

¹ Modeling Rental and Multi-family Post-Disaster ² Housing Recovery

³ **Emily Mongold M.EERI^{a)} Rodrigo Costa M.EERI^{b)} Ádám Zsarnóczay M.EERI^{a)},**
⁴ **and Jack W. Baker M.EERI^{a)}**

⁵ Post-disaster housing recovery models increase our understanding of recovery dy-
⁶ namics, vulnerable populations, and how people are affected by the direct losses
⁷ that disasters create. Past recovery models have focused on single-family owner-
⁸ occupied housing, while empirical evidence shows that rental units and multi-family
⁹ housing are disadvantaged in post-disaster recovery. To fill this gap, this paper
¹⁰ presents an agent-based housing recovery model that includes the four common
¹¹ type-tenure combinations of single- and multi-family owner- and renter-occupied
¹² housing. The proposed model accounts for the different recovery processes, em-
¹³phasizing funding sources available to each type-tenure. The outputs of our model
¹⁴ include the timing of financing and recovery at building resolution across a com-
¹⁵munity. We demonstrate the model with a case study of Alameda, California, re-
¹⁶covering from a simulated M7.0 earthquake on the Hayward fault. The processes in
¹⁷ the model replicate higher non-recovery of multi-family housing than single-family,
¹⁸ as observed in past disasters, and a heavy reliance of single-family renter-occupied
¹⁹ units on Small Business Administration funding, which is expected due to low earth-
²⁰quake insurance penetration. We find that multi-family housing relies more on Com-
²¹munity Development Block Grants for Disaster Recovery (CDBG-DR), and has the
²² highest total need and highest portion of unmet need remaining. However, many of
²³ these unmet cases have a large portion of their funding, and thus may practically be
²⁴ able to obtain the funds from personal sources.

²⁵ INTRODUCTION

²⁶ Post-disaster housing recovery is not uniform. Past disasters, including the Taiwan Chi-Chi
²⁷ earthquake, the Northridge earthquake in California, the Canterbury earthquake sequence in
²⁸ New Zealand, and Hurricane Charles in Florida, have shown that housing type (i.e., multi-

^{a)}Stanford University, U.S.A.

^{b)}University of Waterloo, Canada

29 family versus single-family) and tenure (i.e., owner-occupied versus renter-occupied) play a
30 significant role in determining the recovery of a structure (e.g. Lu et al., 2007; Shao, 2002;
31 Comerio, 2006). In this paper, we use the term type-tenure to refer to the combinations of these
32 housing categories.

33 Rental housing tends to recover more slowly than owner-occupied properties (e.g. Henry,
34 2013; Tafti and Tomlinson, 2013; Zhang and Peacock, 2009). Scholars have demonstrated dif-
35 ferences between the recovery of single-family structures due to tenancy, irrespective of damage
36 (e.g. Lu et al., 2007; Nejat et al., 2016). The slower recovery of rental housing can be attributed
37 to difficulties in decision-making and financing reconstruction (Zhang and Peacock, 2009). In
38 the US, post-disaster financial assistance prioritizes homeowners, making it more difficult for
39 owners of rental units to fund repairs (Comerio, 1997). These owners may also live in the
40 same community as their rental unit and incur damage to both their home and rental property.
41 Owners of multiple rental properties may not be able to repair all homes simultaneously (Tafti
42 and Tomlinson, 2013). These factors negatively impact the recovery of rental housing after
43 disasters.

44 The reconstruction of multi-family housing (e.g., apartments or condominiums) has been
45 shown to be slower than single-family housing. Multi-family housing units are unique in their
46 physical characteristics, ownership structures, and available financial resources after a disaster.
47 Apartments are multi-unit buildings with one owner or multiple investors, but their residents
48 are renters. Conversely, in a condominium, each unit is owned by an individual or household.
49 Studies of past disasters have found that multi-family units, both owner- and renter-occupied,
50 experience longer recovery times than single-family homes (e.g. Comerio, 1997; Wu and Lin-
51 dell, 2004; Olshansky et al., 2006; Lu et al., 2007; Rathfon et al., 2013; Hamideh et al., 2021).
52 Slow post-disaster condominium recovery has been associated with challenges for all owners
53 to reach agreements and obtain funds for repairs (e.g. Wu et al., 2007; Shao, 2002; Finn and
54 Toomey, 2017).

55 While studying past disasters provides valuable insights, lessons from these studies may
56 not translate directly to future disaster scenarios. There are many different contexts included
57 in their findings, being from different countries, different hazards, and different social contexts.
58 This evidence illuminates trends that occur despite many differing factors between disasters.

59 Since empirical data are scarce and contextually specific to their source, risk modeling is
60 an important tool to gauge possible future scenarios and their outcomes. Many existing mod-

61 els of post-disaster housing recovery seek to capture the recovery times of communities by
62 accounting for various parts of the recovery process, such as financing, reconstruction, and im-
63 peding factors. Existing recovery models are often limited to single-family owner-occupied
64 structures because post-disaster policies focus on this type of home and there are dispro-
65 portionately more data available about their recovery in past disasters than about the recovery of
66 other types of homes. Most recovery models at the community scale ignore rental units (e.g.
67 Sutley and Hamideh, 2018; Moradi and Nejat, 2020; Miles, 2018) or account for slower renter
68 recovery with a pre-determined addition to the time to seek resources (Costa et al., 2021). Sim-
69 ilarly, the ResilUS model (Miles and Chang, 2011) is calibrated to the Northridge earthquake
70 data such that 25% of renters relocate. These approaches predict slower rental unit recovery,
71 but they do not capture the sources of that disparity and are thus unable to support exploring
72 potential solutions. Landlord decision-making has been simulated in isolation, including future
73 rent decisions but not recovery timing (Tafti and Tomlinson, 2021). DESaster simulates the
74 decisions of renters and owners, accounting for financing processes of a landlord and a landlord
75 having multiple rental properties, but not damage to the landlord's own home (Miles, 2017).
76 Post-disaster repair financing has been modeled for single-family owner-occupied residences of
77 various income levels after an earthquake (Alisjahbana et al., 2022), but neither for multi-unit
78 buildings nor for rental properties. Many components of housing recovery have been modeled;
79 however, no existing approach provides a full recovery model for rental and owner-occupied
80 housing that includes landlord property damages and multi-family buildings.

81 This paper introduces a housing recovery model that includes four major housing types and
82 tenures with their unique financing properties and paths to recovery. The model is applied to a
83 case study of Alameda, California following a simulated magnitude 7.0 (M7.0) earthquake on
84 the Hayward fault. The results demonstrate our ability to understand the timing of financing,
85 sources of funds, and impacts on recovery between the four type-tenure categories.

86 **MODELING POST-EARTHQUAKE RECOVERY OF COMMUNITIES**

87 Two types of post-disaster recovery simulation models are proposed in the literature. Household
88 recovery models focus on households and how they progress across four stages of post-disaster
89 housing: emergency shelter, temporary shelter, temporary housing, and permanent housing
90 (Quarantelli, 1982, 1995; Rodríguez et al., 2007). In these models, the buildings are simulated
91 to the extent that physical damage triggers displacement (Sutley and Hamideh, 2018). From the
92 perspective of the simulation, the damage state of the building is an attribute of the household.

93 Conversely, housing recovery models focus on the buildings, simulating how these are damaged
 94 at the time of the event and how they regain functionality over time (e.g. Nejat and Damnjanovic,
 95 2012; Moradi and Nejat, 2020; Costa et al., 2021). In these models, the household that occupies
 96 or owns the building is simulated to the extent that its demographic profile affects recovery,
 97 e.g., lower-income owners may have more difficulty funding repairs. That is, the demographic
 98 profile of the household is an attribute of the building. The model proposed here falls in the
 99 latter category.

100 To simulate a community's post-disaster housing recovery process, we propose the agent-
 101 based model represented by the schematic in Figure 1. Agent-based models represent complex
 102 systems by simulating the interactions of simple, autonomous agents with attributes (i.e., char-
 103 acteristics) and behaviors (i.e., actions they take). A large number of interactions between
 104 these agents can capture the complexity and emergent behaviors of a system. For example,
 105 agent-based models are employed to study ecosystem equilibrium (e.g. Miyasaka et al., 2017;
 106 McLane et al., 2011), neighbourhood segregation (e.g. Crooks, 2010), and disease spread (e.g.
 107 Hoertel et al., 2020; Rockett et al., 2020). To simulate housing reconstruction within a com-
 108 munity using an agent-based approach, we introduce three groups of agents: (i) building agents
 109 that represent the buildings and their owners; (ii) funding agents that represent entities that pro-
 110 vide financial resources to building owners; and (iii) contractor agents that building owners hire
 111 to repair their buildings. Each group contains multiple agents represented by colored boxes in
 112 1. These agents are described in detail in the following subsections.

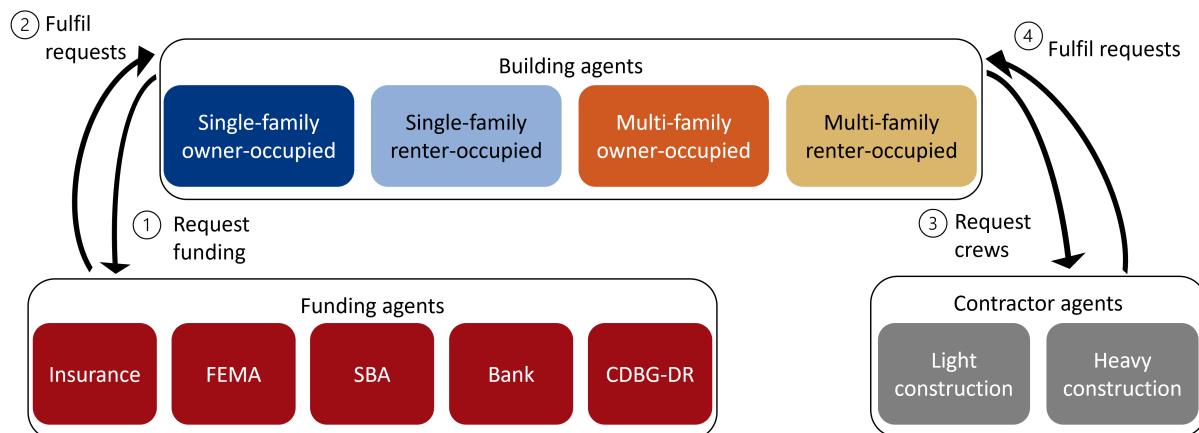


Figure 1. Schematic illustration of the recovery model, where recovery takes place through interactions between building agents, funding agents, and contractor agents.

