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Adaptive-Force-Based Control of Dynamic Legged
Locomotion Over Uneven Terrain

Mohsen Sombolestan

Abstract—Agile-legged robots have proven to be highly effective
in navigating and performing tasks in complex and challenging
environments, including disaster zones and industrial settings.
However, these applications commonly require the capability of
carrying heavy loads while maintaining dynamic motion. There-
fore, this article presents a novel methodology for incorporating
adaptive control into a force-based control system. Recent advance-
ments in the control of quadruped robots show that force control
can effectively realize dynamic locomotion over rough terrain. By
integrating adaptive control into the force-based controller, our
proposed approach can maintain the advantages of the baseline
framework while adapting to significant model uncertainties and
unknown terrain impact models. Experimental validation was suc-
cessfully conducted on the Unitree A1 robot. With our approach,
the robot can carry heavy loads (up to 50% of its weight) while
performing dynamic gaits such as fast trotting and bounding across
uneven terrains.

Index Terms—Adaptive control, model predictive control
(MPC), quadruped robots, unknown impact model.

I. INTRODUCTION

EGGED robots have numerous potential uses, from search
Land rescue operations to autonomous construction. To
perform these tasks effectively, the robot must accurately under-
stand the environment it will be operating in. However, due to the
complexity of the robot and the environment, the robot’s model
might contain a significant level of uncertainty and affect the
robot’s stability, particularly when performing agile movements.
To overcome these challenges, there is a need to develop a
control framework that can effectively compensate for these
uncertainties in real time.

The utilization of convex model predictive control (MPC)
with the single rigid body (SRB) model in legged robots [1]
has greatly enhanced the real-time implementation of diverse
walking gaits. Unlike the balance controller based on quadratic
programming [2], MPC offers the capability to perform agile
motions like jumping [3], [4] and high-speed bounding [5] for
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quadruped robots. Additionally, MPC exhibits robustness when
traversing rough and uneven terrains. However, it is important
to note that MPC assumes perfect knowledge of the dynamic
model.

To enhance trajectory tracking in the presence of unknown and
changing disturbances, researchers have explored the combina-
tion of MPC with adaptive control techniques [6], [7], [8]. Addi-
tionally, parameter estimation techniques have been employed to
improve the robustness of the control system further [9]. These
approaches aim to adapt the controller and estimate system
parameters to effectively compensate for uncertainties and dis-
turbances, leading to improved trajectory tracking performance.
It is worth noting that all of these studies were conducted using
a position-based controller model.

In this work, we tackle the legged robot locomotion issue
in real-world scenarios with significant uncertainty. The uncer-
tainty can come from both the robot model and the environment.
Since our proposed method is based on a force controller, it
retains the advantage of robustness to uneven terrain. Thanks
to MPC as our baseline controller, our framework can be ex-
tended to different locomotion gaits and trajectories without
adjusting the controller parameters. Moreover, in our control
system, we effectively manage substantial model uncertainty
by utilizing the adaptive controller. By implementing adaptive
control, our framework evolves into a versatile solution for
mitigating persistent disturbances across various operations and
over time. Given the adaptive control’s capability to address
uncertainties continuously, it provides a practical approach for
real-world applications in legged robot autonomy, such as rescue
missions, inspections, and logistics. This ability to compensate
for persistent disturbances in real-world scenarios eliminates
the need for recalibration for various tasks, enabling a thorough
online operation. As aresult, this represents a key contribution to
our work, offering a comprehensive approach for legged robot
applications and facilitating movement across diverse terrains
with unknown impact models.

A. Related Works

1) Offline Learning: The offline learner can leverage a
model-based control approach or learn the control system from
scratch. Using a model-based method, researchers mainly tar-
get learning the dynamic to improve the controller perfor-
mance [10]. One example of this approach is integrating deep
learning with MPC, in which the proposed model tries to learn
the cost or dynamic terms of an MPC [11]. This hybrid method
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shows considerable improvement for the aerial robot [12] when
learning the dynamic model from experimental data. The major
limitation of this method is that it is restricted to the dynamic
model learned during the training phase. However, the dynamic
model is prone to frequent changes in real-world scenarios due
to environmental uncertainties and external disturbances.

There has been growing interest in utilizing reinforcement
learning (RL) to train models from scratch to overcome the
limitations of previous approaches. The key advantage of RL
models is their ability to adapt swiftly to changes in real-world
environments due to being trained in diverse environments
with varying properties. In the case of quadruped robots, an
RL model can directly predict appropriate joint torques for
traversing different types of terrain, as demonstrated by Chen
et al. [13]. Additionally, by training the model to learn foot
positions, Bellegarda et al. [ 14] enable quadrupeds to run quickly
while carrying unknown loads. However, these methods heavily
rely on domain randomization during training to generalize to
challenging environments. Yang et al. [15] also propose an
end-to-end RL method that utilizes proprioceptive states and
visual feedback to predict environmental changes.

2) Online Learning: To address inaccuracies in model-based
controllers, researchers have explored an alternative approach
using online learning, mainly supervised learning methods [16],
[17], [18]. In this approach, the focus is on learning disturbances
online [19], and in some cases, researchers also aim to learn
the dynamics of the system itself [20]. Furthermore, this ap-
proach has been successfully applied for online calibration of
kinematic parameters in legged robots [21]. In addition, a recent
study has developed a Lipschitz network method to bridge the
model-reality gap in real time [22]. The online learning method
is closely related to adaptive control, and numerous studies have
explored combining these two approaches [23]. This combina-
tion aims to leverage the advantages of both methods, allowing
for dynamic adaptation and continuous learning from real-time
data to improve control system performance. Perhaps closest to
our work in terms of online adaption is the learning method
presented in [24] for legged robots. The authors correct the
model behind the controller using a supervised learner while
the robot is walking in an unknown environment. The data are
collected during the robot’s operation to learn a linear residual
model that can compensate for system errors. However, in
the transition from simulation to experiment, the acceleration
estimators make noisy data required for training the model. As
a result, the method is only applied to estimate the linear terms
since the angular terms data proved to be too noisy to be helpful
in the model.

To enhance controller efficiency and performance, autotun-
ing methods, particularly for PID controllers, have gained
widespread use [25], [26]. These methods fall into two cat-
egories: 1) model-based and 2) model-free. Model-based ap-
proaches use system model information, often employing the
gradient of the performance criterion to enhance local perfor-
mance [27]. In contrast, model-free methods, such as Markov
chain Monte Carlo [28], Gaussian process [29], [30], and deep
neural network [31], approximate gradients or surrogate models
to boost performance. However, model-based approaches may
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fail in real-world scenarios due to imperfect dynamic knowl-
edge, and model-free methods such as Bayesian optimization
can be inefficient in high-dimensional parameter tuning. Ad-
dressing this, recent works [32], [33] directly obtain the gra-
dient of the loss function with respect to controller parameters
and apply it to gradient descent for performance improvement.
Autotuning generally requires data or a fixed model for training
and, therefore, does not fit well for real time and fast adaptation
to significant model uncertainty.

