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Abstract— Many applications require the deployment of
legged-robot teams to effectively and efficiently carry out
missions. The use of multiple robots allows tasks to be executed
concurrently, expediting mission completion. It also enhances
resilience by enabling task transfer in case of a robot failure.
This paper presents a formulation based on Mixed Integer
Linear Programming (MILP) for allocating tasks to robots by
taking into account travel time and ensuring efficient execution
of collaborative tasks. We extended the MILP formulation to
account for complexities with legged robot teams. Our results
demonstrate that this approach leads to improved performance
in terms of the makespan of the mission. We demonstrate the
usefulness of this approach using a case study involving the
disinfection of a building consisting of multiple rooms.

I. INTRODUCTION

Mobile robots are emerging as a useful tool in many appli-

cations that require tedious work or pose a threat to human

health. Mobile robots, especially wheeled robots are adequate

for many applications such as hospitals for disinfection,

warehouses for managing shelves, and grocery stores for

cleaning [1]–[3]. However, some applications require robots

to traverse over challenging terrain and wheeled robots are

not adequate for such applications. In the last decade, there

have been significant advancements in developing legged

robots in both hardware design and control algorithms,

realizing robust and agile locomotion in a wide variety of

challenging terrains. Therefore, legged robots will be much

more suitable for applications such as disinfection of clut-

tered spaces, pesticide spray, and inspection of construction

sites [4].

Fig. 1: Legged robot used for disinfection case study

Many applications require the deployment of robot teams

to effectively and efficiently carry out missions [5]. The

use of multiple robots allows tasks to be executed con-

currently, expediting mission completion. It also enhances
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resilience by enabling task transfer in case of team member

failures. Deploying multi-robot teams necessitates solving

task allocation problems that consider each team member’s

capabilities and precedence constraints among tasks. While

most missions involve human supervisors, relying solely on

them for task allocation can result in unnecessary mission

delays. Hence, there is a need for automated task assign-

ment methods to ensure efficiency. These methods must be

swift to facilitate rapid replanning in contingency situations.

MILPs have proven to be valuable for solving task allocation

problems in multi-robot teams (see Section IV for details).

Most existing MILP formulations focus on minimizing span

time by considering only task execution durations. However,

many complex applications introduce additional constraints,

including travel time, real time delays, differences in robot

capabilities, and support for collaborative tasks. This paper

extends the traditional MILP formulation to address mission

complexities encountered by legged robot teams.

In missions posing human risks, robots may be dispatched

to a location potentially distant from task sites, necessitating

travel to and from these locations to perform the tasks.

Robots may also need to travel between task locations.

In many applications, travel durations represent a signifi-

cant portion of the task durations. Hence, task allocations

must account for travel times. Additionally, certain tasks

demand collaboration among multiple robots. Therefore, the

task allocation method needs to ensure that each task is

allocated an adequate number of robots to carry out tasks.

Collaborative tasks can commence only when all required

agents are present at the task site. If agents are allowed to

partially complete tasks and travel to collaborative tasks, then

unnecessary waiting can be reduced by better coordination

of arrival time. However, this will require additional travel

for the robot to go back to the partially completed task to

finish it.

This paper presents a MILP formulation for allocating

tasks in legged-robot teams while accounting for travel time.

Our focus is on applications with known maps and tasks,

including support for collaborative tasks requiring multiple

robots. Additionally, our method allows for partial task

completions to prevent unnecessary delays in collaborative

tasks, facilitating agents’ synchronized arrival. We introduce

a formulation that operates efficiently for teams of up to

ten robots, making it suitable for rapid replanning in cases

of agent failure or task execution delays. We evaluate the

proposed approach using simulations and illustrate how

features of our algorithms lead to superior performance in

building disinfection applications (see Figure 1 for the robot
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used in a prior study involving physical experiments [4]).

II. RELATED WORK

In this paper, we focus on addressing the challenges posed by

the Multi-Robot Task Allocation (MRTA) problem. MRTA

describes the problem of deciding which robot should exe-

cute a given task. MRTA aims to coordinate task assignments

in the robot team to complete a set of tasks with specific

constraints [6], [7]. These encompass a diverse array of

scenarios, including but not limited to the Multiple Traveling

Salesman Problem [8], [9], Vehicle Routing Problem [10]–

[12], and Job Shop Scheduling Problem [13]–[15]. MRTA

problems are broadly categorized into three fundamental

types: offline assignment, iteration assignment, and online

assignment [16]. In our investigation, we put forth a novel

approach that pertains to the offline assignment by account-

ing for travel time and arrival time coordination.

