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ABSTRACT

Hierarchical Bayesian Poisson regression models (HBPRMs) provide a flexible mod-
eling approach of the relationship between predictors and count response variables.
The applications of HBPRMs to large-scale datasets require efficient inference al-
gorithms due to the high computational cost of inferring many model parameters
based on random sampling. Although Markov Chain Monte Carlo (MCMC) algo-
rithms have been widely used for Bayesian inference, sampling using this class of al-
gorithms is time-consuming for applications with large-scale data and time-sensitive
decision-making, partially due to the non-conjugacy of many models. To overcome
this limitation, this research develops an approximate Gibbs sampler (AGS) to effi-
ciently learn the HBPRMs while maintaining the inference accuracy. In the proposed
sampler, the data likelihood is approximated with Gaussian distribution such that
the conditional posterior of the coefficients has a closed-form solution. Numerical ex-
periments using real and synthetic datasets with small and large counts demonstrate
the superior performance of AGS in comparison to the state-of-the-art sampling al-
gorithm, especially for large datasets.

KEYWORDS
Conditional conjugacy; Approximate MCMC; Gaussian approximation; Intractable
likelihood

1. Introduction

Count data are frequently encountered in a wide range of applications, such as fi-
nance, epidemiology, sociology, and operations, among others [1]. For example, in
epidemiological studies, the occurrences of a disease are often recorded as counts on
a regular basis [2]. Death counts, classified by various demographic variables, are reg-
ularly recorded by government agencies [3]. In customer service centers, the service
level is often measured based on the number of customers served during a given pe-
riod of time. More recently, data-driven disaster management approaches have used
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count data to analyze the impact of disasters (e.g., number of power outages [4] and
pipe breaks [5]) and the recovery process (e.g., recovery rate [6]). Understanding the
features that can influence the occurrence of such events is critical to inform future de-
cisions and policies. Therefore, statistical models have been developed to accommodate
the complexity of count data, among which are Hierarchical Bayesian Poisson regres-
sion models (HBPRMSs) that have been widely employed to analyze count data under
uncertainty [7-10]. The wide applicability of this class of models is due to the fact
that the hierarchical Bayesian approach offers the flexibility to capture the complex
hierarchical structure of count data and predictors by estimating different parameters
for different data groups, thereby improving the estimation accuracy of parameters
for each group. The data can be grouped based on geographical areas, types of exper-
iments in clinical studies, or different hazard types and intensities in disaster studies.
The hierarchical structure assumes that the parameters of the prior distribution are
uncertain and characterized by their own probability distribution with corresponding
parameters referred to as hyperparameters. Therefore, this class of models can account
for the individual- and group-level variations in estimating the parameters of interest
and the uncertainty around the estimation of hyperparameters [11].

The flexibility of hierarchical models in capturing the complex interactions in the
data comes with a high computational expense since all the model parameters need
to be estimated jointly [12]. Furthermore, large-scale data may be structured in many
levels or groups [13], resulting in a large number of parameters to learn for a hier-
archical model, further increasing the computational load. Given that many of the
applications involving count data have recently benefited from technological advances
in data collection and storage, there is a critical need to ensure the applicability of
HBPRMs. As a result, efficient inference algorithms are needed to support the use of
statistical learning models such as HBPRMs in risk-based decision-making, especially
for time-sensitive applications such as resource allocation during emergency response
and disaster recovery.

The most popular algorithms for parameter inference in hierarchical Bayesian mod-
els (and generally for Bayesian inference) are Markov Chain Monte Carlo (MCMC)
algorithms. MCMC algorithms obtain samples from a target distribution by construct-
ing a Markov chain (irreducible and aperiodic) in the parameter space that has pre-
cisely the target distribution as its stationary distribution [14]. This class of algorithms
provide a powerful tool to obtain posterior samples and then estimate the parameters
of interest when the exact full posterior distributions are only known up to a con-
stant and direct sampling is not possible [14]. However, a major drawback of standard
MCMC algorithms, such as the Metropolis-Hastings algorithm (MH), is that they suf-
fer from slow mixing, requiring numerous Monte Carlo samples that grow with the
dimension and complexity of the dataset [15,16]. In some applications of Bayesian
approaches (e.g., emergency response), decisions relying on outcomes of the model
cannot afford to wait days for running MCMC chains to collect a sufficiently large
number of posterior samples. As such, the application of standard MCMC algorithms
to learn Bayesian models such as HBPRMs or other hierarchical Bayesian models for
large datasets is significantly limited and a fast approximate MCMC is needed.