113 The numbers by the arrows in Figure 1 highlight the order of agent interactions. If a build-
 114 ing is damaged, it interacts first with the funding agents to obtain funding. Then, it seeks to

115 hire a contractor agent to conduct repairs. The interaction between building and funding agents
116 is influenced by both the physical properties of the building and the demographic profile of the
117 building owner. The number of contractor agents may be limited to represent the number of
118 contractor crews available in the community. Building agents compete for the available con-
119 tractor agents. The goal is to capture interactions between physical vulnerability (i.e., building
120 damage) and social vulnerability (e.g., hardship in obtaining funding leading to an extended
121 housing recovery time). The proposed model provides a flexible architecture that can represent
122 many behavioral, economic, and policy assumptions.

123 **BUILDING AGENTS**

124 Our literature review highlights significant differences in the recovery processes of residen-
125 tial buildings depending on their building type and tenure; here we refer to each combina-
126 tion as a type-tenure. These differences stem from the type and timing of available financing,
127 the type of repairs needed, and the number of owners who must agree on repair decisions.
128 Defining all type-tenure combinations is difficult due to the diversity in housing arrangements.
129 Single-family housing may be either owner-occupied or renter-occupied. Multi-family hous-
130 ing may have mixed occupations, e.g., the same building may have both renter-occupied and
131 owner-occupied units. The proposed model simplifies housing arrangements into four common
132 type-tenure archetypes: (i) single-family owner-occupied buildings (SFOO), (ii) single-family
133 renter-occupied buildings (SFRO), (iii) multi-family owner-occupied buildings (MFOO), and
134 (iv) multi-family renter-occupied buildings (MFRO). These four type-tenure combinations have
135 clear differences in available funding avenues and they represent the majority of residential
136 buildings in the United States. As shown in Figure 2, each type-tenure is represented by one
137 agent. In the following, we refer to these as SFOO, SFRO, MFOO, and MFRO agents.

138 There are many similarities between the implementation of the four building agents. We
139 leverage these similarities through the concept of inheritance from object-oriented program-
140 ming, as shown in Figure 2. The attributes and actions identical across agent types are assigned
141 to a parent class of building agents. The specific type-tenure agents are implemented as four
142 child classes derived from the building agent class and inherit all attributes and behaviors from
143 the parent class. The unique characteristics of each type-tenure are defined under the corre-
144 sponding child class.

145 Some rental housing may have an owner who also lives in the community. The proposed

146 model accounts for this by assuming that if the owner experiences damage to their home and
 147 their rental property, they prioritize repairing their home over the rental home. This behavior
 148 assumes that renter protection policies exist and that owners cannot choose to occupy their
 149 rental property.

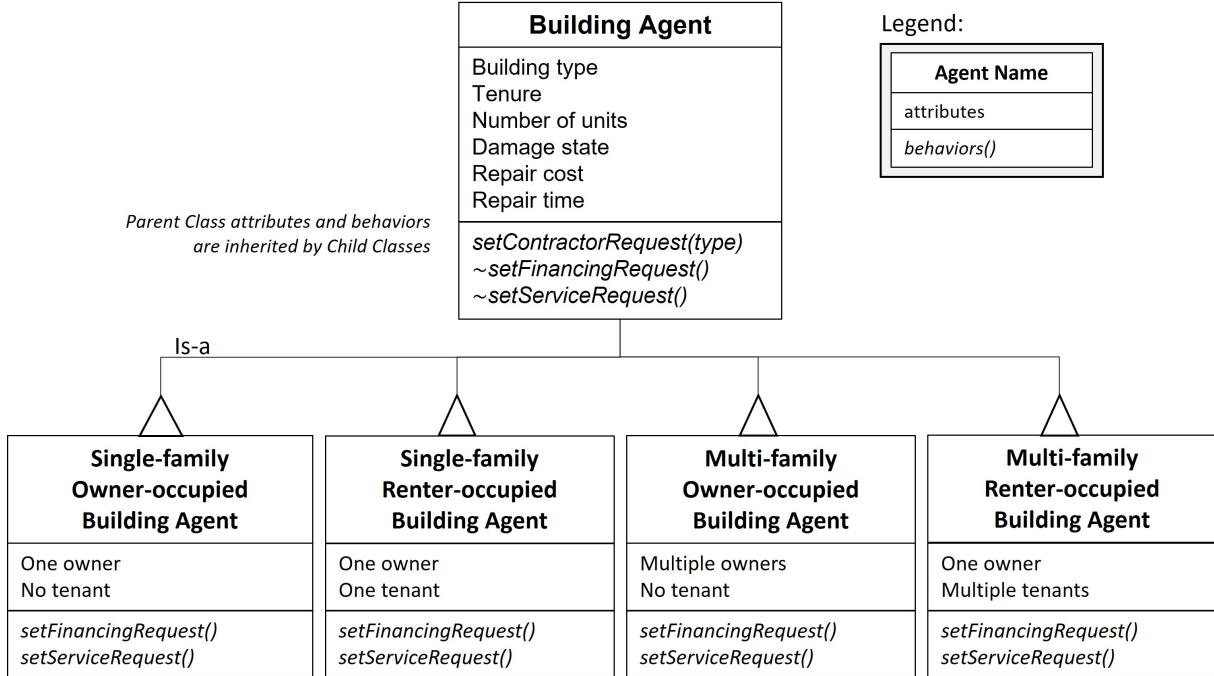


Figure 2. Building agent implementation with properties and associated attributes, behaviors, and data sets. Each type-tenure class has a specific function for financing and service requests. The associated data sets characterize the different owner and tenant structures.

150 The SFOO agents represent single-family owner-occupied buildings where the decision-
 151 maker occupies the building. SFOO agents prioritize their home repairs and quickly work to
 152 obtain financing. Their constraints are their ability to raise funds, based on the owner's income,
 153 and to compete for the limited number of contractors.

154 The SFRO agents have an owner and a tenant. Tenants occupy the building and are not the
 155 decision-makers for these agents. The building owner is responsible for financing repairs. This
 156 owner is assumed to be an individual instead of a corporation, and the rental home is treated as
 157 a business.

158 The MFOO agents represent multi-family owner-occupied buildings (i.e., condominiums).
 159 For these buildings, we assume that each household owns the unit it occupies. Thus, as shown
 160 in Figure 2, MFOO agents have multiple owners. In the proposed methodology, the value of
 161 each unit is the total building value divided by the number of units. The building repair cost

162 is also evenly split between all units. We assume the owners prioritize repairs and all agree
163 to rebuild. Thus, negotiation time is zero, and financing is sought immediately following the
164 disaster. Since the owner of each unit must secure their funds, the recovery of MFOO agents is
165 typically bottlenecked by the inability of a subset of unit owners to obtain funding.

166 The MFRO agents represent multi-family renter-occupied buildings (e.g., apartment com-
167 plexes). These buildings are assumed to be owned by corporations, as opposed to individuals.
168 Thus, as shown in Figure 2, MFRO agents have a single owner and multiple tenants. The key
169 differences between MFRO and SFRO agents are the funding sources for which they are eligi-
170 ble. We assume that these buildings are treated as businesses by funding agencies.

171 **FUNDING AGENTS**

172 Buildings agents interact with the funding agents in Figure 1 that represent insurance compa-
173 nies, banks, the Federal Emergency Management Agency (FEMA), the Small Business Admin-
174 istration (SBA), and the Department of Housing and Urban Development (HUD). These agents
175 provide funds through different grant and loan programs based on building type-tenure. Figure
176 3 shows the steps the building agents take to obtain funds. Owners are not assumed to use
177 savings for repairs. The model is informed by empirical evidence and published policies. The
178 agents seek the fastest and most favorable funding first. Thus, an insured building uses insur-
179 ance before applying for a grant or loan. Similarly, SBA offers below-market interest rates (i.e.,
180 4% (SBA, 2022d)), hence the SBA loans are sought before bank loans. Although the CDBG-
181 DR is a grant, it becomes available several months to years after a disaster (Martín et al., 2022),
182 so it is the last funding source buildings may obtain. Building agents that successfully obtain
183 funding proceed with finding a contractor and repairing damages. Others are left with unmet
184 needs and are unable to repair.