Approaches related to task assignment, and scheduling in

the context of multi-robot task allocation encompass a wide

variety of techniques, including Hungarian Algorithms(HA)

[17], Mixed Integer Linear Programming (MILP) [18]–[21]

and Bio-inspired methods [22], [23]. Recent work has shown

that using MILP formulation and solver is a promising

approach for solving task allocation problems with com-

plex constraints such as temporal, spatial [24], [25], and

precedence constraints [26]–[29]. Previous works shows that

MILP is efficient in solving MRTA problems with complex

constraints, because a salient advantage of harnessing MILP

solvers lies in the availability of robust and efficient open-

source solvers [30], [31], which expedite the attainment of

desired solutions. We extend previous MILP formulations to

handle the requirements of complex missions executed by

legged robot teams.

Legged robots offer a distinct set of mobility advantages,

rendering them exceptionally well-suited for deployment

across a diverse spectrum of demanding environments, as

corroborated by prior research [32]–[37]. Their inherent ca-

pabilities encompass proficient surveying and inspection, as

well as efficient transportation [38]. Legged robots offer agile

navigation over rugged terrains, versatile payload integration

(e.g., cameras, sensors, end effectors), and enhanced maneu-

verability in tight spaces compared to wheeled robots. The

method presented in this paper enables robots to collaborate

on complex tasks.

III. PROBLEM FORMULATION

A. Terminology

Suppose R be the set of l agents with different capability

and mobility, defined as R = {R1, R2, ..., Rl}. Let A
be the set of m tasks to be processed, defined as A =
{A1, A2, ..., Am}. Based on the capability of each agent,

some types of tasks can only be processed by certain agents.

We partition the tasks into n task types, for example, each

exploration mapping task is partitioned in the same type,

while object removal is considered as another type. The task

type list is denoted as T = {T1, T2, ..., Tn}. Each location

coordinates are defined by (xi, yi) on a working plane.

In a multi-robot collaborative scenario involving agents R
and assigned tasks A, as previously described, we assume

access to an initial grid sketch and agent status. The task

involves multiple agents processing tasks scattered across the

grid. Each agent can handle only one task at a time. Addi-

tionally, there are multi-agent collaboration tasks requiring

at least two agents to collaborate, necessitating simultaneous

start, shared paths, and concurrent completion.

Given the restrictions above, we consider the following

agent parameters for Ri ∈ R:

1) Dispatch location: Oi ∈ R
3 where the agent is

spawned, e.g., centroid of the robot deployed on the map;

2) Collection location: Ei ∈ R
3 where the agent is

designed to stop, e.g., centroid of the robot when collected

by the truck;

3) Estimated travel velocity: vi ∈ R
+ representing the

velocity of the agent while traveling inside the grid;

4) Task type capability: Ti which notes the set of task

types that this agent is capable of performing.

We also need to consider the following task parameters

for Ai ∈ A:

1) Estimated task start location: Si ∈ R
3 where the task

is estimated to start spatially, e.g., centroid of the obstacle

that needs to be removed;

2) Estimated task finish location: Fi ∈ R
3 where the task

is estimated to start spatially, e.g., centroid of the obstacle

designated destination;

3) Estimated execution time: ∆i,j ∈ R
+ representing

time required to execute task Ai by agent Rj , ∀Rj ∈ R.

This parameter can be set to an arbitrarily large number

M if the agent is not capable of processing the task, for

example, a robot with a camera is not suitable for moving

large obstacles.

4) Number of agents required: mi ∈ N
+ describes the

agent needed for execute the task, which is at least 1 for

individual tasks and more for collaboration tasks.

5) Task type: Ti which notes the exact task type in which

this task is categorized in.

For the scenario setup, traveling time is a major consider-

ation of task planning. In order to take care of various types

of traveling costs, the cost map is defined to consider the

traveling expenses. All agents are expected to have their own

travel cost on the grid, plus the start cost and end cost which

describes the operation of initializing the agent or shutting

the agent down.

1) Travel cost Cij ∈ R
+ includes three parts: travel

between tasks, travel from spawn location to task, and travel

from last task to end location. Cij represents the time cost

when traveling from travel from finish location of task Fj

to the start location of task Si ∀Ai, Aj ∈ A, or the agent

spawn location of agent Oj to the first task start location Si

∀Ai ∈ A,Rj ∈ R, or the last task finish location of task Fj

to the agent end location Ei ∀Ri ∈ R,Aj ∈ A respectively.

