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Adaptive-Force-Based Control of Dynamic Legged

Locomotion Over Uneven Terrain
Mohsen Sombolestan and Quan Nguyen

Abstract—Agile-legged robots have proven to be highly effective
in navigating and performing tasks in complex and challenging
environments, including disaster zones and industrial settings.
However, these applications commonly require the capability of
carrying heavy loads while maintaining dynamic motion. There-
fore, this article presents a novel methodology for incorporating
adaptive control into a force-based control system. Recent advance-
ments in the control of quadruped robots show that force control
can effectively realize dynamic locomotion over rough terrain. By
integrating adaptive control into the force-based controller, our
proposed approach can maintain the advantages of the baseline
framework while adapting to significant model uncertainties and
unknown terrain impact models. Experimental validation was suc-
cessfully conducted on the Unitree A1 robot. With our approach,
the robot can carry heavy loads (up to 50% of its weight) while
performing dynamic gaits such as fast trotting and bounding across
uneven terrains.

Index Terms—Adaptive control, model predictive control
(MPC), quadruped robots, unknown impact model.

I. INTRODUCTION

L
EGGED robots have numerous potential uses, from search

and rescue operations to autonomous construction. To

perform these tasks effectively, the robot must accurately under-

stand the environment it will be operating in. However, due to the

complexity of the robot and the environment, the robot’s model

might contain a significant level of uncertainty and affect the

robot’s stability, particularly when performing agile movements.

To overcome these challenges, there is a need to develop a

control framework that can effectively compensate for these

uncertainties in real time.

The utilization of convex model predictive control (MPC)

with the single rigid body (SRB) model in legged robots [1]

has greatly enhanced the real-time implementation of diverse

walking gaits. Unlike the balance controller based on quadratic

programming [2], MPC offers the capability to perform agile

motions like jumping [3], [4] and high-speed bounding [5] for

Manuscript received 7 July 2023; revised 21 December 2023; accepted 20
March 2024. Date of publication 25 March 2024; date of current version 10
April 2024. This paper was recommended for publication by Guest Associate
Editor Yan Gu and Editor P. Robuffo Giordano upon evaluation of the reviewers’
comments. This work was supported in part by the National Science Foundation
under Grant IIS-2133091 and in part by the USC startup fund. (Corresponding

author: Mohsen Sombolestan.)

The authors are with the Department of Aerospace and Mechanical Engineer-
ing, University of Southern California, Los Angeles, CA 90089 USA (e-mail:
somboles@usc.edu; quann@usc.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TRO.2024.3381554, provided by the authors.

Digital Object Identifier 10.1109/TRO.2024.3381554

quadruped robots. Additionally, MPC exhibits robustness when

traversing rough and uneven terrains. However, it is important

to note that MPC assumes perfect knowledge of the dynamic

model.

To enhance trajectory tracking in the presence of unknown and

changing disturbances, researchers have explored the combina-

tion of MPC with adaptive control techniques [6], [7], [8]. Addi-

tionally, parameter estimation techniques have been employed to

improve the robustness of the control system further [9]. These

approaches aim to adapt the controller and estimate system

parameters to effectively compensate for uncertainties and dis-

turbances, leading to improved trajectory tracking performance.

It is worth noting that all of these studies were conducted using

a position-based controller model.

In this work, we tackle the legged robot locomotion issue

in real-world scenarios with significant uncertainty. The uncer-

tainty can come from both the robot model and the environment.

Since our proposed method is based on a force controller, it

retains the advantage of robustness to uneven terrain. Thanks

to MPC as our baseline controller, our framework can be ex-

tended to different locomotion gaits and trajectories without

adjusting the controller parameters. Moreover, in our control

system, we effectively manage substantial model uncertainty

by utilizing the adaptive controller. By implementing adaptive

control, our framework evolves into a versatile solution for

mitigating persistent disturbances across various operations and

over time. Given the adaptive control’s capability to address

uncertainties continuously, it provides a practical approach for

real-world applications in legged robot autonomy, such as rescue

missions, inspections, and logistics. This ability to compensate

for persistent disturbances in real-world scenarios eliminates

the need for recalibration for various tasks, enabling a thorough

online operation. As a result, this represents a key contribution to

our work, offering a comprehensive approach for legged robot

applications and facilitating movement across diverse terrains

with unknown impact models.

A. Related Works

1) Offline Learning: The offline learner can leverage a

model-based control approach or learn the control system from

scratch. Using a model-based method, researchers mainly tar-

get learning the dynamic to improve the controller perfor-

mance [10]. One example of this approach is integrating deep

learning with MPC, in which the proposed model tries to learn

the cost or dynamic terms of an MPC [11]. This hybrid method
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shows considerable improvement for the aerial robot [12] when

learning the dynamic model from experimental data. The major

limitation of this method is that it is restricted to the dynamic

model learned during the training phase. However, the dynamic

model is prone to frequent changes in real-world scenarios due

to environmental uncertainties and external disturbances.

There has been growing interest in utilizing reinforcement

learning (RL) to train models from scratch to overcome the

limitations of previous approaches. The key advantage of RL

models is their ability to adapt swiftly to changes in real-world

environments due to being trained in diverse environments

with varying properties. In the case of quadruped robots, an

RL model can directly predict appropriate joint torques for

traversing different types of terrain, as demonstrated by Chen

et al. [13]. Additionally, by training the model to learn foot

positions, Bellegarda et al. [14] enable quadrupeds to run quickly

while carrying unknown loads. However, these methods heavily

rely on domain randomization during training to generalize to

challenging environments. Yang et al. [15] also propose an

end-to-end RL method that utilizes proprioceptive states and

visual feedback to predict environmental changes.

2) Online Learning: To address inaccuracies in model-based

controllers, researchers have explored an alternative approach

using online learning, mainly supervised learning methods [16],

[17], [18]. In this approach, the focus is on learning disturbances

online [19], and in some cases, researchers also aim to learn

the dynamics of the system itself [20]. Furthermore, this ap-

proach has been successfully applied for online calibration of

kinematic parameters in legged robots [21]. In addition, a recent

study has developed a Lipschitz network method to bridge the

model-reality gap in real time [22]. The online learning method

is closely related to adaptive control, and numerous studies have

explored combining these two approaches [23]. This combina-

tion aims to leverage the advantages of both methods, allowing

for dynamic adaptation and continuous learning from real-time

data to improve control system performance. Perhaps closest to

our work in terms of online adaption is the learning method

presented in [24] for legged robots. The authors correct the

model behind the controller using a supervised learner while

the robot is walking in an unknown environment. The data are

collected during the robot’s operation to learn a linear residual

model that can compensate for system errors. However, in

the transition from simulation to experiment, the acceleration

estimators make noisy data required for training the model. As

a result, the method is only applied to estimate the linear terms

since the angular terms data proved to be too noisy to be helpful

in the model.

To enhance controller efficiency and performance, autotun-

ing methods, particularly for PID controllers, have gained

widespread use [25], [26]. These methods fall into two cat-

egories: 1) model-based and 2) model-free. Model-based ap-

proaches use system model information, often employing the

gradient of the performance criterion to enhance local perfor-

mance [27]. In contrast, model-free methods, such as Markov

chain Monte Carlo [28], Gaussian process [29], [30], and deep

neural network [31], approximate gradients or surrogate models

to boost performance. However, model-based approaches may

fail in real-world scenarios due to imperfect dynamic knowl-

edge, and model-free methods such as Bayesian optimization

can be inefficient in high-dimensional parameter tuning. Ad-

dressing this, recent works [32], [33] directly obtain the gra-

dient of the loss function with respect to controller parameters

and apply it to gradient descent for performance improvement.