185 Funding agents may approve or deny requests for funding. If a building agent's request is
186 not approved, or the provided funding is not sufficient, the building agent moves on to seek
187 additional funding from the next funding agent. The funding needs of a building agent at a
188 given time t , $F_{\text{needs}}(t)$ is

$$F_{\text{needs}}(t) = RC - F(t) \quad (1)$$

189 where RC is the building repair cost and $F(t)$ is the funding received by time t from all sources.
190 Building agents progress along the flowchart in Figure 3 until $F_{\text{needs}} = 0$ or they reach the

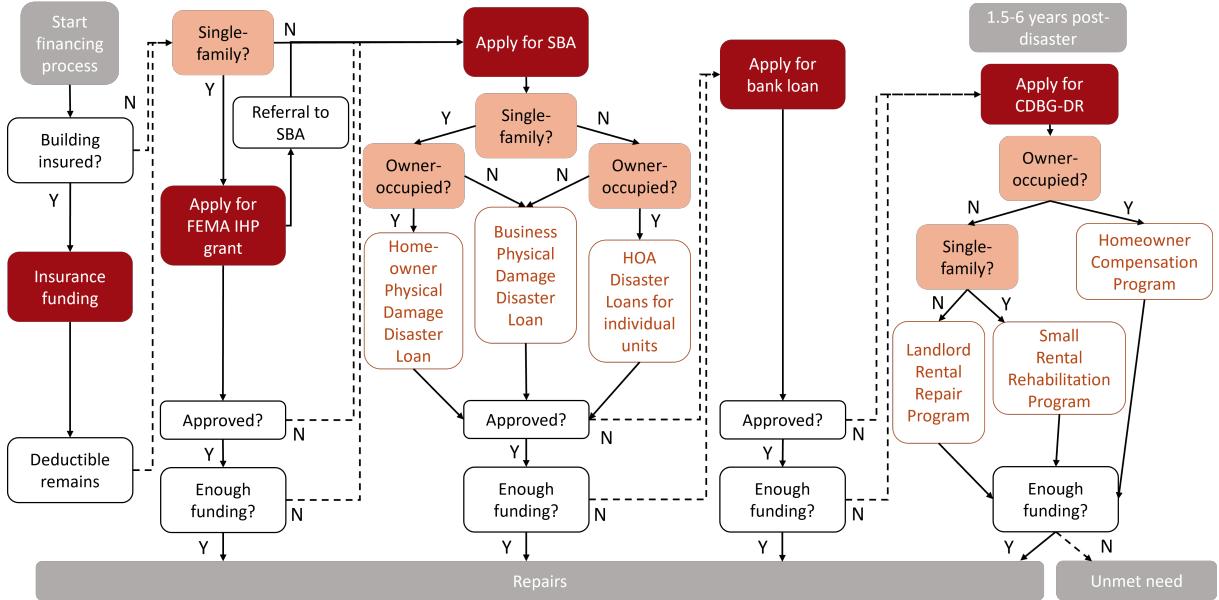


Figure 3. Process that building or unit owners follow after a disaster. Main funding sources are shown in red boxes, with specific programs in red outline with red font. Light red boxes show where paths differ based on building type-tenure.

191 end with unmet losses. Each building agent interacts with each funding agent once, at most.
 192 Approved or denied, requests incur a processing time. Using more funding agents lengthens the
 193 time to obtain funding. The five funding agents presented in Figure 1 are further detailed in the
 194 following.

195 *Insurance agent*

196 The insurance agent provides funding to insured building agents whose losses exceed a de-
 197 ductible that must be assumed based on the disaster and insurance type. Insurance is provided
 198 per building agent; thus, unit owners cannot have separate policies. We do not consider con-
 199 tents loss, which renters or unit owners may insure separately. This decision aligns with data
 200 on insured structures and reflects that homeowner associations may mandate insurance for the
 201 entire building.

202 Thus, the funding available from insurance, $F_{\text{insurance}}$, is

$$F_{\text{insurance}} = \begin{cases} RC - (I_d \cdot BV) & \text{if } RC > I_d \cdot BV \\ 0 & \text{otherwise} \end{cases} \quad (2)$$

203 where I_d defines the deductible as a fraction of the building value, BV is the building value, and
 204 RC is the repair cost.

205 The disbursement time for insurance funds is modeled as a lognormal random variable with
206 a median of 42 days and log-standard-deviation (dispersion) of 1.11 following the model devel-
207 oped by Almufti and Willford (2013).

208 *FEMA IHP agent*

209 The FEMA IHP agent simulates funding coming from the Individuals and Households Pro-
210 gram (IHP) by the Federal Emergency Management Agency (FEMA). FEMA IHP funding is
211 available to single-family and multi-family owner-occupied buildings (FEMA, 2016), and the
212 amount received is affected by the repair costs (RC), insurance status (I_s), household income
213 (H_{inc}), and the residence type, i.e., single-family or condominium (R). The cap for the FEMA
214 IHP grant is \$36,000. The funding provided by the FEMA IHP agent, F_{FEMA} , is

$$F_{FEMA} = \begin{cases} f(RC, I_s, H_{inc}, R) & \text{if owner-occupied building} \\ 0 & \text{otherwise} \end{cases} \quad (3)$$

215 where $f()$ indicates that F_{FEMA} is a function of the variables in parenthesis. Data from Ma-
216 jor Disaster Declarations from 2001 to 2020 available through the OpenFEMA Portal (FEMA,
217 2022) informs $f(RC, I_s, H_{inc}, R)$. A predictive model developed from these data indicates that
218 approval rates are close to 50% for uninsured households, compared to 25% for insured house-
219 holds. Insured households tend to receive more than \$7,500 while uninsured households tend
220 to receive less than \$7,500. Income affects the amount received, with high-income households
221 receiving more on average. Housing type-tenure affects approval rates, i.e., condominiums are
222 less likely to be approved for FEMA funding (Costa and Baker, 2022).

223 *SBA agent*

224 The SBA agent provides loans following the Small Business Administration criteria. SBA
225 loans are designed to support the repair of homes to their pre-disaster state. For single-family
226 owner-occupied buildings, the cap is \$200,000 (SBA, 2022a). For multi-family owner-occupied
227 buildings, the owners of each unit may apply individually for a loan (SBA, 2022c); however, the
228 total amount that the entire building can obtain is limited to \$2 million (SBA, 2022b). Rental
229 units are treated as businesses. As such, they can obtain loans of up to \$2,000,000. Caps are
230 conditioned on the availability of collateral to back up the loan. When collateral is unavailable,
231 loans are capped at \$25,000, per SBA criteria (SBA, 2022d). We model collateral as remaining

232 property value, subtracting repair cost from the building value or equity. The equity reflects how
 233 much of the mortgage is paid at time t . Owners with outstanding mortgages use their estimated
 234 equity; those with paid mortgages use the total property value. We estimate the collateral C as

$$C = \begin{cases} P_0 + BV \cdot \left((t - t_d)/M \right) - RC & \text{if mortgage outstanding} \\ BV - RC & \text{otherwise} \end{cases} \quad (4)$$

235 where P_0 is the down payment on the building, t is the current time, t_d is the time of the most
 236 recent change of ownership, M is the mortgage maturity, and BV is the building value. In the
 237 US, data from the Home Mortgage Disclosure Act (Consumer Financial Protection Bureau,
 238 2022) can be used to estimate P_0 and M . Tax assessor data contains t_d and BV . Eq. 4 assumes a
 239 linear relationship between time and home equity, which is optimistic. With this, the amount a
 240 building agent obtains from the SBA agent, F_{SBA} is estimated as

$$F_{SBA} = \begin{cases} \min(\max(C, 25000), 200000, F_{needs}(t)) & \text{for SFOO} \\ \min(\max(C, 25000), 200000, F_{needs}(t)) & \text{per MFOO unit, up to \$2,000,000 per building} \\ \min(\max(C, 25000), 2000000, F_{needs}(t)) & \text{for SFRO and MFRO units} \end{cases} \quad (5)$$

241 The SBA agent employs the Almufti and Willford (2013) model for the disbursal time: a
 242 lognormal variable with a median of 45 days and a dispersion of 0.57.

243 *Bank agent*

244 The bank agent represents private institutions that provide loans. The bank agent provides
 245 loans to applicants that can offer collateral, calculated as in Eq. 4. However, the bank may
 246 also provide loans to applicants with low debt-to-income ratios. Gross debt-to-income ratio is
 247 the relationship between one's income and monthly expenses. High gross debt-to-income ratios
 248 make it difficult for a household to obtain a loan due to the risk of insolvency (e.g., Cherry
 249 et al., 2021). We assume that households without a mortgage have a low debt-to-income ratio
 250 and could qualify for a private loan. The loan is calculated as a new mortgage, that is

$$P = G \cdot \left(H_{inc}/12 \right) \cdot \left((1+r)^M - 1 \right) / \left(r \cdot (1+r)^M \right) \quad (6)$$

251 where P is the maximum loan amount, G is the maximum gross debt-to-income ratio that the

252 loaner would accept, H_{inc} is the annual loanee household income, r is the monthly interest rate,
 253 and M is the loan maturity in months. Our implementation uses $G = 0.3$ and $n = 360$ months to
 254 indicate a 30-year maturity. However, these values should be tailored to specific applications.
 255 Thus, the maximum loan provided by the bank agent is

$$F_{\text{bank}} = \begin{cases} \min(C + P, F_{\text{needs}}(t)) & \text{if no mortgage} \\ \min(C, F_{\text{needs}}(t)) & \text{otherwise} \end{cases} \quad (7)$$

256 The disbursal time for loans provided by the bank agent is modeled as a lognormal random
 257 variable with a median of 60 days and dispersion of 0.68 (Almufti and Willford, 2013).

258 *CDBG-DR agent*

259 Finally, the CDBG-DR agent represents the actions of the US Department of Housing and
 260 Urban Development that provide grants to low-to-moderate-income households impacted by
 261 disasters through its Community Development Block Grant for Disaster Recovery (CDBG-
 262 DR) program (HUD, 2022). After each disaster, a CDBG-DR program must be approved by
 263 Congress. HUD provides funds to state housing authorities that, in turn, assist households in
 264 need. For owner-occupied households, the CDBG-DR funds are disbursed through the Home-
 265 owner Compensation Program, which consistently provides grants with a \$150,000 cap (Martín
 266 et al., 2022). HUD assistance for rental units is inconsistent across disasters and designed by
 267 state authorities. Examples of well-documented rental assistance programs using HUD funds
 268 are the Landlord Rental Repairs Program (LRRP) and the Small Rental Rehabilitation Program
 269 (SRRP) implemented after Hurricane Sandy (Community Planning and Development, Disaster
 270 Recovery and Special Issues Division, 2013; Aurand et al., 2019). The LRRP provided own-
 271 ers up to \$150,000 to repair rental housing (Community Planning and Development, Disaster
 272 Recovery and Special Issues Division, 2013). The SRRP provided multi-family buildings with
 273 25 units or fewer up to \$50,000 per unit (Aurand et al., 2019). However, the LRRP and SRRP
 274 were limited to rental buildings affordable to low-income families. Rent is considered afford-
 275 able if it is less than 15% of the median household income. Thus, the funding provided by the
 276 CDBG-DR program to a household, $F_{\text{CDBG-DR}}$, is

$$F_{\text{CDBG-DR}} = \begin{cases} \min(150,000, F_{\text{needs}}(t)) & \text{if low-to-moderate income SFOO or MFOO} \\ \min(150,000, F_{\text{needs}}(t)) & \text{for affordable SFRO} \\ \min(50,000, F_{\text{needs}}(t)) & \text{per unit, for affordable MFRO with } < 25 \text{ units} \end{cases} \quad (8)$$

277 Funding from the CDBG-DR program is disbursed slowly (Martín et al., 2022). The dis-
 278 bursal of CDBG-DR funds is broken down into multiple tasks. Funds are first appropriated by
 279 HUD ($\Delta T_{\text{appropriation}}$), then allocated by Congress ($\Delta T_{\text{allocation}}$), then awarded to state authori-
 280 ties (ΔT_{award}), and disbursed to households over time ($\Delta T_{\text{first}} + u(0, 1) \cdot \Delta T_{90\% \text{ expenditure}}$). The
 281 disbursal time for the CDBG-DR agent is modeled as

$$T_{\text{CDBG-DR}} = \Delta T_{\text{appropriation}} + \Delta T_{\text{allocation}} + \Delta T_{\text{award}} + \Delta T_{\text{first}} + u(0, 1) \cdot \Delta T_{90\% \text{ expenditure}} \quad (9)$$

282 where $u(0, 1)$ is a uniformly distributed random variable and $\Delta T_{90\% \text{ expenditure}}$ is a proxy of the
 283 duration of the program.