The key idea of approximate MCMC is to replace complex distributions that lead to
a computational bottleneck with an approximation that is simpler or faster to sample
from than the original [17,18]. Several studies have applied analytical approximation
techniques by exploiting conjugacy to accelerate MCMC-based inference in hierarchical
Bayesian models [19-22]. More specifically, an approximate Gibbs sampling algorithm
to is used to enable the inference of the rate parameter in the hierarchical Poisson re-



gression model in [19]. The conditional posterior of the rate parameter, which does not
have a closed-form expression due to non-conjugacy between Poisson likelihood and
log-normal prior distribution, is approximated as a mixture of Gaussian and Gamma
distributions using the moment matching method. The exact conditional moments
are obtained by minimizing the Kullback-Liebler divergence between the original and
the approximate conditional posterior distributions. Conjugacy is also employed to
improve inference efficiency in large and more complex hierarchical models in [21].
It is shown that the approximation using conjugacy can be utilized even though the
original hierarchical model is not fully conjugate [21]. As an example in their study,
the approximate full conditional distributions are derived when the likelihood function
follows a gamma distribution while the prior for the parameters are assumed to be
multivariate normal and inverse Wishart distribution. In [22], a Gaussian approxima-
tion to the conditional distribution of the normal random effects in the hierarchical
Bayesian binomial model (HBBM) is derived using Taylor series expansion, such that
Gibbs sampling can be applied to infer the HBBM more efficiently. A similar ap-
proach that approximates the data likelihood with a Gaussian distribution to allow
for faster inference of parameters is used for parameter inference in a Bayesian Poisson
model [20]. With regard to count data, a fast approximate Bayesian inference method
is proposed to infer a negative binomial model (NB) in [23]. The non-conjugacy of the
NB likelihood is addressed by the Pdlya-Gamma data augmentation. This technique
is first developed in [24] and is employed to approximate the likelihood as a Gaussian
distribution. Consequently, the conditional posteriors of all but one parameters have
a closed-form solution and a Metropolis-within-Gibbs algorithm is thus developed for
the posterior inference.

While approximate MCMC algorithms have been developed for hierarchical and
non-hierarchical Poisson models as well as hierarchical Bayesian binomial and nega-
tive binomial models, the development of approximate MCMC algorithm for an ef-
ficient inference of HBPRMSs for grouped count data is still lacking. In this paper,
we propose an approximate Gibbs sampler to address this problem. To deal with the
non-conjugacy between the likelihood and the prior, we approximate the conditional
likelihood as a Gaussian distribution, leading to closed-form conditional posteriors for
all model parameters. The contribution lies in the derivation of a closed-form approx-
imation to the complex conditional posterior of the parameters and the development
of the Approximate Gibbs sampling (AGS) algorithm. The proposed algorithm allows
for an efficient inference of the general HBPRM using the approximate Markov chain
without compromising the inference accuracy, enabling the use of HBPRMs in appli-
cations with large-scale data and time sensitive decision-making. To demonstrate the
performance of the proposed AGS algorithm, we conduct multiple numerical experi-
ments and compare the inference accuracy and computational load to state-of-the-art
sampling algorithms. Note that due to the use of Gaussian approximation, the AGS
algorithm performs well when the dataset does not contain excessive zero counts.

The rest of this paper is organized as follows. In Sec. 2, a general hierarchical
Bayesian Poisson model for grouped count data is presented, and the closed-form
solution to the approximate conditional posterior distribution of each regression co-
efficients is derived, followed by a description of the proposed AGS algorithm. Sec. 3
introduces the datasets used in the numerical experiments along with the comparison
of the performance of sampling algorithms. Conclusions and future work are provided
in Sec. 4.



2. Methodology

2.1. Hierarchical Bayesian Poisson Regression Model

This section presents the Hierarchical Bayesian Poisson Regression Model (HBPRM)
for count data. Without loss of generality, we consider a general HBPRM, the hierar-
chical version of Poisson log-normal model [19,25-27] for grouped count data, in which
the coefficient for each covariate varies across groups (Eq. (1) to Eq. (5)). This model
can be applied to count datasets in which the counts can be divided into multiple
groups based on the covariates. Let D = {x,y} be the dataset where = represents the
covariates and y represents the dependent positive counts. This HBPRM assumes that
each count, y;;, follows a Poisson distribution. The log of the mean in the Poisson dis-
tribution is a linear function of the covariates. In the hierarchical Bayesian paradigm,
each of the parameters (regression coefficients) in the linear function follows a prior
distribution with hyperparameter(s) which are in turn specified by a hyperprior dis-
tribution. Note that the hyperpriors are shared among the parameters of the same
covariate for all groups, thereby resulting in shrinkage of the parameters towards the
group-mean and facilitating strength borrowing across groups [11]. When the variance
of the hyperprior is decreased to zero, the hierarchical model is reduced to a non-
hierarchical model. The mathematical formulation of the HBPRM is provided in Eq.
(1) to Eq. (5):
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In the HBPRM formulation, y;; is the i-th count within group j with an estimated
mean of \;j, n; is the number of data points in group j, wjy, is the regression coefficient
of covariate k, and x;j;, is the i-th value in group j of covariate k. The prior for the
coefficient of each covariate, ug, is assumed to be a Gaussian distribution (N') while
the prior for the variance, o7, is assumed to be an inverse-gamma distribution (ZG).
The Gaussian and inverse-gamma distributions are specified such that we can exploit
conditional conjugacy for analytical and computational convenience. Alternative dis-
tributions (such as half-Cauchy and uniform distributions) for the prior of group-level
variance 013 do not have this benefit, which will significantly increase the computational
load. According to Ref. [28], when the group-level variance is close to zero, the shape
parameter a in the inverse-gamma distribution must be set to a reasonable value. For
our model, the estimated group variance is always much larger than zero because the
mean of estimated variance is approximately %%/ (Eq. (11)) where J is the number of
groups. Therefore, a can be set to a sufficiently large value, such as 2.



