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Abstract— Recent studies on quadruped robots have focused
on either locomotion or mobile manipulation using a robotic
arm. However, legged robots can manipulate large objects using
non-prehensile manipulation primitives, such as planar pushing,
to drive the object to the desired location. This paper presents a
novel hierarchical model predictive control (MPC) for contact
optimization of the manipulation task. Using two cascading
MPCs, we split the loco-manipulation problem into two parts:
the first to optimize both contact force and contact location
between the robot and the object, and the second to regulate
the desired interaction force through the robot locomotion.
Our method is successfully validated in both simulation and
hardware experiments. While the baseline locomotion MPC
fails to follow the desired trajectory of the object, our proposed
approach can effectively control both object’s position and
orientation with minimal tracking error. This capability also
allows us to perform obstacle avoidance for both the robot and
the object during the loco-manipulation task.

I. INTRODUCTION

Legged robots have great potential to interact with the

environment and have demonstrated significant performance

for locomotion, such as high-speed running and robust

walking on challenging terrains [1], [2], [3], [4], [5], [6],

[7], [8]. Nevertheless, with the existing control and planning

algorithms, most applications for quadruped robots focus on

navigation and inspection, which always try to avoid ob-

jects/obstacles even if they are movable [9], [10], [11]. In this

paper, we are interested in leveraging legged robots’ agile

mobility and their capability to interact with the environment

to manipulate a heavy object during locomotion.

In mobile manipulation, robots can exhibit different modes

of interaction with the object. For example, mobile robots

equipped with a robotic arm [12], [13], [14], [15], [16], [17]

can enable basic manipulation tasks such as door opening,

pick-and-place, and load carrying. However, such setups are

limited to small and light payloads due to the force limit of

the robot arm and gripper’s size. For legged robots, manipu-

lation with their feet is also an intriguing idea as quadrupedal

animals can use their legs or limbs for manipulation[18],

[19]. However, this setup is highly challenging for loco-

manipulation tasks with quadruped robots since it requires

them to move and manipulate the object simultaneously,

drastically decreasing their ability to balance. Therefore,

this paper tackles the problem of loco-manipulation for
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Fig. 1: Motion snapshots of Unitree A1 robot manipulating a 5 kg object to
follow a circular trajectory. Supplemental video: https://youtu.be/
amzgE4-Yrig

quadruped robots using a planar pushing motion. For large

and heavy objects, non-prehensile manipulation, such as

pushing, offers tremendous advantages. When the object is

too large or heavy to grasp, pushing using the whole body

becomes one of the few options to manipulate it effectively.

In addition, this method also allows quadruped robots to

manipulate objects without adding a heavy robotic arm.

Pushing is a widely used motion primitive and has been

thoroughly studied by the manipulation community. The

mechanics of planar pushing is well-studied in [20], [21],

[22]. Motion planning algorithms are introduced in [23],

[24] to find open-loop trajectories to drive the object to the

target pose. These approaches rely on the assumption that the

manipulator always sticks with the object for the entirety of

the push. To handle the complexity associated with frictional

contact interactions, motion planning algorithms developed

by the robotic manipulation community manage to handle

different mode sequences [25], [26], [27]. Nevertheless, these

approaches are computationally heavy due to the nonlinear

and non-convex optimization programs. A recent work, in

[28], proposes a real-time controller to reason across different

contact modes, including sticking and sliding, using an online

approximation for the offline mix-integer program.

The recent developments on model predictive control

(MPC) for legged robot locomotion in [1], [16], [29] suggest

that optimal control action can be computed online given

a proper contact schedule. However, these works mainly

focus on locomotion. To simultaneously achieve locomotion

and manipulation tasks, we propose a novel hierarchical

MPC framework including (1) high-level manipulation MPC

to optimize for both contact force and contact location of20
23
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Fig. 2: Control architecture of the proposed framework for non-prehensile
loco-manipulation

the manipulation task; and (2) low-level loco-manipulation

MPC to regulate the interaction force between the robot

and the object while maintaining the desired locomotion

performance. Both MPC problems are solved effectively in

real-time and allow us to consider the problem’s physical

constraints, such as limits on the interaction force and contact

location of the robot head on the object surface. Numerical

and experimental validation has shown that our approach

outperforms locomotion MPC or heuristic approach for loco-

manipulation. Thanks to the capability of optimizing contact

location and interaction force simultaneously, our approach

can allow legged robots to manipulate heavy objects effec-

tively with highly accurate position and orientation tracking.

Thus, this enables the execution of collision-free trajectory

for both the robot and the object.

The rest of the paper is organized as follows. Section II

introduces the pushing configuration for the robot and object

system and presents the proposed control architecture and

the two MPC in detail. Then, Section III shows simulation

and hardware experiments results. Finally, Section IV draws

conclusion remarks.

