimally tap into the unique strengths

of FPGA, especially in terms of parallel processing and real-

time capabilities. Classic HAC algorithms face computational

bottlenecks due to their O(n3) time complexity. These algo-

rithms require full matrix updates to calculate pairwise distances

between all data points and to identify the minimum distance

among all pairs. Addressing these challenges, in a pioneering

advancement, SpecHD is among the first to implement the

linkage agnostic NN-Chain HAC using FPGAs. Although the

foundational concept of the algorithm exists [11], our unique

contribution is in its adaptation for FPGA architectures.

Fig. 4: Naive (above) and NN-chain (below) HAC comparison

The algorithm starts by calculating pairwise distances, akin to

traditional methods, but streamlines the following computational

steps. The NN-Chain algorithm constructs a local ‘chain’ of

closest points and evaluates this chain to identify Reciprocal

Nearest Neighbors (RNN) [11]. Upon identifying an RNN pair,

the clusters are merged, and the distance matrix is updated more

efficiently, avoiding the need for a full matrix update (Fig. 4).

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 19:20:52 UTC from IEEE Xplore. Restrictions apply.

This targeted approach minimizes redundant calculations and

makes NN Chain well-suited for large-scale, data-intensive

tasks without compromising clustering quality. Our architecture

capitalizes on the robust and adaptable nature of the NN-Chain

Algorithm for hierarchical agglomerative clustering (HAC). It is

important to note that HAC is inherently sequential with deep

dependencies. However, in our approach, we made dedicated

efforts to maximize parallelization and enhance optimization. By

exploiting the FPGA’s intrinsic parallel processing capabilities,

our proposed HLS-optimized kernel (Fig. 5) serves as the

computational core, parameterized to operate on diverse data

structures and design configurations.

Fig. 5: Proposed FPGA-accelerated NN-Chain HAC architecture

Optimized Distance Matrix Computation: The architecture

incorporates specialized modules, including a fast unrolled

XOR and an efficient population count (popcount) module,

both parameterized for Dhv bits of dimensionality. A dataflow

approach is employed, facilitating task-level parallelism by

enabling concurrent execution of both reading the encoded

spectra and calculating distances, thereby boosting the efficiency

of spectra processing and accelerating the computation of

the distance matrix. Due to the inherently O(n2) nature of

the distance matrix, which demands significant storage, only

the lower triangular part of the distance matrix is retained,

capitalizing on its symmetry. Furthermore, the use of 16-bit fixed-

point arithmetic results in a significant reduction in memory

footprint while maintaining computational accuracy.

Proposed NN-Chain HAC Architecture (Fig. 5): The

process begins by selecting an arbitrary point and calculating its

minimum distance to all other points based on a linkage distance

matrix. Both the selected point and its nearest neighbor are

initially added to a stack. As the algorithm iterates, new elements

are added to this stack based on the smallest distance criterion

until a reciprocal nearest neighbor is identified. Specifically,

if the last index in the stack matches the index of the current

minimum distance, the algorithm proceeds to cluster merging

and updates the distance matrix.

The algorithm manages two separate sets of clusters. One

set, stored in Cluster BRAM, is subject to the exhaustive tree

traversal, as local chains cannot always be guaranteed to fall

under a predefined distance threshold. Other set only merges if

the inter-cluster distance is below this threshold. Each cluster

is comprised of three components: element count, the elements,

and a correction factor (CF) for adaptive adjustments. Upon

identifying an RNN, clusters merge based on their indices

by folding the second cluster into the first, updating both

their elements and total count. A deleted cluster is effectively

removed from future traversals, and its position is replaced by

the next cluster in the array. CF’s are used to dynamically

synchronize these cluster updates. Following each cluster

merge, the distance matrix is updated based on the chosen

linkage criteria. Our flexible architecture, supporting various

linkage criteria like Ward, single, and complete linkage, has

demonstrated that complete linkage yields the most reliable

results in our implementation. In the concluding steps, the

algorithm calculates a consensus cluster by evaluating the lowest

average minimum distance to all other spectra within that cluster,

based on the original distance matrix. Various optimization

techniques, such as memory partitioning and pipelining, are

deployed to maximize computational efficiency and throughput.

These features make our NN-Chain architecture a robust and

adaptable solution for FPGA platforms.