It is derived from the grid location actual distance and preset

agent travel velocity.

2) Start cost Si ∈ R
+ represents time cost for anything

related to start agent Ri, e.g. initializing the agent and letting
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it be ready to move. It is coded as the very first task that all

agents should process.

3) End cost Ei ∈ R
+ represents time cost for anything

related to shut down agent Ri, e.g. putting the robot back

into sleep mode.

Furthermore, tasks may come with precedence constraints,

specifying their prerequisites. These constraints are repre-

sented by a hierarchical task network (HTN), organized into

layers, and stored in a YAML file. Each task belongs to one

of three categories: sequential, parallel, or atomic.

B. Problem Formulation

Consider a multi-robot collaborative scenario, where the

agents R and tasks A are as defined above. The start time of

each task is denoted as ti ∈ N. The completion time of the

final task is denoted as Cmax. Binary variable Xij is defined

as Xij = 1 if Ai is executed by Rj . An auxiliary binary deci-

sion variable Vijk is imported to assist problem formulation.

With the comprehensive map data and the information at

our disposal, our objective is to ascertain optimal solutions

that encompass the initiation and conclusion times of tasks,

encompassing meticulous allocations of tasks to individual

agents. This optimization effort is carried out under strict

constraints with the aim of minimizing the overall makespan.

It involves considering travel durations, startup delays, and

each agent’s specific capabilities in handling their tasks.

IV. APPROACH

Fig. 2: Overview of the proposed approach

The proposed methodology, illustrated in Figure 2, begins

with the mission model as input. It encompasses essential

data, including grid parameters, agent specifications, and task

details, including execution timelines and capabilities. This

data is further enriched with the hierarchical task network

model. The geographical information from the map is then

used to create a grid distance model, accounting for all

possible routes and their distances. This model enables the

calculation of travel durations between any two locations,

considering agents’ dynamic movement speeds and employ-

ing the A* path planner. The distance model, along with

other data models, is combined to construct a MILP model,

as explained in Section IV. Once established, this model

is integrated with an open-source MILP solver to produce

an optimal solution, addressing task allocation and precise

scheduling for the agent ensemble. The resulting schedule,

designed for maximum efficiency, guides real-time execution

by the agents.

A. MILP Formulation

Our goal is to minimize the completion time Cmax plus the

start time of each task. It is necessary to minimize the sum of

all start times because, for an individual agent, it is optimal

for the agent to execute tasks and return in its own minimum

makespan. By this formulation, the idle time before each task

will be minimized. Equation (1) below defines the objective

function.

minCmax +

m∑

i=1

ti (1)

Equation (2) considers that the completion time must be

larger than or equal to the finish time of every task, plus the

ending return cost from the last task. In this way, we can find

the maximum execution time and validate the makespan.

Cmax g ti +∆i,j +

m∑

j=1

EijXij , ∀Ai ∈ A (2)

Equation (3) below defines the precedence constraint.

When there is a time precedence relationship between two

tasks, Equation (3) states that the latter one may only

start when the previous one is finished. The precedence

relationship is defined in the hierarchical task network before

the scheduler is invoked.

tj g ti +∆i,j + Cij , ∀(i, j) ∈ P (3)

Equation (4) defines travel cost constraint, that the start

time of each task must be larger than or equal to the travel

cost for the robot to go to the task location. The travel cost

is either from the dispatch location to the first allocated task,

or from a previous task to the current task. All travel costs

are defined in the section above.

ti g

m∑

j=1

CijXij , ∀Ai ∈ A (4)

Equation (5) below defines the exact-agent constraint.

Each task should be only executed by one robot for a non-

collaborative task, and each task should be executed by

exactly the amount of agents required for collaboration tasks.
m∑

j=1

Xij = mi, ∀Ai ∈ A (5)

Equation (6) (7) states that no two tasks can be simulta-

neously executed by the same agent. We introduce V as an

auxiliary binary decision variable and M is an arbitrarily

large number. If any two tasks for the same agent are

executed with the overlapped period, then the two equations

will result in a contradiction.

tk −∆i,j − Cik − ti g −M(2−Xij −Xkj)−M(1− Vikj)

∀Ai, Ak ∈ A,Rj ∈ R
(6)

ti −∆k,j − Cik − tk g −M(2−Xij −Xkj)−M(Vikj)