3) Adaptive Control: Adaptive control aims to tune the con-
troller’s variables online during deployment [34]. Adaptive con-
trol has been applied for manipulation tasks to robotic arms [35],
mobile robots [36], [37], [38], and quadruped robots [39], [40].
The conventional model reference adaptive control (MRAC)
architecture was initially designed for controlling linear systems
in the presence of parametric uncertainties [41], [42]. However,
it cannot characterize the input/output performance of the sys-
tem during the transient phase. To address this limitation and
improve the transient performance of adaptive controllers, the
L4 adaptive control offers several advantages over traditional
MRAC, such as decoupling adaptation and robustness within a
control framework [43]. In addition, incorporating a low-pass
filter in adaptation law allows the L; adaptive control to pro-
vide stability [44] and transient performance [45]. Therefore,
the L, adaptive control technique guarantees robustness with
fast adaptation [46], an essential criterion in dynamic robotics
applications. Recently, by integrating L, adaptive controller
and Bayesian learner, researchers leverage the fast adaption
performance of the L, adaptive controllers and introduce a safe
simultaneous control and learning framework [47], [48].

For legged robots, the adaptive controller has also been em-
ployed to find the value and location of the center of mass
(COM) [49]. Our work on L; adaptive control for bipedal
robots [50] considers a control Lyapunov function (CLF)-based
controller as a closed-loop nonlinear reference model for the ¢
adaptive controller. It was validated for the robot’s walking [51]
and running [52]. However, the control framework in this prior
work is based on hybrid zero dynamics (HZD) [53], which
uses joint position control to track the desired trajectory from
optimization for each robot joint. Moreover, in [54], an adaptive
control based on a CLF is designed for quadrupeds to interact
with unknown objects. Then, they combined the criteria derived
by adaptive control as a constraint in an MPC framework.
However, adding more inequality constraints to MPC makes
the controller more complex in terms of computation. In our ap-
proach, we compute a residual vector to compensate for dynamic
uncertainty, which makes the controller more time-efficient.
Additionally, by employing our method, the robot can adapt
to terrains with unknown impact models.

B. Contributions

A preliminary version of this research appeared in [55];
however, this article presents several novel contributions to the
prior work. This work incorporates the L, adaptive controller
into the MPC. The proposed control system leverages MPC
due to its robustness to uneven terrain, contact constraints, and
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Fig. 1.

Our proposed adaptive MPC is successfully validated in an experiment
on a Unitree Al robot while carrying an unknown load of 5 kg (almost 50% of
body weight) on rough terrain. Experimental results video: https://youtu.be/
5tImShOq3lk.

generalization to different locomotion gaits. Moreover, by in-
tegrating adaptive control into MPC, the proposed model can
compensate for significant model uncertainty. In the previous
work [55], the robot can only perform quasi-static walking; how-
ever, in this work, the robot can perform dynamic motions thanks
to MPC. Finally, the authors present new hardware experiments
to demonstrate the effectiveness of the proposed adaptive MPC
(as illustrated in Fig. 1). The main contributions of the article
are as follows.

1) We introduce a novel control system that combines the
L, adaptive control into the force-based control system,
designed to address the challenges posed by model uncer-
tainty in real-world applications.

2) Thanks to MPC, our approach offers greater versatility
as it can be adapted to a wide range of locomotion gaits
and trajectories. Moreover, our method can handle terrain
uncertainty, allowing the robot to navigate rough terrains
and high-sloped terrain, such as grass and gravel.

3) By integrating the adaptive control into MPC, it is possible
for quadruped robots to carry an unknown heavy load (up
to 50% of the robot’s weight) across challenging terrains,
with the capability of executing dynamic gaits such as fast
trotting and bounding. This is a significant improvement
compared to our previous work, which only allowed the
robot to perform quasi-static walking.

4) The combination of using MPC for both the reference
model and the real model in the adaptive controller makes
the control system computationally expensive, leading
to potential delays in computation. To ensure real-time
performance, we have developed an update frequency
scheme for the control system, which allows for the opti-
mized allocation of processing resources to each control
component.

5) Our proposed approach enables the control system to adapt
to terrains with unknown impact models, such as soft
terrain. Traversing soft terrain is a challenging task for
quadruped robots. Using our method, the Al robot can
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Fig. 2. Baseline Control Structure. Block diagram of a control architecture
for a quadruped robot. For the stance leg control, we use two common baseline
control systems: 1) QP-based balancing controller and 2) MPC.

walk on double-foam terrain in different directions. In
comparison, the robot cannot maintain its balance using
the baseline controller, resulting in a collapse.

The rest of this article is organized as follows. Section II
presents the baseline control architecture for quadruped robots
and provides some knowledge on force-based controllers. In
Section III, we will briefly present an overview of our control
approach. Then, our proposed adaptive force-based controller
using balance controller and MPC will be elaborated in Sections
IV and V, respectively. Furthermore, the numerical and experi-
mental validation are shown in Section VII. Finally, Section VIII
concludes this article.

II. PRELIMINARIES

In this section, we present the background on the control
architecture of quadruped robots and describe each control
component. According to the work in [56], the robot’s control
system consists of several modules, including a high-level con-
troller, low-level controller, state estimation, and gait scheduler
as presented in Fig. 2.

A reference trajectory can be generated for high-level control
from user input and state estimation. The gait scheduler defines
the gait timing and sequence to switch between each leg’s swing
and stance phases. The high-level part controls the position of
the swing legs and optimal ground reaction force (GRF) for
stance legs based on the user commands and gait timing. As the
baseline for the stance leg controller, we will use two common
approaches: 1) quadratic program (QP)-based balancing con-
troller [2] and 2) MPC [1]. The low-level leg control converts
the command generated by high-level control into joint torques
for each motor. These modules of the control architecture will
be described briefly in the following sections. More details can
be found in [1], [2], and [56].

A. Gait Scheduler

The Al’s gait is defined by a finite state machine using a
leg-independent phase variable to schedule contact and swing
phases for each leg [56]. The gait scheduler utilizes independent
Boolean variables to define contact states scheduled s, € {1 =

Authorized licensed use limited to: University of Southern California. Downloaded on August 19,2024 at 23:24:50 UTC from IEEE Xplore. Restrictions apply.



SOMBOLESTAN AND NGUYEN: ADAPTIVE-FORCE-BASED CONTROL OF DYNAMIC LEGGED LOCOMOTION OVER UNEVEN TERRAIN

contact,0 = swing} and switch each leg between swing and
stance phases. Based on the contact schedule, the controller will
execute either position control during swing or force control
during stance for each leg.

