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Abstract— In recent years, the field of legged robotics has
seen growing interest in enhancing the capabilities of these
robots through the integration of articulated robotic arms. How-
ever, achieving successful loco-manipulation, especially involv-
ing interaction with heavy objects, is far from straightforward,
as object manipulation can introduce substantial disturbances
that impact the robot’s locomotion. This paper presents a
novel framework for legged loco-manipulation that considers
whole-body coordination through a hierarchical optimization-
based control framework. First, an online manipulation planner
computes the manipulation forces and manipulated object task-
based reference trajectory. Then, pose optimization aligns the
robot’s trajectory with kinematic constraints. The resultant
robot reference trajectory is executed via a linear MPC con-
troller incorporating the desired manipulation forces into its
prediction model. Our approach has been validated in simu-
lation and hardware experiments, highlighting the necessity of
whole-body optimization compared to the baseline locomotion
MPC when interacting with heavy objects. Experimental results
with Unitree Aliengo, equipped with a custom-made robotic
arm, showcase its ability to lift and carry an 8kg payload and
manipulate doors.

I. INTRODUCTION

Legged robots have garnered increasing attention for their

potential to perform versatile locomotion tasks across chal-

lenging terrains [1], [2], [3], [4], [5]. To enhance their prac-

tical applicability, researchers have explored two approaches

to perform loco-manipulation: utilizing the robot’s body or

existing limbs [6], [7], [8] and integrating articulated robotic

arms into legged platforms, enabling them to execute loco-

manipulation tasks [9], [10], [11], [12]. The combination

of locomotion and manipulation capabilities opens up ex-

citing opportunities for legged robots in various real-world

applications, from search and rescue missions to industrial

automation [13], [14], [15], [16].

However, achieving successful loco-manipulation in the

context of legged robotics is a formidable challenge. Unlike

traditional wheeled or tracked robots [17], [18], [19], legged

robots face unique dynamics and control intricacies when

engaging in object manipulation. The introduction of manip-

ulation forces and object interactions can introduce substan-

tial disturbances that disrupt robot stability and locomotion

[20], [21].
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Fig. 1: Snapshots of Aliengo lifting and carrying a 5kg payload. Supple-
mental video: https://youtu.be/0hYDa94F78E

While recent years have witnessed increased atten-

tion towards learning-based methods for addressing loco-

manipulation problems [22], [23], [24], classic control frame-

works remain prevalent. Loco-manipulation challenges entail

coordinating manipulation actions with the robot’s envi-

ronment and locomotion. This typically involves two core

components: a manipulation planner, often computing plans

offline, and a locomotion tracking controller responsible

for generating torque commands to track the high-level

references established by the planner [25], [26], [27], [28].

The tracking problem is typically tackled through various

optimization frameworks that accommodate crucial system

constraints [29], [30]. In contrast, the planning module

strives to strike a balance between physical accuracy and

computational complexity, frequently relying on simplified

models of the problem under consideration [31], [32]. Never-

theless, exceptions exist where the full system dynamics are

employed [33], [34]. However, a common limitation prevails:

most of these formulations do not allow real-time solutions,

rendering them unsuitable for rapid online replanning.

Recent studies have adopted a unified non-linear loco-

manipulation framework, such as [35] and [36]. These works

utilize a nonlinear Model Predictive Control planner, capable

of computing real-time trajectories for the Center of Mass

(CoM), limbs, and forces. A whole-body controller then

tracks these reference trajectories. In [36], the authors intro-

duce an offline planner that computes a sequence of locomo-

tion and manipulation actions. Guided by a predefined library

of interactions, this process facilitates the completion of user-

defined tasks incorporating the environment model. However,

it is important to note that while nonlinear MPC offers the

advantage of considering more detailed predictive models

or constraints, it typically requires significant computational

power due to the complexity of the nonlinear optimization

problem.
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Fig. 2: Block diagram for the proposed framework. Highlighted in green are the novel components that, together with the swing leg controller, form
the high-level controller for the quadruped

This paper presents a novel framework for legged agile

loco-manipulation that leverages whole-body coordination to

tackle the inherent complexities of the task. Our approach

integrates elements from Model Predictive Control (MPC)

and pose optimization to synthesize a control strategy that co-

ordinates locomotion and manipulation, as illustrated in Fig.

1. We have devised a control structure capable of executing

loco-manipulation tasks by decomposing the nonlinear prob-

lem into elementary components that interact hierarchically.

Utilizing online pose optimization enables full coordination

between manipulation and locomotion, demonstrated by the

complex tasks we can perform with the custom-made 1-DOF

robot arm introduced in this paper.