Autotuning generally requires data or a fixed model for training

and, therefore, does not fit well for real time and fast adaptation

to significant model uncertainty.

3) Adaptive Control: Adaptive control aims to tune the con-

troller’s variables online during deployment [34]. Adaptive con-

trol has been applied for manipulation tasks to robotic arms [35],

mobile robots [36], [37], [38], and quadruped robots [39], [40].

The conventional model reference adaptive control (MRAC)

architecture was initially designed for controlling linear systems

in the presence of parametric uncertainties [41], [42]. However,

it cannot characterize the input/output performance of the sys-

tem during the transient phase. To address this limitation and

improve the transient performance of adaptive controllers, the

L1 adaptive control offers several advantages over traditional

MRAC, such as decoupling adaptation and robustness within a

control framework [43]. In addition, incorporating a low-pass

filter in adaptation law allows the L1 adaptive control to pro-

vide stability [44] and transient performance [45]. Therefore,

the L1 adaptive control technique guarantees robustness with

fast adaptation [46], an essential criterion in dynamic robotics

applications. Recently, by integrating L1 adaptive controller

and Bayesian learner, researchers leverage the fast adaption

performance of the L1 adaptive controllers and introduce a safe

simultaneous control and learning framework [47], [48].

For legged robots, the adaptive controller has also been em-

ployed to find the value and location of the center of mass

(COM) [49]. Our work on L1 adaptive control for bipedal

robots [50] considers a control Lyapunov function (CLF)-based

controller as a closed-loop nonlinear reference model for the L1

adaptive controller. It was validated for the robot’s walking [51]

and running [52]. However, the control framework in this prior

work is based on hybrid zero dynamics (HZD) [53], which

uses joint position control to track the desired trajectory from

optimization for each robot joint. Moreover, in [54], an adaptive

control based on a CLF is designed for quadrupeds to interact

with unknown objects. Then, they combined the criteria derived

by adaptive control as a constraint in an MPC framework.

However, adding more inequality constraints to MPC makes

the controller more complex in terms of computation. In our ap-

proach, we compute a residual vector to compensate for dynamic

uncertainty, which makes the controller more time-efficient.

Additionally, by employing our method, the robot can adapt

to terrains with unknown impact models.

B. Contributions

A preliminary version of this research appeared in [55];

however, this article presents several novel contributions to the

prior work. This work incorporates the L1 adaptive controller

into the MPC. The proposed control system leverages MPC

due to its robustness to uneven terrain, contact constraints, and
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Fig. 1. Our proposed adaptive MPC is successfully validated in an experiment
on a Unitree A1 robot while carrying an unknown load of 5 kg (almost 50% of
body weight) on rough terrain. Experimental results video: https://youtu.be/
5t1mSh0q3lk.

generalization to different locomotion gaits. Moreover, by in-

tegrating adaptive control into MPC, the proposed model can

compensate for significant model uncertainty. In the previous

work [55], the robot can only perform quasi-static walking; how-

ever, in this work, the robot can perform dynamic motions thanks

to MPC. Finally, the authors present new hardware experiments

to demonstrate the effectiveness of the proposed adaptive MPC

(as illustrated in Fig. 1). The main contributions of the article

are as follows.

1) We introduce a novel control system that combines the

L1 adaptive control into the force-based control system,

designed to address the challenges posed by model uncer-

tainty in real-world applications.

2) Thanks to MPC, our approach offers greater versatility

as it can be adapted to a wide range of locomotion gaits

and trajectories. Moreover, our method can handle terrain

uncertainty, allowing the robot to navigate rough terrains

and high-sloped terrain, such as grass and gravel.

3) By integrating the adaptive control into MPC, it is possible

for quadruped robots to carry an unknown heavy load (up

to 50% of the robot’s weight) across challenging terrains,

with the capability of executing dynamic gaits such as fast

trotting and bounding. This is a significant improvement

compared to our previous work, which only allowed the

robot to perform quasi-static walking.

4) The combination of using MPC for both the reference

model and the real model in the adaptive controller makes

the control system computationally expensive, leading

to potential delays in computation. To ensure real-time

performance, we have developed an update frequency

scheme for the control system, which allows for the opti-

mized allocation of processing resources to each control

component.

5) Our proposed approach enables the control system to adapt

to terrains with unknown impact models, such as soft

terrain. Traversing soft terrain is a challenging task for

quadruped robots. Using our method, the A1 robot can

Fig. 2. Baseline Control Structure. Block diagram of a control architecture
for a quadruped robot. For the stance leg control, we use two common baseline
control systems: 1) QP-based balancing controller and 2) MPC.

walk on double-foam terrain in different directions. In

comparison, the robot cannot maintain its balance using

the baseline controller, resulting in a collapse.

The rest of this article is organized as follows. Section II

presents the baseline control architecture for quadruped robots

and provides some knowledge on force-based controllers. In

Section III, we will briefly present an overview of our control

approach. Then, our proposed adaptive force-based controller

using balance controller and MPC will be elaborated in Sections

IV and V, respectively. Furthermore, the numerical and experi-

mental validation are shown in Section VII. Finally, Section VIII

concludes this article.

II. PRELIMINARIES

In this section, we present the background on the control

architecture of quadruped robots and describe each control

component. According to the work in [56], the robot’s control

system consists of several modules, including a high-level con-

troller, low-level controller, state estimation, and gait scheduler

as presented in Fig. 2.

A reference trajectory can be generated for high-level control

from user input and state estimation. The gait scheduler defines

the gait timing and sequence to switch between each leg’s swing

and stance phases. The high-level part controls the position of

the swing legs and optimal ground reaction force (GRF) for

stance legs based on the user commands and gait timing. As the

baseline for the stance leg controller, we will use two common

approaches: 1) quadratic program (QP)-based balancing con-

troller [2] and 2) MPC [1]. The low-level leg control converts

the command generated by high-level control into joint torques

for each motor. These modules of the control architecture will

be described briefly in the following sections. More details can

be found in [1], [2], and [56].

A. Gait Scheduler

The A1’s gait is defined by a finite state machine using a

leg-independent phase variable to schedule contact and swing

phases for each leg [56]. The gait scheduler utilizes independent

Boolean variables to define contact states scheduled sφ ∈ {1 =
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contact, 0 = swing} and switch each leg between swing and

stance phases. Based on the contact schedule, the controller will

execute either position control during swing or force control

during stance for each leg.

In our previous work [55], we focused on the application of

load-carrying tasks, where the load is unknown to the robot

or the control system. Having more legs on the ground during

walking could also mean that the robot could produce a more

significant total GRF to support the heavy load. Therefore, we

used a quasi-static walking gait to maximize the number of legs

on the ground during walking (i.e., three stance legs and one

swing leg throughout the gait). However, in this article, our

framework is not limited by any specific gait. Similar to the

baseline MPC control approach [1], the approach can work for

different gaits by only changing the gait definition in the gait

scheduler.

B. Desired Trajectory

The desired trajectory is generated based on the robot’s ve-

locity command. The robot operator commands xy-velocity

and yaw rate, and then xy-position and yaw are determined

by integrating the corresponding velocity. z position contains

a constant value of 0.3 m, and the remaining states (roll, roll

rate, pitch, pitch rate, and z-velocity) are always zero.