IV. RESULTS

In our experimental setup, we utilized the Xilinx Alveo

U280 Data Center Accelerator Card, featuring an HBM2 total

capacity of 8GB and a bandwidth of 460GB/s. For our SoA

benchmarking, our setup includes a server with a 12-core CPU,

128GB DDR4 memory, and a 2TB NVMe solid-state drive. An

NVIDIA GeForce RTX 3090 GPU with 24GB RAM was chosen

for a comparative evaluation of SoA GPU tools. We conducted

extensive design space exploration for the SSD-level MSAS

accelerator during our preprocessing phase, specifically targeting

both speed and energy optimization. In terms of software tools,

HyperSpec [5] served as the SoA GPU tool, msCRUSH [4]

represented the SoA for CPU solutions, falcon [13] was

acknowledged for SoA in cluster sizes, and GLEAMS [6] was

considered for its leading clustering quality. To evaluate the

robustness of our approach, we selected datasets intended to

highlight the effects of varying sizes and intrinsic character-

istics. As seen in Table I, PXD001468 and PXD001197 have

comparable spectra counts, but their size disparity underscores

the variations within datasets. Such variations can arise from

disparities in the number of data points within individual spectra

or distinct noise characteristics. Evaluating our preprocessing

and clustering modules across these differences offers deeper

insight into its overall performance.

A. Clustering quality

The largest dataset used for clustering quality evaluation

was the Human Proteome Draft dataset, with corresponding

spectrum identifications obtained from the MassIVE reanalysis

RMSV000000091.3 using MS-GF+ [17] and matched against

the UniProtKB/Swiss-Prot human reference proteome.

1) Clustered Spectra vs. Incorrect Clustering Ratio: Fig. 6

illustrates the balance SpecHD achieves between clustered

spectra ratio and incorrect clustering ratio (ICR). The efficacy

of a clustering algorithm can be gauged by its ability to achieve

a high clustered spectra ratio while maintaining a low ICR

(∼1-2%). A robust algorithm ensures high fidelity in results

without being overly aggressive, as aggressive clustering may

compromise the quality of analyses. SpecHD’s performance

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 19:20:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Clustered spectra ratio vs incorrect clustering ratio

was benchmarked against 9 other tools. With an ICR target of

1%, crucial for maintaining the integrity of downstream analyses,

SpecHD achieved an impressive clustered spectra ratio of 45%.

This result surpassed tools like msCRUSH [4] and falcon
[13], and stood firm against HyperSpec’s 48% [5] and

MaRaCluster’s 44% ICR [12]. Although GLEAMS [6] offered

superior ratios, it required considerably more computational

effort. In comparison, SpecHD boasted a 54× speedup over

GLEAMS. This highlights SpecHD’s ability to balance speed and

accuracy, evidenced by its 1.5-2× speedup in spectra searching

by eliminating redundant searches (ICR = 1-2%).

2) Peptide Identification Overlap: Clustered consensus spec-

tra, which are vital for unique peptide sequence identification

in database searches, can be effectively visualized using Venn

diagrams. Benchmarking against PXD000561 dataset, SpecHD
displayed promising results: a narrow gap of 1.38% behind

GLEAMS [6] for peptides with a 2+ charge, while outshining

HyperSpec [5] by 7.33%. For 3+ charge, SpecHD lagged

GLEAMS by 3.24% but surpassed HyperSpec by 5.10%. This

indicates SpecHD’s prowess in balancing both performance

and clustering quality. Further insights into SpecHD’s metrics

revealed its completeness metric at 0.82, a touch beneath the

usual 0.85 seen in other tools. This tradeoff allows SpecHD
to identify a broader range of unique peptides, reinforcing its

potential for comprehensive human proteome studies.

Fig. 7: Overlap of identified unique peptides

B. Data Compression & Design Configurations

Preliminary tests assessed the best linkage criteria for HAC

within our SpecHD NN-Chain FPGA algorithm. Complete

linkage was dominant with a 44% clustering ratio and a 0.764

completeness score, followed closely by Ward linkage at 40%

and 0.756, whereas single linkage trailed behind. For data

compression, Dhv = 2048 played a crucial role to maintain

a balance of accuracy and utilization, resulting in compression

(a) Linkage Comparison (b) Compression factor

Fig. 8: Linkage Efficacy and Compression-SpecHD

rates ranging from 24× to 108× across datasets. While we

expedited certain aspects of the HAC, achieving significant

speedup necessitated deploying multiple kernels, helped by

the lack of intra-kernel dependencies. The integration of these

additional clustering kernels allowed a linear speedup. However,

adding more kernels also brought about routing challenges,

underscoring the balance between parallelism, speed, and FPGA

resource constraints. Presented in Fig.2, our setup, which

comprises one encoder and five clustering kernels, registered a

LUT usage of 44.97% and a BRAM utilization of 55.26%.