284 To estimate $T_{\text{CDBG-DR}}$, we calculate the averages of data collected by Martín et al. (2022),
 285 where $T_{\text{appropriation}} = 0.6$ years, $\Delta T_{\text{allocation}} = 0.2$ years, and $T_{\text{award}} = 0.2$ years. The remain-
 286 ing components of $T_{\text{CDBG-DR}}$ differ between the Homeowner Compensation Program (HCP)
 287 and programs aimed at rental housing (i.e., LRRP and SRRP). We estimate $\Delta T_{\text{first,HCP}} = 0$ and
 288 $\Delta T_{\text{first,LRRP and SRRP}} = 1.75$ years (Martín et al., 2022, Fig. 5). That is, there is a 1.75-year gap
 289 between the first payment to owner- and renter-occupied housing. Finally, the duration of the
 290 program is estimated as $\Delta T_{90\% \text{ expenditure,HCP}} = 2.1$ years and $\Delta T_{90\% \text{ expenditure,LRRP and SRRP}} =$
 291 1.25 years (Martín et al., 2022). Rental assistance comes later but is disbursed more quickly.
 292 On average, the CDBG-DR agent provides funding to owner-occupied housing in 2.05 years
 293 and renter-occupied housing in 3.8 years.

294 **CONTRACTOR AGENTS**

295 Contractor agents simulate the skilled workers in the community who can conduct repairs. Two
 296 types of agents are introduced to represent contractors: the light-construction and the heavy-
 297 construction agents. This distinction aims to capture the different skills needed to repair small
 298 and large buildings. Multi-family buildings with fewer than four units are assumed to be struc-
 299 turally similar to single-family homes and thus require light contractors. With four or more

300 units, multi-family buildings require a heavy contractor. The number of construction crews
301 may be a limiting factor in the speed of recovery. Once a contractor is allocated to a building, it
302 is unavailable for the time needed to repair the building. The number of crews limits the num-
303 ber of buildings that can be under repair simultaneously, so even if every building has funding,
304 they cannot all start repairs together. The model assumes that the number of crews available
305 to work are the limiting factor in regional recovery speed once building owners have obtained
306 funds instead of, for example, limited building materials or tools, transportation functionality,
307 subcontractor availability, or other supply chain constraints.

308 **DATA**

309 The housing recovery simulation uses input data from a hazard and loss simulation, providing
310 building damage from simulated ground motions. Table 1 outlines the data necessary for the
311 housing recovery model that fall into three categories: housing stock, damage instances, and
312 socioeconomic demographics.

Table 1. Input data necessary for each category and its use in the model.

Category	Data	Purpose
Housing	Housing type	Financing eligibility, contractor type, repair time
	Number of units	Division of repair cost, financing eligibility
	Replacement cost	Repair cost
	Owner location	Owner repair times, identify buildings with shared owner
Damage	Damage state	Repair cost, repair time
Socioeconomic	Building tenure	Financing eligibility, financing structure
	Owner income	Financing eligibility

313 The housing stock data should include the type of housing, number of units, and replacement
314 cost. Housing type refers to whether the building is single-family or multi-family. Housing type
315 determines the available funding avenues, what type of contractor the building needs, and how
316 long the repairs take. The number of units in the multi-family structures informs the type of
317 funding for which the building is eligible and how many instances of funding the building must
318 obtain. The replacement cost of the building must also be included to determine how much
319 monetary loss is associated with the damage experienced.

320 The damage state is obtained from a hazard and loss simulation. An analysis is needed to

321 predict the cost and duration of repairs for the given ground shaking intensity, and whether the
322 amount of damage is significant enough to trigger loss of occupancy. In the case of a Hazus
323 analysis, each building has a fragility function assigned by structural type that is combined
324 with simulated ground motions to sample the damage state (FEMA, 2020). This damage state
325 is mapped to a loss ratio and repair time. The dollar loss amount is based on loss ratio and
326 building value. For recovery modeling, we consider those with extensive or complete damage
327 that require a contractor to perform repairs.

328 The necessary socioeconomic data are building tenure and building owner income. Tenure
329 determines who finances repairs. In the case of single-family rental units, the owner's address
330 is valuable to know. If the owner lives in the community, the model accounts for delays to
331 the recovery of the rental units due to damage to an owner's home, i.e., the owner's recovery
332 postpones the rental recovery. In cases where the owner's address is unavailable, the ownership
333 of rental units can be assigned based on regional statistics to approximate the effects regionally.
334 Lastly, the incomes of the building owner, or unit owners, in the case of condominiums, dictate
335 for which funding they are eligible. It is important to note that most publicly available household
336 income data include tenants' income instead of the building owner's, who finances the repairs.

337 CASE STUDY

338 The proposed housing recovery model is applied in this section to a case study in the city of
339 Alameda, California. Alameda is located near the Hayward fault and is susceptible to earth-
340 quake shaking that could cause significant damage to housing. As shown in Figure 4, Alameda
341 has a diverse housing stock with 10,464 single-family owner-occupied buildings and 6,979
342 buildings (with 21,830 housing units) that fall into the other three type-tenures. Thus, a model
343 focusing only on single-family owner-occupied post-disaster recovery would capture less than
344 half of the housing units in the community. This section presents the case study's input data,
345 underlying assumptions, and illustrative results.

346 DATA AND ASSUMPTIONS

347 For the Alameda case study, we simulate damages after a scenario earthquake, a M7.0 on
348 the Hayward fault. Building locations are obtained from the Alameda Tax Assessor database
349 (Alameda County Assessor's Office, 2021). We use earthquake simulations to obtain ground
350 shaking intensities using the Chiou and Youngs (2014) ground motion model for peak ground

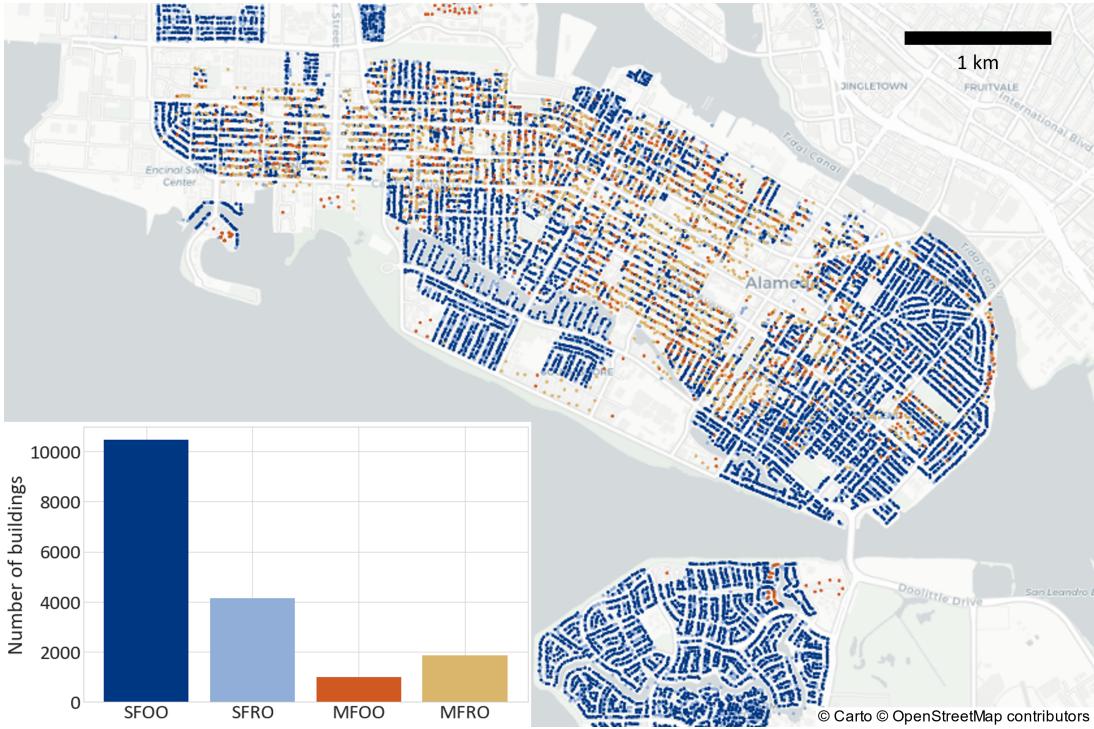


Figure 4. Residential housing in Alameda colored by housing type-tenure category, with a bar chart showing number of buildings in each category.

acceleration and use the Hazus earthquake methodology to simulate damage states for each building (FEMA, 2020). These damage states are discrete descriptions of structural damage based on the type of structure and the ground shaking at its location. The buildings in Alameda are majority wood construction. For multi-family housing, structure types are determined by the number of units using the Hazus methodology (FEMA, 2021). We use Hazus repair times for extensive and complete damage states of 90 and 180 days for single-family, and 120 and 240 days for multi-family houses, respectively (FEMA, 2020). This pre-analysis is performed using the SimCenter R2D Tool (McKenna et al., 2022).