C. SRB Model of Robot

Due to the complexity of the legged robot, a simplified rigid-

body model has been used to present the system’s dynamic. This

model lets us calculate the GRFs in real time. A few assumptions

have been made to achieve simplified robot dynamics [1].

Assumption 1: The robot has low inertia legs, so their effect

is negligible on the robot’s rigid body dynamic.

Assumption 2: For small values of roll (φ) and pitch (θ), the

rotation matrix R, which transforms from the body to world

coordinates, can be approximated as the rotation matrix corre-

sponding to the yaw angle (ψ)

R ∼= Rz(ψ) =

⎡

⎣

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎤

⎦ . (1)

Therefore, by defining the robot’s orientation as a vector of Z–Y–

X Euler angles Θ = [φ, θ, ψ]T , the rate of change of the robot’s

orientation can be approximated as [1]

Θ̇ ∼= Rz(ψ)ωb (2)

where ωb is the robot’s angular velocity in the world frame.

Assumption 3: For small angular velocity, the following ap-

proximation can be made:

d

dt
(IGωb) = IGω̇b + ωb × (IGωb) ≈ IGω̇b (3)

where IG ∈ R
3×3 is the moment of inertia in the world frame.

Based on the earlier assumptions, the state representation of

the system is as follows [1]:
⎡

⎢
⎢
⎣

ṗc

Θ̇

p̈c

ω̇b

⎤

⎥
⎥
⎦
=

⎡

⎢
⎢
⎣

03 03 13 03

03 03 03 Rz(ψ)
03 03 03 03

03 03 03 03

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

D∈R12×12

⎡

⎢
⎢
⎣

pc

Θ

ṗc

ωb

⎤

⎥
⎥
⎦

︸ ︷︷ ︸

X∈R12

+

[
06×12

M−1A

]

︸ ︷︷ ︸

H∈R12×12

F +

[
06×1

G

]

(4)

with

M =

[
m13 03

03 IG

]

∈ R
6×6

A =

[
13 . . . 13

[p1 − pc]× . . . [p4 − pc]×

]

∈ R
6×12

G =

[
g

03×1

]

∈ R
6 (5)

where m is the robot’s mass, g ∈ R
3 is the gravity vector, pc ∈

R
3 is the position of the COM, pi ∈ R

3 (i ∈ {1, 2, 3, 4}) are the

positions of the feet, p̈c ∈ R
3 is body’s linear acceleration, ω̇b ∈

R
3 is angular acceleration, and F = [F T

1 ,F
T
2 ,F

T
3 ,F

T
4 ]

T ∈
R

12 are the GRFs acting on each of the robot’s four feet. The term

[pi − pc]× is the skew-symmetric matrix representing the cross

product (pi − pc)× F i. Note thatpi andF i are presented in the

world frame. Therefore, the state representation of the system

can be rewritten in the compact form

Ẋ = DX +HF +

[
06×1

G

]

. (6)

D. Balance Controller

One of the baseline control approaches for calculating GRFs

for quadruped robots is the balance controller presented in [2]

based on a QP solver. Based on the assumptions presented in

Section II-C, the approximated dynamic model between the

body acceleration and GRFs is as follows:
[

13 . . . 13

[p1 − pc]× . . . [p4 − pc]×

]

︸ ︷︷ ︸

A∈R6×12

F =

[
m(p̈c + g)

IGω̇b

]

︸ ︷︷ ︸

b∈R6

(7)

and the vector b in (7) can be rewritten as

b = M

([
p̈c

ω̇b

]

+G

)

. (8)

Since the model (7) is linear, the controller can naturally be

formulated as the following QP problem [57], which can be

solved in real time at 1 kHz

F ∗ = argmin
F∈R12

(AF − bd)
TS(AF − bd)

+ γ1‖F ‖2 + γ2‖F − F ∗
prev‖

2

s.t. d ≤ CF ≤ d̄

F z
swing = 0 (9)
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where bd is the desired dynamics. The idea of designing bd
will be elaborated in Section IV-A. The cost function in (9)

includes terms that consider three goals, including 1) driving

the COM position and orientation to the desired trajectories,

2) minimizing the force commands, and 3) minimizing the

change of the current solution F ∗ with respect to the solution

from the previous time-step, F ∗
prev. The priority of each goal in

the cost function is defined by the weight parameters S ∈ R
6×6,

γ1, γ2 respectively.

The constraints in the QP formulation enforce friction con-

straints, input saturation, and contact constraints. The constraint

d ≤ CF ≤ d̄ ensures that the optimized forces lie inside the

friction pyramid and the normal forces stay within a feasible

range. More details can be found in [2]. Besides the friction

constraint, we will enforce the force constraints for the swing

legs, F swing = 0. The swing legs are then kept in the posing

position until they switch to the stance phase. More details on

swing leg control are provided in Section II-F.

E. SRB-Based Convex MPC

The calculation of GRFs in quadruped robots is often ap-

proached through MPC [1]. This method determines the optimal

sequence of inputs over a finite-time horizon, taking into account

any constraints within the dynamic model. Every time MPC is

executed in the control system, only the first computed control

input from the MPC cycle is applied. The inputs determined

over the finite time horizon are only used for the optimization

problem and are not directly applied in the control system.

To have the dynamic equation in the convenient state-space

form, gravity should be added to the state. So, the system can

represent as

Ẋc = DcXc +HcF (10)

where

Xc =

⎡

⎢
⎢
⎢
⎢
⎣

pc

Θ

ṗc

ωb

||g||

⎤

⎥
⎥
⎥
⎥
⎦

∈ R
13

Dc =

⎡

⎢
⎢
⎢
⎢
⎣

03 03 13 03 03×1

03 03 03 Rz(ψ) 03×1

03 03 03 03
g

||g||

03 03 03 03 03×1

01×3 01×3 01×3 01×3 0

⎤

⎥
⎥
⎥
⎥
⎦

∈ R
13×13

Hc =

⎡

⎣

06×12

M−1A

01×12

⎤

⎦ ∈ R
13×12. (11)

We consider a linear MPC problem with horizon length k as

follows:

min
F i

k−1∑

i=0

ei+1
TQiei+1 + F i

TRiF i

s.t. Xc
i+1 = Dt,iX

c
i +Ht,iF i

d ≤ CF i ≤ d̄ (12)

where F i is the computed GRFs at time step i, Qi and Ri are

diagonal positive semidefinite matrices, and Dt,i and Ht,i are

discrete-time system dynamics matrices. ei+1 is the system state

error at time step i define as e = [ep, ėp]
T ∈ R

12, with

ep =

[
pc − pc,d

log(RdR
T )

]

∈ R
6, ėp =

[
ṗc − ṗc,d

ωb − ωb,d

]

∈ R
6

(13)

where pc,d ∈ R
3 is the desired position of COM, ṗc,d ∈ R

3 is

the desired body’s linear velocity, and ωb,d ∈ R
3 is the desired

body’s angular velocity. The desired and actual body orien-

tations are described using rotation matrices Rd ∈ R
3×3 and

R ∈ R
3×3, respectively. The orientation error is obtained using

the exponential map representation of rotations [58], [59], where

the log(.) : R
3×3 → R

3 is a mapping from a rotation matrix to

the associated rotation vector [2]. The constraint d ≤ CF i ≤ d̄

is equivalent to the constraint in (9) at time step i.

