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Understanding the epidemiology of emerging pathogens, such
as Usutu virus (USUV) infections, requires systems
investigation at each scale involved in the host-virus
transmission cycle, from individual bird infections, to bird-to-
vector transmissions, and to USUV incidence in bird and
vector populations. For new pathogens field data are sparse,
and predictions can be aided by the use of laboratory-type
inoculation and transmission experiments combined with
dynamical mathematical modelling. In this study, we
investigated the dynamics of two strains of USUV by
constructing mathematical models for the within-host scale,
bird-to-vector =~ transmission scale and  vector-borne
epidemiological scale. We wused individual within-host
infectious virus data and per cent mosquito infection data to
predict USUV incidence in birds and mosquitoes. We
addressed the dependence of predictions on model structure,
data uncertainty and experimental design. We found that
uncertainty in predictions at one scale change predicted
results at another scale. We proposed in silico experiments
that showed that sampling every 12 hours ensures practical
identifiability of the within-host scale model. At the same
time, we showed that practical identifiability of the
transmission scale functions can only be improved under
unrealistically high sampling regimes. Instead, we proposed
optimal experimental designs and suggested the types of
experiments that can ensure identifiability at the transmission
scale and, hence, induce robustness in predictions at the
epidemiological scale.
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1. Introduction

Usutu virus (USUV) is an emerging zoonotic flavivirus similar to West Nile virus (WNV) [1,2] that
circulates in sub-Saharan Africa, central Europe and the Mediterranean basin [3-5]. It is maintained in
the environment through an enzootic cycle involving mosquitoes and birds; and has been associated
with decreased bird populations in Europe, occasional spillover to mammals, including humans [2,6],
and a few cases of neurological complications in humans [2,7,8]. Given the novelty of the USUYV, it is
of great importance to understand how individual-scale processes impact population-scale spread.
Since the virological and epidemiological patterns are usually independent of each other,
mathematical modelling can serve as a tool to link knowledge at these scales. To better understand
the bird—-mosquito USUV transmission cycle, we investigate the within-host viral dynamics inside an
infected bird, the bird-to-mosquito transmission probability and the epidemiological-level bird and
mosquito infection incidence.

In previous work, we used within-host mathematical models to study the viral-host interactions of
different USUV strains following individual bird (juvenile chicken) infections and found that the
European USUV strains (Spain 2009 and Netherlands 2016) have higher replication rates and peak
viremia compared with the African USUV strains (Uganda 2012 and South Africa 1959) [9,10]. A recent
empirical study has shown that birds (wild-caught house sparrows and juvenile chickens) inoculated
with Netherlands 2016 have higher probability of infection to mosquito (Culex quinquefasciatus) than
birds inoculated with Uganda 2012 [11].

In this study, we investigate the relationship between USUV strain characteristics and per cent
mosquitoes infection, and use that inference to assist how model and data structure at these scales
impact model predictions of USUV incidence in bird and mosquito populations. To achieve this, we
develop an age-structured vector-borne disease model and parametrize it using Netherlands 2016 and
Uganda 2012 longitudinal infectious viral titres in infected birds combined with bird-to-mosquito
transmission data [11]. We use the model to predict the mechanistic interactions that describe USUV
incidence dynamics in bird and mosquito populations. The paper also aims to determine whether
scarcity of data used in validating within-host models and bird-to-vector probability of infection
functions results in biases in the predicted disease incidence. To address this, we investigate structural
and practical identifiability of the within-host model and practical identifiability of the bird-to-vector
probability of infection functions and propose solutions for improvement in predictions through
addition of extra and/or alternative measurements.

2. Material and methods
2.1. Within-host scale

Within-host model. We consider a within-host model with eclipse phase used in other acute viral infections
[9,10,12,13] to describe the within-host USUV dynamics. The model includes uninfected leukocytes T,
exposed leukocytes E, productively infected leukocytes I and USUV V. We investigate their dynamics
7 days after infection, as follows [9]. Following viral infection, target cells become exposed at rate j
and exposed cells become productively infected cells at rate k. Productively infected cells produce =
virions per day and die at rate 8. Virus is cleared at rate c. Given the short timespan of USUV
infection within an infected bird (around 7 days) no renewal or death terms are considered for the
leucocyte populations. A diagram describing these interactions is given in figure 1 and the model is
described by the following equations:

dT_ _grv,

(2.1)

with initial conditions T(0) = Ty, E(0) =0, I(0) =0, V(0) = V,. Note that the effect of viral loss through cell
entry, given by —STV, is negligible compared with virus production and clearance terms and, therefore,
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Within-host model:
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Figure 1. Model diagram describing the within-host USUV infection.

not included in the virus equation. We aim to estimate model equation (2.1)’s parameters by fitting it to
published infectious virus titres in wild-caught house sparrows infected with either Netherlands 2016 or
Uganda 2012 [11].

Empirical data. Data consists of two cohorts (11 = 14 each) of wild-caught house sparrows, confirmed to
be seronegative for WNV, and subcutaneously inoculated with 1500 plaque forming units (PFU) of USUV
Netherlands 2016 or Uganda 2012. Infectious viral titres (in PFU ml™") V¥ were collected daily for the first 7
days post inoculation 7={1, 2, ..., 7}. Of the n =14 birds inoculated with Netherlands 2016 only n =11 had
virus measured above the limit of detection (LOD =100 PFU ml™") and only 7 =10 had at least two viral
titre measurements above the limit of detection. All # = 14 birds inoculated with Uganda 2012 had viremia
above the limit of detection, but only 7 =6 had at least two viral titres above the limit of detection [11].

Data fitting algorithm. We assume an initial target population T(0) =4 x 10° cells ml~! [10] and no
exposed or infected cells E(0) = I(0) = 0 cells ml~!. The empirical infectious inoculum was 1500 PFU
which, when distributed across 2.5ml of blood [14], gives an initial inoculum concentration of 600 PFU
ml™". We assumed an initial V(0) = 10 PFU ml~! infectious titre, and rejected V(0) = 100 PFU ml~! and
V(0) = 600 PFU ml~! initial conditions through model selection (see table S1 in the electronic
supplementary material). All other parameters p=1{p, J, ¢, 7, k} are unknown. We only use the birds that
have at least two data points above limit of detection, 7 =10 and n=6 for Netherlands 2016 and Uganda
2012 infection, respectively. We exclude bird U-Sp8 from Uganda 2012 fits due to unrealistic data fitting
predictions (see electronic supplementary material, figure S1). Hence, the number of birds inoculated with
Uganda 2012 that are used in this study becomes 1 =5.