∀Ai, Ak ∈ A,Rj ∈ R
(7)
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Equation (8) is the miscellaneous constraint. It defines

time as a natural integer, and decision variables are binary.

ti ∈ N, Cmax ∈ N, Xij ∈ {0, 1}, Vijk ∈ {0, 1} (8)

B. Updating Allocation to Allow Partial Task Completion

In multi-robot collaboration scenarios, we often face situ-

ations where one robot must wait for another to join for

collaboration. To reduce wait times, we employ a strategy

where the early-arriving robot may perform part of a task,

collaborate, and then return to complete the task if the

combined travel and partial task duration is shorter than

the anticipated wait time. This dynamic approach minimizes

idle periods and is continuously refined during schedule

generation using the MILP Solver, ensuring optimal task

allocation and operational efficiency.

For two robots being assigned in a collaboration task Ak,

assume the robot with vacant waiting time is Ri and the

other late-arrival robot is Rj , do the following Algorithm 1:

Algorithm 1 Algorithm for updating allocation to allow

partial task completion

Input: Original Schedule

Output: Updated Schedule

After MILP Solver schedule is generated :

LOOP Process

1: for Ri, Rj serving collaborative task Ak do

2: start time of Ak is tk, arrival time of Ri is ti
3: if (tk > ti) then

4: α← tk − ti
5: for any breakable task A scheduled after Ak do

6: suppose the previous task served by Ri is apre
7: if (tpre +∆i,pre +CApre,A +CA,Ak

< α) then

8: schedule partial of A between Apre and Ak

9: α← tpre +∆i,pre + CApre,A + CA,Ak

10: end if

11: end for

12: end if

13: rerun the schedule to minimize idle time

14: end for

15: return Schedule

First, we check if Ri has a wait time right before A. If

there is a wait time, then this wait time may be optimized

by breaking down other tasks. For every other global task

scheduled after the start time of A, check if it is breakable

into parts. For every breakable task, check if it can fit in the

waiting time before A including travel from the task before

T to the breakable task location, and the travel from the

breakable task location to A. If any task can be plugged

into the vacant space, fill the space with a partial of A
so that there is no waiting time for ai. For every other

breakable task for Ri coming in later, loop the process to

find the lowest available makespan schedule. After checking

all available breakable tasks, we find the minimal makespan

for all iterations regarding the wait time for Ri. Next, for

collaboration task A involving agents Ri and Rj , we adjust

the allocation to permit partial task completion, obtaining the

optimal local schedule. Subsequently, we apply the algorithm

iteratively for every other pair of collaboration task robots,

minimizing idle time to determine the lowest available

makespan schedule. The final task allocation schedule is

then returned to the planner, and we conduct a MILP solver

verification to assess global optimization.

Our formulation is implemented using the Google OR-

TOOLS CP-SAT solver [30]. It enables us to effectively

address the intricate challenges of considering travel time,

multi-robot collaboration, and partial task completion. We

estimate travel times based on the known grid, and our pro-

posed scheduler dynamically adjusts partial tasks to adhere

to collaboration constraints. Moreover, we account for agent

initialization and shutdown times, ensuring comprehensive

modeling of real-world scenarios. Notably, our formulation

yields optimal solutions within mere seconds, showcasing its

potential for a seamless transition into an online scheduling

framework.

V. RESULTS

A. Evaluation of System Scalability

(a) Initial conditions (b) Robot view

(c) Generated path according to schedule

Fig. 3: Test-case with 10 quadruped robots, 20 rooms and 4

collaboration tasks with 5 blocked doors

We want to test how our system performs with respect to

a wide variety of complexity drivers in the problem. We

created a scenario generator that can create a wide variety

of synthetic test-cases by randomly selecting scene attributes.

Instead of a real-world example, we purposely generated test-

cases by placing rooms in grid patterns by randomly selecting

the number of rooms and room sizes. A representative test-

case is depicted in Figure 3(a). Doors are placed between

rooms to make sure that robots can travel from room to room.

The number of rooms is directly related to tasks that need

to be performed by the team. The system can assign certain

rooms specialized tasks that require multiple collaborating

robots. This allows us to control the number of collaborative

tasks. The system is able to randomly select the robot

dispatch location and robot collection location. This allows

us to control the initial and final travel time. Scenes generated
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by the scenario generator are able to randomly generate

scenes with a wide variety of complexity and statistically

characterize our system’s performance.