In our previous work [55], we focused on the application of
load-carrying tasks, where the load is unknown to the robot
or the control system. Having more legs on the ground during
walking could also mean that the robot could produce a more
significant total GRF to support the heavy load. Therefore, we
used a quasi-static walking gait to maximize the number of legs
on the ground during walking (i.e., three stance legs and one
swing leg throughout the gait). However, in this article, our
framework is not limited by any specific gait. Similar to the
baseline MPC control approach [1], the approach can work for
different gaits by only changing the gait definition in the gait
scheduler.

B. Desired Trajectory

The desired trajectory is generated based on the robot’s ve-
locity command. The robot operator commands xy-velocity
and yaw rate, and then xy-position and yaw are determined
by integrating the corresponding velocity. z position contains
a constant value of 0.3 m, and the remaining states (roll, roll
rate, pitch, pitch rate, and z-velocity) are always zero.

C. SRB Model of Robot

Due to the complexity of the legged robot, a simplified rigid-
body model has been used to present the system’s dynamic. This
model lets us calculate the GRFs in real time. A few assumptions
have been made to achieve simplified robot dynamics [1].

Assumption 1: The robot has low inertia legs, so their effect
is negligible on the robot’s rigid body dynamic.

Assumption 2: For small values of roll (¢) and pitch (), the
rotation matrix R, which transforms from the body to world
coordinates, can be approximated as the rotation matrix corre-
sponding to the yaw angle (1))

cos(y) —sin(¢p) 0
R=R.(4) = | sin(@) cosw) O|. (1)
0 0 1

Therefore, by defining the robot’s orientation as a vector of Z— Y-
X Euler angles © = [¢, 6,7, the rate of change of the robot’s
orientation can be approximated as [1]

© = R.(})wy 2
where wy, is the robot’s angular velocity in the world frame.

Assumption 3: For small angular velocity, the following ap-
proximation can be made:

d . .
T (Igwy) = Igwy, + wp X (Igwy) = Igwy, 3)

where Iz € R3*3 is the moment of inertia in the world frame.
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Based on the earlier assumptions, the state representation of
the system is as follows [1]:

P 0; 03 13 O3 Pe
6 |_ |05 05 05 R(v)]|]|®
ﬁc 03 03 03 03 pc
de 03 03 03 03 Wy
D€R12><12 X€R12
+[&X52}F+[°gl} @
—_———
HeR12x12
with
~[ml3 03 66
M = o, Ic} eR
A= [ 13 13 } c R6¥12
|[P1 — Pc] x [Ps — Pc] X
G=|9 | RS )
L O3><1

where m is the robot’s mass, g € R? is the gravity vector, p,. €
RR3 is the position of the COM, p; € R3 (i € {1,2,3,4}) are the
positions of the feet, p,. € R3is body’s linear acceleration, wy, €
R3 is angular acceleration, and F = [FT , F1 FI FT|T ¢
R!2 are the GRFs acting on each of the robot’s four feet. The term
[pi — pe] % is the skew-symmetric matrix representing the cross
product (p; — p.) x F;.Note that p; and F'; are presented in the
world frame. Therefore, the state representation of the system
can be rewritten in the compact form

X:DX+HF+P2@. (6)

D. Balance Controller

One of the baseline control approaches for calculating GRFs
for quadruped robots is the balance controller presented in [2]
based on a QP solver. Based on the assumptions presented in
Section II-C, the approximated dynamic model between the
body acceleration and GRFs is as follows:

F = e, 7
[P1 — pe] % [p4—pc]x} [ Tow, | @
AcR6x12 beR6

and the vector b in (7) can be rewritten as

(L))

Since the model (7) is linear, the controller can naturally be
formulated as the following QP problem [57], which can be
solved in real time at 1 kHz

F* = argmin (AF — by)TS(AF — b,)
FcR12

+71||F||2 +72||F - 1;‘;;rev||2
st. d<CF<d
swing = 0 )

swing
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where by is the desired dynamics. The idea of designing by
will be elaborated in Section IV-A. The cost function in (9)
includes terms that consider three goals, including 1) driving
the COM position and orientation to the desired trajectories,
2) minimizing the force commands, and 3) minimizing the
change of the current solution F'* with respect to the solution
from the previous time-step, F'j..,. The priority of each goal in
the cost function is defined by the weight parameters S € R6*6,
Y1, Y2 respectively.

The constraints in the QP formulation enforce friction con-
straints, input saturation, and contact constraints. The constraint
d < CF < d ensures that the optimized forces lie inside the
friction pyramid and the normal forces stay within a feasible
range. More details can be found in [2]. Besides the friction
constraint, we will enforce the force constraints for the swing
legs, Fgwing = 0. The swing legs are then kept in the posing
position until they switch to the stance phase. More details on
swing leg control are provided in Section II-F.

E. SRB-Based Convex MPC

The calculation of GRFs in quadruped robots is often ap-
proached through MPC [1]. This method determines the optimal
sequence of inputs over a finite-time horizon, taking into account
any constraints within the dynamic model. Every time MPC is
executed in the control system, only the first computed control
input from the MPC cycle is applied. The inputs determined
over the finite time horizon are only used for the optimization
problem and are not directly applied in the control system.

To have the dynamic equation in the convenient state-space
form, gravity should be added to the state. So, the system can
represent as

X =D‘X“+H°F (10)
where
[ pe
®
X‘=| p. | eR?
Wy
| Ilgll
[ 03 03 13 03 0341
03 03 03 R.(¢) 03,
Dc — 03 03 03 03 H:%” c ]R13><13
03 03 03 03 03><1
| O1x3 O1x3 O1x3  Oix3 0
[ Ogx12
H¢=| M 1'A| e R¥*12 (11)
| O1x12

We consider a linear MPC problem with horizon length k as
follows:

k-1
HI}}H ;ei+1TQiei+1 +F,"R;F,
st. X§,, =D ;X{+H,,F;
d<CF;<d (12)
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where F'; is the computed GRFs at time step ¢, Q; and R; are
diagonal positive semidefinite matrices, and I, ; and H ; are
discrete-time system dynamics matrices. e, 1 is the system state
error at time step i define as e = [e,, €,]T € R'2, with

_ Pc _pc,d 6 - pc _pc,d 6
ep_{log(RdRT)]€R7 ep_{wb_wb,d}eR
(13)

where p. 4 € R? is the desired position of COM, Dea € R3 is
the desired body’s linear velocity, and w;, 4 € R? is the desired
body’s angular velocity. The desired and actual body orien-
tations are described using rotation matrices Ry € R3*3 and
R € R3*3, respectively. The orientation error is obtained using
the exponential map representation of rotations [58], [59], where
the log(.) : R3*3 — R3 is a mapping from a rotation matrix to
the associated rotation vector [2]. The constraintd < CF; < d
is equivalent to the constraint in (9) at time step <.