We estimate the mean, median and standard deviation of population parameters p using a nonlinear
mixed effects modelling approach that uses stochastic approximation estimation-maximization (SAEM)
algorithm in Monolix [15]. Briefly, we assume that population parameters p are lognormally distributed
with mean In(u) and standard deviation ¢. Moreover, we assume that the proportional error between the
model and the data, (V¢ — V)/V, is normally distributed with mean zero and standard deviation 7. Since
several data measurements are below the limit of detection (LOD =100 PFU ml™"), we consider these
measurements to be censored data. They are incorporated into the data fitting in Monolix by
assuming that each censored data point takes a value between zero and the LOD [16,17]. Besides
mean population parameters, we also estimate individual bird parameters p; (for bird i) using the
Nelder-Mead (NM) simplex algorithm in Monolix software [15]. Model equation (2.1)’s goodness of
fit, given by the Akaike information criterion (AIC) index, is

AIC = —2LL(p) + 2N,

where LL is the log-likelihood and N is the number of estimated parameters in the nonlinear mixed effects
model (in our case N=11, 10 for the individual mean and standard deviations of the five fitted
parameters and one for the population standard deviation).

2.2. Bird-to-mosquito transmission scale

Bird-to-mosquito probability of infection mathematical formulation. To determine the relationship between
the USUV load inside a bird V(z) and the probability of a transmission event to a mosquito at
day 7, we develop three models describing the probability of bird-to-mosquito transmission as
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functions of viral load V(7). We assume the number of infectious viruses in the sample that establish an [ 4 |

infection in a mosquito is a random variable that follows a Poisson distribution with mean E[V]. If each
transmissible virus has a probability p of establishing infection in a mosquito, then the number of viruses
that are successfully transmitted follows a Poisson distribution with parameter A = E[V ]p [18] and the
probability of one or more viruses successfully infecting a mosquito is

b(V) =1—exp(—A). (2.2)
We consider the following three models for the mean transmissible virus E(V) [19],

1. The linear model assumes that the mean transmissible virus is proportional to the detectable viral load
(above the limit of detection), i.e.

E](V) = V(V - D),

where D = LOD = 100 PFU ml! and v is a positive constant. The corresponding probability of
infection becomes

(V) =1-exp(-a(V - D)), (2.3)

where a = vp.
2. The power-law model assumes that the mean transmissible virus is proportional to the power of birds’s
detectable viral load, i.e.

Ex(V) =v(V - D),
where v and & are positive constants. The corresponding probability of infection becomes

by (V) =1 —exp(—a(V - D)"), (2.4)

where a = vp.
3. The density-dependent model assumes that the mean transmissible virus is proportional to a density-
dependent function of the bird’s detectable viral load, expressed by a Hill-type function, i.e.

V-D h
) v V=D
(V-D)'+L"
where L is the above limit of detection bird’s viral load where the growth is half-maximal and v and &
are positive constants. The corresponding probability of infection becomes

_ h
b3(V) =1 —exp (—a (x/(illaﬂyf)’ (2.5)

where a = vp.

Empirical data. Culex quinquefasciatus mosquitoes were fed on birds infected with USUV Netherlands
2016 and Uganda 2012, as follows. Mosquitoes were fed on seven birds: three of the wild-
caught house sparrows used in the within-host models (N-Spl, N-Sp9 and N-Sp3) and four
juvenile chickens (bred for low antibody titres) z=2 days after they were inoculated with 1500
PFU Netherlands 2016 [11]. The paired bird viral load data (on log,, scale) at day 2,
log,,v; = log;, V;(2), and proportion of infected mosquitoes data b}” for bird inoculated with
Netherlands 2016 is

Ty ={(logy v, b),j ={1,2, ..., 7}} 26
=i ’

(2.7,0.1); (5.98, 0.16); (7.17, 0.6); (3.04, 0.125); (3.49, 0.048); (3.66, 0.1364); (2, 0)},

for N-Sp1, N-Sp9, N-Sp3 and four juvenile chickens, respectively. Similarly, mosquitoes were fed on
seven birds, three wild-caught house sparrows used in the within-host models (U-Sp2, U-Sp3 and
U-Sp5) and four juvenile chickens (bred for low antibody titres) =2 days after they were inoculated
with 1500 PFU Uganda 2012 [11]. The paired bird viral load data (on log,, scale) at day 2,
log,,v; = log,, V;(2), and proportion of infected mosquitoes data b}i for bird inoculated with Uganda
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2012 is

Ty = {(log; v}, b;’),j: {1,2, ..., 7}}

(2.7)
={(2,0); (6.56, 0.6); (5.23,0.182), (3.68, 0.055); (3.69, 0.03); (4.54, 0.125); (4.76, 0.1379)},

for U-Sp2, U-Sp3, U-Sp5 and four juvenile chickens, respectively.

Data fitting algorithm. We fitted the probability of infection functions b;(log,,v), b2(log,,v) and
bs(log,,v) to both T, and T, per cent mosquito infection data using a least-squares approach. The
following objective functional:

j=1

1/2
7
J(a, h, L) = (Z bi(log,, vj) — bf) , i=1,2,3, (2.8)

is minimized over the (a, h, L) parameter space using the local optimization fmincon/fminsearchbnd
algorithms in Matlab. We used the following parameter bounds: a € [0, 10], h €[0, 10] and L € [0, 10].

