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Abstract— Many applications require the deployment of
legged-robot teams to effectively and efficiently carry out
missions. The use of multiple robots allows tasks to be executed
concurrently, expediting mission completion. It also enhances
resilience by enabling task transfer in case of a robot failure.
This paper presents a formulation based on Mixed Integer
Linear Programming (MILP) for allocating tasks to robots by
taking into account travel time and ensuring efficient execution
of collaborative tasks. We extended the MILP formulation to
account for complexities with legged robot teams. Our results
demonstrate that this approach leads to improved performance
in terms of the makespan of the mission. We demonstrate the
usefulness of this approach using a case study involving the
disinfection of a building consisting of multiple rooms.

I. INTRODUCTION

Mobile robots are emerging as a useful tool in many appli-
cations that require tedious work or pose a threat to human
health. Mobile robots, especially wheeled robots are adequate
for many applications such as hospitals for disinfection,
warehouses for managing shelves, and grocery stores for
cleaning [1]-[3]. However, some applications require robots
to traverse over challenging terrain and wheeled robots are
not adequate for such applications. In the last decade, there
have been significant advancements in developing legged
robots in both hardware design and control algorithms,
realizing robust and agile locomotion in a wide variety of
challenging terrains. Therefore, legged robots will be much
more suitable for applications such as disinfection of clut-
tered spaces, pesticide spray, and inspection of construction
sites [4].

" - A J
Fig. 1: Legged robot used for disinfection case study
Many applications require the deployment of robot teams
to effectively and efficiently carry out missions [5]. The

use of multiple robots allows tasks to be executed con-
currently, expediting mission completion. It also enhances
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resilience by enabling task transfer in case of team member
failures. Deploying multi-robot teams necessitates solving
task allocation problems that consider each team member’s
capabilities and precedence constraints among tasks. While
most missions involve human supervisors, relying solely on
them for task allocation can result in unnecessary mission
delays. Hence, there is a need for automated task assign-
ment methods to ensure efficiency. These methods must be
swift to facilitate rapid replanning in contingency situations.
MILPs have proven to be valuable for solving task allocation
problems in multi-robot teams (see Section IV for details).
Most existing MILP formulations focus on minimizing span
time by considering only task execution durations. However,
many complex applications introduce additional constraints,
including travel time, real time delays, differences in robot
capabilities, and support for collaborative tasks. This paper
extends the traditional MILP formulation to address mission
complexities encountered by legged robot teams.

In missions posing human risks, robots may be dispatched
to a location potentially distant from task sites, necessitating
travel to and from these locations to perform the tasks.
Robots may also need to travel between task locations.
In many applications, travel durations represent a signifi-
cant portion of the task durations. Hence, task allocations
must account for travel times. Additionally, certain tasks
demand collaboration among multiple robots. Therefore, the
task allocation method needs to ensure that each task is
allocated an adequate number of robots to carry out tasks.
Collaborative tasks can commence only when all required
agents are present at the task site. If agents are allowed to
partially complete tasks and travel to collaborative tasks, then
unnecessary waiting can be reduced by better coordination
of arrival time. However, this will require additional travel
for the robot to go back to the partially completed task to
finish it.

This paper presents a MILP formulation for allocating
tasks in legged-robot teams while accounting for travel time.
Our focus is on applications with known maps and tasks,
including support for collaborative tasks requiring multiple
robots. Additionally, our method allows for partial task
completions to prevent unnecessary delays in collaborative
tasks, facilitating agents’ synchronized arrival. We introduce
a formulation that operates efficiently for teams of up to
ten robots, making it suitable for rapid replanning in cases
of agent failure or task execution delays. We evaluate the
proposed approach using simulations and illustrate how
features of our algorithms lead to superior performance in
building disinfection applications (see Figure 1 for the robot
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used in a prior study involving physical experiments [4]).

II. RELATED WORK

In this paper, we focus on addressing the challenges posed by
the Multi-Robot Task Allocation (MRTA) problem. MRTA
describes the problem of deciding which robot should exe-
cute a given task. MRTA aims to coordinate task assignments
in the robot team to complete a set of tasks with specific
constraints [6], [7]. These encompass a diverse array of
scenarios, including but not limited to the Multiple Traveling
Salesman Problem [8], [9], Vehicle Routing Problem [10]-
[12], and Job Shop Scheduling Problem [13]-[15]. MRTA
problems are broadly categorized into three fundamental
types: offline assignment, iteration assignment, and online
assignment [16]. In our investigation, we put forth a novel
approach that pertains to the offline assignment by account-
ing for travel time and arrival time coordination.