F. Swing Leg Control

For the swing legs, the final footstep location for each leg is
calculated from the corresponding hip location using a linear
combination of Raibert heuristic [60] and a feedback term from
the capture point formulation [56], [61]. The final footstep
locations (py ;) are projected on an assumed ground plane and
are calculated by

TC¢ -
Pfi = Phi+ —Ded + (14)

20 ( . )
77 Pe — Pe,d
2 gl = 7

where T¢, is the stance time scheduled, z¢ is the height of
locomotion, and pj, ; € R? is the position of the corresponding
hip . A Beizer curve calculates the desired swing trajectory
(including desired position pg ; and velocity v, ;) for swing legs
which starts from the initial lift-off position py ; and ends at the
final touch-down location py ;.

G. Low-Level Control

The low-level leg control can generate joint torque commands
from the high-level controller. For low-level force control, the
controller transforms the force vector to the hip frame by rotation
matrix R. Then, joint torques are calculated as follows:

T stance,i — _J(Qi)TRTFi (15)

where J(g;) € R*3 is the leg Jacobian matrix and g; is the
joints angle of ¢th leg.

To track the desired swing trajectory for each foot, a PD
controller with a feedforward term is used to compute joint
torques [56]

= J(qz')T [Kp,p(pd,i —-pi)+ Kgp(va; — v;)]
(16)

T swing,i

where p;; and vy, are desired foot position and velocity,
respectively, p; and v; are actual foot position and velocity in the
robot’s frame, respectively, and K, , € R3*3 and Ki,c R3x3
are the diagonal matrices of the proportional and derivative
gains, respectively.
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III. OVERVIEW OF THE PROPOSED APPROACH

This section will present an overview of our novel control
architecture to incorporate adaptive control into the force control
framework. While our approach is not limited to any specific
adaptive control approach, we decided to use L adaptive con-
trol [46], [50] thanks to its advancement in guaranteeing fast
adaptation and smooth control signals. Note that our proposed
control system is designed for the stance leg control part in the
control architecture of the quadruped robot (see Fig. 2).

Our prior work [50] introduced an adaptive control based on
HZD [62] for bipedal robots. HZD is a common control approach
for bipedal robots since it can handle hybrid and underactuated
dynamics associated with this kind of robot. In this article,
however, our approach leverages the combination of the adap-
tive control and force control system, which calculates GRFs
to achieve highly dynamic locomotion for quadrupeds [56].
The use of force control in legged robot systems has several
key benefits, including increased robustness in the presence of
challenging terrains [2] and the ability to accommodate a wide
range of dynamic movements [1], such as various types of loco-
motion gaits. By combining force control with adaptive control
strategies that compensate for model uncertainty, achieving an
enhanced control system with these advantages is possible.

The overview of our proposed adaptive-force-based control
system is presented in Fig. 3(a). By incorporating an L; adaptive
controller, we aim to design a combined controller. The force-
based controller calculates the optimal GRFs for following the
desired trajectory. The adaptive controller calculates the residual
parameters for compensating the nonlinear model uncertainty 0
in the system dynamic. Therefore, the goal is to adjust adaptive
control signal u,, as well as adaptation law to estimate the model
uncertainty ) correctly and make the real model follow the
reference model. For the reference model, we employ a similar
linear model described in (6), and we will update the reference
model in real time using an ODE solver. Moreover, the vector
of uncertainties estimation @ typically has high frequency due
to fast estimation in the adaptation law. Thus, we employ a low-
pass filter to obtain smooth control signals. We use the same
swing leg control to appropriately synchronize the reference and
real models. This means that we also use the real model’s foot
position for the reference model.

In the following sections, we will elaborate on integrating
two different force-based controls as the baseline controller
into the adaptive control. First, in Section IV, we will describe
the proposed method using a QP-based balancing controller, as
presented in Fig. 3(b). Then, in Section V, we will show how
to incorporate MPC into the adaptive controller in detail, as
illustrated in Fig. 3(c).

IV. ADAPTIVE-FORCE-BASED CONTROL USING THE BALANCE
CONTROLLER

In this section, we use the balance controller as the force-based
controller, previously demonstrated in [55]. In Section V, we will
present our control framework for integrating the L; adaptive
control into MPC.
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Fig. 3. Proposed adaptive-force-based control system diagram. (a) Main
structure of the proposed adaptive-force-based control system. (b) Block dia-
gram of the proposed adaptive-QP-based balancing controller. (c) Block diagram
of the proposed adaptive MPC. Each dashed line indicates the update frequency
for control components.

A. Closed-Loop Dynamics

The L, adaptive control is designed for trajectory tracking;
however, the goal of the balance controller is to compute optimal
GRFs. Hence, to integrate the balance controller presented in
Section II-D into L adaptive control, we should relate the linear
model described in (7) to the closed-loop dynamics.
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Let us consider the system state error (e) according to (13) as
the state variable. Therefore, the closed-loop error dynamics in
state-space form can be represented as follows:

¢ = Die + Bu (17)

where

_ 106 1g 12x12 _ |06 12x6
Dl_{OG OG]ER , B= 1¢ eR (18)
and u € R is the control input function. By employing a PD
control law, we have

u= [—Kp —KD} e (19)
where Kp € R*6 and Kp € R%*6 are diagonal positive-
definite matrices. According to definition of matrices D; and
B, from (17), it can be obtained that

. D — pc,d _

€)= [cb’b—d’b,d] =u (20)
where €, is the derivative of &, presented in (13), and p,. 4, and
wy,q are the desired COM linear acceleration and the desired
angular acceleration, respectively. Since the desired trajectory is
obtained from the velocity command, both desired accelerations
D.q and wy 4 are zero vectors. Then, from (8) and (20), the
desired dynamics can be given by

by = M(u+G) 1)

where M and G are defined in (5). By substituting (21) into
the QP problem (9), we can obtain the optimal GRFs as the
input for the low-level leg controller. The objective of the QP
formulation in (9) is to find a solution that ensures the actual
dynamics A F' match the desired dynamics by. The QP-based
balance controller can generally achieve the desired control input
function outlined in (19), thus keeping the error e within a certain
range. However, if the desired dynamics vector b, violates any
of the inequality constraints, such as force limits or friction
constraints, the controller may yield an optimal solution F™* that
may not completely align with the desired dynamics. With this
solution, the optimal dynamic bg* and «* can be written as

by = AF* (22)

w'=M"'b -G (23)

where in the Appendix, we will show that the ©* remains within
a bounded range.

Note that the optimal GRF F'* serves as the control input for
the robot, and the variable u* acts as an input for the closed-loop
dynamic. The closed-loop structure for the robot is depicted in
Fig. 3(b) (the green dashed line).

B. Effects of Uncertainty on Dynamic

If we consider uncertainty in the dynamic equation (6) and
assume that the matrices D and H are not accurate, then we
need to present the dynamic based on the nominal matrices D,
H . The model uncertainty mostly comes from inaccurate values

for mass, inertia, and foot position with respect to the COM.
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In addition, various terrains (e.g., rough terrain or soft terrain)
might have different impacts on the robot, which is unknown in
a practical situation. Therefore, terrain uncertainty should also
be considered in the dynamic model. In this section, we solely
derive our control equations based on the model uncertainty.
In Section VI, we will elaborate on how our proposed control
system can also consider terrain uncertainty.