2.2. Inference

Given an observed count dataset structured using multiple groups, D, fitting an
HBPRM entails the estimation of the joint posterior density distribution of all the
parameters, which is only known up to a constant. If we denote the parameters by
0 = {wu, ey Wik e WIS AL - - .,/LK;O'%, .. .,a%(}, then the joint posterior factor-
izes as

J n
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b
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Sampling from the joint posterior becomes a challenging task as it does not admit a
closed-form expression. While MCMC algorithms (e.g., the MH) can be used, the need
to judiciously tune the step size for the desired acceptance rate often repel users from
using this algorithm [29,30]. In comparison, the Gibbs sampler is more efficient and
does not require any tuning of the proposal distribution, therefore it has been used
for Bayesian inference in a wide range of applications [31,32]. Classical Gibbs sam-
pling requires that one can directly sample from the conditional posterior distribution
of each parameter (or block of parameters), such as conditional conjugate posterior
distributions. The full conditional posteriors for implementing the Gibbs sampler are

P (wjr]—) HPOIS (y,] | exp (Z wjka:l]k)) N (wik| e, 07), (7)
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where p (-|—) represents the conditional posterior of a parameter of interest given the
remaining parameters and the data. Due to the Gaussian-Gaussian and Gaussian-
inverse-gamma conjugacy, Eq. (8) and Eq. (9) can be expressed in an analytical
form [33]
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However, Eq. (7) does not admit an analytical solution because the Poisson likelihood
is not conjugate to the Gaussian prior. Consequently, it is challenging to sample di-
rectly from the conditional posterior to enable the Gibbs sampler. In this case, other



algorithms can be used to obtain p (wjx|—), such as adaptive-rejection sampling [34],
and Metropolis-within-Gibbs algorithm [35]. However, these algorithms introduce an
additional computational cost due to the need to evaluate the complex conditional
distribution. Therefore, we propose to use a Gaussian approximation to the Poisson
likelihood given in Eq. (7) to obtain a closed-form solution to the conditional posterior
of coefficients. With the closed-form solution, the complex inference of regression coef-
ficients can be simplified to save computational resources. Reducing the computational
cost of sampling from p (wjx|—) is critical for datasets with a large number of groups
because the number of regression coefficients, J x K, can be significantly larger than
the number of prior parameters, 2K.

2.3. Gaussian Approximation to Log-gamma Distribution

This section introduces the Gaussian approximation to the log-gamma distribution
that is used to obtain the closed-form approximate conditional posterior distribution
in Section 2.4. Consider a gamma random variable z with probability density function
(pdf) given by

a—1 Z
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where I"(-) is the gamma function, and « and 8 are the location parameter and the
scale parameter, respectively. The random variable, Inz € R, follows a log-gamma
distribution. The mean j, and variance o2 of log-gamma distribution are calculated
using Eq. (13) and Eq. (14), respectively [36].
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In Eq. (13a) and Eq. (14a), ¥o(-) and 1(-) are the zeroth and the first order of
polygamma functions [37]. In Eq. (13b) and Eq. (13c), 7 is the Euler-Mascheroni
constant [38].

For large values of «, the pdf of log-gamma distribution can be approximated by
that of a Gaussian distribution [20,39], shown in Eq. (15).

Log-gamma(In z|a, 8) = N (In 2ty (a) + In 3, 11 () (15)



To apply the approximation in the conditional posterior (Eq. (20) to Eq. (21)), we
need to include y in the pdf of log-gamma distribution. Therefore, we let o = y and
g =1, and Eq. (15) becomes

Log-gamma(ln 2|y, 1) ~ N (In 2|t (y) , ¢1 (y)) - (16)

Note that because @ > 0 and « is replaced by count data y, the approximation can
only be applied to positive counts.

Similarly, plugging in a = y, f = 1, and I'(n) = (n — 1)! where n € {1,2,3,...},
Eq. (12) becomes
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Next, we need to relate Eq. (16) and Eq. (17). First, using the “change of variable”
method and substituting In z with v [20] in Eq. (17), we obtain the pdf of v

e
— _ LU
p(U|y, 1) —p(Z =e ‘ya 1) (183‘)
ov
1 e
= — e (18b)
(y = 1!
Then, using Eq. (16) yields
1 . 1 (=g (y)?
7' vye—e N e 2010w | (19)
(y — 1) V2mii(y)
(@) (b) (©)
= - Approximate = - Approximate = - Approximate
03 — True >‘0'6 — True . 0.757 — True
5] S o4 3
. © 4
20 2 2 g0.50 y=5
2 a K]
© I} <
804 802 8 0.254
e o o
0.0 0.0 0.001 =
2 0 2 1 0 1 2 3 0 1 2 3
v v v