Approaches related to task assignment, and scheduling in
the context of multi-robot task allocation encompass a wide
variety of techniques, including Hungarian Algorithms(HA)
[17], Mixed Integer Linear Programming (MILP) [18]-[21]
and Bio-inspired methods [22], [23]. Recent work has shown
that using MILP formulation and solver is a promising
approach for solving task allocation problems with com-
plex constraints such as temporal, spatial [24], [25], and
precedence constraints [26]-[29]. Previous works shows that
MILP is efficient in solving MRTA problems with complex
constraints, because a salient advantage of harnessing MILP
solvers lies in the availability of robust and efficient open-
source solvers [30], [31], which expedite the attainment of
desired solutions. We extend previous MILP formulations to
handle the requirements of complex missions executed by
legged robot teams.

Legged robots offer a distinct set of mobility advantages,
rendering them exceptionally well-suited for deployment
across a diverse spectrum of demanding environments, as
corroborated by prior research [32]-[37]. Their inherent ca-
pabilities encompass proficient surveying and inspection, as
well as efficient transportation [38]. Legged robots offer agile
navigation over rugged terrains, versatile payload integration
(e.g., cameras, sensors, end effectors), and enhanced maneu-
verability in tight spaces compared to wheeled robots. The
method presented in this paper enables robots to collaborate
on complex tasks.

III. PROBLEM FORMULATION
A. Terminology

Suppose R be the set of [ agents with different capability
and mobility, defined as R = {Ry, Ra,...,R;}. Let A
be the set of m tasks to be processed, defined as A =
{41, As, ..., A }. Based on the capability of each agent,
some types of tasks can only be processed by certain agents.
We partition the tasks into n task types, for example, each
exploration mapping task is partitioned in the same type,
while object removal is considered as another type. The task
type list is denoted as T = {1y, 7%, ..., T, }. Each location
coordinates are defined by (z;,y;) on a working plane.

In a multi-robot collaborative scenario involving agents R
and assigned tasks A, as previously described, we assume
access to an initial grid sketch and agent status. The task
involves multiple agents processing tasks scattered across the
grid. Each agent can handle only one task at a time. Addi-
tionally, there are multi-agent collaboration tasks requiring
at least two agents to collaborate, necessitating simultaneous
start, shared paths, and concurrent completion.

Given the restrictions above, we consider the following
agent parameters for R; € R:

1) Dispatch location: O; € R® where the agent is
spawned, e.g., centroid of the robot deployed on the map;

2) Collection location: E; € R? where the agent is
designed to stop, e.g., centroid of the robot when collected
by the truck;

3) Estimated travel velocity: v; € R representing the
velocity of the agent while traveling inside the grid;

4) Task type capability: 7; which notes the set of task
types that this agent is capable of performing.

We also need to consider the following task parameters
for A; € A:

1) Estimated task start location: .5; € R3 where the task
is estimated to start spatially, e.g., centroid of the obstacle
that needs to be removed,;

2) Estimated task finish location: F; € R? where the task
is estimated to start spatially, e.g., centroid of the obstacle
designated destination;

3) Estimated execution time: A;; € R™ representing
time required to execute task A; by agent R;, VR; € R.
This parameter can be set to an arbitrarily large number
M if the agent is not capable of processing the task, for
example, a robot with a camera is not suitable for moving
large obstacles.

4) Number of agents required: m; € NT describes the
agent needed for execute the task, which is at least 1 for
individual tasks and more for collaboration tasks.

5) Task type: T; which notes the exact task type in which
this task is categorized in.

For the scenario setup, traveling time is a major consider-
ation of task planning. In order to take care of various types
of traveling costs, the cost map is defined to consider the
traveling expenses. All agents are expected to have their own
travel cost on the grid, plus the start cost and end cost which
describes the operation of initializing the agent or shutting
the agent down.

1) Travel cost C;; € RT includes three parts: travel
between tasks, travel from spawn location to task, and travel
from last task to end location. C;; represents the time cost
when traveling from travel from finish location of task I}
to the start location of task S; VA;, A; € A, or the agent
spawn location of agent O; to the first task start location S;
VA; € A,R; € R, or the last task finish location of task F);
to the agent end location F; VR; € R, A; € A respectively.
It is derived from the grid location actual distance and preset
agent travel velocity.