F. Swing Leg Control

For the swing legs, the final footstep location for each leg is

calculated from the corresponding hip location using a linear

combination of Raibert heuristic [60] and a feedback term from

the capture point formulation [56], [61]. The final footstep

locations (pf,i) are projected on an assumed ground plane and

are calculated by

pf,i = ph,i +
Tcφ

2
ṗc,d +

√
z0

‖g‖
(ṗc − ṗc,d) (14)

where Tcφ
is the stance time scheduled, z0 is the height of

locomotion, and ph,i ∈ R
3 is the position of the corresponding

hip i. A Beizer curve calculates the desired swing trajectory

(including desired position pd,i and velocity vd,i) for swing legs

which starts from the initial lift-off position p0,i and ends at the

final touch-down location pf,i.

G. Low-Level Control

The low-level leg control can generate joint torque commands

from the high-level controller. For low-level force control, the

controller transforms the force vector to the hip frame by rotation

matrix R. Then, joint torques are calculated as follows:

τ stance,i = −J(qi)
T
RTF i (15)

where J(qi) ∈ R
3×3 is the leg Jacobian matrix and qi is the

joints angle of ith leg.

To track the desired swing trajectory for each foot, a PD

controller with a feedforward term is used to compute joint

torques [56]

τ swing,i = J(qi)
T [Kp,p(pd,i − pi) +Kd,p(vd,i − vi)]

(16)

where pd,i and vd,i are desired foot position and velocity,

respectively,pi andvi are actual foot position and velocity in the

robot’s frame, respectively, andKp,p ∈ R
3×3 andKd,p ∈ R

3×3

are the diagonal matrices of the proportional and derivative

gains, respectively.
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III. OVERVIEW OF THE PROPOSED APPROACH

This section will present an overview of our novel control

architecture to incorporate adaptive control into the force control

framework. While our approach is not limited to any specific

adaptive control approach, we decided to use L1 adaptive con-

trol [46], [50] thanks to its advancement in guaranteeing fast

adaptation and smooth control signals. Note that our proposed

control system is designed for the stance leg control part in the

control architecture of the quadruped robot (see Fig. 2).

Our prior work [50] introduced an adaptive control based on

HZD [62] for bipedal robots. HZD is a common control approach

for bipedal robots since it can handle hybrid and underactuated

dynamics associated with this kind of robot. In this article,

however, our approach leverages the combination of the adap-

tive control and force control system, which calculates GRFs

to achieve highly dynamic locomotion for quadrupeds [56].

The use of force control in legged robot systems has several

key benefits, including increased robustness in the presence of

challenging terrains [2] and the ability to accommodate a wide

range of dynamic movements [1], such as various types of loco-

motion gaits. By combining force control with adaptive control

strategies that compensate for model uncertainty, achieving an

enhanced control system with these advantages is possible.

The overview of our proposed adaptive-force-based control

system is presented in Fig. 3(a). By incorporating anL1 adaptive

controller, we aim to design a combined controller. The force-

based controller calculates the optimal GRFs for following the

desired trajectory. The adaptive controller calculates the residual

parameters for compensating the nonlinear model uncertainty θ

in the system dynamic. Therefore, the goal is to adjust adaptive

control signalua as well as adaptation law to estimate the model

uncertainty (θ̂) correctly and make the real model follow the

reference model. For the reference model, we employ a similar

linear model described in (6), and we will update the reference

model in real time using an ODE solver. Moreover, the vector

of uncertainties estimation θ̂ typically has high frequency due

to fast estimation in the adaptation law. Thus, we employ a low-

pass filter to obtain smooth control signals. We use the same

swing leg control to appropriately synchronize the reference and

real models. This means that we also use the real model’s foot

position for the reference model.

In the following sections, we will elaborate on integrating

two different force-based controls as the baseline controller

into the adaptive control. First, in Section IV, we will describe

the proposed method using a QP-based balancing controller, as

presented in Fig. 3(b). Then, in Section V, we will show how

to incorporate MPC into the adaptive controller in detail, as

illustrated in Fig. 3(c).

IV. ADAPTIVE-FORCE-BASED CONTROL USING THE BALANCE

CONTROLLER

In this section, we use the balance controller as the force-based

controller, previously demonstrated in [55]. In Section V, we will

present our control framework for integrating the L1 adaptive

control into MPC.

Fig. 3. Proposed adaptive-force-based control system diagram. (a) Main
structure of the proposed adaptive-force-based control system. (b) Block dia-
gram of the proposed adaptive-QP-based balancing controller. (c) Block diagram
of the proposed adaptive MPC. Each dashed line indicates the update frequency
for control components.

A. Closed-Loop Dynamics

The L1 adaptive control is designed for trajectory tracking;

however, the goal of the balance controller is to compute optimal

GRFs. Hence, to integrate the balance controller presented in

Section II-D intoL1 adaptive control, we should relate the linear

model described in (7) to the closed-loop dynamics.
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Let us consider the system state error (e) according to (13) as

the state variable. Therefore, the closed-loop error dynamics in

state-space form can be represented as follows:

ė = Dle+Bu (17)

where

Dl =

[
06 16

06 06

]

∈ R
12×12, B =

[
06

16

]

∈ R
12×6 (18)

and u ∈ R
6 is the control input function. By employing a PD

control law, we have

u =
[

−KP −KD

]

e (19)

where KP ∈ R
6×6 and KD ∈ R

6×6 are diagonal positive-

definite matrices. According to definition of matrices Dl and

B, from (17), it can be obtained that

ëp =

[
p̈c − p̈c,d

ω̇b − ω̇b,d

]

= u (20)

where ëp is the derivative of ėp presented in (13), and p̈c,d and

ω̇b,d are the desired COM linear acceleration and the desired

angular acceleration, respectively. Since the desired trajectory is

obtained from the velocity command, both desired accelerations

p̈c,d and ω̇b,d are zero vectors. Then, from (8) and (20), the

desired dynamics can be given by

bd = M(u+G) (21)

where M and G are defined in (5). By substituting (21) into

the QP problem (9), we can obtain the optimal GRFs as the

input for the low-level leg controller. The objective of the QP

formulation in (9) is to find a solution that ensures the actual

dynamics AF match the desired dynamics bd. The QP-based

balance controller can generally achieve the desired control input

function outlined in (19), thus keeping the errorewithin a certain

range. However, if the desired dynamics vector bd violates any

of the inequality constraints, such as force limits or friction

constraints, the controller may yield an optimal solution F ∗ that

may not completely align with the desired dynamics. With this

solution, the optimal dynamic bd
∗ and u∗ can be written as

bd
∗ = AF ∗ (22)

u∗ = M−1 bd
∗ −G (23)

where in the Appendix, we will show that the u∗ remains within

a bounded range.

Note that the optimal GRF F ∗ serves as the control input for

the robot, and the variable u∗ acts as an input for the closed-loop

dynamic. The closed-loop structure for the robot is depicted in

Fig. 3(b) (the green dashed line).

B. Effects of Uncertainty on Dynamic

If we consider uncertainty in the dynamic equation (6) and

assume that the matrices D and H are not accurate, then we

need to present the dynamic based on the nominal matrices D̄,

H̄ . The model uncertainty mostly comes from inaccurate values

for mass, inertia, and foot position with respect to the COM.

In addition, various terrains (e.g., rough terrain or soft terrain)

might have different impacts on the robot, which is unknown in

a practical situation. Therefore, terrain uncertainty should also

be considered in the dynamic model. In this section, we solely

derive our control equations based on the model uncertainty.

In Section VI, we will elaborate on how our proposed control

system can also consider terrain uncertainty.