O
3

>
1.2 = - Approximate = - Approximate g
- — True 1.5 — True 6 209
B3 B o )
508 3 x 152
2 210 @ 4 =
= £ o @
5 s 103
17}
.g 0.4 _5 05 z, 8
o o N 05%
D TR 3
0.0 0.0 o4~ T T %7 7100 &
1 2 3 20 25 3.0 35 4.0 1 3 6 7 9 11 13 15
v v y

Figure 1. Quality of the Gaussian approximation (dashed blue line) to the true distri-
bution (solid red line) for different values of y: (a) y=1; (b) y=3; (c) y=>5; (d) y=10; (e)
y=20. (f) Values of KS distance (solid red line) between the approximate distribution
and true distribution and values of the absolute error in the mean (dashed blue line)
of the approximate distribution as the value of y increases.



The comparison between the true and approximate Gaussian distribution, i.e., left
and right-hand sides of Eq. (19) respectively, is shown in Fig. 1. When the counts
are small, such as y < 5 ((a) to (c)), the approximation is not very close to the true
distribution. We can also see that the Kolmogorov—Smirnov (KS) distance shown in
Fig. 1 (f), defined as the largest absolute difference between the cumulative density
functions for the approximate distribution and true distribution, is relatively large. As
the value of y increases, the approximate Gaussian distribution is increasingly closer
to the true distribution. Also, the absolute error in the mean value of the Gaussian
approximation is relatively small when y is greater than 3. Notice again that the
approximation given by Eq. (19) is not directly applicable to zero counts. However,
when zero counts are present in the dataset, such as in epidemiology studies, one can
increase each count by a positive count (e.g., 5). This linear transformation allows
one to circumvent the problem arising from zero counts (dependent variable) without
compromising the model accuracy, which is because such a transformation does not
change the distribution of the error and preserves the relation between the dependent
and independent variables.

2.4. Closed-form Approximate Conditional Posterior Distribution
In the conditional posterior of coefficient w;j given by Eq. (7), the likelihood function
is

n;j
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Plugging Eq. (21) into Eq. (7) we get
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As the product of two Gaussians is still Gaussian, the posterior can also be written as
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where [ and 8,% are the mean and variance of the approximate Gaussian posterior.
Completing the squares (see Appendix A for more details) we get
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Now that the full conditional posterior distributions can be expressed analytically,
we can construct the approximate Gibbs sampler (Algorithm 1) to obtain posterior
samples of the parameters in HBPRM efficiently.

Algorithm 1: Approximate Gibbs sampler

Input: z, y, number of samples as warm-ups Ny, number of desired samples Nj.
Output: Desired posterior samples, Mg),az(g),w](.i), f = Nog+1,...,Ng+ Ny, k =
1,....,K,and j=1,...,J.
1: Generate the initial sample u,go), 02(0), wj(.z).
2. for /¥ =1 to (NO —|—N1) do

3: for k=1 to K do
€

4: Sample hyperparameter p,~ according to Eq. (10).

5: Sample hyperparameter ai(e) according to Eq. (11).

6: for j =1to J do

7: Sample each parameter w](.i) according to Eq. (24).
8: end for

9: end for

10: end for

3. Experiments

We evaluate the performance of our proposed AGS algorithm by applying it to several
synthetic and real data sets. The performance of AGS is evaluated in terms of the accu-
racy, efficiency, and computational time. The proposed approach is compared with the
state-of-the-art MCMC algorithm, No-U-Turn sampler (NUTS) [40], using the same
datasets and performance metrics. NUTS is an extension to Hamiltonian Monte Carlo
(HMC) algorithm that exploits Hamiltonian dynamics to propose samples. NUTS can
free users from tuning the proposals and has been demonstrated to provide efficient
inference of complex hierarchical models [12]. The description of the datasets and the
experimental setup is provided in this section. The code and non-confidential data
used for the experiments are available on the GitHub account of the corresponding
author.



3.1. Data Description

Multiple synthetic and real datasets are used to evaluate the performance of AGS
for different data types and sizes. This section describes the approach to generating
synthetic data and the characteristics of real datasets which include power outages,
Covid-19 positive cases, and bike rentals. A subset of each dataset is provided in tables
1 to 4.

Synthetic data. The synthetic datasets are generated according to the model shown
in Eq. (27). This model ensures that the generated datasets contain a specified range
of counts and closely mimic the number of emergency incidents during disasters, such
as the number of power outages after a severe storm. An example of the synthetic
dataset is presented in Table 1. Note that the data for all xx, K = 1,...,6, in each
group is sorted in ascending order before calculating y to ensure a more consistent
relationship between y and x.