2) Start cost S; € R represents time cost for anything
related to start agent R;, e.g. initializing the agent and letting
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it be ready to move. It is coded as the very first task that all
agents should process.

3) End cost E; € R represents time cost for anything
related to shut down agent R;, e.g. putting the robot back
into sleep mode.

Furthermore, tasks may come with precedence constraints,
specifying their prerequisites. These constraints are repre-
sented by a hierarchical task network (HTN), organized into
layers, and stored in a YAML file. Each task belongs to one
of three categories: sequential, parallel, or atomic.

B. Problem Formulation

Consider a multi-robot collaborative scenario, where the
agents R and tasks A are as defined above. The start time of
each task is denoted as ¢; € N. The completion time of the
final task is denoted as C';,q5. Binary variable X;; is defined
as X;; = 1if A; is executed by R;. An auxiliary binary deci-
sion variable V;;;, is imported to assist problem formulation.
With the comprehensive map data and the information at
our disposal, our objective is to ascertain optimal solutions
that encompass the initiation and conclusion times of tasks,
encompassing meticulous allocations of tasks to individual
agents. This optimization effort is carried out under strict
constraints with the aim of minimizing the overall makespan.
It involves considering travel durations, startup delays, and
each agent’s specific capabilities in handling their tasks.

IV. APPROACH

e ™ A
. Compute Task Generate
Mission Madel Attributes MILPs Model

\_ J
<>
Update Solution
Task by Allowing Solve
Allocations Partial Task MILPs Model
\_ Completion )

Fig. 2: Overview of the proposed approach

The proposed methodology, illustrated in Figure 2, begins
with the mission model as input. It encompasses essential
data, including grid parameters, agent specifications, and task
details, including execution timelines and capabilities. This
data is further enriched with the hierarchical task network
model. The geographical information from the map is then
used to create a grid distance model, accounting for all
possible routes and their distances. This model enables the
calculation of travel durations between any two locations,
considering agents’ dynamic movement speeds and employ-
ing the A* path planner. The distance model, along with
other data models, is combined to construct a MILP model,
as explained in Section IV. Once established, this model
is integrated with an open-source MILP solver to produce
an optimal solution, addressing task allocation and precise
scheduling for the agent ensemble. The resulting schedule,
designed for maximum efficiency, guides real-time execution
by the agents.

A. MILP Formulation

Our goal is to minimize the completion time C,, 4, plus the
start time of each task. It is necessary to minimize the sum of
all start times because, for an individual agent, it is optimal
for the agent to execute tasks and return in its own minimum
makespan. By this formulation, the idle time before each task
will be minimized. Equation (1) below defines the objective
function.

m
minCir,oz + > _t; (1)
i=1
Equation (2) considers that the completion time must be
larger than or equal to the finish time of every task, plus the
ending return cost from the last task. In this way, we can find
the maximum execution time and validate the makespan.

Crnaz 2 ti + 8 j+ > Eij Xy, VA, €A ()
j=1

Equation (3) below defines the precedence constraint.
When there is a time precedence relationship between two
tasks, Equation (3) states that the latter one may only
start when the previous one is finished. The precedence
relationship is defined in the hierarchical task network before

the scheduler is invoked.

ti > ti+ A+ Cij, V(i j) € P 3)

Equation (4) defines travel cost constraint, that the start
time of each task must be larger than or equal to the travel
cost for the robot to go to the task location. The travel cost
is either from the dispatch location to the first allocated task,
or from a previous task to the current task. All travel costs
are defined in the section above.

j=1
Equation (5) below defines the exact-agent constraint.
Each task should be only executed by one robot for a non-
collaborative task, and each task should be executed by
exactly the amount of agents required for collaboration tasks.

m
Z X;j =mi,VA; € A (5)
j=1
Equation (6) (7) states that no two tasks can be simulta-
neously executed by the same agent. We introduce V' as an
auxiliary binary decision variable and M is an arbitrarily
large number. If any two tasks for the same agent are
executed with the overlapped period, then the two equations
will result in a contradiction.

tr — Ai’j —Ci —t; > —M(2 — Xij — ij) - M(l - Vzkj)
VA;, A € A R; € R

(6)

ti—Apj —Ci —tpy > —M(2 — X5 — Xij) — M(Vigj)
VA;, A € AJR; € R

(7N
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Equation (8) is the miscellaneous constraint. It defines
time as a natural integer, and decision variables are binary.