The remainder of the paper is organized as follows.

Section II introduces the proposed control architecture ex-

plaining briefly the hierarchical interactions between the

components. Each of these components is explained in detail

in Sections III,IV,V. Then, Section VI shows the results of

simulation and hardware experiments.

II. CONTROL SYSTEM OVERVIEW

In this section, we present the control system architecture,

illustrated in Fig. 2, that underlies our proposed whole-body

coordination framework. Loco-manipulation problems are

usually described with nonlinear models due to the mutual

interactions between robot and object. Nevertheless, solving

nonlinear optimization problems is a computational burden

and requires powerful on-board capabilities for the robot. We

split the loco-manipulation problems into three elementary

sub-problems that work hierarchically to circumvent this

issue. Our approach begins by defining a user-specified task

and the corresponding commands for the manipulated object.

The initial phase of our method treats the object as an

isolated entity subjected to manipulation forces. Using an

MPC structure with a linear prediction model for object

dynamics, we calculate the optimal object states and manip-

ulation forces, aligning them with the desired manipulation

task commands. Subsequently, we introduce pose optimiza-

tion, a critical step to coordinate the loco-manipulation.

Pose optimization takes as input the desired object states,

which we aim to track, and the manipulation force derived

from the manipulation planner. It then generates a sequence

of poses that define the robot’s reference trajectory. Pose

optimization also offers the advantage of enabling flexible

loco-manipulation, accommodating various object parameter

configurations, such as dimensions and gripping points.

With the robot’s reference trajectory now defined through

pose optimization, the whole-body loco-manipulation MPC

efficiently tracks this trajectory while considering the impact

of manipulation forces on the robot’s dynamic stability. The

sections III, IV, V provide a detailed breakdown of each

component of our proposed approach.

III. PLANNER FOR OBJECT MANIPULATION

The first component of our framework focuses on comput-

ing the necessary manipulation actions to achieve pre-defined

tasks. We employ a linear Model Predictive Controller

(MPC) structure that shares the same control horizon as

the final robot controller, ensuring seamless coordination be-

tween manipulation and locomotion. Each manipulation task

specifies the object states to be planned and the manipulation

forces to be optimized. For instance, if the task involves

opening a hinged door, we plan the opening angle and the

force required to manipulate the handle. The chosen task also

dictates the dynamics of the object under consideration. We

can apply the same MPC planner to accommodate various

tasks while adjusting the object states and manipulation

forces accordingly.

The general dynamic formulation for the manipulated

object in our linear MPC is expressed as follows:

AmẊo = fµ + fm (1)

Here, Xo encompasses the object states we optimize, Am

represents the diagonal matrix for the system linear dynam-

ics, fµ denotes external forces acting on the object (e.g.,

frictional forces), and fm stands for the manipulation force

exerted on the object.
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Different tasks involve different object dynamics and the

corresponding commands. For example, lifting an object may

require a command in terms of lifting velocity or lifting

time. The desired command for each task produces reference

values for the states of the objects, denoted as X⃗ ref
o , which

are incorporated into the cost function of the linear MPC

problem to minimize deviations from these references. We

also include equality and inequality constraints tailored to

the specific task at hand, such as guaranteeing that the

manipulation force maintains its perpendicular orientation to

the door surface while opening the door.

The desired manipulation force for the entire time horizon

is passed to the quadruped loco-manipulation MPC and

the pose optimization for whole-body coordination. In the

former, the force is treated as a known quantity representing

the interaction between the robot and the object over the

prediction horizon. In the latter, the force is used to compute

the arm joint torques needed to manipulate the object and

minimize them. More details about how to use these forces

are presented in the respective sections. The optimized object

trajectory from the MPC planner plays a crucial role in the

subsequent pose optimization phase, where it coordinates the

robot’s locomotion to execute the desired manipulation task

effectively.

IV. POSE OPTIMIZATION FOR COORDINATED

LOCO-MANIPULATION

In this section, we present the details of pose optimiza-

tion and its role in bridging the gap between the object

manipulation planner and the whole-body loco-manipulation

controller. The fundamental idea is to translate the computed

manipulation forces and optimal object states into robot-

centric states and dynamics. To achieve this, we perform

optimized pose computations for the robot at each MPC

horizon, accounting for the manipulation force and system

kinematic constraints. Our approach is inspired by the work

in [37], with the necessary modifications to adapt it to real-

time execution while maintaining meaningful constraints.

The pose optimization problem is formulated as a Non-

Linear Programming (NLP) problem, with the optimization

variable X encompassing the robot’s Center of Mass (CoM)

location pr, body Euler angles Θ, arm joint angles qarm, and

the manipulation force fm acting at the end-effector location.