Our ensemble of agents comprises two types of quadruped

robots, specifically the Unitree AlienGO robot and the Uni-

tree A1 robot, as illustrated in Figure 3(b). In this test-

case, all agents are engaged in observation tasks, involving

traversing rooms and collecting data over randomly assigned

time intervals, which are determined prior to scheduling.

It’s noteworthy that each agent exhibits unique efficiency

characteristics, causing their actual execution times to deviate

by approximately ±20% from the predefined values.

The simulation environment is constructed using Gazebo,

leveraging the ROS (Robotic Operating System) middle-

ware alongside Python and the Google OR-TOOLS CP-SAT

Solver for optimal solution determination. Visualization of

the simulation occurs within Gazebo itself. The simulation is

conducted with 13th Gen Intel(R) Core(TM) i9-13900 CPU

with 24 cores, and NVIDIA GeForce RTX 4090 GPU.

In Figure 3(a), we present the initial conditions for our ex-

periments. The agents are strategically spawned on opposite

sides of the grid, following the designated path illustrated

in Figure 3(c). A representative task assignment, along with

corresponding execution times, is outlined in Figure 4. The

makespan is quantified as the time interval commencing

when all agents enter the grid and concluding when all agents

successfully return to their respective ending locations.

The experimental parameters are subject to variation as

follows: the side length of each square room, denoted as s,

varies within the mathematical range s ∈ [4, 8]. For the grid

dimensions, the number of rows, denoted as nr, falls within

the range nr ∈ [3, 5], and the number of columns, denoted

as nc, lies within nc ∈ [2, 4]. Random door blockages on

the grid are quantified by the number of blocked doors,

expressed as nb, with nb ∈ [2, 7]. The number of tasks,

represented as na, is contingent upon the number of rooms

and agents, and nr is limited to the range nr ∈ [2, +na/2,].
Spawn and return locations are generated once the grid is

determined. With the grid’s center consistently located at

(0, 0), the spawn area for A1 robots is randomly selected as

([−18 + minx,−2 + minx], [−10, 10]), while for AlienGO

robots, it is chosen as ([2 + maxx, 18 + maxx], [−10, 10]).
The return area for A1 robots is randomly designated as

([−5, 5], [−16+miny,−2+miny]), and for AlienGO robots,

it is set as ([−5, 5], [2 +maxy, 16+maxy]). The number of

collaboration tasks, denoted as nc, is determined within the

range nc ∈ [2, +na/3,].
The efficiency gain of a new task allocation is calculated as

the percentage reduction in total makespan compared to the

previous allocation. To assess the efficiency gains achieved

through collaborative task execution, we introduce a com-

pensation rate denoted as α. This parameter quantifies the

reduction in task completion time when collaborating com-

pared to working in isolation. The parameter is user-selected

based on how collaboration contributes to task advancement,

reflecting user preferences. For instance, if an individual

robot typically requires 100 seconds to complete a task, with

α = 0.2, collaborative work reduces the execution time to 20
seconds when two agents are involved. It’s important to note

that collaborative tasks do not consider the ±20% variance in

individual efficiency, so the execution duration under any two

collaborating robots remains the same. We evaluate this test-

case using three different schedulers: the original classical

MILP scheduler, a MILP scheduler that accounts for travel

time, and a MILP scheduler that incorporates collaboration

with partial task completion.

We will now present results to characterize system perfor-

mance.

Fig. 4: Representative task allocation for a scene

1) Plan Quality: The sample result depicted in Figure 4

offers an optimal solution to a complex problem involving 10
agents and 20 tasks. Green color is for traveling tasks, blue

is collaboration tasks, and all other dark colors are unique

tasks by a single agent. The randomized grid consists of

20 rooms and 4 collaboration tasks. As per the generated

schedule, all 10 agents start their tasks at t = 0s and

successfully return to the base by t = 426s, traversing

the path illustrated in Figure 3(C). Each agent receives a

directed schedule and follows the path generated by the A*

algorithm. Upon reaching the assigned room, agents work

for a duration specified by the model. This test-case does not

involve partial task completion, yet it exhibits a significant

efficiency boost. The original scheduler, based only on task

duration modeling, yields a makespan of 559s, while the

travel time-aware scheduler reduces it to 508s, resulting in a

23% efficiency increase in this case.