2.3. Between-host scale

Between-host model. We considered an age-structured susceptible-infectious-recovered (SIR)
epidemiological model for bird population and a susceptible-infectious (SI) epidemiological model for
mosquito population. We denote the susceptible, infectious and recovered bird populations by S(t)
and I,(t, 7), Ry(t) and the susceptible and infectious mosquito populations by S,(t) and I,(t). Time ¢
represents chronological time and age 7 represents the age of a bird infection. Mosquito infectivity rate is

obi(V(7), 0<7< yl[
Bo(7) = { 0, > 1 (2.9)

where ¢, is the contact rate, y, is the bird removal rate (through recovery and/or death) and b;(V(7)),
i={1, 2, 3} is the probability of vector infection following contact with an infected bird given by
equations (2.3)-(2.5). Birds get infected through contact with a vector at constant rate f§, and are
removed (through recovery and/or death) at constant rate y,. We use a mass-action term for the force
of infection, which assumes that biting rates are limited by the mosquito and bird densities. We
assume a mosquito birth rate A, and per capita death rate y,. Similarly, we assume a bird birth rate A,
and per capita death rate . A model description is given in figure 2 and the model equations are

ds, 1/
o = Mo SvJ Bo(D)Iy(t, 7) A7 — 1, S0,
0
dI 1/
o[ B e,
0

ds,

5 = Ay — BySply — 14 Sp, (2.10)
ol, Jl,

o + B = —ylp(t, 7) — wplp(t, 7),
Ip(t, 0) = B,Spl,

dR 1/

and b = ybj Ib(t, T) dr — lvaRh/
dt 0

with initial conditions S,(0) =S5 L(0)=1-55, S,(0)=S), I,0,0D=I, Ry0)=0. We work
with normalized bird and mosquito populations. Note, that while there is no recovery of
infected mosquitoes, birds do recover from USUV infection. We aim to predict bird and mosquito
populations” infection incidence over time if the probability of infection is described by different
functions b;(V(7)) given by equations (2.3)-(2.5) and if the infection is generated by Netherlands 2016 or
Uganda 2012.

Parameter values. We assume an initial 5% infected mosquitoes and 1% infected birds, i.e. S,(0) =0.95,
I,(0) =0.05, 5,(0)=0.99, R,(0) =0. We set I,(0, 7) =Iy(7) such that total infected bird population at time
zero is [,(0) = jol /M Ip(7) d7 = 0.01. Female mosquitoes live on average one to two months [20], hence
we set A, = u, =1/60 per day. We set A, = u, =1/720 per day, representing a house sparrow’s
lifespan of 2 years [21]. We fix the contact rate c,=1, the bird infectivity rate §,=0.2, and the bird
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Between-host model:
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Figure 2. Model diagram describing the between-host USUV transmission equation (2.10).

recovery time 1/y, =7 days. Under the assumed parameters, we use model equation (2.10) to compute
birds’ and mosquitoes” USUV incidence over time when transmission probability is b;(V(7)) given by
equations (2.3)-(2.5).

2.4. |dentifiability analysis

We have defined the USUV dynamics at three different scales: within-host, bird-to-mosquito
transmission and between-host. We will validate the within-host and bird-to-mosquito transmission
scales with experimental data for both Netherlands 2016 and Uganda 2012 strains. Before estimating
parameters of a mathematical model from data, we first need to study whether the model is
structured to reveal its parameters from the data. This process is called the identifiability analysis.
There are two types of identifiability: structural identifiability and practical identifiability. Structural
identifiability describes the theoretical base for determining model parameters uniquely given the
model structure and unlimited noise-free experimental observations. By contrast, practical
identifiability determines whether model parameters are identifiable given limited experimental
observations which are contaminated with noise.
Structural identifiability. Consider a model of form

x(7) = f (x(7), p), (2.11)

where 7 denotes age of infection, x(z) represents the vector of state variables expected to match the
empirical observations of viral loads, y(z). The goal of the structural identifiability is to determine
whether model x'(7) =f(x(r), p) can uniquely reveal its parameters p given unlimited empirical
observations y(7) and no measurement errors. Several techniques have been proposed for analysing
the structural identifiability of mathematical models, including those found in [22-24]. In this study,
we use the differential algebra method which allows us to eliminate unobserved state variables and
derive differential-algebraic polynomials of the observed variable and the model parameters, referred
to as the input-output equations [24-26].
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Definition 2.1. Let c(p) denote the coefficients of the input-output equations where p is model
equation (2.11)'s parameter vector. We say that model equation (2.11) is structured to reveal its
parameters from the observation y(7) if and only if

c(p)=c(p)=p=p-

The structural identifiability analysis of ODE models using the differential algebra approach involves
the following steps. First, model equations are transformed into a monic differential polynomial called
input-output equations by eliminating unobserved state variables. The input-output equations
establish the relationship between the model parameters and the observations. Next, coefficients of
input-output equations are determined and the mapping from the parameter space to these
coefficients is examined. If the map is one-to-one, then all parameters are identifiable, indicating that
the model is structurally identifiable. If the map is not one-to-one, then the model lacks structurally
identifiability. In such cases, parameter correlations are used to fix parameters, resulting in a
structurally identifiable model with improved parameter estimation accuracy and reliability.

Practical identifiability. Structural identifiability investigates whether parameters can be estimated
from a model given unlimited noise-free observations. Since, in practice, data collected is discrete and
may contain significant measurement errors, structural identifiability of a model is not enough
to guarantee existence of practically identifiable parameters. Therefore, it becomes necessary to
determine whether structurally identifiable parameters can be estimated from noisy data. There are
several methods for studying the practical identifiability of ODE models [23,24,26-31]. Here, we use
the Monte Carlo simulation (MCS) approach [23,24,26,30] which follows the following steps:

1. We solve model equation (2.11) numerically using parameter values p obtained from fitting the model
to the given discrete experimental data and then record the predictions (output) at the experimental
age of infection points.

2. We generate virtual datasets by adding o = {1%, 5%, 10%, 20%} measurement errors to each given
experimental data point, with measurement errors assumed to be normally distributed with mean
zero and standard deviation o. For each measurement error we create M =1000 such datasets.

3. For each measurement error o, we fit model equation (2.11) to each of the 1000 datasets to estimate
new best parameter fits p;, with i=1{1, 2, ..., 1000}.