However, we exclude the leg joint angles and ground reaction

forces from the optimization variables, which are computed

by the swing leg controller and loco-manipulation MPC,

allowing the solution of the NLP problem to be computed

in real-time. The problem is defined as follows:

min
X

Qp(pr,z − pref
r,z)

2 + ∥Θ∥2QΘ
+ ∥τ∥2Q

τ

(2)

s.t. pz,min f pihipz
f pz,max (3)

Θmin f Θ < Θmax (4)

qarm,min f qarm f qarm,max (5)

Xe = Xobj (6)

fm = f plan
m (7)

Starting from eq. 2, the objectives of pose optimization

are minimizing the difference between robot CoM height

and reference value, minimizing the body rotations, and

minimizing the arm torques τ needed for manipulation,

calculated using the contact Jacobian of the arm Jarm(X).
These objectives are weighted by respective scalar or di-

agonal matrices Qp, QΘ, Qτ of appropriate dimensions,

allowing for tailored control of the robot’s behavior during

manipulation. While the CoM height is directly incorporated

into the cost function, the x − y position is determined by

the optimization process based on problem constraints. We

avoid explicitly including leg joint angles in the pose, relying

instead on Equation 3 to ensure that each hip location’s

height remains within feasible bounds for effective stepping.

Equation 4 restricts robot orientation to physically feasible

values, particularly concerning pitch and roll, while Equation

5 enforces constraints on the arm joint angles. The last

two constraints (Equations 6 and 7) establish the crucial

connections between pose optimization and the MPC manip-

ulation planner. Equation 6 ensures that the end effector’s

pose Xe = Xe(X) matches the optimized object states

computed by the manipulation planner. The specifics of this

constraint depend on the particular task at hand; for instance,

in the case of lifting an object, it constrains the end effector’s

position, whereas for turning a door handle, it also includes

the end effector’s orientation. Equation 7 requires that the

manipulation force in the optimization variable aligns with

the force computed by the manipulation planner f plan
m .

The pose optimization is executed at every MPC horizon,

producing a reference trajectory for the robot’s states for the

whole-body loco-manipulation MPC.

V. WHOLE-BODY LOCO-MANIPULATION MPC

In this section, we present the formulation of our proposed

Loco-Manipulation Model Predictive Controller (MPC). We

have developed this formulation to address a crucial aspect

of our work: the manipulation of heavy objects, which signif-

icantly affects the dynamics of the robot. While the baseline

locomotion MPC for quadruped robots, as introduced in [1],

is designed to handle minor external disturbances to the

robot’s dynamics, it falls short when dealing with heavy

objects. These disturbances need explicit consideration in

the robot’s dynamics. Our model considers a single rigid

body with contact forces applied at the feet locations and a

manipulation force at the arm gripper, as illustrated in Fig.

2. We express the dynamic model in terms of the robot’s

position pr ∈ R
3 and angular velocity ωr ∈ R

3, both in the

world frame:

mr(p̈r + g) =
4

∑

i=1

f ci
+ fm, (8)

Irω̇r =

4
∑

i=1

rci × f ci
+ rm × fm (9)

In Equation 8, mr represents the combined mass of the robot

and arm, g =
[

0 0 -g
]T

is the gravity vector, f ci
denotes

the ground reaction force acting on foot i, and fm is the
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external manipulation force. In Equation 9, the derivative

of the angular momentum is simplified retaining only the

term Irω̇r, and Ir is the moment of inertia of the robot in

the world frame, rci is the position vector from the robot’s

Center of Mass (CoM) to the ith foot location, and rm is the

position vector from the robot’s CoM to the gripper location.

The manipulation force fm is a known quantity derived

from the MPC manipulation planner. It represents the force

the robot requires to follow the desired commands for various

tasks. Furthermore, during the discretization of the dynamics

for prediction in the MPC, we have access to the desired

manipulation forces for all prediction horizons. Thus, we

treat it as part of the input vector in the dynamics and enforce

equality constraints at each horizon to match the force to

the desired manipulation force. With the prediction model

defined, we represent it in a state-space form ẋr = Ax+Bu,

where:

xr =
[

Θ pr ωr ṗr g
]

(10)

u =
[

f c1
f c2

f c3
f c4

fm

]

(11)

A =













03 03 Rz(È) 03 03×1

03 03 03 I3 03×1

03 03 03 03 03×1

03 03 03 03
g

||g||

01×3 01×3 01×3 01×3 0













(12)