Another parameter is involved in the dynamic equation,
namely the yaw angle. This angle is obtained through the state
estimation, and we assumed that the state estimation has minimal
uncertainty. According to the definition of matrices D and H
in (4), the inaccurate value of the dynamic parameter mentioned
earlier reflects on the H matrix. Therefore, the dynamic equation
in the presence of uncertainty can be represented as

pa (24)

X=DX+(H+H)F+ {06“}
where H represent the uncertainty in matrix H. It is worth
noting that according to the definition of H in (11), the first six
rows of H consist of zeros. Thus, we can rephrase the dynamic
equation (24) as follows:

X =DX +HF + BG + B0 (25)

where @ € RS is the vector of uncertainty for six corresponding
equations and is defined as follows:

02 BTHF. (26)

With reference to the state representation given by (25), the vec-
tor @ can be interpreted as a time-varying disturbance affecting
the body and orientation accelerations.

The uncertainty vector € depends on both time ¢ and F'. Since
F is obtained through the QP problem (9), it is a function of b,.
Furthermore, b, is a function of w according to (21). Considering
that u is determined by the PD control (19), we can conclude that
6 is a function of both the tracking error e and time ¢. As a result,
for any given time ¢, it is always possible to find a(¢) € RS and
B(t) € RO satisfying [43]

6(e,t) = a(t)|le|[ + B(t). 27
C. Designing Adaptive Controller for Compensating the
Uncertainty

By incorporating L; adaptive controller, we want to design
a combined controller w = u; + us, where uy is the control
input to follow the desired trajectory for the nominal model as
presented in (19) and wy is to compensate the nonlinear model
uncertainties 8. Therefore, the goal is to adjust the control signal
uo so that the real model can follow the reference model. For the
reference model, we employ a similar linear model described in
(7) which, instead of M, the nominal matrix M is being used.
The proposed force-based adaptive control diagram based on a
balance controller is presented in Fig. 3(b).

The duplicate version of (25) for state-space representation
presented in (17) by considering combined controller u = u; +
Uy is as follows:

é=Dje+ Bu; + B(uy+90). (28)
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Note that the vector of uncertainty 8 in (25) and (28) are not the
same since the state vector of (25) is X. In contrast, the state
vector of (28) is system error e.

The state representation for the reference model can be ex-
pressed as follows:

&= Dé+ Bi, + B(uy + ) (29)
where
0 =allel| +8 (30)
and u is defined as
= |—Kp —KD} é. 31)

To compensate the estimated uncertainty €, we can just simply
choose uy, = —0 to obtain

e = D,é+ Bi,. (32)

However, 6 typically has high frequency due to fast estimation
in the adaptation law. Therefore, we employ a low-pass filter to
obtain smooth control signals as follows:

us = —C(s)0 (33)

where C/(s) is a second-order low-pass filter with a magnitude
of 1
2

Cls) = 52 + 2Cwns + wp?’ )

According to (21), b, for the real model in the presence of
uncertainty get the following form:

Respectively, b, for reference model is as follows:
Bd:M(a1+u2+é+G). (36)

The QP solver outlined in (9) allows us to obtain therptimal
GRFs for the real model. Similarly, the optimal GRFs F' for the
reference model can be obtained as follows:

F = argmin
FeR12

+71HFH2+’72”F_FpreVH2

(AF b)) s (aF —b,)

(37

Define the difference between the real model and the reference
model € = e — e, we then have

é:Dlé+Bﬁ1+B(dHeH+B> (38)

where
W =1 —u,a=a&-a,B=08-0 (39)

As aresult, we wi}l estimate 6 indirectly through c and 3, or the
values of & and 3 computed by the following adaptation laws
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based on the projection operators [63]:

& = TProj (&,ya) . B =TProj (B,ys)  (40)
where T' € R%*C is a symmetric positive-definite matrix. The
projection functions y,, € R® and y5 € RS are

Yo = —B" Pelle]|

ys = —BT Pé (41)

where P € R'2%12 is a positive-definite matrix that is defined
according to the stability criteria using the Lyapunov equa-
tion. Moreover, the system’s stability proof is provided in the
Appendix.

V. ADAPTIVE-FORCE-BASED CONTROL USING MPC

MPC has been widely used across various fields, from finance
to robotics. One of MPCs main advantages is its ability to
handle complex systems with multiple inputs and outputs while
considering hard control constraints [64]. MPC has also been
applied to quadruped robots, providing stable locomotion [1].
Thanks to dynamic prediction in MPC, using the same control
framework can achieve different dynamic locomotion gaits.
However, MPCs limitations become evident when dealing with
significant uncertainty in the dynamic model. For instance, in the
case of aquadruped robot carrying an unknown heavy load, MPC
fails to track the desired state trajectory, resulting in unstable
behavior and deviation from the desired trajectory, especially
with dynamic gaits like bounding. Furthermore, the ability of a
robot to traverse soft terrain where the impact model is unknown
can present a significant challenge. Our proposed approach can
tackle this challenge effectively, and we will discuss how it
handles the terrain unknown impact model in Section VI.

In Section IV, we presented an adaptive-force-based control
framework based on the balance controller. The balance con-
troller relies on a QP solver, which is simple to put into practice
and well-suited for slow and safe motions such as standing and
quasi-static walking. Additionally, the balance controller is an
instantaneous control technique, meaning it does not predict
the robot’s future movement. As a result, the balance controller
proves to be ineffective in fast-paced, highly dynamic scenarios.
On the other hand, MPC has shown great potential in handling
agile motions, even when it comes to underactuated gaits such
as bounding.

In this section, we will present a novel control architecture
to integrate adaptive control into the MPC framework. By this
proposed framework, we can achieve fast and robust locomotion
in the presence of uncertainties. This framework can also be ex-
tended to accommodate various dynamic gaits in legged robots,
such as trotting and bounding. As discussed in a previous section,
our approach is not restricted to a specific type of adaptive
control. Still, we have chosen to utilize L, adaptive control,
which has demonstrated advantages over other adaptive control
techniques. The first step in integrating L, adaptive control and
MPC is understanding the importance of a reference model and
the challenges in synchronizing the real and reference models.
We then present our proposed adaptive MPC, which combines
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Fig. 4.  Motion snapshot of the robot with bounding gaits. A simple controller
cannot easily predict the quadruped’s COM motion (yellow line). This illustra-
tion can represent the importance of using MPC for the reference model.

conventional MPC [1] with adaptive control. Finally, we address
the challenge of real-time computation while having two MPCs
in our control system. We will elaborate on how to adjust the
frequency of each control component in an optimized manner to
allocate enough computation resources for critical control parts
and achieve real-time computation.