II. PROPOSED FRAMEWORK

A. System Overview

This paper investigates the pushing task of an arbitrary

object along a planned trajectory in the x and y world frame

positions and the yaw angle È. We assume that we have

knowledge of all the geometric and inertial properties of

the pushed object and that we can obtain feedback on its

center of mass position and yaw angle. Our configuration

involves the robot pushing on a predetermined object surface

while being able to adjust the contact location. This enables

the robot to push the object forward while changing its

orientation to follow the desired trajectory. To address the

complexity of the loco-manipulation problem, we propose

a hierarchical control structure as illustrated in Fig 2. First,

the contact optimizer MPC is used to compute the required

control input, i.e., contact force and contact point on the

object surface, to drive the manipulated object to the desired

states. Then, the loco-manipulation MPC is used to regulate

the desired interaction force and contact location to track the

planned trajectory for the object-robot system based on the

output of the contact optimizer MPC. The two MPCs use

the same prediction horizon, so the predicted values for the

contact interaction by the contact optimizer MPC are used

as inputs for the loco-manipulation MPC. The integration

between the two MPCs gives us a unified control framework

to solve the loco-manipulation problem, allowing us to

drive the manipulated object to the desired location while

maintaining robot balance. The other component of the high-

level control, the swing leg controller, tracks the position of

the swing legs based on a heuristic policy. Moreover, based

on a predefined contact schedule, the gait generator assigns

a boolean variable representing either stance or swing phase

to each leg. More details about the last two components

can be found in [1]. Having presented the overview of our

approach, we now introduce the contact optimizer and loco-

manipulation MPC in detail.

B. Contact Optimizer MPC

This first controller uses a simplified model of manipu-

lated object dynamics. In this paper, we are interested in

controlling the object’s position and yaw angle. Therefore

we can use the following simplified 2D rigid body dynamics

equations under the effect of friction forces:

mp̈obj = fµ + fc (1)

IzÉ̇z = fc × d (2)

where pobj represents the position of the object in the world

frame, fµ is the frictional force between the object and

ground, fc is the contact force applied to the object by the

robot in world frame, Iz and Éz are the moment of inertia and

angular velocity of the object in the vertical direction with

respect to its center of mass, and d is the vector between the

contact point and object center of mass in world frame. If we

consider the contact force and the contact point as control

variables for the problem, the previous set of equations is

nonlinear. To linearize these equations and use them as model

dynamics in a linear MPC, we can make certain assumptions.

The first one consists of a small enough MPC frequency

update so that we can consider that the contact force will only

vary by a small amount between iterations. As a result, we

can use the known value of force computed at the previous

controller update, fc0 , as the contact force in equation (2).

Moreover, we can simplify the definition of the contact point

d by assuming that the contact force fc always acts in the

direction perpendicular to the object’s surface. Under this

assumption, the contact point d is defined as the distance

from the object’s center of mass to the surface’s normal

direction, as illustrated in Fig. 3. With these assumptions,

equations (2) become linear and can be used to represent the

object dynamics in the state space form:

ẋ = Ax+Bu (3)
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Fig. 3: Object-robot system overview and representation of the offset
trajectory derived from the contact point optimization. d0 is the contact
point location at the current time instant, while d1, d2, ... are the contact
location to offset the trajectory from the contact optimizer MPC.

where x =
[

È x y Éz ẋ ẏ g
]

, u =
[

fc d
]

, and

the matrices are

A =













03×3 I3×3 03×1

03×3 03×3





0
−µ

−µ





01×3 01×3 0













, B =













03×2




fc0 0
0 cosÈ
0 sinÈ





01×2













.

(4)

Here we assumed that the frictional force fµ is expressed

as −µmg for both x and y directions, the body frame contact

force fc can be expressed in world frame using a rotation

matrix Rψ ∈ R
2, and fc0 is the contact force computed at

the previous controller update.

After discretizing the dynamics model equations, we use

a classic quadratic programming (QP) formulation to solve

the MPC problem with N horizons. The cost function

min
x,u

N
∑

i=1

(xi+1−xi+1ref
)TQ(xi+1−xi+1ref

)+uTi Rui, (5)

is minimized to reduce the difference between the object’s

current and reference states and the control effort, with

diagonal weight matrices Q and R for the states and inputs.

The MPC controller determines the optimal contact force fc
and contact point d by considering inequality constraints on

d and fc, represented as:

dmin < d < dmax (6)

0 < fc < Fmax (7)

The first constraint ensures that the contact point remains

within the limits of the object’s dimension, while the second

constraint ensures that contact is maintained and the pushing

action is stable, without requiring an instantaneous force,

Fmax, that is too large to affect the locomotion’s stability.