Building values and tenure status data are taken from the Alameda Tax Assessor database (Alameda County Assessor's Office, 2021). Rent is determined based on data from the American Community Survey (Costa et al., 2022). Units that received a homeowner tax-exemption amount in the last assessment are assumed to be owner-occupied. A building i is owned by an owner-occupied building j , if the taxpayer mailing address of building i matches the site address of building j . To assign the owners' income, we estimate a household's minimum income to qualify for a mortgage on a building with value BV (Zhang et al., 2022). Based on data from the Homeowner Mortgage Disclosure Act (Consumer Financial Protection Bureau, 2022), the majority of homes in Alameda are purchased with a down payment of $P_0 = 20\%$ and loan ma-

368 turity of $m = 360$ months (i.e., 30 years). Using these parameters, we estimate the minimum
 369 income a household would need to obtain a mortgage, I_p , as

$$I_p = \frac{12}{gdsr} \cdot \left((BV - P_0) \cdot r \cdot (1 + r)^m \right) / \left((1 + r)^m - 1 \right) \quad (10)$$

370 where $gdsr$ is the gross-debt-to-service-ratio, assumed to be 30%, and r is the interest rate for
 371 the year of purchase. The interest rate is assumed constant for the duration of the loan. Finally,
 372 since I_p is the income at the time of purchase, we estimate the current income I by multiplying
 373 I_p by the inflation rate between 2022 and the year of purchase.

374 The number of contractor crews is not limited for this study. This assumption removes
 375 construction crew availability as a barrier to recovery. We focus on the financing results in
 376 this study, which are unaffected by this assumption, instead of total recovery times, which are
 377 affected.

378 Approval or uptake rates for each funding source are summarized in Table 2. The model
 379 considers California earthquake insurance; we use a typical deductible of 15% (Roth, 1998).
 380 The earthquake insurance uptake rate for Alameda is 13% for homeowners and 7% for condos
 381 (California Department of Insurance, 2018). Since rental buildings with less than four units also
 382 have a lower uptake rate of 6%, this is adopted for both types of renter-occupied buildings (Cal-
 383 ifornia Department of Insurance, 2018). Thus, insurance approval rates are applied as shown
 384 in Table 2, applied to whole structures, as explained in Section 2.2. Approval rates for public
 385 funding sources are based on statistics from past disasters (Alisjahbana et al., 2022). Bank loans
 386 are assured if SBA funding is accepted, and bank loan approval rates apply to the buildings that
 387 are denied SBA funding.

Table 2. Approval rates of various funding sources for the earthquake case study, separated by type-tenure. * denotes dependency on income, residence type, insurance status, and loss; ** denotes income-dependent approval rate.

Funding Source						
Agent	Insurance	FEMA	SBA	Bank	CDBG-DR	
SFOO	0.13	*	0.47	**	1.0	
SFRO	0.06	–	0.47	0.91	1.0	
MFOO	0.07	*	0.47	**	1.0	
MFRO	0.06	–	0.47	0.91	1.0	

388 **RESULTS**

389 Results are obtained from 100 simulations of housing recovery following the M7.0 case study
390 event (where ground motion amplitudes and building damage states are sampled from model
391 distributions for each simulation). Figure 5 shows the full recovery trajectories of the housing
392 stock in each simulation. The initial drop on the left-hand side of the plot shows the immediate
393 damage incurred by the event. These recovery curves show how many buildings are occupiable
394 (i.e., either not severely damaged or repaired) at a given time after the earthquake. Thus, a
395 steeper curve indicates a faster regional recovery. Recall that this is not limited by contractor
396 crew availability, as mentioned in the data and assumptions subsection. There is variability
397 due to initial differential damages and the inherent stochastic processes. The median, 10th, and
398 90th percentile realizations are identified based on the initial total community loss. At six years,
399 the curves level out as few new buildings are recovering after that time. The recovery of each
400 building is limited by financing, as discussed in the previous section.

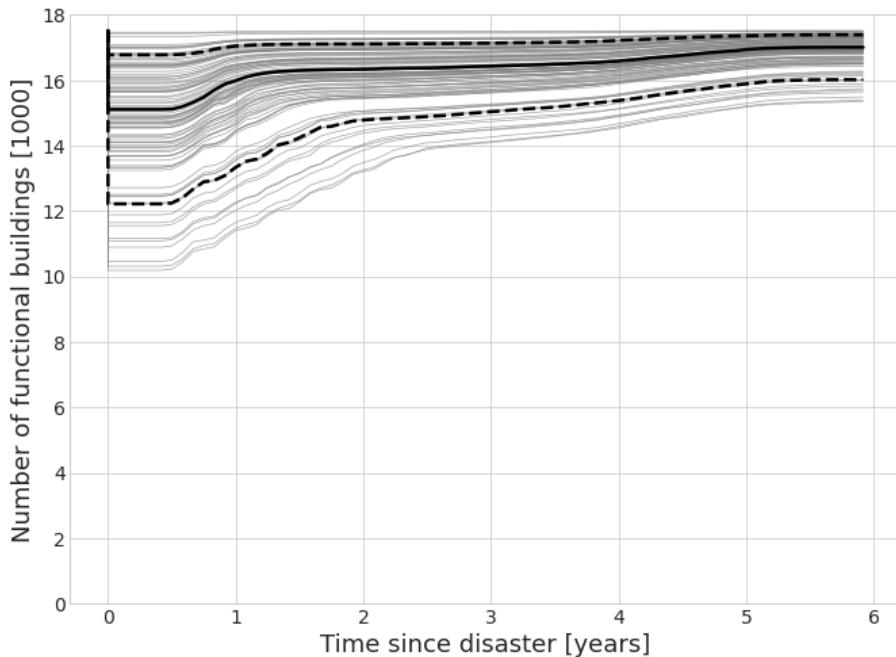


Figure 5. Recovery curves of functional units from 100 simulations with the median simulation in solid black and 10th and 90th percentile simulations in dashed black lines.

401 Figure 6 shows the breakdown of damage states (DS) for each type-tenure from the median
402 scenario. Those in DS3 or DS4 (extensive or complete damage) require repairs in the model.
403 This corresponds to the initial drop in the bolded curve in Figure 5.

404 Figure 7 shows the time to obtain full funding for each type-tenure, indicated by different

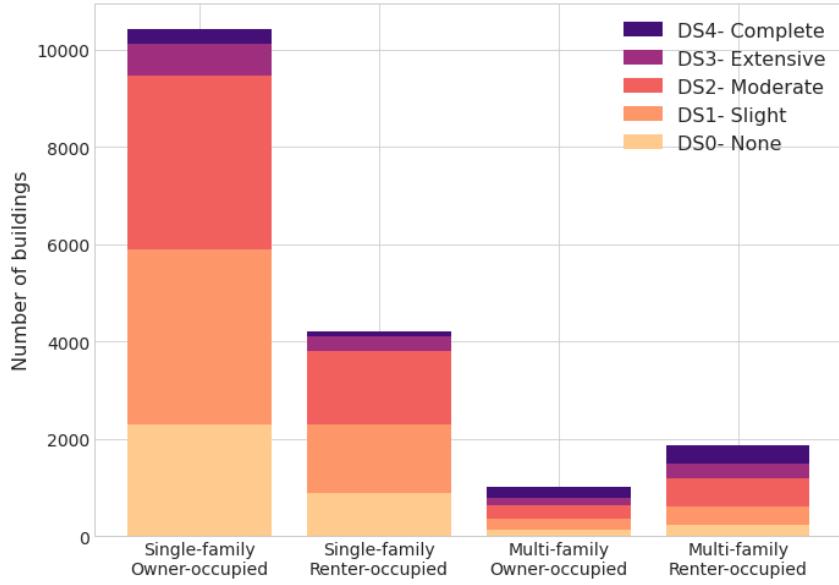


Figure 6. Histogram of damage states for each building of the four type-tenures in Alameda for the simulation with median initial total community loss.

405 colored lines. Here, we include the 10th, 50th, and 90th percentile simulations for each type-
 406 tenure, as highlighted in Figure 5. Immediately following the disaster, the housing type-tenure
 407 combinations are indistinguishable, but they separate within months of the disaster. Most single-
 408 family housing can obtain the funds needed within one year of the event. MFOO buildings
 409 receive financing more slowly and become saturated relatively early, i.e., few buildings receive
 410 any funding after the first year. MFRO housing has similar financing for the first three years.
 411 However, after about three years, they experience another surge in obtaining full funding. This
 412 is when CDBG-DR becomes available and highlights the importance of the CDBG-DR program
 413 for multi-family owner-occupied homes. These financing curves illustrate the model’s ability
 414 to capture inequities in the ability to obtain funds for renters and multi-family housing. Despite
 415 optimistic assumptions, these trends show that the model captures some barriers to multi-family
 416 housing recovery.