2 ~U(01,2),i=1,...,n5, j=1,...,J (27a
zij2 ~ U (0.1, 1),¢:1 g, =1, (27b
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In Eq. (27), the notation (+) i, r€Presents the min-max normalizing function?.
Each count y;; is rounded to the nearest integer. x.; is the group-level covariate for
group j. We generate 15 synthetic datasets (S1, ..., S15) with varying total numbers
of data points (IVg) in each dataset and varying numbers of data points in each group
nj (for simplicity, it is assumed the same for each group in the same synthetic dataset),
numbers of covariates K (K < 6), and numbers of groups J to analyze the effect of
the size of the data on the performance of AGS and NUTS (Table 5).

Table 1. An example of synthetic dataset

T T2 T3 T4 T5 L6 Y

0.14 0.11 0.27 1.49 0.66 12.10 42

0.61 0.15 0.27 2.22 1.52 24.76 6440
0.64 0.58 0.27 3.11 1.93 34.67 11424
0.77 0.58 0.30 5.70 2.13 38.71 13535
1.07 0.60 0.34 6.38 2.77 62.73 25064
1.29 0.75 0.42 7.78 3.69 79.38 33917
1.41 0.91 0.47 8.84 4.91 85.56 38272
1.55 0.93 0.49 8.93 4.96 92.86 41806

1For an array of real numbers represented by a generic vector @. The min-max normalization of @ is given by
Lo — T~ Zmin
min—max Tmax —Tmin
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Power outage data. The power outage data includes the number of customers with-
out power in multiple counties following 11 disruptive events (denoted by P1,...,
P11). The power outage dataset following a particular disruptive event is grouped
by county, i.e., power outage counts for the same county after a particular disruptive
event fall into the same group. The covariates in each dataset include PS (surface pres-
sure, Pa), TQV (precipitable water vapor, kg-m~2), U10M (10-meter eastward wind
speed, m/s), V1I0M (10-meter northward wind speed, m/s), ¢ (time after the start of
an event, hours). The outage datasets were collected from public utility companies
during severe weather events and the weather data from the National Oceanic and
Atmospheric Administration.

Table 2. A subset of power outage data

Event 1D PS TQV U1o0M V1M t Outage count
1 99691.45 43.18 2.39 4.79 4 66807
1 100917.62 26.75 1.11 1.39 32 18379
1 101041.88 36.29 1.11 -0.18 60 12096
1 101467.45 55.72 -1.73 -0.67 116 14231
1 101155.43 37.50 -0.08 -3.01 144 10155
1 101037.79 32.13 -0.48 -1.53 172 4758
1 101194.86 40.20 -0.90 1.66 200 2699
1 101183.98 46.61 -0.54 1.20 228 2297
1 101136.76 34.68 -1.14 -1.50 256 248
1 101086.31 43.80 -2.19 -2.44 284 43

Covid-19 test data. The Covid-19 test dataset is obtained from Ref. [41], which are
originally collected from seven papers (two preprints and five peer-reviewed articles)
that provide data on RT-PCR (reverse transcriptase polymerase chain reaction) per-
formance by time since the symptom onset or exposure using samples derived from
nasal or throat swabs among patients tested for Covid-19. The number of studies
(groups) is 11. Each study includes multiple test cases (Table 3), each of which in-
cludes the days, t, after exposure to Covid-19, and the total number of samples tested,
Ns. The response variable is the number of patients who tested positive among the
samples. The total number of test cases is 379. As the proposed approximation cannot
be applied to zero counts, we remove the test cases with zero positive test among the
samples tested. The total number of test cases after removing those with zero counts
is 298. The test cases are grouped by studies. Following Ref. [41], the exposure is as-
sumed to have occurred five days before the symptom onset and log(t), log(t)2, log(t)3,
and N, are used as the covariates.

Bike sharing data. The bike sharing data include daily bike rental counts for 729
days and the covariates we use include normalized temperature, normalized humidity,
and casual bike rentals. The dataset is obtained from the UCI Machine Learning
Repository [42]. Bike rental counts are grouped by whether the rental occurs on a
working day (Table 4).

To investigate the performance of AGS for small counts, including zero counts, we
also simulate datasets with small counts using the following model shown in Eq. (28).
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Table 3. A subset of the Covid-19 test data

Study ID  Test case ID  log(t)  log(t)>  log(t)> Ns  Positive count
1 1 1.23 1.51 1.86 35 15
1 2 1.26 1.58 1.98 23 11
1 3 1.28 1.64 2.09 20 6
1 5 1.32 1.75 2.31 20 8
1 6 1.34 1.80 2.42 11 3
1 7 1.36 1.85 2.53 11 )
1 8 1.38 1.90 2.63 9 2
1 9 1.40 1.95 2.73 6 3
1 10 1.41 1.98 2.83 5) 2

Table 4. A subset of the bike sharing data. Workingday=1 indicates the rental occurs
on a working day, and 0 otherwise.