B. Updating Allocation to Allow Partial Task Completion

In multi-robot collaboration scenarios, we often face situ-
ations where one robot must wait for another to join for
collaboration. To reduce wait times, we employ a strategy
where the early-arriving robot may perform part of a task,
collaborate, and then return to complete the task if the
combined travel and partial task duration is shorter than
the anticipated wait time. This dynamic approach minimizes
idle periods and is continuously refined during schedule
generation using the MILP Solver, ensuring optimal task
allocation and operational efficiency.

For two robots being assigned in a collaboration task Ay,
assume the robot with vacant waiting time is R; and the
other late-arrival robot is I2;, do the following Algorithm 1:

Algorithm 1 Algorithm for updating allocation to allow
partial task completion

Input: Original Schedule

Output: Updated Schedule
After MILP Solver schedule is generated :
LOOP Process

1: for R;, R; serving collaborative task Aj;, do

2 start time of Ay is ¢y, arrival time of R; is ¢;

3 if (t; > t;) then

4 oty —t;

5: for any breakable task A scheduled after Ay do
6 suppose the previous task served by R; i apre
7 if (tpre + Ai’p,«e + CApre,A +Ca,a, < a) then
8 schedule partial of A between A,,. and Ay
9: Q< tpre + Ai,pre + CAPTE,A + CA,Ak
10: end if

11: end for
12:  end if
13:  rerun the schedule to minimize idle time
14: end for

15: return Schedule

First, we check if R; has a wait time right before A. If
there is a wait time, then this wait time may be optimized
by breaking down other tasks. For every other global task
scheduled after the start time of A, check if it is breakable
into parts. For every breakable task, check if it can fit in the
waiting time before A including travel from the task before
T to the breakable task location, and the travel from the
breakable task location to A. If any task can be plugged
into the vacant space, fill the space with a partial of A
so that there is no waiting time for a;. For every other
breakable task for R; coming in later, loop the process to
find the lowest available makespan schedule. After checking
all available breakable tasks, we find the minimal makespan
for all iterations regarding the wait time for R;. Next, for
collaboration task A involving agents R; and R;, we adjust

the allocation to permit partial task completion, obtaining the
optimal local schedule. Subsequently, we apply the algorithm
iteratively for every other pair of collaboration task robots,
minimizing idle time to determine the lowest available
makespan schedule. The final task allocation schedule is
then returned to the planner, and we conduct a MILP solver
verification to assess global optimization.

Our formulation is implemented using the Google OR-
TOOLS CP-SAT solver [30]. It enables us to effectively
address the intricate challenges of considering travel time,
multi-robot collaboration, and partial task completion. We
estimate travel times based on the known grid, and our pro-
posed scheduler dynamically adjusts partial tasks to adhere
to collaboration constraints. Moreover, we account for agent
initialization and shutdown times, ensuring comprehensive
modeling of real-world scenarios. Notably, our formulation
yields optimal solutions within mere seconds, showcasing its
potential for a seamless transition into an online scheduling
framework.

V. RESULTS
A. Evaluation of System Scalability

(a) Initial conditions (b) Robot view

(c) Generated path according to schedule

Fig. 3: Test-case with 10 quadruped robots, 20 rooms and 4
collaboration tasks with 5 blocked doors

We want to test how our system performs with respect to
a wide variety of complexity drivers in the problem. We
created a scenario generator that can create a wide variety
of synthetic test-cases by randomly selecting scene attributes.
Instead of a real-world example, we purposely generated test-
cases by placing rooms in grid patterns by randomly selecting
the number of rooms and room sizes. A representative test-
case is depicted in Figure 3(a). Doors are placed between
rooms to make sure that robots can travel from room to room.
The number of rooms is directly related to tasks that need
to be performed by the team. The system can assign certain
rooms specialized tasks that require multiple collaborating
robots. This allows us to control the number of collaborative
tasks. The system is able to randomly select the robot
dispatch location and robot collection location. This allows
us to control the initial and final travel time. Scenes generated
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by the scenario generator are able to randomly generate
scenes with a wide variety of complexity and statistically
characterize our system’s performance.

Our ensemble of agents comprises two types of quadruped
robots, specifically the Unitree AlienGO robot and the Uni-
tree Al robot, as illustrated in Figure 3(b). In this test-
case, all agents are engaged in observation tasks, involving
traversing rooms and collecting data over randomly assigned
time intervals, which are determined prior to scheduling.
It’s noteworthy that each agent exhibits unique efficiency
characteristics, causing their actual execution times to deviate
by approximately +20% from the predefined values.