Another parameter is involved in the dynamic equation,

namely the yaw angle. This angle is obtained through the state

estimation, and we assumed that the state estimation has minimal

uncertainty. According to the definition of matrices D and H

in (4), the inaccurate value of the dynamic parameter mentioned

earlier reflects on theH matrix. Therefore, the dynamic equation

in the presence of uncertainty can be represented as

Ẋ = DX +
(

H̄ + H̃
)

F +

[
06×1

G

]

(24)

where H̃ represent the uncertainty in matrix H . It is worth

noting that according to the definition of H in (11), the first six

rows of H consist of zeros. Thus, we can rephrase the dynamic

equation (24) as follows:

Ẋ = DX + H̄F +BG+Bθ (25)

where θ ∈ R
6 is the vector of uncertainty for six corresponding

equations and is defined as follows:

θ
∆
=BT H̃F . (26)

With reference to the state representation given by (25), the vec-

tor θ can be interpreted as a time-varying disturbance affecting

the body and orientation accelerations.

The uncertainty vector θ depends on both time t and F . Since

F is obtained through the QP problem (9), it is a function of bd.

Furthermore,bd is a function ofu according to (21). Considering

thatu is determined by the PD control (19), we can conclude that

θ is a function of both the tracking error e and time t. As a result,

for any given time t, it is always possible to find α(t) ∈ R
6 and

β(t) ∈ R
6 satisfying [43]

θ(e, t) = α(t)||e||+ β(t). (27)

C. Designing Adaptive Controller for Compensating the

Uncertainty

By incorporating L1 adaptive controller, we want to design

a combined controller u = u1 + u2, where u1 is the control

input to follow the desired trajectory for the nominal model as

presented in (19) and u2 is to compensate the nonlinear model

uncertainties θ. Therefore, the goal is to adjust the control signal

u2 so that the real model can follow the reference model. For the

reference model, we employ a similar linear model described in

(7) which, instead of M , the nominal matrix M̄ is being used.

The proposed force-based adaptive control diagram based on a

balance controller is presented in Fig. 3(b).

The duplicate version of (25) for state-space representation

presented in (17) by considering combined controlleru = u1 +
u2 is as follows:

ė = Dle+Bu1 +B (u2 + θ) . (28)
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Note that the vector of uncertainty θ in (25) and (28) are not the

same since the state vector of (25) is X . In contrast, the state

vector of (28) is system error e.

The state representation for the reference model can be ex-

pressed as follows:

˙̂e = Dlê+Bû1 +B(u2 + θ̂) (29)

where

θ̂ = α̂||e||+ β̂ (30)

and û1 is defined as

û1 =
[

−KP −KD

]

ê. (31)

To compensate the estimated uncertainty θ̂, we can just simply

choose u2 = −θ̂ to obtain

˙̂e = Dlê+Bû1. (32)

However, θ̂ typically has high frequency due to fast estimation

in the adaptation law. Therefore, we employ a low-pass filter to

obtain smooth control signals as follows:

u2 = −C(s)θ̂ (33)

where C(s) is a second-order low-pass filter with a magnitude

of 1

C(s) =
ωn

2

s2 + 2ζωns+ ωn
2
. (34)

According to (21), bd for the real model in the presence of

uncertainty get the following form:

bd = M̄(u1 + u2 +G). (35)

Respectively, b̂d for reference model is as follows:

b̂d = M̄
(

û1 + u2 + θ̂ +G
)

. (36)

The QP solver outlined in (9) allows us to obtain the optimal

GRFs for the real model. Similarly, the optimal GRFs F̂ for the

reference model can be obtained as follows:

F̂
∗
= argmin

F̂∈R12

(

ÂF̂ − b̂d

)T

S
(

ÂF̂ − b̂d

)

+ γ1‖F̂ ‖2 + γ2‖F̂ − F̂
∗

prev‖
2

s.t. d ≤ CF̂ ≤ d̄

F̂
z

swing = 0. (37)

Define the difference between the real model and the reference

model ẽ = ê− e, we then have

˙̃e = Dlẽ+Bũ1 +B
(

α̃||e||+ β̃
)

(38)

where

ũ1 = û1 − u1, α̃ = α̂−α, β̃ = β̂ − β. (39)

As a result, we will estimate θ indirectly throughα andβ, or the

values of α̂ and β̂ computed by the following adaptation laws

based on the projection operators [63]:

˙̂α = ΓProj (α̂,yα) ,
˙̂
β = ΓProj

(

β̂,yβ

)

(40)

where Γ ∈ R
6×6 is a symmetric positive-definite matrix. The

projection functions yα ∈ R
6 and yβ ∈ R

6 are

yα = −BTP ẽ||e||

yβ = −BTP ẽ (41)

where P ∈ R
12×12 is a positive-definite matrix that is defined

according to the stability criteria using the Lyapunov equa-

tion. Moreover, the system’s stability proof is provided in the

Appendix.

V. ADAPTIVE-FORCE-BASED CONTROL USING MPC

MPC has been widely used across various fields, from finance

to robotics. One of MPCs main advantages is its ability to

handle complex systems with multiple inputs and outputs while

considering hard control constraints [64]. MPC has also been

applied to quadruped robots, providing stable locomotion [1].

Thanks to dynamic prediction in MPC, using the same control

framework can achieve different dynamic locomotion gaits.

However, MPCs limitations become evident when dealing with

significant uncertainty in the dynamic model. For instance, in the

case of a quadruped robot carrying an unknown heavy load, MPC

fails to track the desired state trajectory, resulting in unstable

behavior and deviation from the desired trajectory, especially

with dynamic gaits like bounding. Furthermore, the ability of a

robot to traverse soft terrain where the impact model is unknown

can present a significant challenge. Our proposed approach can

tackle this challenge effectively, and we will discuss how it

handles the terrain unknown impact model in Section VI.

In Section IV, we presented an adaptive-force-based control

framework based on the balance controller. The balance con-

troller relies on a QP solver, which is simple to put into practice

and well-suited for slow and safe motions such as standing and

quasi-static walking. Additionally, the balance controller is an

instantaneous control technique, meaning it does not predict

the robot’s future movement. As a result, the balance controller

proves to be ineffective in fast-paced, highly dynamic scenarios.

On the other hand, MPC has shown great potential in handling

agile motions, even when it comes to underactuated gaits such

as bounding.

In this section, we will present a novel control architecture

to integrate adaptive control into the MPC framework. By this

proposed framework, we can achieve fast and robust locomotion

in the presence of uncertainties. This framework can also be ex-

tended to accommodate various dynamic gaits in legged robots,

such as trotting and bounding. As discussed in a previous section,

our approach is not restricted to a specific type of adaptive

control. Still, we have chosen to utilize L1 adaptive control,

which has demonstrated advantages over other adaptive control

techniques. The first step in integrating L1 adaptive control and

MPC is understanding the importance of a reference model and

the challenges in synchronizing the real and reference models.

We then present our proposed adaptive MPC, which combines
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Fig. 4. Motion snapshot of the robot with bounding gaits. A simple controller
cannot easily predict the quadruped’s COM motion (yellow line). This illustra-
tion can represent the importance of using MPC for the reference model.

conventional MPC [1] with adaptive control. Finally, we address

the challenge of real-time computation while having two MPCs

in our control system. We will elaborate on how to adjust the

frequency of each control component in an optimized manner to

allocate enough computation resources for critical control parts

and achieve real-time computation.

A. Reference Model

Our method aims to design a combined controller based on

MPC and L1 adaptive control that the real model follows the

reference model. In accordance with our previous discussion

in Section IV-C, the combined controller incorporates a control

signal u2 to account for model uncertainty, as indicated in (28).