The optimized result of this MPC has two impacts on

the loco-manipulation MPC, which are discussed in the

following section.

C. Loco-manipulation MPC

To effectively regulate the desired contact force fc and

contact location d derived from the contact optimizer MPC

in Section II-B, we present a unified loco-manipulation MPC

that takes into account these two variables in the control

design. In comparison with the locomotion MPC [1], the

following are the main developments of our framework for

loco-manipulation.

• Our loco-manipulation MPC considers the interaction

force fc between the robot and the object in the robot

dynamics. Therefore, it can regulate the desired manip-

ulation force while maintaining desired performance for

locomotion.

• The reference trajectory of the robot locomotion is

also automatically updated based on the desired contact

location d as well as real-time feedback of the object

state.

The modified single rigid body dynamics (SRBD) equa-

tions used for MPC are presented as follows:

mp̈ =

4
∑

i=1

fi − fg − fc, (8)

d

dt
IÉ =

4
∑

i=1

(ri − p)× fi. (9)

In these equations, p and ri represent the body position and

foot position of the robot in the world frame, respectively.

I and É are the rotational inertia matrix of the robot

body and its angular velocity expressed in the body frame.

Additionally, fi, fg , and fc denote the vectors for reaction

forces, gravitational forces, and contact force with the object,

expressed in the world frame. We assume that the contact

force fc always acts in the longitudinal direction of the

robot body frame. Since we approximate the contact location

as the center of the robot head, the contact force passes

through the robot’s center of mass and does not affect

the rotational dynamics of the robot. This assumption is

reasonable with the geometric configuration of the robot

used both in simulation and experiments. Furthermore, we

use the SRBD equations with the additional assumption that

the contribution of the leg joints to the robot dynamics is

negligible.

These equations are discretized and used in an MPC

formulation with N horizons and a prediction horizon rep-

resenting an entire gait cycle. The MPC is formulated as

a quadratic program (QP) that can efficiently be solved in

real-time. The cost function for the MPC problem is similar

to (5). However, in this case, x represents the states of the

robot body, and u represents the reaction forces on the four

feet.

The second deviation from a conventional MPC for legged

robots is related to the definition of the reference states. In

our approach, we start with the nominal reference trajectory

for the object-robot system and modify it by incorporating

the contact point d computed by the contact optimizer MPC.

The changes to the reference trajectory occur only in the

x−y plane trajectory, as depicted in Fig 3. We use the same

prediction horizon for both MPCs and adjust the trajectory

by the optimal distance di for each horizon. Additionally, we
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Fig. 4: Comparison of box’s x− y plane position and yaw angle following
a straight line trajectory for the three controllers. Results obtained in
simulation pushing a box of mass m = 5 kg and coefficient of friction
µ = 0.5.

set the desired yaw angle of the robot to be equal to the yaw

angle of the box. As the position gains in the cost function’s

Q⃗ matrix plays a crucial role in tracking the contact point’s

location, we set them to a relatively high value.

III. RESULTS

This section presents the validation and results of simu-

lation and hardware experiments using a Unitree A1 robot.

For simplification purposes, we show results using a box of

mass m and known dimensions, but as we showed in the

previous section, the proposed framework is generalizable to

an arbitrary object.

A. Simulation

The Matlab Simscape Multibody package is utilized in

the simulation, which enables the representation of the

interactions among the robot, object, and ground plane. Both

MPCs have a prediction horizon of 30 ms and a sampling

frequency of 3 ms, resulting in ten horizons consistent with

the baseline locomotion controllers. The loco-manipulation

MPC takes the predicted optimal contact force and contact

point distance for all ten horizons as inputs. The mass of the

box is 5 kg, and the coefficient of friction between the box

and the ground is 0.5.

First, we present the comparison in performing two tasks

between 3 types of controllers:

• Baseline locomotion MPC with a fixed contact location.

• Locomotion MPC + a heuristic policy to adjust the

contact location

Fig. 5: Tracking of the box velocity with step changes every 2 seconds to
the desired velocity. Results obtained in simulation pushing a box of mass
m = 5 kg and coefficient of friction µ = 0.5.

• Our proposed controller using hierarchical MPC to

optimize for both contact force and contact location.

To better emphasize the advantage of our proposed ap-

proach with contact optimization, we also investigate a

heuristic policy to adjust the contact location to allow the

robot to control the yaw motion of the object. The heuristic

policy commands a positive or negative lateral velocity, in the

robot frame, based on the yaw angle direction, to properly

change the contact point and adjust the box direction of

motion, as follows:

vy = vdesy sign(Èbox − Ètarget) (10)

where Èbox is the yaw angle of the box, Ètarget is the yaw

angle from the current box position to the target, and vdesy is

a constant desired lateral velocity in the robot’s body frame.