417 In addition to modeling how many buildings have received funding over time, we can probe
 418 the resources available to those with only partial funding. Figure 8 shows more details about
 419 the portion of funding received over time for each type-tenure from the median simulation. The
 420 lightest shaded region represents fully funded buildings, corresponding to the complement of
 421 the solid lines in Figure 7. The darkest shade represents the buildings with unmet need in each
 422 category. Within six months, there is a sharp drop in buildings with unmet need. Where this
 423 levels off, few new buildings are getting financed. There is a second drop for MFRO agents,

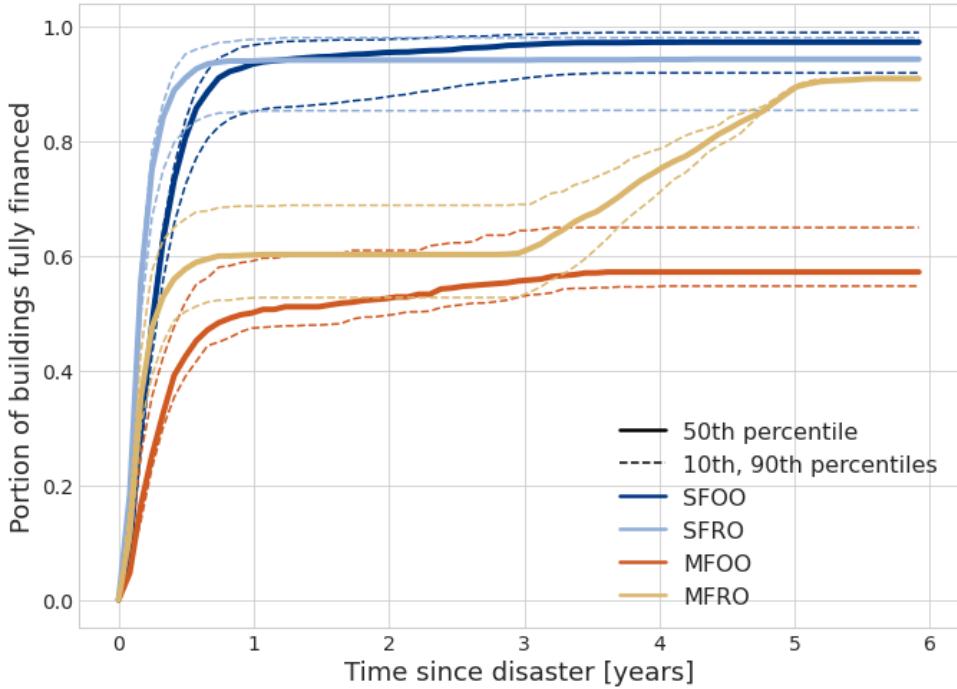


Figure 7. Portion of buildings initially seeking funding that receive full funding over the six years after a disaster, for the 10th, 50th, and 90th percentile initial loss runs, corresponding to the bolded lines in Figure 5.

signifying that they receive a second round of funding. Within six years, all modeled funding sources are distributed. The middle shade of each color represents buildings with over 80% of their funding received but without having obtained full funding. This distinction qualitatively separates the unmet cases that require large portions of funding from those with over 80% of their repair cost that may be able to supplement the cost, may repair to a lower quality, or may partially repair to a livable condition; further interpretation is provided in the discussion section. However, those with less than 80% of the losses financed may struggle more to fill the remaining need. Higher portions of multi-family buildings experience and remain in the 80% funding stage compared to the single-family buildings. Here we demonstrate how our model can be used to understand different experiences within non-recovery.

Figure 9 breaks down the total funds needed by each type-tenure in the median simulation. Multi-family buildings account for the majority of total need. While the largest number of buildings are SFOO, they account for about 30% of the need. The colors of the bars represent the funding received from each source. Renter-occupied and multi-family housing have the highest total portion of unmet needs. Owner-occupied buildings have the advantage of the additional FEMA funding, which covers more than 25% of the need for single-family buildings

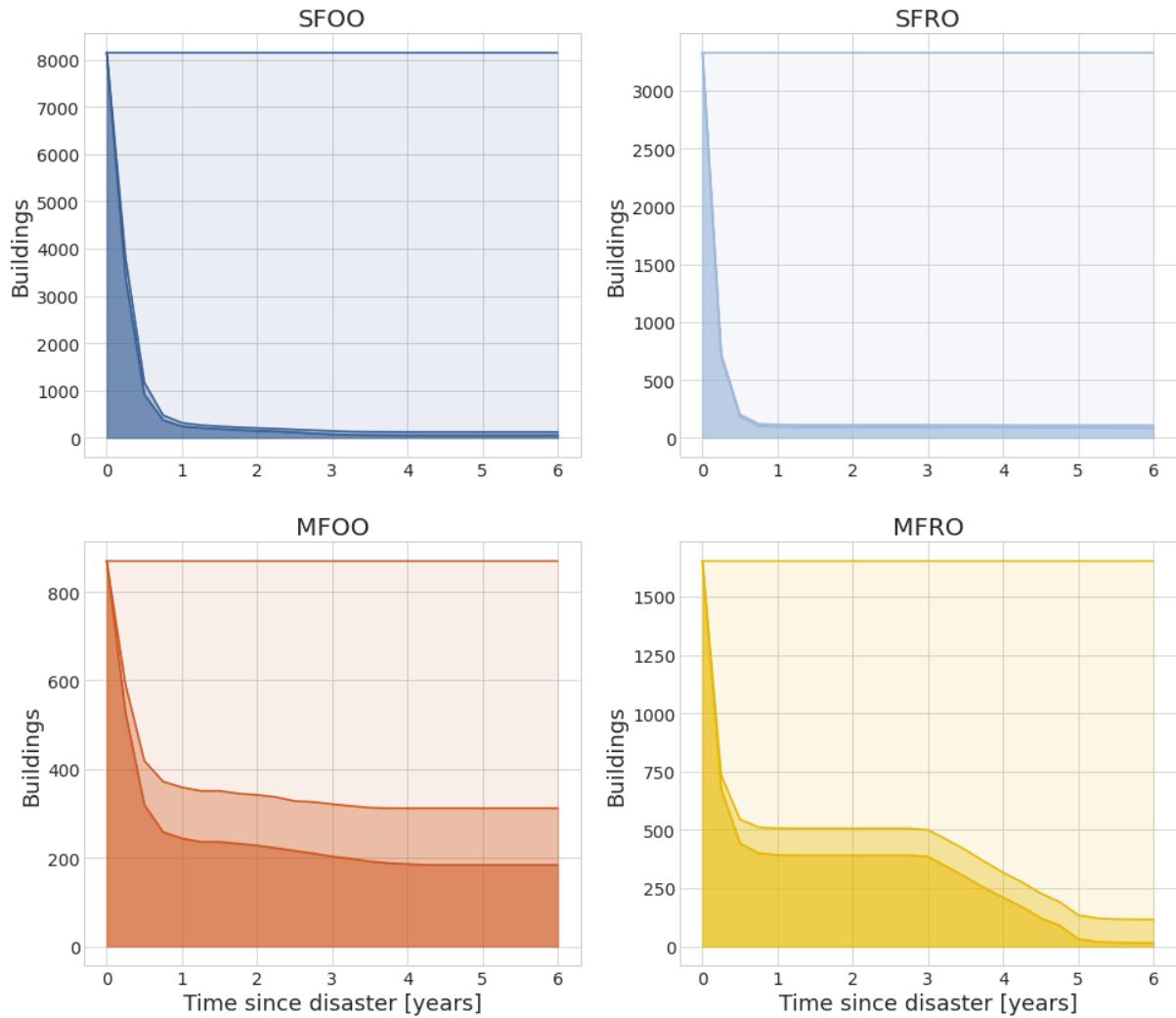


Figure 8. Number of buildings within each type-tenure with unmet need (darkest shade), 80% of their funding (middle shade), and fully funded (lightest shade) over time after the disaster.

and 5% for multi-family. SBA loans are pivotal in recovery financing, especially for single-family buildings. This aligns with empirical evidence, as after the 1994 Northridge earthquake, SBA loans were a large source of funding (20.7%), second only to insurance (65.3%) (Wu and Lindell, 2004). Current insurance uptake rates are smaller than pre-Northridge (Roth, 1998); thus, SBA is expected to have a central role in a future disaster, as indicated by model results. Since many SFRO buildings are not classified as affordable housing, they do not qualify for funding from CDBG-DR, explaining the negligible portion supported by that source. The model results can be interpreted to reflect how effective financing policies or strategies may be after a disaster and indicate what subset of the building stock may benefit from each funding source. Thus, the proposed model demonstrates how financing policy contributes to disparate recovery that has been evidenced in past disasters.

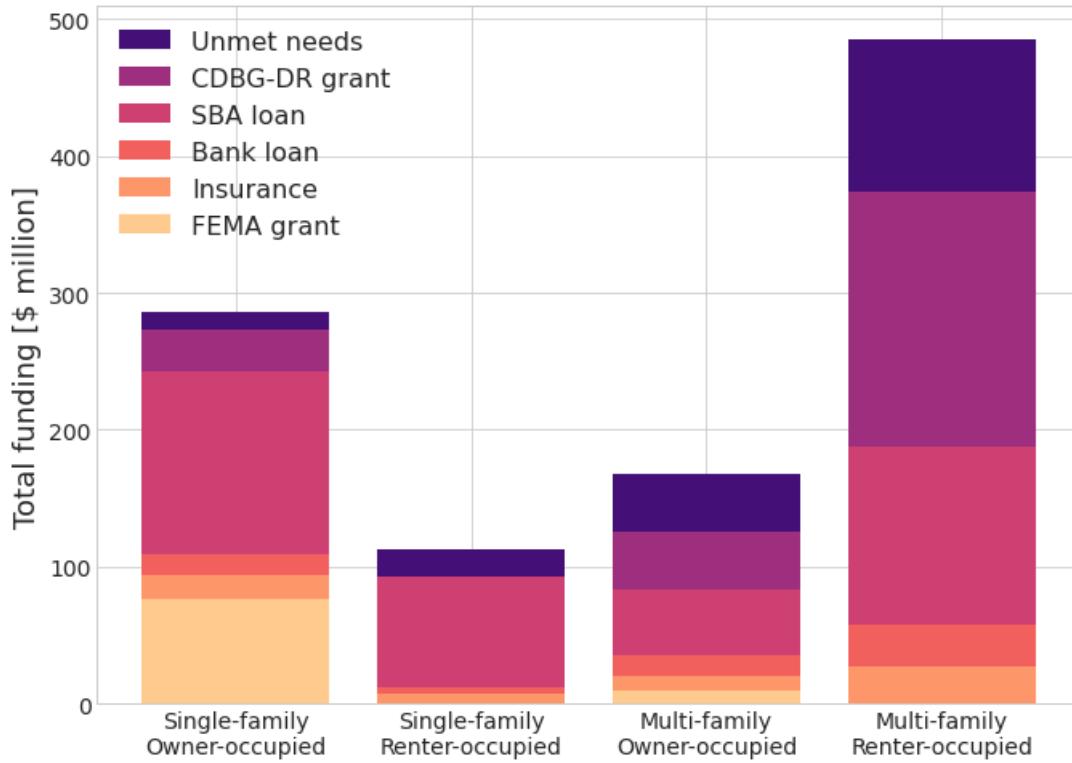


Figure 9. Total funding needed by each type-tenure group for the median scenario, and the sources from which the funds are obtained.