2) Comparison with Baseline: Based on the setup above,

our objective is to conduct a comprehensive comparison

of makespan differences across various environmental and

task configurations. The initial run of the scheduler focuses

solely on the task execution duration model (scheduler 1),

which is a straightforward task for most open-source MILP

solvers. The resultant overall makespan serves as our baseline

benchmark. Subsequently, we employ the scheduler with

the incorporation of travel time considerations (scheduler

2), and we record the resulting makespan. Furthermore, the

experiment is performed again with a choice of penalty factor

α on collaboration tasks (scheduler 3). In this multi-faceted

evaluation process involving three distinct schedulers under

identical conditions, we discern variations in makespan. We

quantify efficiency as a percentage reduction of the overall
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makespan between any two schedulers.

Fig. 5: Makespan Comparison between Three Schedulers by

Changing Penalty Factor

To assess the significance of the penalty factor α, we con-

ducted 500 test-cases for three distinct α values, measuring

the average overall makespan, as presented in Figure 5. For

α = 0.3, task scheduling with scheduler 1 resulted in an

average makespan of 501 seconds, which was reduced to 461
seconds in scheduler 2. Introducing a penalty rate of α = 0.3
for scheduler 3 further decreased the average makespan to

427 seconds. The figure illustrates that the average efficiency

increase from scheduler 1 to the scheduler 2 is 7.6%, and the

increase from the scheduler 2 to scheduler 3 is 7.4%. The

overall efficiency improvement achieved by our scheduler

over the original scheduler is 14.5%. For α = 0.2, the overall

efficiency increase for our proposed scheduler is 19.2%, and

increase 21.8% for α = 0.1.

Fig. 6: Makespan Comparison between Three Schedulers by

Changing Duration Scale Ratio

To assess the task duration model’s relationship with the

map scale, we introduce the duration scale ratio β, which

represents the ratio of the average execution time in the

duration model to the average travel time on the grid for

all agents. We generate task duration models based on three

different β values, each with a ±20% variance for individual

agents, and conduct 500 test-cases on random grids while

keeping α fixed at 0.3. The average overall makespan is

presented in Figure 6. For a duration scale ratio of β = 1,

the average efficiency increases by 17.6% from scheduler 1

to scheduler 2, by 4.4% from scheduler 2 to the scheduler

3, and the overall efficiency improvement over the original

(a) complete simulation with proposed
scheduler

(b) Robot working in theater
classroom

Fig. 7: Disinfection simulation in first floor of SGM Hall

scheduler is 21.3%. The overall efficiency increase for our

proposed scheduler is 14.0% for β = 2 and 11.9% for β = 4.

B. Case Study

In order to validate the proposed scheduler in real applica-

tions, we performed a case study in a disinfection application.

In the case study, as shown in 7, we modeled the floor plan

similar to the first floor of a building at the University of

Southern California. 6 Unitree AlienGo Robot are deployed

at the front door of the building, and they will apply

disinfection sprays to rooms in the building, including 2
theater classrooms, 4 normal classrooms, 2 labs, 6 tech labs,

2 conference rooms, and 2 restrooms. Due to the specialty of

tech labs, all tech labs require 2 robots to work together for

disinfection. Our goal is to find a schedule with minimum

execution time so that all the rooms can be disinfected.

Using our multi-agent collaboration scheduler, an optimal

schedule is generated in 10 seconds and all the allocations

will be sent to the robot. The robots follow scheduled paths

generated by the A* algorithm to complete tasks, walking

through rooms, disinfecting, and moving to the next area.

The reported overall execution duration is 1478 seconds.

At t = 300s the agent in the restroom reported a failure

and the scheduler is invoked for reallocation. The schedule is

then updated in 10 seconds and the reported estimated finish

time is updated to be 1760 seconds. Then, at t = 600s human

intervention occurred and the agent was reported to be fixed

and deployed immediately from the restroom. The schedule

is updated again with a total makespan of 1540 seconds.

Figure 7(a) shows the planned path for all agents as they

return to base in the simulation. The simulation shows that

all robots are working as desired and collaboration tasks are

also finished as required while encountering emergencies.

VI. CONCLUSIONS

We demonstrate that travel time considerations and con-

straints related to the execution of collaborative tasks can

be integrated into MILP formulation. We are able to solve

problems involving 10 agents and 20 tasks in ten seconds

on a moderate PC. This current approach is based on

a deterministic framework. We would like to extend this

approach to handle uncertainties in task execution duration

and failures and validate it in real-world scenarios.
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