Workingday Temperature Humidity Casual rental count Total count

0 0.34 0.81 331 985

0 0.36 0.70 131 801

1 0.20 0.44 120 1349

1 0.20 0.59 108 1562

1 0.23 0.44 82 1600

1 0.20 0.52 88 1606

1 0.20 0.50 148 1510

0 0.17 0.54 68 959

0 0.14 0.43 54 822
.’L'ijle(O.l,2),i: ,...,nj,jzl,...,J (28&)
zijo~U(0.1,1),i=1,...,n5, j=1,...,J (28Db)
xijng(O.l,Oﬁ),izl,...,nj,jzl,...,J (280)
xij4~U(1,10),z':l,...,nj,jzl,...,J (28d)
xij5~U(0.5,5),z'zl,...,nj,jzl,...,J (286)
zj~TEXP (0.7, 1, Yymax), j=1,...,J (28f)
wjp ~N(0.1,01), j=1,....J, k=1,... K (28g)
yij = Kezi;lekmﬁk) . x‘jJ ci=1,...m; j=1,....J.  (28h)

min—max

TEXP represents the truncated exponential distribution. The PDF of

TEXP(0.7, 1, Yymax), where 0.7 is the rate parameter while 1 and ymax are the
lower and upper bounds, is given by
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. —0.7(Ymax—x—1) 1
f(a:) _ {0 Te , T E [ s ymax], (29)

0, otherwise.

This particular truncated exponential distribution instead of a uniform distribution
is used to ensure that the generated counts will not concentrate on small values. By
changing the value of the upper bound, we can generate counts in different ranges.
Notice that since the floor function, |-|, is used in Eq. (28h), the generated counts can
have zeros, which is smaller than the lower bound 1.

3.2. Experiment Setup

In the HBPRM for the count datasets listed above, we employ N'(0,1) and ZG (1, 1) as a
weakly-informative prior [43] for py and a,% respectively. In the numerical experiments,
NUTS is implemented with Stan [43]. Numbers are averaged over 4 runs of 10000
iterations for each algorithm, discarding the first 5000 samples as warm-ups/burn-ins.
We compare AGS with NUTS in terms of average sampling time in seconds per 1000
iterations (7T), sampling efficiency (FE;), R?, and Root Mean Square Error (RMSE).
Sampling efficiency is quantified as the mean effective sampler size (fieg) over the
average sampling time in seconds per 1000 iterations, i.e., Fy = fiog/Ts, where fieg is
the effective sample size of multiple sequences of samples [11, Chapter 11]. To make
this paper self-contained, we have included the details for calculating fi.g, R?, and
RMSE in Appendix B. All experiments are implemented with R (version 3.6.1) on a
Windows 10 desktop computer with a 3.40 GHz Intel Core i7-6700 CPU and 16.0 GB
RAM.

3.3. Results

The performances of NUTS and AGS under different datasets are summarized in Ta-
ble 5 (synthetic datasets) and Table 6 (real datasets). On both the synthetic and real
datasets, AGS consistently outperforms NUTS in the average sampling time, especially
when the size of the datasets is large. Depending on the dataset, the improvement in
the average inference speed can be greater than one order of magnitude. This observa-
tion shows that using the Gaussian approximation to avoid the evaluation of complex
conditional posterior can significantly boost the sampling speed. However, for all the
datasets except for power outage dataset P1, the sampling efficiency of AGS is sig-
nificantly lower than that of NUTS because the effective sample size obtained from
AGS is much lower than that from NUTS. The relatively low inference efficiency of
AGS does not compromise the accuracy of parameter estimates. In all the examined
datasets, R? and RMSE have comparable values for both AGS and NUTS. The infer-
ence accuracy is better (higher R? and lower RMSE) for AGS across all the synthetic
datasets except for S14 where the RMSE of NUTS is marginally smaller than that of
AGS. In eight out of the thirteen (about 62%) real datasets, AGS has slightly higher
R? and lower RMSE. In particular, the results on the Covid test data show that as
long as a significant percentage of counts are not all very small counts, then the pro-
posed approximate Gibbs sampler can outperform the NUTS in predictive accuracy.
Overall, it can be concluded that AGS significantly decreases the computational load
by allowing for faster sampling without compromising the accuracy of the estimates.
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Table 5. Performance of NUTS and AGS on synthetic datasets

Characteristics Ts (s) Es R? RMSE
Dataset

Ny K J NUTS AGS NUTS AGS NUTS AGS NUTS AGS
S1 200 2 10 1.51 0.96 649.28 33.46 0.9390 0.9450 6500 6191
S2 400 2 10 2.66 0.98 373.46 34.99 0.9430 0.9500 5823 5455
S3 800 2 20 5.05 1.63 195.21 18.63 0.9576 0.9626 3526 3310
S4 200 3 10 5.76 1.25 170.39 5.28 0.9614 0.9660 4235 3976
S5 400 3 10 16.63 1.29 59.78 2.03 0.9683 0.9710 3450 3305
S6 800 3 20 40.53 2.44 24.30 1.80 0.9677 0.9719 3993 3728
S7 200 4 10 7.64 1.63 129.25 1.59 0.9716 0.9760 2955 2718
S8 400 4 10 23.72 1.94 41.69 1.50 0.9639 0.9701 4406 4012
S9 800 4 20 45.00 3.31 21.99 0.49 0.9740 0.9770 2958 2790
S10 200 5 10 12.12 2.06 81.26 0.70 0.9574 0.9631 4941 4593
S11 400 5 10 24.70 2.41 39.68 0.49 0.9782 0.9826 2514 2245
S12 800 5 20 64.00 4.12 15.44 0.27 0.9767 0.9804 3446 3157
S13 200 6 10 14.66 2.44 67.49 0.23 0.9817 0.9876 2720 2721
S14 400 6 10 42.01 2.63 20.17 0.24 0.9922 0.9948 1339 1128
S15 800 6 20 93.20 4.97 8.44 0.17 0.9910 0.9940 1994 1629