B =

















03 · · · 03 03

03 · · · 03 03

I−1
r rc1× · · · I−1

r rc4× I−1
r rm×

I3

mr

· · · I3

mr

I3

mr

01×3 · · · 01×3 01×3

















(13)

In equation 12, matrix Rz(È) is the rotation matrix cor-

responding to the yaw angle È, while, in equation 13,

ri× represents the skew-symmetric transformation matrix of

position vector ri ∈ R
3. We can discretize the state-space

formulation to use it as a prediction model in a linear MPC

formulation, with N horizons, defined as follows:

min
xr,u

N
∑

i=1

∥xri+1 − xref
ri+1

∥2Qr

+ ∥ui∥
2
Rr

(14)

s.t. xri+1
= Adxri +Bdui (15)

cf f Cui f cf (16)

f ci
= 0 if swing leg (17)

fm = fmdes
(18)

In the cost function of the problem, equation 14, xref
r denotes

the reference values for the robot states, which are computed

from the pose optimization presented in section IV. These

reference values are crucial for coordinating the entire-body

motion to execute the loco-manipulation task accurately.

Equation 15 represents the dynamic constraints for each

prediction horizon, and Ad and Bd are the discrete-time

equivalents of the matrices presented in equations 12 and

13. Equation 16 represents the frictional pyramid constraints

for each leg, equation 17 enforces the vanishing of the

Fig. 3: Unitree Aliengo with custom-made arm used for experimental
validation of the proposed approach

reaction forces on the swing legs, and equation 18 is the

equality constraint that sets the manipulation force in the

dynamics equal to the desired manipulation force from the

MPC manipulation planner for each prediction horizon. The

controller determines optimal ground reaction forces while

accounting for the presence of the manipulation force at each

prediction horizon, enabling precise tracking of desired state

trajectories generated by the pose optimization.

VI. RESULTS

In this section, we present the results we obtained in

both simulation and real hardware to prove the effectiveness

of our approach. Simulations were performed using the

Simscape multibody package in Matlab Simulink, a high-

fidelity environment that accurately simulates contact-rich

scenarios. To test and validate our framework, we conducted

experiments using a Unitree Aliengo robot equipped with a

custom 1-DOF robotic arm, shown in Fig.3. We designed

this arm with three key considerations:

• By limiting it to 1-DOF, we reduced the arm’s weight,

enabling a higher maximum payload capacity.

• By installing a single powerful actuator at the base of

the arm, we can perform highly dynamic tasks with

heavy objects.

• With proper whole-body coordination, we can still

achieve many manipulation tasks even with the reduced

arm DOFs.

Our control architecture, detailed in Section II, efficiently

operates on the robot’s onboard computer. The low-level

controller operates at a frequency of 1 kHz. At the same

time, the object manipulation planner and loco-manipulation

Model Predictive Control (MPC) run at 30 Hz with a time

horizon of T = 0.5 s and N = 10 horizons. We utilize

CasADi and the Ipopt solver to solve the pose optimization

problem. Despite the hierarchical structure of the framework

leading to a higher number of hyperparameters, the linear

formulations facilitate straightforward tuning. Through a

series of experiments, we demonstrate the impact of each

component of our approach compared to baseline controllers.
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(a) Snapshot of lifting 3Kg object using

loco-manipulation MPC

(b) Snapshot of lifting 3Kg object using

baseline MPC

(c) Robot COM height

(d) Robot Pitch

Fig. 4: Improvements using loco-manipulation MPC. In the plots, we
compare the results using the loco-manipulation MPC and the baseline MPC.
The robot is lifting from the ground a 3Kg object and reaches a predefined
arm configuration,

A. Effect of Loco-manipulation MPC

In this section, we want to highlight the importance of

considering the object in the robot MPC model, especially

when the object is heavy. To do this, we compare the loco-

manipulation MPC in our approach to a baseline locomotion

MPC, where there is no information about the object the

robot is carrying. We perform this task on the real robot

and during the task, the robot picks up a 3kg object from

the ground using the arm DOF and lifts it to a predefined

arm angle in 2 seconds. We can see snapshots of the task

and COM height and robot pitch tracking with the two

controllers in Fig. 4. Using the proposed loco-manipulation

MPC, the robot can successfully lift the heavy object from

the ground and maintain the desired height and pitch for

the robot throughout the entire task. Instead, the baseline

MPC cannot follow the desired quantities and struggles to

maintain balance. In fact, with objects heavier than 5kg, the

baseline MPC would fail, while our proposed controller can

still handle them. Due to the mass-efficient arm design, we

have a maximum payload capability of 8 kg, which is almost

(a) Using object manipulation planner

(b) Using fixed manipulation force

(c) Pitch angle of the robot during the dynamic lifting task

(d) Height of the robot COM during the dynamic lifting task

Fig. 5: Improvements using object manipulation planning. In the plots,
we compare the results using the loco-manipulation MPC with the object
manipulation planner or a fixed manipulation force without the object
manipulation planner. The robot lifts a 10 Kg object from the ground and
reaches a predefined arm configuration in shorter times, making the lifting
more dynamic.