The simulation environment is constructed using Gazebo,
leveraging the ROS (Robotic Operating System) middle-
ware alongside Python and the Google OR-TOOLS CP-SAT
Solver for optimal solution determination. Visualization of
the simulation occurs within Gazebo itself. The simulation is
conducted with 13th Gen Intel(R) Core(TM) 19-13900 CPU
with 24 cores, and NVIDIA GeForce RTX 4090 GPU.

In Figure 3(a), we present the initial conditions for our ex-
periments. The agents are strategically spawned on opposite
sides of the grid, following the designated path illustrated
in Figure 3(c). A representative task assignment, along with
corresponding execution times, is outlined in Figure 4. The
makespan is quantified as the time interval commencing
when all agents enter the grid and concluding when all agents
successfully return to their respective ending locations.

The experimental parameters are subject to variation as
follows: the side length of each square room, denoted as s,
varies within the mathematical range s € [4, 8]. For the grid
dimensions, the number of rows, denoted as n,., falls within
the range n, € [3,5], and the number of columns, denoted
as ne, lies within n. € [2,4]. Random door blockages on
the grid are quantified by the number of blocked doors,
expressed as np, with n, € [2,7]. The number of tasks,
represented as n,, is contingent upon the number of rooms
and agents, and n, is limited to the range n, € [2, [n./2]].
Spawn and return locations are generated once the grid is
determined. With the grid’s center consistently located at
(0,0), the spawn area for Al robots is randomly selected as
([-18 4+ min,, —2 + min,], [—10, 10]), while for AlienGO
robots, it is chosen as ([2 + max,, 18 4+ max,], [—10, 10]).
The return area for Al robots is randomly designated as
([-5,5],[-164min,, —24min,]), and for AlienGO robots,
it is set as ([—5, 5], [2 4+ max,, 16 + max,]). The number of
collaboration tasks, denoted as n., is determined within the
range n. € [2, [ne/3]].

The efficiency gain of a new task allocation is calculated as
the percentage reduction in total makespan compared to the
previous allocation. To assess the efficiency gains achieved
through collaborative task execution, we introduce a com-
pensation rate denoted as «. This parameter quantifies the
reduction in task completion time when collaborating com-
pared to working in isolation. The parameter is user-selected
based on how collaboration contributes to task advancement,
reflecting user preferences. For instance, if an individual
robot typically requires 100 seconds to complete a task, with

o = 0.2, collaborative work reduces the execution time to 20
seconds when two agents are involved. It’s important to note
that collaborative tasks do not consider the +-20% variance in
individual efficiency, so the execution duration under any two
collaborating robots remains the same. We evaluate this test-
case using three different schedulers: the original classical
MILP scheduler, a MILP scheduler that accounts for travel
time, and a MILP scheduler that incorporates collaboration
with partial task completion.

We will now present results to characterize system perfor-
mance.

Fig. 4: Representative task allocation for a scene

1) Plan Quality: The sample result depicted in Figure 4
offers an optimal solution to a complex problem involving 10
agents and 20 tasks. Green color is for traveling tasks, blue
is collaboration tasks, and all other dark colors are unique
tasks by a single agent. The randomized grid consists of
20 rooms and 4 collaboration tasks. As per the generated
schedule, all 10 agents start their tasks at ¢ = 0Os and
successfully return to the base by ¢ = 426s, traversing
the path illustrated in Figure 3(C). Each agent receives a
directed schedule and follows the path generated by the A*
algorithm. Upon reaching the assigned room, agents work
for a duration specified by the model. This test-case does not
involve partial task completion, yet it exhibits a significant
efficiency boost. The original scheduler, based only on task
duration modeling, yields a makespan of 559s, while the
travel time-aware scheduler reduces it to 508s, resulting in a
23% efficiency increase in this case.

2) Comparison with Baseline: Based on the setup above,
our objective is to conduct a comprehensive comparison
of makespan differences across various environmental and
task configurations. The initial run of the scheduler focuses
solely on the task execution duration model (scheduler 1),
which is a straightforward task for most open-source MILP
solvers. The resultant overall makespan serves as our baseline
benchmark. Subsequently, we employ the scheduler with
the incorporation of travel time considerations (scheduler
2), and we record the resulting makespan. Furthermore, the
experiment is performed again with a choice of penalty factor
« on collaboration tasks (scheduler 3). In this multi-faceted
evaluation process involving three distinct schedulers under
identical conditions, we discern variations in makespan. We
quantify efficiency as a percentage reduction of the overall
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makespan between any two schedulers.