We also investigate the scalability of the two algorithms as it is crucial for large-scale
hierarchical data. Therefore, we show the average sampling time of both algorithms
across different dataset sizes to understand their performance for larger datasets. We
conduct an empirical analysis of the average sampling time (seconds) per 1000 itera-
tions for all the synthetic and real datasets shown in Fig. 2. The sampling time of both
samplers increases as a function of the size of the dataset. However, when compared
to NUTS, the increase in the sampling time of AGS is significantly lower, showing a
significantly smaller rate of time increase over the size of datasets and suggesting im-
proved scalability. This observation also indicates that although NUTS can generate
samples effectively, it becomes inefficient in the case of large datasets as evaluating
the gradient in proposing new samples becomes computationally expensive [44].

Table 6. Performance of NUTS and AGS on real datasets

Characteristics Ts (s) Es R? RMSE
Dataset
Ny K J NUTS AGS NUTS AGS NUTS AGS NUTS AGS
P1 3817 5 56 885.65 15.76 1.12 1.25 0.9730 0.9801 13558 11621
P2 2467 5 50 652.87 13.71 1.50 0.62 0.9873 0.9884 1446 1384
P3 1548 5 35 387.47 9.41 2.54 0.92 0.9850 0.9870 1974 1833
P4 632 5 26 165.73 6.67 5.94 0.46 0.9923 0.9918 1327 1373
P5 520 5 16 135.16 4.31 7.27 1.85 0.9934 0.9940 3473 3312
P6 421 5 17 118.73 4.54 8.25 2.68 0.9908 0.9918 2526 2387
P7 375 5 23 39.86 5.76 24.75 2.41 0.9459 0.9355 3574 3903
P8 247 5 10 8.75 2.78 111.91 2.38 0.9744 0.9729 795 818
P9 157 5 8 5.48 2.24 179.87 4.07 0.9964 0.9967 803 766
P10 115 5 6 4.49 1.72 218.17 6.75 0.9869 0.9915 7715 6222
P11 63 5 4 5.49 1.25 177.38 0.92 0.9356 0.9027 251 308
Bike share 729 3 2 9.09 0.98 109.54 24.75 0.6743 0.6292 1101 1175
Covid test 298 3 11 34.60 2.59 28.57 18.54 0.8517 0.8582 2.53 2.47

Results on the inference accuracy of two algorithms on selected Covid-19 test dataset
with small counts are summarized in Table 7 where RG represents the range of counts,
PCTy represents the percentage of zero counts, and PCT} 5 represents the percentage
of counts in [1, 5]. We can see that AGS can outperform NUTS in R? and RMSE
when there are no zero counts (subsetl and subset3) in the covid test data. However,
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Figure 2. Scalability of NUTS and AGS on (a) real datasets and (b) synthetic datasets.
The size of a dataset, i.e., the total number of count data points, can be calculated by

J
Zj:l .

Table 7. Inference accuracy of NUTS and AGS on selected Covid-19 test datasets with
small counts. The number of covariates K = 3 and the number of groups J = 11.

Characteristics R? RMSE

Dataset “pe PCTy (%) PCTis (%) Ng NUTS AGS NUTS  AGS

Subset1 [1, 5] 0.0 100.0 168  0.4403 0.4452 0.9964 0.9920
Subset2 [0, 5] 32.5 67.5 249 0.6606 0.5684 0.9370 1.0570
Subset3 [1, 38] 0.0 56.4 298 0.8517 0.8582 2.5337 2.4685
Whole set [0, 38] 214 44.3 379 0.8692 0.8546 2.3492 2.4769

when zero counts are included (subset2 and the whole set), NUTS performs better
than AGS. Comparing the performance of both algorithms on subset 2, we can see
that even when all the counts are small but positive, AGS can still outperform NUTS
in inference accuracy by a small margin.

We also compare the inference accuracy of both algorithms using synthetic datasets
with small counts (SS1 - SS10) (Table 8). It can be observed that for most synthetic
datasets with a relatively large percentage of small counts (SS1-SS3 and SS5-SS8),
NUTS outperforms AGS in terms of R? and RMSE. If the percentage of small counts
is not very high (SS9 and SS10), then AGS outperforms NUTS, even when there are
zero counts (SS10).

Based on the performance comparison using synthetic datasets with small counts
and Covid-19 test datasets with small counts, we can conclude that when there is a
large percentage of small counts, particularly zero counts, NUTS tends to outperform
AGS. The specific percentage of small counts in a dataset that leads to a better
performance of NUTS than AGS varies with the dataset. That is, depending on the
particular dataset, AGS may still outperform NUTS when there is a large percentage
of small counts.
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Table 8. Inference accuracy of NUTS and AGS on synthetic datasets with small counts.
The number of covariates K = 5 and the number of groups J = 8.