In this section, the auxiliary control signal for this purpose is

ua ∈ R
6; thus, the uncertain dynamic equation (25) can be

rewritten as follows:

Ẋ = DX + H̄F +BG+B(ua + θ). (42)

The reference model is similar to the quasi-linear model de-

scribed in (6) which, instead of H , the nominal matrix H̄ is

being used. The proposed adaptive MPC diagram is presented

in Fig. 3(c).

We consider a reference model for L1 adaptive control that

arises from MPC. The MPC method is computationally expen-

sive, but replacing it with other simpler control methods, such as

the balance controller, while simulating the robot’s performance

using dynamic gaits such as bounding is impossible. The reason

is that in bounding gait, the robot’s two feet on either the front

or rear side touch the ground at each time step, making it

challenging to accurately control the height and pitch angle. The

MPC approach balances the error in the height and pitch angle

and, based on the predicted dynamics of the system in the future,

computes the optimal GRFs. As seen in Fig. 4, the COM height

oscillates around the desired value. Thus, the underactuated

nature of certain gaits, such as bounding, necessitates the use

of MPC as the control system for the reference model.

When implementing MPC for a reference model, one chal-

lenge is ensuring that the reference model is synchronized with

the real model. This is particularly important when the robot

performs a gait with a periodic behavior, such as bounding

(see Fig. 4). In order to correctly compare the real model with

the reference model, both should have the same gait schedule.

Additionally, the adaptive MPC proposed for legs in the stance

phase is independent of the swing leg control. However, the foot

position is crucial in calculating the moment of GRF around

the COM. Therefore, to maintain consistency between the real

and reference models, it is important to ensure that the real

robot’s foot position is fed into the reference model, as shown

in Fig. 3(c).

The reference model can be expressed as follows:

˙̂
X = DX̂ + H̄F̂ +BG+B

(

ua + θ̂
)

(43)

where

θ̂ = α̂||e||+ β̂. (44)

In this case, similar to Section IV, we use a second-order low-

pass filter, same as (34). Therefore, the auxiliary control signal

would be

ua = −C(s)θ̂. (45)

By defining the difference between the real model and the

reference model X̃ = X̂ −X , we then have

˙̃
X = DX̃ + H̄F̃ +B

(

α̃||e||+ β̃
)

(46)

where

F̃ = F̂ − F , α̃ = α̂−α, β̃ = β̂ − β. (47)

Since the desired trajectory for both the real model and the

reference model is the same (Xd = X̂d), the difference between

the real model and reference model can be defined as

X̃ = (X̂ − X̂d)− (X −Xd) = ê− e = ẽ. (48)

Therefore, (46) is equal to the following equation:

˙̃e = Dẽ+ H̄F̃ +B
(

α̃||e||+ β̃
)

. (49)

The adaption laws and projection functions for computing the

value of α and β are the same as (40) and (41), respectively.

Moreover, the stability of the control system can be proven using

the same logic provided in the Appendix.

B. Adaptive MPC

After computing the auxiliary control signal ua using the

adaptive controller presented in the previous section, we will

integrate the ua with the conventional MPC for legged locomo-

tion [1] and propose our adaptive MPC framework. We treat the

auxiliary control signal ua as a residual vector in the system’s

equation to compensate for dynamic uncertainty. Therefore, ua

should be combined into the state vector and (42) can be written

as follows:

η̇ = Deη + H̄
e
F +Beθ (50)

with the following extended matrices:

η =

[
Xc

ua

]

∈ R
19

De =

⎡

⎢
⎢
⎣

Dc
13×13

06×6

16×6

01×6

06×13 06×6

⎤

⎥
⎥
⎦
∈ R

19×19
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H̄
e
=

[
H̄

c

06×12

]

∈ R
19×12

Be =

[
B

07×6

]

∈ R
19×6 (51)

where H̄
c

is the nominal value of Hc. The definition of Xc,

Dc, and Hc can be found in (11). Although ua is considered

a part of the state vector in (50), it is just a residual vector for

compensating dynamic uncertainty. Therefore, ua is constant

in the state space equation and over the horizons. To this end,

the components associated with ua in matrices De and H̄
e

are

assigned zero, which means u̇a = 0. Note that the value of ua

will be updated according to the adaptive law, but it is constant

during the prediction horizons.

The state representation in (50) is also convenient for dis-

cretization methods such as zero-order hold [65] for MPC.

Therefore, our adaptive MPC can be designed according to (12)

and based on the following discrete-time dynamic:

ηi+1 = De
t,iηt,i + H̄

e
t,iF i. (52)

C. Real-Time Computation

The main challenge in executing our proposed adaptive MPC

framework is ensuring that the computation required is fast

enough for hardware experiments in real time. If the controller

is unable to perform updates at a high frequency, it could result

in the robot collapsing during dynamic motion. The control

system comprises two MPCs, each with 13–19 states predicted

over 10 horizons. To ensure the robot’s balance and allocate

sufficient computation resources to each control component, we

have devised a scheme, as depicted in Fig. 3(c), to update each

control component in an optimized manner.

The robot’s sensory data update in real time with a frequency

of 1 kHz. Thus, the reference model should update with the same

frequency to compare the reference model states (X̂) and real

model states (X) correctly. The yellow dashed line in Fig. 3(c)

indicates the update frequency for the reference model. We use

the odeint package from Boost software in C++ [66] to solve

the ODE problem associated with the dynamic equation for the

reference model.

One of the critical components in our proposed framework

is the adaptive MPC, which is responsible for computing the

GRF for the robot, as shown in Fig. 3(c). Through our ex-

perimentation, we have determined that for robust locomo-

tion with dynamic gaits, the optimal update frequency for the

adaptive MPC should be 300 Hz. In contrast, the reference

MPC, which plays a supporting role in the control system, is

less sensitive and runs at a slower rate of 30 Hz. In addition,

there is a 2-ms delay between the running of the adaptive

MPC and reference MPC to ensure sufficient computational

resources are allocated to each component. This means the

two MPC frameworks do not run simultaneously in our control

system.

VI. ADAPTATION TO UNKNOWN IMPACT MODEL

The dynamic formulation presented in Sections IV and V

considers the presence of model uncertainty in real-world situ-

ations. It is assumed that the terrain is hard enough to allow the

robot to receive the desired force as GRFs on its feet. However,

this assumption may not hold if the robot walks on soft or

elastic terrain with an unknown impact model, which may not

generate the desired force needed for stable locomotion. Some

previous studies have included terrain knowledge and contact

models in their balancing controllers to address the soft terrain

challenge, mainly using a spring–damper model to characterize

the soft terrain [67], [68]. Some control frameworks for adapting

to soft terrain in real time have also been developed using

iterative learning [69] and whole-body control [70], without

prior knowledge about the terrain. This section demonstrates

that the proposed method in Sections IV and V can also handle

unknown impact models from terrain, allowing the robot to

maintain stability while walking on soft terrains.

Equation (15), representing the force-to-torque mapping,

holds under the condition that the movement of each leg can

be considered negligible. This assumption is reasonable for the

stance leg on solid ground. However, when dealing with soft

terrain, this mapping is not accurate. The dynamic equation for

each leg is expressed as follows:

τ stance,i = M i(qi)q̈i + ni(qi, q̇i)− J(qi)
T
RTF i (53)

where M i(qi) is the inertia matrix, ni(qi, q̇i) is the nonlinear

term, and q̈i is joints acceleration for the ith leg. Remember

that Assumption 1 was considered for the rigid body dynamic

equation of the robot. However, when addressing the dynamic

equation of each leg, it is not valid to neglect the inertia asso-

ciated with each leg. Furthermore, calculating the joint accel-

eration poses challenges due to considerable noise, making the

complete computation of (53) difficult. This is where adaptive

controllers prove to be beneficial.