A. Reference Model

Our method aims to design a combined controller based on
MPC and L; adaptive control that the real model follows the
reference model. In accordance with our previous discussion
in Section IV-C, the combined controller incorporates a control
signal w9 to account for model uncertainty, as indicated in (28).
In this section, the auxiliary control signal for this purpose is
u, € RY; thus, the uncertain dynamic equation (25) can be
rewritten as follows:

X =DX + HF + BG + B(u, +0). (42)

The reference model is similar to the quasi-linear model de-
scribed in (6) which, instead of H, the nominal matrix H is
being used. The proposed adaptive MPC diagram is presented
in Fig. 3(c).

We consider a reference model for L; adaptive control that
arises from MPC. The MPC method is computationally expen-
sive, but replacing it with other simpler control methods, such as
the balance controller, while simulating the robot’s performance
using dynamic gaits such as bounding is impossible. The reason
is that in bounding gait, the robot’s two feet on either the front
or rear side touch the ground at each time step, making it
challenging to accurately control the height and pitch angle. The
MPC approach balances the error in the height and pitch angle
and, based on the predicted dynamics of the system in the future,
computes the optimal GRFs. As seen in Fig. 4, the COM height
oscillates around the desired value. Thus, the underactuated
nature of certain gaits, such as bounding, necessitates the use
of MPC as the control system for the reference model.

When implementing MPC for a reference model, one chal-
lenge is ensuring that the reference model is synchronized with
the real model. This is particularly important when the robot
performs a gait with a periodic behavior, such as bounding
(see Fig. 4). In order to correctly compare the real model with
the reference model, both should have the same gait schedule.
Additionally, the adaptive MPC proposed for legs in the stance
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phase is independent of the swing leg control. However, the foot
position is crucial in calculating the moment of GRF around
the COM. Therefore, to maintain consistency between the real
and reference models, it is important to ensure that the real
robot’s foot position is fed into the reference model, as shown
in Fig. 3(c).

The reference model can be expressed as follows:

X:DX+EIF+BG+B(ua+é) (43)

where
0 = alle|| + 8. (44)

In this case, similar to Section IV, we use a second-order low-
pass filter, same as (34). Therefore, the auxiliary control signal
would be

u, = —C(s)0.

By defining the difference between the real model and the
reference model X = X — X, we then have

X = DX + HF + B (alll| + B)

(45)

(46)
where
F=F-F a=a-a,B=08-23.

Since the desired trajectory for both the real model and the
reference model is the same (X g = X 4), the difference between
the real model and reference model can be defined as

(47)

X=(X-X)-(X-X,)=é—e=é. (43
Therefore, (46) is equal to the following equation:
é:Dé—i—FIF—i—B(dHeH—I—B). 49)

The adaption laws and projection functions for computing the
value of v and 3 are the same as (40) and (41), respectively.
Moreover, the stability of the control system can be proven using
the same logic provided in the Appendix.

B. Adaptive MPC

After computing the auxiliary control signal u, using the
adaptive controller presented in the previous section, we will
integrate the u, with the conventional MPC for legged locomo-
tion [1] and propose our adaptive MPC framework. We treat the
auxiliary control signal u,, as a residual vector in the system’s
equation to compensate for dynamic uncertainty. Therefore, u,,
should be combined into the state vector and (42) can be written
as follows:

=D+ HF + B0 (50)
with the following extended matrices:

XC

c ng

c RIQX 19
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HS — [ H* } c R19%12
Opx12

B¢ = |: B :l c R19><6 (51)
O7x6

where H is the nominal value of H¢. The definition of X¢,
D¢, and H¢ can be found in (11). Although w,, is considered
a part of the state vector in (50), it is just a residual vector for
compensating dynamic uncertainty. Therefore, u, is constant
in the state space equation and over the horizons. To this end,
the components associated with u,, in matrices D and H* are
assigned zero, which means u, = 0. Note that the value of u,
will be updated according to the adaptive law, but it is constant
during the prediction horizons.

The state representation in (50) is also convenient for dis-
cretization methods such as zero-order hold [65] for MPC.
Therefore, our adaptive MPC can be designed according to (12)
and based on the following discrete-time dynamic:

Nig1 = D ny; + Hy  F;. (52)

C. Real-Time Computation

The main challenge in executing our proposed adaptive MPC
framework is ensuring that the computation required is fast
enough for hardware experiments in real time. If the controller
is unable to perform updates at a high frequency, it could result
in the robot collapsing during dynamic motion. The control
system comprises two MPCs, each with 13—19 states predicted
over 10 horizons. To ensure the robot’s balance and allocate
sufficient computation resources to each control component, we
have devised a scheme, as depicted in Fig. 3(c), to update each
control component in an optimized manner.

The robot’s sensory data update in real time with a frequency
of 1 kHz. Thus, the reference model should update with the same
frequency to compare the reference model states (X) and real
model states (X) correctly. The yellow dashed line in Fig. 3(c)
indicates the update frequency for the reference model. We use
the odeint package from Boost software in C++ [66] to solve
the ODE problem associated with the dynamic equation for the
reference model.

One of the critical components in our proposed framework
is the adaptive MPC, which is responsible for computing the
GRF for the robot, as shown in Fig. 3(c). Through our ex-
perimentation, we have determined that for robust locomo-
tion with dynamic gaits, the optimal update frequency for the
adaptive MPC should be 300 Hz. In contrast, the reference
MPC, which plays a supporting role in the control system, is
less sensitive and runs at a slower rate of 30 Hz. In addition,
there is a 2-ms delay between the running of the adaptive
MPC and reference MPC to ensure sufficient computational
resources are allocated to each component. This means the
two MPC frameworks do not run simultaneously in our control
system.
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VI. ADAPTATION TO UNKNOWN IMPACT MODEL

The dynamic formulation presented in Sections IV and V
considers the presence of model uncertainty in real-world situ-
ations. It is assumed that the terrain is hard enough to allow the
robot to receive the desired force as GRFs on its feet. However,
this assumption may not hold if the robot walks on soft or
elastic terrain with an unknown impact model, which may not
generate the desired force needed for stable locomotion. Some
previous studies have included terrain knowledge and contact
models in their balancing controllers to address the soft terrain
challenge, mainly using a spring—damper model to characterize
the soft terrain [67], [68]. Some control frameworks for adapting
to soft terrain in real time have also been developed using
iterative learning [69] and whole-body control [70], without
prior knowledge about the terrain. This section demonstrates
that the proposed method in Sections IV and V can also handle
unknown impact models from terrain, allowing the robot to
maintain stability while walking on soft terrains.