4. We calculate the average relative estimation error (ARE) for each parameter of model equation (2.11)

13 pt )
ARE(p®) = 100% x MZW’
i=1

where p® is the kth element of the parameter set p and pfk) is kth element of p;.
5. We use the ARE formula to determine whether each parameter of model equation (2.11) is practically
identifiable using definition 2.2, given below.

Definition 2.2. Let ARE be the average relative estimation error of the parameter p®. The practical
identifiability of parameter p® is determined by comparing ARE with measurement error. Let ARE be
smaller than a constant multiple of the measurement error o, that is

ARE(p%) < no.

(@) If 0<n<1 then parameter p(k) is strongly practically identifiable.
(ii) If 1 <7 <10 then parameter p® is weakly practically identifiable.
(iti) If 10 < then parameter p* is not practically identifiable.

A model is said to be practically identifiable when parameters p® are practically identifiable, for all k.

3. Results
3.1. Within-host scale

To investigate the temporal dynamics of USUV inside infected birds we developed a within-host model
equation (2.1) and fitted it to experimental data from two bird cohorts (see Material and methods).

OpLLEz ‘L s tadp 205y sosyjewmol/biobunsiqndfaanosiedor [



Downloaded from https://royalsocietypublishing.org/ on 19 August 2024

3.1.1. Structural identifiability of within-host model

Before performing data fitting, we examined the structural identifiability of the within-host model
equation (2.1) (see Material and methods). We rewrite equation (2.1) in compact form

X(1)=f(xp),

where 7 denotes time since infection, x = {T, E, I, V} represents the vector of state variables, and p=1{8, 6, c,
7, k} is the vector of parameters. The model output y(7) represent the empirical observations, which, in
our case, are the viral infectious titres, y(z) = V(z). We compute the input-output equations using the
Differential Algebra for Identifiability of System (DAISY) software [32] for equation (2.1) and obtain

0=V"V-V"V +V"V2B+V"V(c+k+8) —V'V'(c+k+8) +V'V?B(c +k+ )

(3.1)
+ V"V(ck 4 c8 + k&) — V"?(ck + cb + kb) + V'V?B(ck + ¢8 + k&) + V> Bcks.

According to definition 2.1 (see Material and methods), we need to show that the function mapping
the parameter space to the coefficients of the input-output equation (3.1) is one-to-one. Assume that there
exists another parameter vector, p = { B, k, 5, ¢}, which has produced the same observation, y(z) = V(z).
By setting c(p) = c(p), we obtain

B=PB cH+k+8=c¢+k+95, ck+cd+kS=ck+cd+kS, Bckd= pckd.

Solving this nonlinear system of equations in Mathematica, we obtain the following six sets of
solutions

S1:{B=PB, c=¢ k=5 8=k}, S:(B=pB, c=¢, k=k, 6=25),
S3:iB=PB, c=8 k=¢ 5=Fk), 54:{3:B,c:8 k=k 6=4¢}, (3.2)
Ss:{B=p, c=k k=¢ 6=28), Se:{B=8, c=k k=28 5=¢).

This reveals that only g is globally identifiable, whereas ¢, k and 6 are locally identifiable. Lastly,
parameter 7 cannot be identified as it does not appear in the input-output equation (3.1). We
summarize the structural identifiability of model equation (2.1) (when we do not take into account
initial conditions) in the following proposition.

Proposition 3.1. The within-host model equation (2.1) is not structured to reveal its parameters from the viral
load V() observations. More precisely, the infectivity rate B is globally identifiable. The eclipse rate k, killing rate &
and clearance rate c are locally identifiable. The viral production rate x, is not identifiable from unlimited, noise-free
viral load observations V(z).

To acquire a better understanding of why parameter 7 is not identifiable, we scale the unobserved
state variables by a positive constant € >0 while keeping the observed variable unchanged, i.e.
{T, E 1 V} = {€T, €E, eI, V}. The scaled model becomes

dr . .
3= BTV, T(0) =Ty,
j_E _ BTV —kE, E(0)=0,
i (3.3)
df e 8, 1(0)=0,
dr
dv
and E ZI — V V(O) = V(),

which is almost identical to equation (2.1) except that the parameter 7 is scaled by 1/€ and initial value
T(0) is scaled by e. Without initial conditions, it is not possible to determine the scaling factor ¢ and hence
parameter 7. When, however, all initial conditions are known, all parameters of model equation (2.1)
become globally identifiable. We summarize these results, as follows.

Proposition 3.2. The within-host model equation (2.1) is structured to identify all its parameters from
unlimited, noise-free viral load observations V(z) if all initial conditions are known.

OpLLEz 'L s tadp 205y sosyjeumol/biobunsiqndfaanosiedor g



Downloaded from https://royalsocietypublishing.org/ on 19 August 2024

Table 1. Distributions for parameters /3, &, ¢, 7z and k found by fitting model equation (2.1) to infectious virus titre data from [JEJ}
birds (wild-caught house sparrows) infected with Netherlands 2076 and Uganda 2072. We used the SAEM algorithm in Monolix
to generate the predicted population parameter means (In(«)) and s.d. (o) (see Material and methods).

Netherlands 2076 n =10 mean (u) 46610~ 6.95 48.8 7.49 7.07 714.1
5d. (0) 263 0.16 121 266 024
. Ot