50% of the robot’s weight. Our payload-to-robot weight ratio

is higher than other robotic arms used in state-of-the-art

legged loco-manipulation research.

B. Effect of Planner for Object Manipulation

We then investigated the effectiveness of the planner

for object manipulation. This component of the proposed

approach becomes critical when performing very dynamic

tasks because the effect of the object on the robot cannot

be represented by a fixed manipulation force anymore. To

highlight the importance of the component, we performed

different simulations of dynamic object-lifting tasks, where

various lifting times were specified for each case. The results

are presented in Fig. 5 regarding robot COM height and pitch

angle, using the object planner or without the planner with
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(a) Baseline pose (b) Squatted pose

(c) Pitched pose (d) Mix pose for low object picking

Fig. 6: Various optimized poses for object lifting. These figures represent
the optimal poses computed for the task based on the object dimensions
and the weights in the optimization cost function.

fixed manipulation force, together with the loco-manipulation

MPC. We start from a 2-second lifting that can be treated as

a quasi-static movement, and both simulations are successful.

But if we reduce the lifting time to 0.5s, we start to see that

the controller that uses the fixed manipulation force cannot

maintain the robot’s reference height and pitch. When the

lifting time decreases to 0.25s, this controller fails, while

our proposed approach using the manipulation planner can

consider the increased force acting on the robot from the

large acceleration imparted on the object and still maintain

balance to complete the task.

C. Effect of Pose Optimization for Coordination

The next component we want to showcase is the pose

optimization for coordinated loco-manipulation. This part

of the approach is important because it links the output

of the object manipulation planner to the loco-manipulation

MPC. In Fig. 6, we can see various solutions that the pose

optimization block can compute to solve the same task based

on the choice of weights for the objectives in the cost

function. We can consider the pose that tracks COM height

and pitch and only uses the arm to reach the object as the

baseline. Then, if we reduce the weight related to the COM

height in the pose optimization cost function, we obtain the

pose in Fig. 6b, where the controller trades the robot COM

height to reach the object with the gripper. Similarly, in Fig.

6c, we can see the effect of reducing the weight related to

robot body rotation. A balanced choice of weights in the cost

function gives us a pose that uses all possible DOFs of the

system to reach the object with the gripper, as illustrated in

Fig. 6d. All these starting poses can complete the task of

lifting the object to a predefined height.

D. Door Opening Using Proposed Approach

To illustrate the effectiveness of our approach, we con-

ducted tests involving the challenging task of opening a

heavy, resistant hinged door. Fig. 7 presents snapshots of

the task successfully solved in simulation. Within the ma-

nipulation planner, we have subtasks such as turning the

Fig. 7: Door opening with the proposed framework. In the initial phase,
the object manipulation planner and pose optimization dictate the robot
to roll to manipulate the door handle. Subsequently, the robot applies
the necessary force to push the door open, with the manipulation planner
considering kinematic and spatial constraints.

door handle and pushing the door open. The pose opti-

mization orchestrates the robot’s motion to align with the

desired manipulation actions. Notably, in this task, we can

account for potential collisions with the door frame directly

within the pose optimization, resulting in viable collision-

free trajectories for the robot’s COM. One key advantage

of our approach, with its distinct hierarchical components

working together, is the ability to incorporate additional

constraints into the problem without significantly increasing

complexity and computational overhead. This is in contrast

to a unified planner for both the object and robot, where

the nonlinear structure would considerably complicate the

process of obtaining an online planning solution.

VII. CONCLUSIONS

This paper introduces a practical approach for addressing

loco-manipulation challenges in legged robots. Our hierar-

chical approach simplifies the problem by breaking it into

three components that work together effectively. We validate

our approach with numerical and experimental scenarios

investigating the effect of the three components separately.

We show the importance of considering the object’s dynamic

effect on the robot controller, highlight the significance of

our online object manipulation planner, and demonstrate

the flexibility of our pose optimization component. Our

framework, when applied to a Unitree Aliengo equipped

with a custom-made robotic arm, achieves successful tasks

such as lifting and carrying an 8 Kg object and opening a

resistive hinged door, underscoring the significance of our

three components. Future directions include extending the

framework to more practical tasks to explore the boundaries

of the current arm design.
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