600.00

501.79 507.14

500.00 461.50 466.05
426.77 407.84
400.00
300.00
200.00
100.00
0.00

a=0.3 a=0.2
m Scheduler 1  ®m Scheduler 2

491.15
451.87

I38326

a=0.1
Scheduler 3
Fig. 5: Makespan Comparison between Three Schedulers by
Changing Penalty Factor

To assess the significance of the penalty factor a, we con-
ducted 500 test-cases for three distinct o values, measuring
the average overall makespan, as presented in Figure 5. For
o = 0.3, task scheduling with scheduler 1 resulted in an
average makespan of 501 seconds, which was reduced to 461
seconds in scheduler 2. Introducing a penalty rate of o = 0.3
for scheduler 3 further decreased the average makespan to
427 seconds. The figure illustrates that the average efficiency
increase from scheduler 1 to the scheduler 2 is 7.6%, and the
increase from the scheduler 2 to scheduler 3 is 7.4%. The
overall efficiency improvement achieved by our scheduler
over the original scheduler is 14.5%. For o = 0.2, the overall
efficiency increase for our proposed scheduler is 19.2%, and
increase 21.8% for a = 0.1.

>00.00 455.72
434.49

I |39927
B=4

Scheduler 3

450.00
400.00
350.00

300.00 265.79

250.00 241.255 86
200.00 178.74
150,00 146.43139.77
100.00
50.00
0.00
B=1 B=2

H Scheduler 1  ® Scheduler 2

Fig. 6: Makespan Comparison between Three Schedulers by
Changing Duration Scale Ratio

To assess the task duration model’s relationship with the
map scale, we introduce the duration scale ratio 3, which
represents the ratio of the average execution time in the
duration model to the average travel time on the grid for
all agents. We generate task duration models based on three
different 3 values, each with a 20% variance for individual
agents, and conduct 500 test-cases on random grids while
keeping « fixed at 0.3. The average overall makespan is
presented in Figure 6. For a duration scale ratio of g = 1,
the average efficiency increases by 17.6% from scheduler 1
to scheduler 2, by 4.4% from scheduler 2 to the scheduler
3, and the overall efficiency improvement over the original

(a) complete simulation with proposed (b) Robot working in theater
scheduler classroom

Fig. 7: Disinfection simulation in first floor of SGM Hall

scheduler is 21.3%. The overall efficiency increase for our
proposed scheduler is 14.0% for 5 = 2 and 11.9% for 5 = 4.

B. Case Study

In order to validate the proposed scheduler in real applica-
tions, we performed a case study in a disinfection application.
In the case study, as shown in 7, we modeled the floor plan
similar to the first floor of a building at the University of
Southern California. 6 Unitree AlienGo Robot are deployed
at the front door of the building, and they will apply
disinfection sprays to rooms in the building, including 2
theater classrooms, 4 normal classrooms, 2 labs, 6 tech labs,
2 conference rooms, and 2 restrooms. Due to the specialty of
tech labs, all tech labs require 2 robots to work together for
disinfection. Our goal is to find a schedule with minimum
execution time so that all the rooms can be disinfected.
Using our multi-agent collaboration scheduler, an optimal
schedule is generated in 10 seconds and all the allocations
will be sent to the robot. The robots follow scheduled paths
generated by the A* algorithm to complete tasks, walking
through rooms, disinfecting, and moving to the next area.
The reported overall execution duration is 1478 seconds.
At t = 300s the agent in the restroom reported a failure
and the scheduler is invoked for reallocation. The schedule is
then updated in 10 seconds and the reported estimated finish
time is updated to be 1760 seconds. Then, at t = 600s human
intervention occurred and the agent was reported to be fixed
and deployed immediately from the restroom. The schedule
is updated again with a total makespan of 1540 seconds.
Figure 7(a) shows the planned path for all agents as they
return to base in the simulation. The simulation shows that
all robots are working as desired and collaboration tasks are
also finished as required while encountering emergencies.

VI. CONCLUSIONS

We demonstrate that travel time considerations and con-
straints related to the execution of collaborative tasks can
be integrated into MILP formulation. We are able to solve
problems involving 10 agents and 20 tasks in ten seconds
on a moderate PC. This current approach is based on
a deterministic framework. We would like to extend this
approach to handle uncertainties in task execution duration
and failures and validate it in real-world scenarios.
Acknowledgement: This work is supported in part by Na-
tional Science Foundation Grant IIS-2133091. The opinions
expressed are those of the authors and do not necessarily
reflect the opinions of the sponsors.