ieanss O
e e
median  29%x107* 6% 507 179 329

3.1.2. Within-host model dynamics

As seen above, under known initial conditions and unlimited noise-free measurements, all parameters of
model equation (2.1) can be identified from data. We next fitted model equation (2.1) to empirical
infectious virus titre data from two bird cohorts inoculated with Netherlands 2016 and Uganda 2012
using a nonlinear mixed effects approach (see Material and methods). A summary of mean and
standard deviations for estimated population parameters together with median parameter estimates
and AIC values is given in table 1. A summary of individual estimated parameters for birds
inoculated with Netherlands 2016 is given in electronic supplementary material, table S2 and for those
inoculated with Uganda 2012 is given in electronic supplementary material, table S3. The model
dynamics are plotted in figure 3 and the lognormal parameter distributions in figure 4. Model fitting
results in similar population parameter estimates for infected cells death rates, § = 6.95 day ™! and
8=6.74 day"! (corresponding to lifespan of 3.5hours) for Netherlands 2016 and Uganda 2012
infections, respectively. The average population estimates for the infectivity and production rates, g
and 7z, are 3 and 2.4 times higher for Uganda 2012 compared with Netherlands 2016. By contrast, the
average viral clearance rate, ¢, is 1.3 times lower for Uganda 2012 compared with Netherlands 2016.
This results in faster expansion and slower clearance for Uganda 2012. Lastly, the average population
estimates for the eclipse phase, 1/k, is 3.3 and 7.1hours for Netherlands 2016 and Uganda 2012,
respectively. These estimates result in average population basic reproduction number, Ry =fp T(0)/c3,
of 4.1 (range of 2.2-7) and 43 (range of 2.2-56) for Netherlands 2016 and Uganda 2012, respectively.
Interestingly, we find higher R, and 7 predictions for Uganda 2012 compared with Netherlands 2016 in
wild-caught house sparrows, which is different from higher R, values for Netherlands 2016 compared
with Uganda 2012 infections in juvenile chickens [9]. However, as in the juvenile chicken studies, we
observe delayed clearance of Uganda 2012 compared with clearance of Netherlands 2016 in wild-caught
house sparrows [9]. In both cohorts, we observe variability in individual viral profiles (electronic
supplementary material, figures S2 and S3), and consequently differences in parameter estimates
(electronic supplementary material, tables S2 and S3). This heterogeneity is larger among the birds
inoculated with Uganda 2012, for which the number of birds was small (1 =5 compared with n =10
for Netherlands 2016). For Netherlands 2016 infections, we predict that virus peaks 2-3 days post
infection (p.i.), while for Uganda 2012 infections it peaks 0.5-6 days p.i. Virus decays below one virion
ml™" 4.5-7 days p.i. and 4.3-20 days p.i. for Netherlands 2016 and Uganda 2012, respectively. The mean
peak viremia is similar between the two strains and equal to 1.5 x 10° PFU ml™, and the intra cohort
estimates range between 545 and 8.2 x 10° PFU ml™" for the Netherlands 2016 and between 2.3 x 10°
and 62x10° PFU ml™' for Uganda 2012. As expected, the day of the virus peak is negatively
correlated to the estimated R, for both Netherlands 2016 and Uganda 2012 infections, with Pearson’s
correlation coefficients —0.83 and —0.84, respectively. The magnitude of the virus peak is positively
correlated to the estimated R in Netherlands 2016, with a Pearson’s correlation coefficient of 0.97. This
positive correlation is not observed in Uganda 2012 (see electronic supplementary material, figure S4).
We observed several sources that explain variability in parameter estimates (and unexpected
predictions of higher R, for Uganda 2012 infection): bimodal distributions for parameter S estimates
(figure 4) and correlations between S and 7 (see electronic supplementary material, figures S5 and S6).
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Figure 3. Population median virus dynamics (solid line) given by model equation (2.1) versus infectious virus titres (circles) for birds
(wild-caught house sparrows) infected with (a) Netherlands 2076 and (b) Uganda 2072. Model parameters are given in table 1. Note
that the empty circles account for censored data.
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Figure 4. Distributions generated by simulations in Monolix (bars) versus theoretical lognormal distributions of model parameters 3,
9, ¢,  and k from fitting model equation (2.1) to infectious virus titre data from birds (wild-caught house sparrows) infected with
(a) Netherlands 2016 and (b) Uganda 2072. Mean parameter values & and standard deviations o are given in table 1.

To determine whether these results can be explained by limited data we investigated the practical
identifiability of model equation (2.1) for Netherlands 2016 and Uganda 2012 data.

3.1.3. Practical identifiability of the within-host model

We investigated whether model equation (2.1) is practically identifiable (see Material and methods)
given the two datasets considered—temporal infectious virus titres from birds (wild-caught house
sparrows) infected with USUV strains Netherlands 2016 and Uganda 2012. We found that parameters
and 7 are weakly practically identifiable for Netherlands 2016 (table 2A), and not practically
identifiable for Uganda 2012 (table 2B). Parameters k and c are strongly practically identifiable for both
strains (table 2), and ¢ is strongly practically identifiable for Netherlands 2016 (table 2A), but weakly
practically identifiable for Uganda 2012 (table 2B).

Interestingly, parameters 8 and 7 are not identifiable for Uganda 2012 despite the fact that they are
both structurally identifiable (under known initial conditions). We hypothesized that the non-
identifiability is due to limited number of birds that have detectable infectious viral titre data [33]
(with a single subject having more than two data points above limit of detection). To investigate the
dependence of practical identifiability on the number of data points, we repeat the MCS for frequent
sample data. We create a synthetic dataset where we assume that two data points were collected each
day (every 12 hours, for a total of 14 data points) and compute the new ARE values for these sets.
Practical identifiability of f and 7 has improved significantly, with the average relative error ARE
decreasing for both parameters (table 3) and the within-host model equation (2.1) becoming strongly
practically identifiable for both Netherlands 2016 and Uganda 2012 (table 3A,B). Note, that this is the
minimum number of extra measurements that guarantees practical identifiability of model equation (2.1).
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Table 2. Monte Carlo simulation results for virtual datasets generated at each discrete experimental data point in [11] for (A) [}
Netherlands 2016 and (B) Uganda 2012. AREs give the average relative estimation error for each parameter at noise level o, and
7 determines whether each parameter is strongly (0 < 77 < 1), weakly (1 < 77 <10) or non-identifiable (> 10).

parameter

 sosyjeuol/BioBuysiigndiaanosjefos

i e s :
ARE 126 81 73 116 06  ARE 5319 19 256 I1B5 93 S
n 126 081 073 116 006 7 5932 019 2% 1135 093 o
T Lo 5

e e m w m m e e aw w es o T

1B 0% 08 1% 02 p w9 0B 121 32 0% F
(A) (B)

Table 3. Monte Carlo simulation results for synthetically generated high-frequency datasets containing 14 data points (collected
every 12 hours over the first 7 days p.i) for (A) Netherlands 2076 and (B) Uganda 2072. AREs give the average relative
estimation error for each parameter at noise level o, and 7 determines whether each parameter is strongly (0 < 17 < 1), weakly
(1< n <10), or non-identifiable (1 > 10).