Equation (15), representing the force-to-torque mapping,
holds under the condition that the movement of each leg can
be considered negligible. This assumption is reasonable for the
stance leg on solid ground. However, when dealing with soft
terrain, this mapping is not accurate. The dynamic equation for
each leg is expressed as follows:

Tsance,i = Mi(qi)di +1i(qi, di) — J(q)"RTF; (53)
where M ;(g;) is the inertia matrix, n;(q;, ¢;) is the nonlinear
term, and ¢; is joints acceleration for the ith leg. Remember
that Assumption 1 was considered for the rigid body dynamic
equation of the robot. However, when addressing the dynamic
equation of each leg, it is not valid to neglect the inertia asso-
ciated with each leg. Furthermore, calculating the joint accel-
eration poses challenges due to considerable noise, making the
complete computation of (53) difficult. This is where adaptive
controllers prove to be beneficial.

Assume the computed force F' by MPC in (25) cannot be
achieved perfectly due to walking on soft terrain. Therefore,
(25) can be rewritten as follows:

X:DX+ﬂ(Fa+Fa)+BG+B0 (54)

where F,, is the actual GRF applied to the robot and F, is the
difference between the desired GRF and actual reaction force.
Therefore, we can reformulate (54) as follows:

X =DX+HF,+BG+ B(0+05p). (55)
where the uncertainty vector 0 is defined as follows:
A ST 1 ¢
0r=B"HF, (56)

Equation (55) is in the form of (25), which uses actual GRF
instead of the desired GRF. Therefore, all formulations for
implementing adaptive controllers are also valid for a situation
with an unknown impact model.
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Fig. 5.
(d) High-sloped terrain.

TABLE I
CONTROLLER SETTING

Parameter Value
Q diag(2.5,2.5,20,0.25,0.25, 1.5,
0.2,0.2,0.2,0.1,0.1,0.3)
R v11l12
T diag(1,1,5,2,5,1) x 103
wn, 60
¢ 0.7

VII. RESULTS

In this section, we validate our control approach in simula-
tion and hardware experiments on a Unitree Al robot. All the
hardware experiments’ computations run on a single PC (Intel
i7-6500 U, 2.5 GHz, 64 b). For simulation, the control system
is implemented using ROS Noetic in the Gazebo 11 simulator,
which provides a high-fidelity simulation of the Al robot. A
video showcasing the results accompanies this article.!

We set the control parameters for MPC, the adaption law,
and the low-pass filter as presented in Table I. We use one set
of parameters for all the experiments with different locomotion
gaits, indicating that our approach is easily generalizable. The
following sections will introduce different experiment results
in terms of model and environment uncertainty (see Fig. 5). In
each experiment, the robot starts by using a balance controller to
stand up and then switches to the MPC framework for walking
or running.

A. Comparative Analysis

In order to evaluate the performance of our proposed adaptive
MPC method, we conduct a comparative experiment with the
conventional MPC method presented in [1]. The objective is to
understand the advantages of integrating the adaptive controller
into MPC for quadrupedal locomotion.

1) Walking With Significant Model Uncertainty: The exper-
iment involves the robot walking and rotating in different di-
rections, using both adaptive and nonadaptive controllers while
carrying an unknown load. To ensure a precise comparison, we

![Online]. Available: https://youtu.be/5t1mSh0q31k

Navigating different terrains using our proposed adaptive MPC while carrying an unknown heavy load. (a) Gravel. (b) Grass. (c) Rough terrain.

establish a unit test comprising velocity and rotation commands.
This test is then executed for both adaptive and nonadaptive con-
trollers. The experiment results show that the adaptive controller
provides robust locomotion, with excellent tracking error, even
when carrying an unknown 5-kg load. On the other hand, the
nonadaptive controller results in a considerable error in the COM
height and eventually collapses under the weight of just a 3-kg
load. The comparative results for the adaptive and nonadaptive
controllers are shown in Fig. 6.

2) Walking on Soft Terrain: To evaluate the capability of our
proposed control method in handling unknown impact models,
we conducted an experiment where the robot was made for
walking on double foam, which symbolizes a soft terrain. The
performance of both the adaptive and nonadaptive controllers
was evaluated and compared. The results are depicted in Fig. 7,
representing the robot’s roll angle. The figure clearly illustrates
that the adaptive controller could maintain the robot’s balance
on the soft terrain. In contrast, the nonadaptive controller could
not do so, leading to the collapse of the robot.

B. Running With Multiple Gaits

To demonstrate the superiority of our proposed approach
for dynamic gaits, we conducted experiments with the robot
running while carrying an unknown load. These experiments
were carried out for both the trotting and bounding gaits, with
an unknown load of 5 kg and 3 kg, respectively. The results of
these experiments are shown in Fig. 8. It can be seen from the
figure that the tracking of the COM height during the bounding
gait is more unstable compared to the trotting gait, which is due
to the inherent underactuated nature of the bounding gait.

C. Time-Varying Load

To demonstrate the effectiveness of our proposed adaptive
force control in adapting to model uncertainty, we conducted
simulations where the robot carries a time-varying load of up
to 92% of its weight during walking. As shown in Fig. 9,
our approach can enable the robot to adapt to time-varying
uncertainty. In the simulation, the robot starts with an unknown
5-kg load. While increasing the robot’s velocity, the robot is
subjected to a varying external force in the z-direction that rises
to 60 N, resulting in an additional unknown 11-kg load. These
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Fig. 6. Comparing performance of adaptive and nonadaptive controllers.

(a) Snapshots of the Al robot with the nonadaptive controller while carrying
an unknown 3-kg load and collapses. (b) Snapshots of the Al robot walking
robustly with the adaptive controller while carrying an unknown 5-kg load.
(c) Comparative plots of the COM height. (d) Velocity command tracking in the
z-direction. (e) y-direction for adaptive and nonadaptive controllers. The plots
for the nonadaptive controller do not persist until the completion of the unit test,
as the robot experiences a collapse during testing.

results indicate that our proposed approach effectively handles
high levels of model uncertainty.

D. Terrain Uncertainty

To demonstrate the capability of our proposed method to
handle terrain uncertainty, we tested the robot navigating various
terrains while carrying an unknown 5-kg load. To this end, we
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Fig. 7.  Comparing performance of adaptive and nonadaptive controllers on

soft terrain. The A1 robot tries to walk on double soft foam using (a) nonadaptive
and (b) adaptive controllers. (c¢) Plot of the robot’s roll angle.

(b)
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201 —— COM height (Bounding)
Desired height
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(©)
Fig. 8.  Running experiment. The Al robot runs with the velocity of 1 m/s

using our proposed method. (a) Trotting gait with an unknown 5-kg load.
(b) Bounding gait with an unknown 3-kg load. (c) Plots of COM height.

tried walking experiments on multiple rough terrains as well as
high-sloped terrain, and we got impressive results.

1) Rough Terrain: We tested the robot navigating various
rough terrains such as grass and gravel. The robot walks and ro-
tates in multiple directions while carrying an unknown 5-kg load.
Some snapshots of the robot walking on diverse rough terrain are
presented in Fig. 5. Our approach is based on a force controller
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Fig.9.  Simulation results for the robot carrying a time-varying load. (a) Robot
starts with an unknown 5-kg load, then gradually, an unknown time-varying force
will be exerted on the robot as shown in (b) and (c¢) while the robot’s velocity
increases. (d) Plot of COM height. (e) Robot velocity tracking in the z-direction.

and retains the robustness features of the baseline framework,
allowing the robot to handle the rough terrain effectively.