Assume the computed force F by MPC in (25) cannot be

achieved perfectly due to walking on soft terrain. Therefore,

(25) can be rewritten as follows:

Ẋ = DX + H̄
(

F a + F̃ a

)

+BG+Bθ (54)

where F a is the actual GRF applied to the robot and F̃ a is the

difference between the desired GRF and actual reaction force.

Therefore, we can reformulate (54) as follows:

Ẋ = DX + H̄F a +BG+B(θ + θF ). (55)

where the uncertainty vector θF is defined as follows:

θF
∆
=BT H̄F̃ a (56)

Equation (55) is in the form of (25), which uses actual GRF

instead of the desired GRF. Therefore, all formulations for

implementing adaptive controllers are also valid for a situation

with an unknown impact model.
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Fig. 5. Navigating different terrains using our proposed adaptive MPC while carrying an unknown heavy load. (a) Gravel. (b) Grass. (c) Rough terrain.
(d) High-sloped terrain.

TABLE I
CONTROLLER SETTING

VII. RESULTS

In this section, we validate our control approach in simula-

tion and hardware experiments on a Unitree A1 robot. All the

hardware experiments’ computations run on a single PC (Intel

i7-6500 U, 2.5 GHz, 64 b). For simulation, the control system

is implemented using ROS Noetic in the Gazebo 11 simulator,

which provides a high-fidelity simulation of the A1 robot. A

video showcasing the results accompanies this article.1

We set the control parameters for MPC, the adaption law,

and the low-pass filter as presented in Table I. We use one set

of parameters for all the experiments with different locomotion

gaits, indicating that our approach is easily generalizable. The

following sections will introduce different experiment results

in terms of model and environment uncertainty (see Fig. 5). In

each experiment, the robot starts by using a balance controller to

stand up and then switches to the MPC framework for walking

or running.

A. Comparative Analysis

In order to evaluate the performance of our proposed adaptive

MPC method, we conduct a comparative experiment with the

conventional MPC method presented in [1]. The objective is to

understand the advantages of integrating the adaptive controller

into MPC for quadrupedal locomotion.

1) Walking With Significant Model Uncertainty: The exper-

iment involves the robot walking and rotating in different di-

rections, using both adaptive and nonadaptive controllers while

carrying an unknown load. To ensure a precise comparison, we

1[Online]. Available: https://youtu.be/5t1mSh0q3lk

establish a unit test comprising velocity and rotation commands.

This test is then executed for both adaptive and nonadaptive con-

trollers. The experiment results show that the adaptive controller

provides robust locomotion, with excellent tracking error, even

when carrying an unknown 5-kg load. On the other hand, the

nonadaptive controller results in a considerable error in the COM

height and eventually collapses under the weight of just a 3-kg

load. The comparative results for the adaptive and nonadaptive

controllers are shown in Fig. 6.

2) Walking on Soft Terrain: To evaluate the capability of our

proposed control method in handling unknown impact models,

we conducted an experiment where the robot was made for

walking on double foam, which symbolizes a soft terrain. The

performance of both the adaptive and nonadaptive controllers

was evaluated and compared. The results are depicted in Fig. 7,

representing the robot’s roll angle. The figure clearly illustrates

that the adaptive controller could maintain the robot’s balance

on the soft terrain. In contrast, the nonadaptive controller could

not do so, leading to the collapse of the robot.

B. Running With Multiple Gaits

To demonstrate the superiority of our proposed approach

for dynamic gaits, we conducted experiments with the robot

running while carrying an unknown load. These experiments

were carried out for both the trotting and bounding gaits, with

an unknown load of 5 kg and 3 kg, respectively. The results of

these experiments are shown in Fig. 8. It can be seen from the

figure that the tracking of the COM height during the bounding

gait is more unstable compared to the trotting gait, which is due

to the inherent underactuated nature of the bounding gait.

C. Time-Varying Load

To demonstrate the effectiveness of our proposed adaptive

force control in adapting to model uncertainty, we conducted

simulations where the robot carries a time-varying load of up

to 92% of its weight during walking. As shown in Fig. 9,

our approach can enable the robot to adapt to time-varying

uncertainty. In the simulation, the robot starts with an unknown

5-kg load. While increasing the robot’s velocity, the robot is

subjected to a varying external force in the z-direction that rises

to 60 N, resulting in an additional unknown 11-kg load. These
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Fig. 6. Comparing performance of adaptive and nonadaptive controllers.

(a) Snapshots of the A1 robot with the nonadaptive controller while carrying
an unknown 3-kg load and collapses. (b) Snapshots of the A1 robot walking
robustly with the adaptive controller while carrying an unknown 5-kg load.
(c) Comparative plots of the COM height. (d) Velocity command tracking in the
x-direction. (e) y-direction for adaptive and nonadaptive controllers. The plots
for the nonadaptive controller do not persist until the completion of the unit test,
as the robot experiences a collapse during testing.

results indicate that our proposed approach effectively handles

high levels of model uncertainty.

D. Terrain Uncertainty

To demonstrate the capability of our proposed method to

handle terrain uncertainty, we tested the robot navigating various

terrains while carrying an unknown 5-kg load. To this end, we

Fig. 7. Comparing performance of adaptive and nonadaptive controllers on

soft terrain. The A1 robot tries to walk on double soft foam using (a) nonadaptive
and (b) adaptive controllers. (c) Plot of the robot’s roll angle.

Fig. 8. Running experiment. The A1 robot runs with the velocity of 1 m/s
using our proposed method. (a) Trotting gait with an unknown 5-kg load.
(b) Bounding gait with an unknown 3-kg load. (c) Plots of COM height.

tried walking experiments on multiple rough terrains as well as

high-sloped terrain, and we got impressive results.

1) Rough Terrain: We tested the robot navigating various

rough terrains such as grass and gravel. The robot walks and ro-

tates in multiple directions while carrying an unknown 5-kg load.

Some snapshots of the robot walking on diverse rough terrain are

presented in Fig. 5. Our approach is based on a force controller
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Fig. 9. Simulation results for the robot carrying a time-varying load. (a) Robot
starts with an unknown 5-kg load, then gradually, an unknown time-varying force
will be exerted on the robot as shown in (b) and (c) while the robot’s velocity
increases. (d) Plot of COM height. (e) Robot velocity tracking in the x-direction.

and retains the robustness features of the baseline framework,

allowing the robot to handle the rough terrain effectively.

2) Sloped Terrain: To enable the robot to climb the sloped

terrain perfectly without vision, we need to adjust its orientation

to make its body parallel to the walking surface. This is done

by using the footstep location to estimate the slope of the

ground. For each ith leg, we can measure the foot position

pi = (px,i, py,i, pz,i) and build the vector of feet x-position (px),

y-position (py), and z-position (pz). Thus, we can model the

walking surface as a plane

z(x, y) = a0 + a1x+ a2y (57)

and the coefficients (a0, a1, and a2) will be obtained through the

solution of the least square problem using px, px, and px data

(see [56] for more details).