16593

Authorized licensed use limited to: University of Southern California. Downloaded on August 19,2024 at 23:56:18 UTC from IEEE Xplore. Restrictions apply.



[1]

[2]

[3]

[5

=

[6]

[7

—

[8]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

M. Guettari, I. Gharbi, and S. Hamza, “Uvc disinfection robot,”
Environmental Science and Pollution Research, vol. 28, pp. 40394—
40399, 2021.

[. R. da Costa Barros and T. P. Nascimento, “Robotic mobile ful-
fillment systems: A survey on recent developments and research
opportunities,” Robotics and Autonomous Systems, vol. 137, p. 103729,
2021.

A. Joon and W. Kowalczyk, “Design of autonomous mobile robot for
cleaning in the environment with obstacles,” Applied Sciences, vol. 11,
no. 17, p. 8076, 2021.

Y. Chen, A. Pandey, Z. Deng, A. Nguyen, R. Wang, P. Thonapalin,
Q. Nguyen, and S. K. Gupta, “A semi-autonomous quadruped robot
for performing disinfection in cluttered environments,” in International
Design Engineering Technical Conferences and Computers and Infor-
mation in Engineering Conference. American Society of Mechanical
Engineers, 2021.

E. F. Flushing, L. M. Gambardella, and G. A. Di Caro, “Simultaneous
task allocation, data routing, and transmission scheduling in mobile
multi-robot teams,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 1861-1868.
H. Chakraa, F. Guérin, E. Leclercq, and D. Lefebvre, “Optimization
techniques for multi-robot task allocation problems: Review on the
state-of-the-art,” Robotics and Autonomous Systems, p. 104492, 2023.
H. Aziz, A. Pal, A. Pourmiri, F. Ramezani, and B. Sims, “Task
allocation using a team of robots,” Current Robotics Reports, vol. 3,
no. 4, pp. 227-238, 2022.

S. C. Sarin, H. D. Sherali, and A. Bhootra, “New tighter polynomial
length formulations for the asymmetric traveling salesman problem
with and without precedence constraints,” Operations research letters,
vol. 33, no. 1, pp. 62-70, 2005.

O. Cheikhrouhou and I. Khoufi, “A comprehensive survey on the
multiple traveling salesman problem: Applications, approaches and
taxonomy,” Computer Science Review, vol. 40, p. 100369, 2021.
I.-M. Chao, B. L. Golden, and E. A. Wasil, “The team orienteering
problem,” European journal of operational research, vol. 88, no. 3,
pp. 464-474, 1996.

A. M. Khamis, A. M. Elmogy, and F. O. Karray, “Complex task
allocation in mobile surveillance systems,” Journal of Intelligent &
Robotic Systems, vol. 64, pp. 33-55, 2011.

M. Gam, D. Lefebvre, L. Nabli, and A. J. Telmoudi, “A petri nets based
approach for the optimisation of surveillance patrols,” International
Journal of Sensor Networks, vol. 36, no. 4, pp. 181-193, 2021.

D. Applegate and W. Cook, “A computational study of the job-shop
scheduling problem,” ORSA Journal on computing, vol. 3, no. 2, pp.
149-156, 1991.

L. Shen, S. Dauzere-Péres, and J. S. Neufeld, “Solving the flexible
job shop scheduling problem with sequence-dependent setup times,”
European journal of operational research, vol. 265, no. 2, pp. 503—
516, 2018.

M. L. Pinedo, Scheduling. Springer, 2012, vol. 29.

B. P. Gerkey and M. J. Matari¢, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” The International journal of
robotics research, vol. 23, no. 9, pp. 939-954, 2004.

H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval research logistics quarterly, vol. 2, no. 1-2, pp. 83-97, 1955.
N. Atay and B. Bayazit, “Mixed-integer linear programming solution
to multi-robot task allocation problem,” 2006.

M. Lippi and A. Marino, “A mixed-integer linear programming
formulation for human multi-robot task allocation,” in 2021 30th IEEE
International Conference on Robot & Human Interactive Communi-
cation (RO-MAN), 2021, pp. 1017-1023.

N. Dhanaraj, S. V. Narayan, S. Nikolaidis, and S. K. Gupta,
“Contingency-aware task assignment and scheduling for human-robot
teams,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA), 2023, pp. 5765-5771.