451

DISCUSSION

452 Post-disaster recovery is a complex problem hinging on human behavior and stochastic inputs
 453 that cannot be fully anticipated. Despite many associated challenges, housing recovery mod-
 454 eling is useful for understanding the processes that aid and impede recovery. This discussion
 455 touches on two important challenges, the first regarding the data and modeling process, which
 456 are variable in different regions and require simplifications and assumptions to be made. The
 457 second challenge is interpreting modeling results to real-world manifestations, which is useful
 458 to understand and qualitatively compare possible scenarios and mitigation actions.

459 **DATA AND MODELING CHALLENGES**

460 The model inputs require data on the housing in the region of interest. These data often come
 461 at various resolutions, from data for entire Census tracts to building-level data. Building-level
 462 data are unavailable in many communities, though most municipalities have a tax assessor with
 463 building values and use types. While more detailed data are generally preferred, they are not
 464 necessary to obtain outputs on a regional scale. Data that are unavailable at a high spatial reso-

465 lution may be distributed based on regional data to produce outputs that describe the aggregate
466 regional recovery. The same process works for information such as the locations of rental res-
467 idence owners. Knowing only the zip codes or cities of these owners would contribute to an
468 aggregate understanding of how likely it is that the owner is impacted and can generate reliable
469 outputs at the same regional resolution.

470 Even with building-level data, assigning type and tenure to each building is non-trivial. For
471 the case study, renter-occupied buildings can be identified by the lack of an owner-occupant
472 tax refund or by having a different property tax mailing address from the residence address.
473 These data are imperfect and do not always agree. Some misclassification is expected, such as
474 when an owner of a multi-family rental building lives in one of the units, classifying the whole
475 building as owner-occupied. These cases are believed to be relatively rare and are not expected
476 to influence results on a regional scale.

477 With regard to modeling, one major challenge is the characterization of unknown future
478 financing programs. Since CDBG-DR financing programs are created after disasters, they are
479 not standardized and, in many cases, poorly documented. Thus, the programs included in the
480 model use samples of past disasters; however, these examples may not be representative. Local
481 governments may be able to draft policies before a disaster strikes; however, the allocation of
482 funds is likely to depend on where damages and losses are concentrated in the community.
483 In addition, since this program emphasizes disadvantaged populations with unfulfilled need
484 after receiving other sources of funding, it is meant to be tailored to the remaining need in the
485 community months or years after a disaster.

486 These data and modeling challenges highlight a need for partnerships between governments
487 and researchers to understand the pre-disaster conditions of a community and anticipated recov-
488 ery programs. Access to data, even at a block level, can improve modeling while maintaining
489 residents' privacy. If other cities provided the city or zip code of owners, the model could
490 be applied there, and the identification and understanding of damages and repair processes for
491 connected units to renter-occupied housing would improve the performance of the model.

492 **INTERPRETATION OF RESULTS**

493 The financing and recovery time outputs are useful to compare subsets of the population and
494 how interventions may improve their recovery. However, these interpretations should consider
495 the assumptions embedded in the model. Decision-making is simplified, excluding the pos-

496 sibility of choosing not to repair. The assumption that all building owners want to recover
497 quickly and know about each funding source likely overestimates the rates of obtaining financ-
498 ing. However, these results are useful in understanding how effective the funding sources would
499 be in filling the needs of the population in an idealized case where they are all pursued when
500 buildings are eligible.

501 While financing time results largely reflect empirical expectations, full recovery time is
502 still affected by the assumption that all agents desire to rebuild quickly. Thus, the disparity
503 in recovery times may not be fully captured, while the disparity in financing is more robust.
504 Behavioral models are necessary to implement more complex decision-making and negotiation
505 between owners.

506 In addition, much of the disparity in recovery is felt by the residents of the affected units;
507 however, the model captures the trajectories of the building stock without making assertions
508 about the residents' recovery, especially renters. In reality, a heavily damaged property may
509 be redeveloped to a different configuration, or a rental home may be repaired with improve-
510 ments and an increased rent, so the former tenants can no longer afford to live there. This
511 post-disaster gentrification is damaging to the social fabric of a community and should be con-
512 sidered in policy and decision-making. Thus, this model provides insights into the financing
513 and potential building stock recovery, but understanding the community of interest is integral to
514 policy-making.

515 Another factor in recovery is the time that households and building owners are willing to
516 wait to receive funds. If this is finite, funding an owner receives after their personal time limit
517 is effectively 'unmet.' The time households are willing or able to wait may depend on whether
518 they have work in the area, have family or friends living nearby, or have another place to stay
519 while awaiting repairs. Needing to get to a job in the area may encourage a household to live in
520 a damaged or partially functional building.

521 The interpretation of financing results must also be considered in cases of unmet need.
522 Though we categorize the amount that is not filled by the five considered funding sources as
523 'unmet,' there are many ways this may manifest in reality. If most of the necessary funds are
524 obtained, such as over 80% (Figure 8), the building owner may repair the building to lower than
525 pre-disaster condition. Partial repairs could be performed, or occupants could reside in unsafe
526 conditions long-term. Funds could also be borrowed from friends or family, or drawn from
527 savings or liquid assets, depending on the finances and resources of the building owner. While

528 the model focuses on financing from main funding sources, these unmet needs are interpreted
529 as burdens on the building owners and possible causes of non-recovery. In reality, people are
530 resilient and may employ alternate strategies to finance and repair their homes and buildings.

531 This model makes necessary assumptions to provide an architecture to include renter-occupied
532 and multi-family housing in recovery modeling. Some of these assumptions overestimate recov-
533 ery, while others underestimate recovery. Overall, we believe this model provides an optimistic
534 outcome, holding constant some factors of human decision-making that may be difficult to af-
535 fect through policy.

536 CONCLUSIONS

537 This paper presents a post-disaster housing recovery model to include four common type-
538 tenures. The proposed model includes four classes of housing agents, funding agents that in-
539 teract with each, two classes of contractor agents, and financing and repair processes for each
540 housing type-tenure. We demonstrate the model on a case study to show how the financing pro-
541 cesses and sources available based on type-tenure impact recovery trajectory and the ability of
542 buildings to receive necessary funds to repair. This case study highlights challenges in financing
543 despite an idealized pursuit of the funds through each program.

544 The financing model accounts for programs designed for specific type-tenure buildings.
545 Building owner(s) are tasked with obtaining funds, allowing for unique financing processes
546 depending on tenure. In the case of rental housing, we determine their owner and base repair
547 funding on the building owner's income and the housing type, which determine eligibility for
548 various funding sources.

549 We apply the recovery model to a case study to demonstrate the recovery trajectories and
550 funding sources used between housing type-tenures. Multi-family housing obtains a lower over-
551 all portion of needed funds than single-family. The results show the breakdown of funding
552 sources used by each type-tenure combination, demonstrating that large amounts of unmet need
553 remain and public funding sources are insufficient to fill the needs with programs based on past
554 disasters. It is also apparent that with the lack of earthquake insurance uptake in California,
555 much funding is sought from the Small Business Administration after a large earthquake. The
556 sources and distribution of funding, as well as remaining needs, capture many mechanisms that
557 lead to disparate or non-recovery of many populations, specifically renters and those in multi-
558 family buildings, after disasters.

559 Finally, we discuss data needs and remaining gaps in the model, emphasizing the need for
560 a more quantitative understanding of post-disaster decision-making. We acknowledge the wide
561 range of recovery possibilities and that resilient owners may fill or overcome unmet needs. In
562 closing, this model includes a wider range of housing types than previous models, to explore
563 recovery dynamics and provides a flexible architecture that can be expanded and refined as
564 further data or future applications allow.

ACKNOWLEDGEMENTS

566 The authors would like to acknowledge Joseph Rodgers and Nick Slavin for their work on this
 567 project's conceptualization and first iteration. Partial support for this work was provided by
 568 the Stanford Urban Resilience Initiative. This material is based upon work supported by the
 569 National Science Foundation under Grants No. 1621843, 2131111, and DGE-1656518. Any
 570 opinions, findings, and conclusions or recommendations expressed in this material are those of
 571 the authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

573 Alameda County Assessor's Office, 2021. Alameda County Parcel Viewer.

574 Alisjahbana, I., Moura-Cook, A., Costa, R., and Kiremidjian, A., 2022. An Agent-based Financing
 575 Model for Post-Earthquake Housing Recovery: Quantifying Recovery Inequalities Across Income
 576 Groups. *Earthquake Spectra* **38**, 1254–1282. doi:10.1177/87552930211064319.

577 Almufti, I. and Willford, M., 2013. *REDi Rating System: Resilience Based Earthquake Design Initiative
 578 for the Next Generation of Buildings. Version 1.0. Tech. rep.*, Arup.

579 Aurand, A., Emmanuel, D., Threet, D., and Porter, C., 2019. *Long-term Recovery of Rental Housing:
 580 A Case Study of Highly Impacted Communities in New Jersey after Superstorm Sandy. Tech. rep.*,
 581 National Low Income Housing Coalition, Washington, D.C.

582 California Department of Insurance, 2018. *Residential Property Insurance Report. Tech. rep.*

583 Cherry, S. F., Jiang, E. X., Matvos, G., Piskorski, T., and Seru, A., 2021. *Government and private
 584 household debt relief during covid-19. Tech. rep.*, National Bureau of Economic Research.

585 Chiou, B. S.-J. and Youngs, R. R., 2014. Update of the Chiou and Youngs NGA Model for the Average
 586 Horizontal Component of Peak Ground Motion and Response Spectra. *Earthquake Spectra* **30**, 1117–
 587 1153. doi:10.1193/072813EQS219M.

588 Comerio, M., 1997. Housing Issues After Disasters. *Journal of Contingencies and Crisis Management*
 589 **5**, 166–178. doi:10.1111/1468-5973.00052.