2) Sloped Terrain: To enable the robot to climb the sloped
terrain perfectly without vision, we need to adjust its orientation
to make its body parallel to the walking surface. This is done
by using the footstep location to estimate the slope of the
ground. For each ith leg, we can measure the foot position
Di = (Pa,is Dy,i» P=,:) and build the vector of feet x-position (p,),
y-position (py), and z-position (p.). Thus, we can model the
walking surface as a plane

z(x,y) = ap + a1 + agy (57)

and the coefficients (ag, a1, and as) will be obtained through the
solution of the least square problem using p,, p., and p, data
(see [56] for more details).

Note that the desired roll and pitch angles for the robot will
be modified on the slope according to the following:

roll = arctan(aq), pitch = arctan(aq). (58)

As a result, the reference model’s desired pitch and roll angles
must be adjusted to the nonzero values determined as described
earlier. It is important to note that the reference model utilizes
the actual foot position of the robot, so there is no need to make
any changes to the reference model’s footstep planning when
the robot is attempting to climb a slope.
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VIII. CONCLUSION

In conclusion, a novel control system has been presented that
incorporates adaptive control into force control for legged robots
walking under significant uncertainties. We have demonstrated
the effectiveness of our proposed approach using numerical and
experimental validations. The experiments show the success
of the implementation of the proposed adaptive force control
on quadruped robots, allowing them to walk and run while
carrying an unknown heavy load on their trunk. The results are
remarkable, with the robot being able to carry aload of up to 5 kg
(50% of its weight) while still keeping the tracking error within
a small range and maintaining stability even in all directions.
The experiment demonstrates that the proposed adaptive force
control system cannot only adapt to model uncertainty but also
leverage the benefits of force control in navigating rough terrains
and soft terrain. On the other hand, the baseline nonadaptive
controller fails to track the desired trajectory and causes the
robot to collapse under uncertainty.

In the future, our goal is to broaden this methodology for
autotuning MPC parameters, employing adaptive controllers
specifically tailored for legged robot locomotion across various
scenarios.

APPENDIX

A. Linear Quadratic Lyapunov Theory

According to the Lyapunov theory [71], the PD control de-
scribed in (19) will asymptotically stabilize the system if

A, = 06 1g
-Kp —Kp

c RIQX 12 (59)

is Hurwitz. This means that by choosing a CLF candidate as
follows:

V(e) = e’ Pe (60)
where P € R12%12 is the solution of the Lyapunov equation
A, 'P+ PA,, = -Q; (61)

and Q1 € R'?*12sany symmetric positive-definite matrix. We
then have

Vie,u) +1V(e) = e’ (D,;"P+ PD))e

+AV(e) +2e"PBu <0  (62)
where,
)\min(QL)
p= R S . 63
fomax (P) ©3)

As a result, the state variable e and the control input v always
remain bounded

lell < dn, ull < du. (64)

However, the control signal u* (23) we construct by solving
QP problem (9) is not always the same as w. Based on the friction
constraints present in (9), the value of F'* is always bounded.
Besides, according to the definition of A, M, and G, these
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matrices also have bounded values. Thus, it implies that
||| < 0y (65)

Therefore, the vector of difference between uw and v* can be
defined as

A=u"—u (66)
which is also bounded according to (65) and (64)
A < da. (67)
By substituting ©* in (62), we have
V(ie,u)+1V(e) < 2T PBA < ey (68)
where
ev = 2| P||0,0a. (69)

B. Stability Analysis

Theorem: Consider the system dynamics with uncertainty
described by (28), and a reference model described by (29).
Assume the use of an L; adaptive controller with the optimal
closed-loop control signal given by (23), the adaptive control
signal given by (33), and the adaptation laws given by (40). Then,
under the aforementioned L; adaptive controller, the tracking
error between the real model and reference model denoted as e,
as well as the errors between the real and estimated uncertainty,
denoted as & and ,B, respectively, are bounded.

Proof: Let us consider the following control Lyapunov can-
didate function:

V-eTPe+a’ T 'a+3 13 (70)
Therefore, its time derivative will be
V=eTPe+e"Pet &I 'a+a’T &
+B'T B+ B T (71)
in which we have
e’ Pe+ e’ pe
- (Dlé n BF)T Peé+&"P (Dlé + BF)
+a’'B”||e|]|Pé + &' PBalle]|
+3"BTPe + eTPBS. (72)

Because € = e — e satisfies the condition imposed by (68), it
implies that

N\NT
(Dlé + BF) Pé+
e’ P (Dlé + BF) < —2&"Pe+ e (73)
where

ey = 2| P||6z0 5. (74)
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Furthermore, with the property of the projection operator [63],
we have the following:

(& — ) (Proj(ét, ya) — ya) <0

(BB (Proi(B.ys) — ys) < 0. 75)
From (40) and (75), we can imply that
d'rta<aly, —a'r e
BT B<pys BT (76)

We now replace (72), (73), and (76) to (71), which results in
V< -1&TPé+e;
+ &’ (yo + BT Pélle|]) - &'T e
+ (yL +e"PBlle])a - a'T 'a
+8" (ys+B"Pe) - BT
+ (¥ +&"PB)B-B' T3 77

So, by using the chosen projection functions (41), then we
conclude that

ViV <ep+ra’T'a+218 T3
—a'rta-a'T ta
~BT3-8'T3.

We assume that the uncertainties «, 3, and their time derivatives
are bounded. Furthermore, the projection operators (40) will also

keep & and ,@ bounded (see [43] for a detailed proof about these
properties). We define these bounds as follows:

ll&|| <, |18 < By

(78)

ll&tl| <, 18] < By (79)
Combining this with (78), we have
V + AV < A (80)
where
- ~2 1 _ . 1. . 1
6y =2/|T| (ab + 08, + PRRat + Aﬁbﬂb) + TEv
(81)

Thus, if 1% > (5‘; then V < 0. As a result, we always have
V< 0. In other words, by choosing the adaptation gain T"
sufficiently large and P relatively small, we can limit the CLF
(70) in an arbitrarily small neighborhood d; of the origin.
According to (59) and (61), achieving a small value for P
depends on choosing a proper value for K p, Kp, and Q7.
Therefore, the value of PD gains affects the stability of the whole
system. Finally, the tracking errors between the dynamics model
(28) and the reference model (29), e, and the error between the

Authorized licensed use limited to: University of Southern California. Downloaded on August 19,2024 at 23:24:50 UTC from IEEE Xplore. Restrictions apply.



2476

real and estimated uncertainty, ¢, B are bounded as follows:

lef] <

O B -
IITXH’ ] < \/ITIog (18] < \/IIT[[6g- (82)
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