Note that the desired roll and pitch angles for the robot will

be modified on the slope according to the following:

roll = arctan(a2), pitch = arctan(a1). (58)

As a result, the reference model’s desired pitch and roll angles

must be adjusted to the nonzero values determined as described

earlier. It is important to note that the reference model utilizes

the actual foot position of the robot, so there is no need to make

any changes to the reference model’s footstep planning when

the robot is attempting to climb a slope.

VIII. CONCLUSION

In conclusion, a novel control system has been presented that

incorporates adaptive control into force control for legged robots

walking under significant uncertainties. We have demonstrated

the effectiveness of our proposed approach using numerical and

experimental validations. The experiments show the success

of the implementation of the proposed adaptive force control

on quadruped robots, allowing them to walk and run while

carrying an unknown heavy load on their trunk. The results are

remarkable, with the robot being able to carry a load of up to 5 kg

(50% of its weight) while still keeping the tracking error within

a small range and maintaining stability even in all directions.

The experiment demonstrates that the proposed adaptive force

control system cannot only adapt to model uncertainty but also

leverage the benefits of force control in navigating rough terrains

and soft terrain. On the other hand, the baseline nonadaptive

controller fails to track the desired trajectory and causes the

robot to collapse under uncertainty.

In the future, our goal is to broaden this methodology for

autotuning MPC parameters, employing adaptive controllers

specifically tailored for legged robot locomotion across various

scenarios.

APPENDIX

A. Linear Quadratic Lyapunov Theory

According to the Lyapunov theory [71], the PD control de-

scribed in (19) will asymptotically stabilize the system if

Am =

[

06 16

−KP −KD

]

∈ R
12×12 (59)

is Hurwitz. This means that by choosing a CLF candidate as

follows:

V (e) = eTPe (60)

where P ∈ R
12×12 is the solution of the Lyapunov equation

Am
TP + PAm = −QL (61)

andQL ∈ R
12×12 is any symmetric positive-definite matrix. We

then have

V̇ (e,u) + λV (e) = eT
(
Dl

TP + PDl

)
e

+ λV (e) + 2eTPBu ≤ 0 (62)

where,

λ =
λmin(QL)

λmax(P )
> 0. (63)

As a result, the state variable e and the control input u always

remain bounded

‖e‖ ≤ δη, ‖u‖ ≤ δu. (64)

However, the control signal u∗ (23) we construct by solving

QP problem (9) is not always the same asu. Based on the friction

constraints present in (9), the value of F ∗ is always bounded.

Besides, according to the definition of A, M , and G, these
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matrices also have bounded values. Thus, it implies that

‖u∗‖ ≤ δu∗ . (65)

Therefore, the vector of difference between u and u∗ can be

defined as

∆ = u∗ − u (66)

which is also bounded according to (65) and (64)

‖∆‖ ≤ δ∆. (67)

By substituting u∗ in (62), we have

V̇ (e,u∗) + λV (e) ≤ 2eTPB∆ ≤ εV (68)

where

εV = 2‖P ‖δηδ∆. (69)

B. Stability Analysis

Theorem: Consider the system dynamics with uncertainty

described by (28), and a reference model described by (29).

Assume the use of an L1 adaptive controller with the optimal

closed-loop control signal given by (23), the adaptive control

signal given by (33), and the adaptation laws given by (40). Then,

under the aforementioned L1 adaptive controller, the tracking

error between the real model and reference model denoted as ẽ,

as well as the errors between the real and estimated uncertainty,

denoted as α̃ and β̃, respectively, are bounded.

Proof: Let us consider the following control Lyapunov can-

didate function:

Ṽ = ẽTP ẽ+ α̃T
Γ
−1α̃+ β̃

T
Γ
−1β̃. (70)

Therefore, its time derivative will be

˙̃
V = ˙̃eTP ẽ+ ẽTP ˙̃e+ ˙̃αT

Γ
−1α̃+ α̃T

Γ
−1 ˙̃α

+
˙̃
βT

Γ
−1β̃ + β̃

T
Γ
−1 ˙̃β (71)

in which we have

˙̃eTP ẽ+ ẽTP ˙̃e

=
(

Dlẽ+BF̃
)T

P ẽ+ ẽTP
(

Dlẽ+BF̃
)

+ α̃TBT ||e||P ẽ+ ẽTPBα̃||e||

+ β̃
T
BTP ẽ+ ẽTPBβ̃. (72)

Because ẽ = ê− e satisfies the condition imposed by (68), it

implies that

(

Dlẽ+BF̃
)T

P ẽ+

ẽTP
(

Dlẽ+BF̃
)

≤ −λẽTP ẽ+ εṼ (73)

where

εṼ = 2‖P ‖δẽδ∆̃. (74)

Furthermore, with the property of the projection operator [63],

we have the following:

(α̂−α)T (Proj(α̂,yα)− yα) ≤ 0

(β̂ − β)T
(

Proj(β̂,yβ)− yβ

)

≤ 0. (75)

From (40) and (75), we can imply that

α̃T
Γ
−1 ˙̃α ≤ α̃Tyα − α̃T

Γ
−1α̇

β̃
T
Γ
−1 ˙̃β ≤ β̃

T
yβ − β̃

T
Γ
−1β̇. (76)

We now replace (72), (73), and (76) to (71), which results in

˙̃
V ≤ −λẽTP ẽ+ εṼ

+ α̃T
(
yα +BTP ẽ||e||

)
− α̃T

Γ
−1α̇

+
(
yT
α + ẽTPB||e||

)
α̃− α̇T

Γ
−1α

+ β̃
T (

yβ +BTP ẽ
)
− β̃

T
Γ
−1β̇

+
(
yT
β + ẽTPB

)
β̃ − β̇

T
Γ
−1β̃. (77)

So, by using the chosen projection functions (41), then we

conclude that

˙̃
V + λṼ ≤ εṼ + λα̃T

Γ
−1α̃+ λβ̃

T
Γ
−1β̃

− α̃T
Γ
−1α̇− α̇T

Γ
−1α̃

− β̃
T
Γ
−1β̇ − β̇

T
Γ
−1β̃. (78)

We assume that the uncertaintiesα,β, and their time derivatives

are bounded. Furthermore, the projection operators (40) will also

keep α̃ and β̃ bounded (see [43] for a detailed proof about these

properties). We define these bounds as follows:

||α̃|| ≤ α̃b, ||β̃|| ≤ β̃b

||α̇|| ≤ α̇b, ||β̇|| ≤ β̇b. (79)

Combining this with (78), we have

˙̃
V + λṼ ≤ λδṼ (80)

where

δṼ = 2||Γ||−1

(

α̃2
b + β̃

2

b +
1

λ
α̃bα̇b +

1

λ
β̃bβ̇b

)

+
1

λ
εṼ .

(81)

Thus, if Ṽ ≥ δṼ then
˙̃
V ≤ 0. As a result, we always have

Ṽ ≤ δṼ . In other words, by choosing the adaptation gain Γ

sufficiently large and P relatively small, we can limit the CLF

(70) in an arbitrarily small neighborhood δṼ of the origin.

According to (59) and (61), achieving a small value for P

depends on choosing a proper value for KP , KD, and QL.

Therefore, the value of PD gains affects the stability of the whole

system. Finally, the tracking errors between the dynamics model

(28) and the reference model (29), ẽ, and the error between the
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real and estimated uncertainty, α̃, β̃ are bounded as follows:

||ẽ|| ≤

√

δṼ
||P ||

, ||α̃|| ≤
√

||Γ||δṼ , ||β̃|| ≤
√

||Γ||δṼ . (82)
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