590 Comerio, M., 2006. Estimating Downtime in Loss Modeling. *Earthquake Spectra* **22**, 349–365. doi:
 591 10.1193/1.2191017.

592 Community Planning and Development, Disaster Recovery and Special Issues Division, 2013. *Small
 593 Rental Rehabilitation Program*. U.S. Department of Housing and Urban Development.

594 Consumer Financial Protection Bureau, 2022. The Home Mortgage Disclosure Act.

595 Costa, R. and Baker, J., 2022. A Methodology to Estimate Post-disaster Unmet Housing Needs Using
 596 Limited Data. doi:10.31224/2583. <https://engrxiv.org/preprint/view/2583/version/3745>.

597 Costa, R., Haukaas, T., and Chang, S., 2021. Agent-based model for post-earthquake housing recovery.
 598 *Earthquake Spectra* **37**, 46–72. doi:10.1177/8755293020944175.

599 Costa, R., Wang, C., and Baker, J., 2022. Logistic Models Linking Household Recovery Capacity to
 600 Demographic Characteristics. In *Proceedings of the 13th International Conference on Structural
 601 Safety and Reliability*. Shanghai, China.

602 Crooks, A. T., 2010. Constructing and implementing an agent-based model of residential segregation

603 through vector GIS. *International Journal of Geographical Information Science* **24**, 661–675.

604 FEMA, 2016. *Individuals and households program unified guidance(IHPUG)*. Tech. Rep. FP 104-009-3,
605 Washington DC.

606 FEMA, 2020. *Hazus Earthquake Model Technical Manual*. Federal Emergency Management Agency.

607 FEMA, 2021. *Hazus Inventory Technical Manual*. Federal Emergency Management Agency.

608 FEMA, 2022. Individual Assistance Housing Registrants for Large Disasters (v1).

609 Finn, J. and Toomey, E., 2017. Condominium Chaos in the Wake of a Disaster. *New Zealand Law
610 Review* **2017**, 365–398.

611 Hamideh, S., Peacock, W., and VanZandt, S., 2021. Housing type matters for pace of recovery: Ev-
612 idence from Hurricane Ike. *International Journal of Disaster Risk Reduction* **57**, 102149. doi:
613 10.1016/j.ijdrr.2021.102149.

614 Henry, J., 2013. Return or relocate? An inductive analysis of decision-making in a disaster. *Disasters*
615 **37**, 293–316. doi:10.1111/j.1467-7717.2012.01303.x.

616 Hoertel, N., Blachier, M., Blanco, C., Olfson, M., Massetti, M., Rico, M. S., Limosin, F., and Leleu, H.,
617 2020. A stochastic agent-based model of the SARS-CoV-2 epidemic in France. *Nature medicine* **26**,
618 1417–1421.

619 HUD, 2022. Fact Sheet: Community Development Block Grant Disaster Recovery (CDBG-DR).
620 <https://www.hud.gov/sites/dfiles/CPD/documents/CDBG-DR-Fact-Sheet.pdf>.

621 Lu, J.-C., Peacock, W., Zhang, Y., and Dash, N., 2007. A comparative study of single-family and
622 multifamily housing recovery following 1992 Hurricane Andrew in Miami-Dade County, Florida. In
623 *Proceedings of the Hazards and Disasters Researchers Meeting*, pp. 22–26. Boulder, CO.

624 Martín, C., Teles, D., and DuBois, N., 2022. Understanding the Pace of HUD's Disaster Housing
625 Recovery Efforts. *Housing Policy Debate* **32**, 102–127.

626 McKenna, F., Gavrilovic, S., Zsarnoczay, A., Zhong, K., Elhaddad, W., and Arduino, P., 2022. NHERI-
627 SimCenter/R2DTool: Version 2.1.0. doi:10.5281/zenodo.6404528.

628 McLane, A. J., Semeniuk, C., McDermid, G. J., and Marceau, D. J., 2011. The role of agent-based
629 models in wildlife ecology and management. *Ecological modelling* **222**, 1544–1556.

630 Miles, S., 2017. DESaster: A discrete event disaster recovery simulation built on top of the Simpy
631 discrete event simulation Python library. <https://github.com/milessb/DESaster>.

632 Miles, S., 2018. Participatory Disaster Recovery Simulation Modeling for Community Resilience. *Int J
633 Disaster Risk Sci* **9**, 519–529. doi:10.1007/s13753-018-0202-9.

634 Miles, S. and Chang, S., 2011. ResilUS: A Community Based Disaster Resilience Model. *Cartography
635 and Geographic Information Science* **38**, 36–51. doi:10.1559/1523040638136.

636 Miyasaka, T., Le, Q. B., Okuro, T., Zhao, X., and Takeuchi, K., 2017. Agent-based modeling of com-
637 plex social–ecological feedback loops to assess multi-dimensional trade-offs in dryland ecosystem
638 services. *Landscape Ecology* **32**, 707–727.

639 Moradi, S. and Nejat, A., 2020. RecovUS: An Agent-Based Model of Post-Disaster Household Recov-
640 ery. *Journal of Artificial Societies and Social Simulation* **23**, 13. doi:10.18564/jasss.4445.

641 Nejat, A., Cong, Z., and Liang, D., 2016. Family Structures, Relationships, and Housing Recovery
642 Decisions after Hurricane Sandy. *Buildings* **6**. doi:10.3390/buildings6020014.

643 Nejat, A. and Damnjanovic, I., 2012. Agent-based modeling of behavioral housing recovery following
644 disasters. *Computer-Aided Civil and Infrastructure Engineering* **27**, 748–763. doi:10.1111/j.1467-
645 8667.2012.00787.x.

646 Olshansky, R., Johnson, L., and Topping, K., 2006. Rebuilding Communities Following Disaster:
647 Lessons from Kobe and Los Angeles. *Built Environment* **32**, 354–374.

648 Quarantelli, E. L., 1982. General and particular observations on sheltering and housing in American
649 disasters. *Disasters* **6**, 277–281.

650 Quarantelli, E. L., 1995. Patterns of sheltering and housing in US disasters. *Disaster prevention and
651 management: an international journal* **4**, 43–53.

652 Rathfon, D., Davidson, R., Bevington, J., Vicini, A., and Hill, A., 2013. Quantitative assessment of post-
653 disaster housing recovery: a case study of Punta Gorda, Florida, after Hurricane Charley. *Disasters*
654 **37**, 333–355. doi:10.1111/j.1467-7717.2012.01305.x.

655 Rockett, R. J., Arnott, A., Lam, C., Sadsad, R., Timms, V., Gray, K.-A., Eden, J.-S., Chang, S., Gall,
656 M., Draper, J. et al., 2020. Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome
657 sequencing and agent-based modeling. *Nature medicine* **26**, 1398–1404.

658 Rodríguez, H., Quarantelli, E. L., Dynes, R. R., Peacock, W. G., Dash, N., and Zhang, Y., 2007. Shel-
659 tering and housing recovery following disaster. *Handbook of disaster research* pp. 258–274.

660 Roth, R., Jr., 1998. Earthquake Insurance Protection in California. In Roth, R., Sr. and Kunreuther, H.
661 (eds.), *Paying the Price: The Status and Role of Insurance Against Natural Disasters in the United
662 States*, chap. 4, pp. 67–96. Joseph Henry Press, Washington, DC.

663 SBA, 2022a. Business Physical Disaster Loans. <https://disasterloanassistance.sba.gov/ela/s/article/Business-Physical-Disaster-Loans>.

664 SBA, 2022b. Fact Sheet for Associations. <https://disasterloanassistance.sba.gov/ela/s/article/Fact-Sheet-for-Associations>.

665 SBA, 2022c. Fact Sheet: Homeowner Associate Unit Owners. <https://disasterloanassistance.sba.gov/ela/s/article/Fact-Sheet-Homeowner-Association-Unit-Owners>.

666 SBA, 2022d. Home and Personal Property Loans. <https://disasterloanassistance.sba.gov/ela/s/article/Home-and-Personal-Property-Loans>.

667 Shao, P.-C., 2002. Post-quake Condominium Reconstruction for Taiwan Chi-Chi Earthquake in 1999.
668 *Journal of Asian Architecture and Building Engineering* **1**, 229–236. doi:10.3130/jaabe.1.229.

669 Sutley, E. and Hamideh, S., 2018. An interdisciplinary system dynamics model for post-disaster housing
670 recovery. *Sustainable and Resilient Infrastructure* **3**, 109–127. doi:10.1080/23789689.2017.1364561.

671 Tafti, M. and Tomlinson, R., 2013. The role of post-disaster public policy responses in housing recovery
672 of tenants. *Habitat International* **40**, 218–224. doi:10.1016/j.habitatint.2013.05.004.

673 Tafti, M. and Tomlinson, R., 2021. Decisions of Landlords about Their Renters and Rental Units after
674 Disasters. *Nat. Hazards. Rev* **22**, 05021004. doi:10.1061/(ASCE)NH.1527-6996.0000450.

675 Wu, J. and Lindell, M., 2004. Housing Reconstruction After Two Major Earthquakes: The 1994
676 Northridge Earthquake in the United States and the 1999 Chi-Chi Earthquake in Taiwan. *Disasters*
677 **28**, 63–81. doi:10.1111/j.0361-3666.2004.00243.x.

678 Wu, J.-Y., Chen, L.-C., Liu, Y.-C., and Tszeng, J.-S., 2007. Relationships between the speed of post-
679 disaster condominium housing reconstruction and housing characteristics. In *Proceedings of the Haz-
680 ards and Disasters Researchers Meeting*, pp. 35–37. Boulder, CO.

681 Zhang, J., Costa, R., A, Z., and Baker, J., 2022. Enhancing Post-Disaster Recovery Modeling Through
682 High-Fidelity Household Income Estimation. In *12th National Conference on Earthquake Engineer-
683 ing*. Earthquake Engineering Research Institute, Salt Lake City, Utah.

684 Zhang, Y. and Peacock, W., 2009. Planning for Housing Recovery? Lessons Learned from Hurricane
685