T T

PFU PEU
parameter = parameter < 3 <lxd

3.2. Bird-to-mosquito transmission scale

Transmission of USUV from an infected bird to a mosquito is dependent on both the infectiousness of the
host over age of infection and the probability of contact between a host and a vector. To best describe
these interactions we developed three models of probability of host-to-vector transmission equations
(2.3)-(2.5) and fitted them to experimental data (see Material and methods).
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Figure 5. (a) Probability of infection function b;(V/(z)) found by fitting function equation (2.3) (blue lines) to Netherlands 2016 per
cent mosquito infection data (red dots, measured on log,, scale). (b) Probability of infection function b,(V(z)) found by fitting
function equation (2.4) (blue lines) to Uganda 2072 per cent mosquito infection data (red dots, measured on log,, scale).
Parameters are given in table 4. Green lines show 1000 fitted trajectories to synthetic data with 46% and 34% relative error.

Table 4. Parameter estimates for the selected probability of infection functions b;(V(z)) and b,(V(z)) given by fitting equations
(2.3) and (2.4) to Netherlands 2016 and Uganda 2072 per cent mosquito infection data, respectively. Parameter a is measured in
ml/ logqq PFU for both by(V(z)) and b,(V(z)). Parameter h is unitless. log,, (LOD) = 2.

Netherlands 2016
b1:1—exp(—a(log10(V)— Iogm(LOD))) } S
Ugandazmz SNEI0NT) T TN ) eSO
b2:1—exp(—a(log10(V)— Iogm(LOD))") S

3.2.1. Dynamics of the bird-to-vector probability of infection functions

Based on AIC values, we found that the linear probability of infection function b;(V(7)) best fits the per
cent mosquito infection data for Netherlands 2016 and the power-law probability of infection function
by(V(7)) best fits the per cent mosquito infection data for Uganda 2012 (figure 5, table 4, electronic
supplementary material, figure S7 and table S4). For the resulting b;(V (7)) function for the Netherlands
2016 strain and by(V(7)) function for the Uganda 2012 strain, we computed the relative error, 7;
between the predicted probability of infection functions b;(log,,V) and the per cent infected
mosquitoes data b*

n = [1bi(logy,(V)) — bl
1 [1bi(logyo (V)2

for i={1, 2, 3}. We found that the relative error is n; = 46% for b1(log,, V) and Netherlands 2016 and
1, = 34% for by(log,, V) and Uganda 2012.

We next performed parametric bootstrapping [34-36], where we generated 1000 synthetic datasets
with the same structure (number of points and identical sampling time) as the original dataset and 7;
standard deviation from it. We fitted equations (2.3) and (2.4) to the synthetic data, and the resulting
curves (green graphs in figure 5) show an error region for b;(V (7)) and by(V(7)), respectively.

x 100%,

3.2.2. Practical identifiability of probability of infection functions

To address whether the probability of infection function by(V(7)) for Netherlands 2016 and by(V(7)) for
Uganda 2012 are practically identifiable, we applied the MCS algorithm (see Material and methods) to
parameters of models equations (2.3) and (2.4) for virtual datasets obtained by adding noise levels
o = {1%, 5%, 20%} to the seven (log,,v, b?) data values for the two viral strains [11]. We found that
for function b;(V(7)) and Netherlands 2016 data, parameter a is weakly practically identifiable
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Table 5. Monte Carlo simulation results for the best selected probability of infections functions: (A) b,(V(z)) given by equation
(2.3) for Netherlands 2016 per cent mosquito infection data; and (B) b,(V(z)) given by equation (2.4) for Uganda 2012 per cent
mosquito infection data. Parameter a is measured in ml/log,, PFU for equations (2.3) and (2.4). Parameter h is unitless. AREs
give the average relative estimation error for each parameter at noise level o, and 7 determines whether each parameter is
strongly (0 < 77 < 1), weakly (1 < 7 <10) or non-identifiable (r7 > 10).

parameter parameter

ARE 1.7 ARE 123 24
o=5% 7 o=5%

;7 ................... e n ...... S S
e T T T T
e ey T
m ®)

Table 6. Monte Carlo simulation results for data sampled at high-frequency. (A) AREs for parameter a obtained from fitting
function b;(V(z)) given by equation (2.3) to Netherlands 2076 per cent mosquito infection data when 60 data points are
considered; (B) AREs for parameters a and h obtained from fitting function b,(V(z)) given by equation (2.4) to Uganda 2012 per
cent mosquito infection data when 60 data points are considered. Parameter a is measured in ml/log,, PFU for equations (2.3)
and (2.4). Parameter h is unitless. AREs give the average relative estimation error for each parameter at noise level o, and 7,
determines whether each parameter is strongly (0 < 77 < 1), weakly (1 < 77 < 10) or non-identifiable (7 > 10).

parameter a parameter a h
oc=1% o=1%
s
! e " . i it
o P R
e
¥
e
T i S
n 046 n ‘ 39 07
(A) (B)

(table 5A). For function b(V(7)) and Uganda 2012 data, a is unidentifiable and / is weakly identifiable
(table 5B). As with the within-host model, we expect to improve ARE values by increasing data
frequency. Indeed, increasing the number of (log,,v, b’) data points from 7 to 60 results in strong
practical identifiability of a for function b1(V(7)) and Netherlands 2016 data (table 6A). Moreover, it
results in weak practical identifiability of a and strong practical identifiability of & for model b,(V(2))
for Uganda 2012 data (table 6B).

3.3. Between-host scale

Using an age-structured modelling approach which couples within-host and between-host models, one
of our goals was to determine how individual bird USUV infections, combined with bird-to-mosquito
probability of infection, influence predictions of USUV incidence in bird and mosquito populations.
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Figure 6. USUV incidence in (a) bird populations and (b) mosquito populations as given by equation (2.10) and best parameter
estimates from fitting b(V/(z)) given by equation (2.3) to T, and T, data for Netherlands 2016 (solid lines) and from fitting b,(V(z))
given by equation (2.4) to T, and T, data for Uganda 2072 data (dashed lines).