Characteristics R? RMSE
Dataset
RG PCTy (%) PCTys5 (%) Ny NUTS AGS NUTS AGS
SS1 [1, 5] 0.0 100.0 252  0.9226 0.8139 0.3198 0.4959
SS2 [0, 5] 21.3 78.8 320 0.5414 0.4567 0.9460 1.0010
SS3 1, 10 0.0 71.2 288 0.9625 0.9421 0.4478 0.5564
SS4 0, 10 10.0 64.1 320 0.6461 0.6480 1.4805 1.4764
SS5 1,15 0.0 57.3 307 0.9766 0.9732 0.5715 0.6113
SS6 0, 15 4.1 55.0 320 0.9641 0.9538 0.7225 0.8193
SS7 1, 20 0.0 47.0 319 0.9822 0.9819 0.6639 0.6708
SS8 0, 20 3.1 46.9 320 0.9691 0.9642 0.8774 0.9446
SS9 1, 30 0.0 32.2 314 0.9723 0.9767 1.3059 1.1979
SS10 0, 30 1.9 31.6 320 09525 0.9563 1.7246 1.6556

4. Conclusions

This research proposes a scalable approximate Gibbs sampling algorithm for the
HBPRM for grouped count data. Our algorithm builds on the approximation of data-
likelihood with Gaussian distribution such that the conditional posterior for coeffi-
cients have a close-form solution. Empirical examples using synthetic and real datasets
demonstrate that the proposed algorithm outperforms the state-of-the-art sampling
algorithm, NUTS, in inference efficiency. The improvement in efficiency is greater for
larger datasets, suggesting improved scalability. Due in part to the Gibbs updates, the
AGS trades off greater accuracy for slower mixing Markov chains, leading to a much
lower effective sample size and therefore lower sampling efficiency. However, when sam-
pling time is of great concern to model users (e.g. predicting incidents and demands
to allocate resources during a disaster), AGS would be the only feasible option. As
the approximation quality improves with larger counts, our algorithm works better
for count datasets in which the counts are large. When a large portion of counts in a
dataset are zero or very small counts, then NUTS tend to outperform AGS in infer-
ence accuracy. Therefore, when there are zero counts and inference accuracy is critical,
NUTS is recommended over AGS.

It is worth noting that the approximate conditional distributions of the parameters
in the HBPRMSs for grouped count data may not be compatible with each other, i.e.,
there may not exist an implicit joint posterior distribution [17,45] after applying the
approximation. However, despite potentially incompatible conditional distributions,
the use of such approximate MCMC samplers is suggested due to the computational
efficiency and analytical convenience [18,45], especially when the efficiency improve-
ment outweighs the bias introduced by approximation [17].

Future work can explore scalable inference in hierarchical Bayesian models for data
with excessive zeros [46—48| as the Poisson regression model is not appropriate for
zero-inflated count data.
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5. Appendices
Appendix A. Derivation of the approximate conditional posterior

Derivation of the approximate posterior distribution in the posterior distribution is
presented below. Terms that do not impact wj;, are regarded as a constant, i.e. C;
(1 =1,...,5) in the following equations.

The conditional posterior of regression coefficient wj; can be written as

2
K
( g TijkWik + Do TijaWin — Yo (yij)]
Wik — i ' h=1h#k
P (Wik|—) X exp +
(w3el=) —207} ; —2¢1 (yi5)
(A1)
Let A be the exponent in Eq. (A1) and expand the square terms, then we have
2
K
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Dividing the numerator and denominator by the coefficient of the quadratic term, we
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Therefore, we obtain the mean and variance of the the approximate Gaussian posterior
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Appendix B. Metrics used for comparing samplers

e Effective sample size (Tef)

For each scalar estimand v, the simulations/samples are labeled as v;; (i =

L...,nij=1,...,

m) where n is the number of samples in each chain (sequence)

and m is the number of chains. The effective sample size is calculated according to

Ref. [11, Chapter 11]

mn

Neff = ———7 >
1+2 Zt:1 Pt
where the estimated auto-correlations p; are computed as

N
Pt 9 vart
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and T is the first odd positive integer for which pry; + prio is negative. In Eq. (B2),
V4, the variogram at each lag ¢, is given by

Vi = mz Z (Vi — Yi-tj)’, (B3)

_ m _ _\ 2
drt "mnlz S (hav) (B4)

n N2 _ n — m  —
Wheres %Z <¢7,j ) ) wj:%;wlh and 1/) = % Z¢

=1
o R

The R? of generic predicted values 9;,7 = 1,..., N of the dependent variables y;,7 =

1,..., N is expressed as
N A~
R iz —9)? (85)
S (i - 9)?
where ¢ is the average value of y;,i =1,..., N.
e RMSE

The RMSE of predicted values is given by RMSE =

21