(a) Resource Utilization

Configurations Parameter

linkage criteria complete
θ 0.27

Dhv 2048
Q 16
F 4096

max peak count 50
max cluster size 300

(b) Design Setup

Fig. 9: Design parameters and insights

C. SpecHD vs State-of-the-art solutions

1) Pre-processing Results: To quantify the efficiency of

our preprocessing module, we evaluated it across five different

datasets, as shown in Table I. The hardware setup and config-

urations are based on an Intel SSD DC P4500, and we have

emulated the setup as described in [15]. Energy estimates are

derived from combining SSD simulation data with the SSD

power model referenced [18]. For MS clustering, HyperSpec

[5] establishes the preprocessing benchmark by employing

multiprocessing to concurrently process files across k distinct

CPU cores. We observe a speedup ranging from 3.4-10× over

five diverse data-sets when compared to [5], while also achieving

a considerable reduction in energy consumption—implications

of which will be detailed in subsequent sections.

TABLE I: Preprocessing Performance Metrics
Sample PRIDE ID Spectra Size PP time(s) Speedup [5] Energy(J)

Kidney PXD001468 1.1M 5.6 GB 1.79 10.0× 17.38

Kidney PXD001197 1.1M 25 GB 8.22 4.2× 77.27

HeLa PXD003258 4.1M 54 GB 18.44 4.3× 166.53

HEK293 PXD001511 4.2M 87 GB 28.53 3.4× 268.22

Human PXD000561 21.1M 131 GB 43.38 8.9× 382.62

2) Speedup comparisons: In the field of MS-based pro-

teomics, the efficiency of spectral clustering tools is critically

measured by runtime, which becomes increasingly important

as MS repositories continue to expand. With this in mind, we

delve into an end-to-end runtime comparison between SpecHD
and several other comparative tools. Across five datasets (Table

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 19:20:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 10: End-to-end runtime speedup

I), SpecHD achieves remarkable speed-ups, ranging from 31×

over GLEAMS for dataset PXD001511 to an impressive 54×

for PXD000561. Against HyperSpec, we note a 6× speed-

up, solidifying SpecHD’s efficiency. Our analysis shows that

FPGA systems like SpecHD offer superior speed with a single

encoder module, outweighing the flexibility of GPU-accelerated

encoding, which allows for on-the-fly reconfigurations.

Fig. 11: Standalone clustering speedup for PXD000561

Within the HDC framework, restarting the computational

pipeline for every new analysis is inefficient. Instead, a strategy

of one-time preprocessing followed by subsequent updates

enhances real-time data analysis. Leveraging the impressive

data compression metrics, our approach underscores that one-

time preprocessing significantly boosts efficiency. When con-

centrating exclusively on standalone clustering of pre-encoded

vectors, the runtime gains are remarkable. SpecHD processed

PXD000561 in just 80 seconds, marking a 12.3× speed-up over

HyperSpec’s 993 seconds and a 14.3× advantage over GLEAMS.

(a) End-to-end clustering (b) Standalone clustering

Fig. 12: Energy efficiency

3) Energy efficiency: In our assessment, SpecHD’s energy

efficiency was benchmarked against HyperSpec, utilizing

measurement tools such as Intel RAPL for CPU, Nvidia SMI

for GPU, and Xilinx XRT for FPGA. In our evaluation of

benchmarks, we prioritized runtime efficiency as our analysis

indicated that other tools with substantially extended runtimes

inherently consumed more energy, making them less comparable

in this context. Notably, the DBSCAN variant showcases a

runtime three times faster than HAC. However, there’s a trade-

off in clustering quality, as shown in Fig. 6. In the end-to-

end energy efficiency, SpecHD exhibited enhancements of 14×

over HyperSpec-DBSCAN and 31× over HyperSpec-HAC,

while in the clustering phase, the gains were 12× and 40×,

respectively. SpecHD’s performance can largely be attributed

to FPGA’s inherent prowess and its emphasis on NS processing,

which counters data transfer limitations prevalent in conventional

systems. As a result, SpecHD serves as an excellent choice for

applications where energy efficiency is of importance.