3.3.1. Dynamics of the between-host model

We computed the USUV incidence over time in the bird and mosquito populations using a vector-borne
SIR model for birds and SI model for mosquitoes (equation (2.10); see Material and methods). To
determine differences in disease incidence between the two viral strains, we used transmission
functions S,(7) defined by probability of infection functions that best matched the data of each strain,
ie. b1(V(7)) given by equation (2.3) for Netherlands 2016, and by(V(7)) given by equation (2.4) for
Uganda 2012. We observed similar timing in peak USUV incidence in bird populations, occurring on
day 32 for Netherlands 2016 and on day 30 for Uganda 2012 (see figure 6a, solid versus dashed red
lines). Peak USUV incidences in mosquito populations occur 26 and 30 days later than peak incidence
in bird populations, for Netherlands 2016 and Uganda 2012 strains, respectively (figure 6b). Netherlands
2016 infects more mosquitoes than Uganda 2012, 17% compared with 13% (see figure 6b, solid versus
dashed red lines). Both strains, however, infect similar per cent of birds, 7.5% for Netherlands 2016 and
6% for Uganda 2012 (see figure 6a, solid versus dashed red lines).

3.3.2. Optimal experimental design

The USUV incidence model equation (2.10) assumed that the probability of bird-to-mosquito infection
functions have fundamentally different characteristics for the two virus strains considered. More
specifically, it assumed that the per cent mosquito infection increases linearly with the log,, infectious
viral load for Netherlands 2016, and super-linearly with the log,, infectious viral load (power
coefficient h=3.67) for Uganda 2012. Since we do not expect that the shape of the bird-to-mosquito
infection functions vary by strain, we investigated how the strain-specific disease incidence predictions
change when the other two functions (that did not result in a best fit) were considered: by(V(17)),
b3(V(7)) for Netherlands 2016 and by(V(7)), by(V(2)) for Uganda 2012. We obtained large variability
between predicted USUV incidence in both bird and mosquito populations for both strains (see
electronic supplementary material, figure S8). We investigate whether an improved initial empirical
dataset will create more robust parameter values in the probability of infection functions, and
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potentially unify results at the between-host scale. For example, it would be useful to know whether there [ 15 |

is a viral load threshold where all mosquitoes get infected, or (alternatively) there is a viral load threshold
where mosquito infection levels off. We performed two in silico optimal experimental designs: hypothesis
1 assumed that the viral load where all mosquitoes get infected is known, and hypothesis 2 assumed that
per cent mosquito infection levels off at 60% (see electronic supplementary material). We fitted the
probability of infection functions equations (2.3)-(2.5) to these datasets (see electronic supplementary
material, figures S9 and S10) and found that the power-law function by(V(7)) becomes the best fit
(lowest AIC) for both USUV strains in both scenarios (see electronic supplementary material, tables S7
and S8). This suggests that optimal experimental design together with frequent data measurements is
needed to improve predictions.

4. Discussion

Understanding the epidemiology of emerging pathogens, such as USUV, requires systems investigation at
each scale involved in the host-virus transmission cycle, from individual infection in birds, to bird-to-
vector transmission, to USUV incidence in bird and vector populations and eventually to spillover
probability in humans [37-39]. For new pathogens, field data is sparse, and predictions are based on
laboratory-type inoculation and transmission experiments [9,11] combined with dynamical
mathematical modelling [9].

In this study, we developed an age-structured within-between-host modelling approach for
investigating the differences in the dynamics of two USUV strains, Netherlands 2016 of European
descent and Uganda 2012 of African descent, in bird and mosquito populations. Our study
investigated the USUV dynamics at three scales: the within-host scale, where the dynamics of
individual bird infection were considered; bird-to-mosquito transmission scale, where the per cent of
mosquito infections based on virus level was considered; and between-host scale, where a vector-
borne age-structured epidemiological model of bird and mosquito interactions was considered. The
models developed for the first two scales were validated against laboratory-produced infectious viral
titre data from individual bird inoculation studies [11] and against per cent mosquito infection data
[11]. The last scale had no empirical data for validation. Instead, we used results from the first two
scales to make predictions for the dynamics of USUV incidence in bird and mosquito populations.

To determine differences in USUV strain dynamics in individual bird infections (within-host scale),
we validated a target cell limited within-host model with eclipse phase equation (2.1) against
longitudinal infectious USUV data in wild-caught house sparrows inoculated with either Netherlands
2016 or Uganda 2012 [11]. Before performing data fitting, we conducted structural identifiability
analyses which showed that, if the number of target cells is not known, it is not possible to estimate
the rate at which infected cells produce new viral particles each day. When, however, the initial target
cell concentration and initial viral load are known, all within-host model parameters can be uniquely
determined from unlimited, noise-free viral load observations [24,26,33]. Consequently, we estimated
the model parameters using a nonlinear mixed effects approach, and observed heterogeneity in
outcomes at both within- and between-strain levels (figure 3). Moreover, we observed correlations
between infection rate § and viral shedding rate 7z, especially for Uganda 2012, for which data were
sparse and the number of subjects was low (figure 4, electronic supplementary material, figures S5
and 56). These correlations occurred despite our findings that all parameters are globally structurally
identifiable (under unlimited data and known initial conditions). We attributed these results to lack of
practical identifiability, given the limited experimental data available. Using practical identifiability
analyses, we determined that a minimum of 14 infectious virus titre measurements collected every 12
hours (double the initial amount) are needed to achieve practical identifiability of all within-host
model parameters (table 3). This experimental design can be achieved by either sampling each bird
twice a day or by creating two cohorts with daily morning or daily evening samples and then fitting
models to the entire population data. We anticipate that this key result will serve as a guideline for
the experimental designing of other within-host inoculation studies.