M. Lippi, P. Di Lillo, and A. Marino, “A task allocation framework for
human multi-robot collaborative settings,” in 2023 IEEE International
Conference on Robotics and Automation (ICRA), 2023, pp. 7614—
7620.

Z. Li and X. Li, “Genetic algorithm for task allocation and path
planning of multi-robot system,” J. Math. Sci, vol. 4, no. 1, pp. 34-38,
2016.

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

16594

S. Mirjalili and S. Mirjalili, “Genetic algorithm,” Evolutionary Algo-
rithms and Neural Networks: Theory and Applications, pp. 43-55,
2019.

C. Zhang and J. A. Shah, “Co-optimizating multi-agent placement with
task assignment and scheduling.” in IJCAI 2016, pp. 3308-3314.

S. Li, D. Park, Y. Sung, J. A. Shah, and N. Roy, “Reactive task and
motion planning under temporal logic specifications,” in 202/ IEEE
International Conference on Robotics and Automation (ICRA), 2021,
pp. 12618-12624.

B. Hayes and B. Scassellati, “Autonomously constructing hierarchical
task networks for planning and human-robot collaboration,” in 2016
IEEE International Conference on Robotics and Automation (ICRA),
2016, pp. 5469-5476.

L. Johannsmeier and S. Haddadin, “A hierarchical human-robot
interaction-planning framework for task allocation in collaborative
industrial assembly processes,” IEEE Robotics and Automation Letters,
vol. 2, no. 1, pp. 4148, 2016.

Y. Cheng, L. Sun, C. Liu, and M. Tomizuka, “Towards efficient
human-robot collaboration with robust plan recognition and trajectory
prediction,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
2602-2609, 2020.

Y. Cheng, L. Sun, and M. Tomizuka, ‘“Human-aware robot task
planning based on a hierarchical task model,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 1136-1143, 2021.

F. Didier, L. Perron, S. Mohajeri, S. A. Gay, T. Cuvelier, and
V. Furnon, “Or-tools’ vehicle routing solver: a generic constraint-
programming solver with heuristic search for routing problems,” 2023.
A. Hosny and S. Reda, “Automatic milp solver configuration by
learning problem similarities,” Annals of Operations Research, pp. 1—
28, 2023.

C. D. Bellicoso, M. Bjelonic, L. Wellhausen, K. Holtmann, F. Giinther,
M. Tranzatto, P. Fankhauser, and M. Hutter, “Advances in real-world
applications for legged robots,” Journal of Field Robotics, vol. 35,
no. 8, pp. 1311-1326, 2018.

R. Zimroz, M. Hutter, M. Mistry, P. Stefaniak, K. Walas, and
J. Wodecki, “Why should inspection robots be used in deep under-
ground mines?” in Proceedings of the 27th International Symposium
on Mine Planning and Equipment Selection-MPES 2018.  Springer,
2019, pp. 497-507.

C. Gehring, P. Fankhauser, L. Isler, R. Diethelm, S. Bachmann,
M. Potz, L. Gerstenberg, and M. Hutter, “Anymal in the field: Solving
industrial inspection of an offshore hvdc platform with a quadrupedal
robot,” in Field and Service Robotics: Results of the 12th International
Conference. Springer, 2021, pp. 247-260.

T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

A. Bouman, M. F. Ginting, N. Alatur, M. Palieri, D. D. Fan, T. Touma,
T. Pailevanian, S.-K. Kim, K. Otsu, J. Burdick et al., “Autonomous
spot: Long-range autonomous exploration of extreme environments
with legged locomotion,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2020, pp. 2518-2525.

A. Agha, K. Otsu, B. Morrell, D. D. Fan, R. Thakker, A. Santamaria-
Navarro, S.-K. Kim, A. Bouman, X. Lei, J. Edlund et al., “Nebula:
Quest for robotic autonomy in challenging environments; team costar
at the darpa subterranean challenge,” arXiv preprint arXiv:2103.11470,
2021.

B. Debogorski, M. Fiederi, J. Szrek, and J. Wodecki, “A small legged
robot for inspection purposes,” in IOP Conference Series: Earth and
Environmental Science, vol. 1189, no. 1. IOP Publishing, 2023, p.
012004.

Authorized licensed use limited to: University of Southern California. Downloaded on August 19,2024 at 23:56:18 UTC from IEEE Xplore. Restrictions apply.