V. CONCLUSION

In this paper, we introduced SpecHD, a novel framework

that integrates the strengths of HD computing with FPGA-

accelerated architecture, targeting the current inefficiencies in

mass spectrometry-based proteomics. In-depth evaluations reveal

that SpecHD can efficiently process a vast human proteome

dataset in a mere 5 minutes. It outperforms other tools, achieving

speedups between 6× and 54×, and showcases an impressive

energy efficiency of over 31×, all while retaining the potential

for repository scale clustering. Moving forward, it becomes

imperative to consider further refinements for SpecHD and

contemplate its integration right at the point of data capture

within established proteomics processing workflows.

ACKNOWLEDGMENT

This work was supported in part by PRISM and CoCoSys,

centers in JUMP 2.0, an SRC program sponsored by DARPA

(SRC grant number - 2023-JU-3135). This work was also

supported by NSF grants #2003279, #1911095, #1826967,

#2100237, #2112167, #2052809, #2112665.

REFERENCES

[1] C. A. Ciocan-Cartita et al., “The relevance of mass spectrometry analysis
for personalized medicine through its successful application in cancer
‘omics’,” Int J Mol Sci, vol. 20, no. 10, May 2019.

[2] J. Kang, W. Xu et al., “Massively parallel open modification spectral
library searching with hdc,” 11 2022.

[3] J. Kang et al., “Accelerating open modification spectral library searching
on tensor core in high-dimensional space,” Bioinformatics, Jun. 2023.

[4] L. Wang et al., “mscrush: Fast tandem mass spectral clustering using
locality sensitive hashing,” J. Proteome Res., vol. 18, pp. 147–158, 2019.

[5] W. Xu et al., “Hyperspec: Ultrafast mass spectra clustering in hyperdi-
mensional space,” J. Proteome Res., vol. 22, no. 6, Jun 2023.

[6] W. Bittremieux et al., “A learned embedding for efficient joint analysis of
millions of mass spectra,” Nat Methods, vol. 19, pp. 675–678, Jun 2022.

[7] M. Imani et al., “Dual: Acceleration of clustering algorithms using digital-
based processing in-memory,” in MICRO, 2020.

[8] M. Imani, S. Salamat et al., “Fach: Fpga-based acceleration of hyperdi-
mensional computing by reducing computational complexity,” 2019.

[9] S. Salamat, M. Imani, and T. Rosing, “Accelerating hyperdimensional
computing on fpgas by exploiting computational reuse,” IEEE Transactions
on Computers, vol. 69, no. 8, pp. 1159–1171, 2020.

[10] N. Scicluna et al., “Arc 2014: A multidimensional fpga-based parallel
dbscan architecture,” ACM Trans. Reconfigurable Technol. Syst., nov 2015.

[11] F. Murtagh and P. Contreras, “Methods of hierarchical clustering,” 2011.
[12] M. The and L. Käll, “Maracluster: A fragment rarity metric for clustering

fragment spectra in shotgun proteomics,” JPR., Mar 2016.
[13] W. Bittremieux et al., “Large-scale tandem mass spectrum clustering using

fast nearest neighbor searching,” Rapid Commun. Mass Spectrom., 2021.
[14] A. Pattnaik et al., “Scheduling techniques for gpu architectures with

processing-in-memory capabilities,” in PACT, 2016.
[15] W. Xu, J. Kang, and T. Rosing, “A near-storage framework for boosted

data preprocessing of mass spectrum clustering,” in DAC, NY, USA, 2022.
[16] Xilinx, “Pcie peer-to-peer communication,” 2022, xRT Documentation.
[17] S. Kim and P. A. Pevzner, “Ms-gf+ makes progress towards a universal

database search tool for proteomics,” Nat Commun, vol. 5, Oct 2014.
[18] M. Jung et al., “Nandflashsim: High-fidelity, micro-architecture-aware

nand flash memory simulation,” ACM Transactions on Storage, Jan 2015.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on August 16,2024 at 19:20:52 UTC from IEEE Xplore. Restrictions apply.