To determine differences in bird-to-mosquito USUV transmission for the two viral strains, we
developed three probability of infection functions that establish a relationship between the infectious
virus titre inside a bird and the per cent of mosquito infection upon contact: the linear model b,(V(2))
given by equation (2.3), the power-law model by(V(7)) given by equation (2.4) and the density-
dependent model b5(V(7)) given by equation (2.5) [19]. Data fitting determined that the linear model
b1(V(7)) best fits the Netherlands 2016 data and the power-law model by(V(7)) best fits the Uganda 2012
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data (table 4 and electronic supplementary material, table S4). This means that while the per cent [ 16 |

mosquito infection grows linearly with the virus load within an infected bird (on log,, scale) for
Netherlands 2016, it grows super-linearly (power coefficient i =3.67) with the virus load within an
infected bird (on log,, scale) for Uganda 2012. Biologically, this suggests that the per cent mosquito
infections is proportional to the viral load inside the bird they feed on for Netherlands 2016 infections.
By contrast, the per cent of mosquito infections is low when the viral load inside the bird they feed
on is low and grows exponentially when the viral load inside the bird they feed on is high for Uganda
2012 infections. As with the within-host scale, we investigated the practical identifiability of the
selected probability of infection functions and found that, for both viral strains, none of the
parameters are strongly identifiable (table 5). This outcome is not surprising considering that only
seven birds were used in this experiment and, consequently, only seven data points were used for
data fitting. We investigated whether practical identifiability improves under abundant data by
creating in silico experiments with increased number of measurements and fitting the probability of
infection functions to them. We found that, unlike the within-host model, improving parameter
identifiability under addition of data is not straightforward. Even an increase of in silico
measurements to 60 (from the original seven), did not result in strong practical identifiability for the
power-law model and Uganda 2012 data (table 6).

The ultimate goal of our study was to use the outcomes of the within-host scale and bird-to-mosquito
transmission scale (obtained from validating them against data at these biological scales) to make
predictions at the between-host scale (for which we have no a priori data) when Netherlands 2016 or
Uganda 2012 strains are predominant in the wild. We developed a vector-borne age-structured within-
between-host model (equation (2.10)) which assumed that the mosquito infectivity rate is dependent
on the probability of vector infection given by function b1(V(7)) (equation (2.3)) for Netherlands 2016
and function by(V(7)) (equation (2.4)) for Uganda 2012. We compared the USUV incidence predictions
for these selected (lowest AIC) probability of infection functions and found similar peak disease
incidence in birds regardless of the infectious strain and 4% higher peak disease incidence in
mosquitoes when Netherlands 2016 (rather than Uganda 2012) was the infectious strain considered.

The transmission scale results predicted that the probability of bird-to-mosquito infection functions
have fundamentally different characteristics for the two virus strains, with per cent mosquito infection
growing linearly with the log,, infectious viral load for Netherlands 2016, and super-linearly with the
log,, infectious viral load (power coefficient & =3.67) for Uganda 2012. Since we did not expect that
the shape of the bird-to-mosquito infection function would vary by strain, we investigated whether
knowledge of the long-term per cent mosquito infection can alter these results. Hence, we considered
two in silico experimental design studies: one in which we assume known the viral load threshold
needed for the entire mosquito population to get infected (hypothesis 1 in the electronic
supplementary material) and one in which we assume that the per cent mosquito infection levels off
at 60% (hypothesis 2 in the electronic supplementary material). Fitting to both these in silico datasets
held the power-law transmission function as the best fit for both in silico viral strains (electronic
supplementary material, tables S7 and S8). In future experimental studies, we aim to determine the
relationship between per cent mosquito infection and viral load by designing artificial bloodmeal
experiments, where mosquitoes are exposed to cotton balls containing blood of increased
concentrations of Netherlands 2016 and Uganda 2012 virus, respectively. We have previously conducted
such experiments (for a fixed inoculum) when establishing that C. quinquefasciatus mosquitoes are
susceptible to USUV [11].

Our study has several limitations. First, the results of the within-host scale predict heterogeneity in
virus dynamics between cohorts and within birds of a cohort (including large variability in predicted
Ry estimates among the birds infected with the Uganda 2012 strain). As explained above, some of this
is due to uncertainty in model fitting, which can be improved under optimal experimental design
where more data measurements (twice a day) and more birds are included. Another layer of
uncertainty comes from the fact that the birds were inoculated, rather than infected by mosquitoes. To
compensate for that, we considered a lower initial viral load (than the maximum inoculum) when
determining parameter estimates in the within-host model. An even lower viral load may initiate the
infection (in the wild), which may result in shorter incubation rates, and/or delayed peak viremia.
Inoculation studies with varied inoculum dose would be needed to determine the role the inoculum
plays in virus dynamics and disease outcomes.

Second, we assumed that all exposed mosquitoes get infected in the presence of high viral titres inside
the host they feed on. That may not be realistic, and, adjustments to the probability of infection functions
may be needed to account for a lower maximal probability of infection. Moreover, in the age-structured
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epidemiological model we assumed that an infected mosquito immediately finds an array of hosts to
infect. While that may be correct in the laboratory setting, it is not the case in the wild. Third, we
assumed fixed mosquito-to-bird contact rates and constant mosquito-to-bird transmission probabilities
(regardless of viral dynamics inside an infected mosquito). Relaxing these assumptions may change
the current results. Fourth, the use of a limited number of birds and the use of only two bird species
(wild-caught house sparrows and juvenile chickens) is another limitation that may prevent us from
generalizing the results to other bird populations. Last, we assumed that all parameters are
lognormally distributed during data fitting and all noise levels are normally distributed when
conducting practical identifiability analyses. Previous studies have shown that the degree of
uncertainty in parameter estimates vary for the different noise distributions and estimation methods
[40], so our results are limited to our assumptions of distributions.

In conclusion, we investigated the dynamics of two strains of USUV at the within-host scale, bird-to-
vector transmission scale and vector-borne epidemiological scale. We used individual within-host
infectious virus data and per cent mosquito infection data to predict USUV incidence in bird and
mosquito populations. We addressed the role of model structure, data uncertainty and optimal
experimental design on model predictions. We found that uncertainty in predictions at one scale may
change predicted results at another scale. Optimal experimental design was proposed, suggesting that
increased data frequency improves predictions.
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