With this policy, the robot tries to align the box orientation

to face the target. Still, unlike our proposed approach, the

robot could fail the task by losing contact with the box since

there is no constraint to keep the contact within limits.

The first task is reaching the desired target location fol-

lowing a straight line. The results are presented in Fig. 4.

Here, we can see that the baseline locomotion MPC fails,

while the other two approaches can reach the target. On the

contrary, only the proposed approach can keep the robot in a

straight line toward the target, thanks to the optimized contact

point location updating in real-time based on the dynamics

of the box. Moreover, in Fig. 5, we can see that the proposed

controller can effectively track sudden changes in the desired

velocity for the object-robot system, thanks to the optimal

values of contact force computed in the contact optimizer

MPC.

The next task consists in reaching the desired target while

following a curved trajectory, in this case, one-quarter of

a circle. The baseline locomotion MPC immediately fails,

losing contact with the box since there is no policy to

adjust the contact point location. With this task, we can

highlight the difference between a controller that considers

the manipulated object dynamics and adjusts its action in real

time and a simple policy for changing the pushing contact

Authorized licensed use limited to: University of Southern California. Downloaded on August 20,2024 at 00:04:27 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 6: Comparison of box’s x− y plane position and yaw angle following
a quarter circle trajectory for the three controllers. Results obtained in
simulation pushing a box of mass m = 5 kg and coefficient of friction
µ = 0.5.

point. Fig. 6 shows the results for this task, and we can see

that, while both controllers can accomplish the task, only

our proposed approach can successfully follow the desired

trajectory. This occurs because the heuristic controller is

limited to tracking only the box’s yaw angle while the robot

pushes it forward to reach the target. Instead, our proposed

approach shows that it can dynamically change contact points

to adjust the box position and orientation, always maintaining

the contact location within limits.

One real-world scenario where our proposed controller can

be applied is pushing an object through a path while avoiding

environmental obstacles. The obstacle avoidance policy is

not the focus of this paper, and we can assume the desired

trajectory is already collision-free. With the following plots,

we want to show the capability of following sharp changes

in the direction of motion, typically occurring in obstacle

avoidance. Fig 7 shows our controller’s ability to change the

contact point to react quickly to sharp changes in desired yaw

angle, unlike the other two controllers that fail by colliding

with the obstacles. One limitation of our approach is that

the desired forward velocity must be tuned down during the

turns to facilitate the motion. While during straight pushing,

we can track velocity larger than 0.5 m/s, during a sharp

turn, we have to limit it to 0.1 m/s.

Fig. 7: Following a collision-free trajectory in an obstacle avoidance
scenario. Box’s x− y plane position and yaw angle are shown.

B. Hardware Experiments

We validate our proposed approach for hardware experi-

ments using a Unitree A1 robot with a low-friction head to

avoid sticking between the head and the box surface. The

box mass we use in experiments is 5 kg, and we assume a

coefficient of friction of 0.2 between the box surface and the

ground. The width of the surface where the robot is pushing

is 0.25 m, which translated into a constraint on the contact

location of the robot head, such that its position is within the

range of -0.08 m and 0.08 m from the center of the box. The

yaw angle and position feedback for both robot and box are

obtained using an Optitrack motion capture system (MoCap).

Due to the high precision required to follow the optimal

contact point on the box, we could not rely consistently

on the robot’s internal state estimation, which demonstrated

drift in position estimation. The MoCap system comprises

6 Optitrack PrimeX 13W, for improved tracking of ground

objects, with a tracking frequency of 100Hz. The trackable

surface area by the MoCap for the hardware experiments is

2 meters by 2 meters.

The first task is to follow a straight line and maintain

a constant yaw angle, similar to the simulation results

presented in Fig. 4. In the experimental results presented in

Fig. 8, the controller effectively corrects the box’s direction

to keep it on the desired trajectory, even in the presence of

model uncertainties such as values of the friction coefficient

and box inertia. From (c), we can see that the optimized

contact location remains within the boundaries imposed by

Authorized licensed use limited to: University of Southern California. Downloaded on August 20,2024 at 00:04:27 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 8: Straight line experiment results. a) Pushed box yaw angle; b) Pushed
box trajectory; c) Optimized contact location. Origin at the center of the
box’s surface; d) Optimized contact force.

the dimensions of the box, thanks to the constraints enforced

by the contact optimizer MPC. Furthermore, the optimized

contact location varies appropriately to track the desired

yaw angle. The MPC formulation ensures that the optimized

contact force (in (d)) is higher during the initial phase when

the box needs to accelerate to the desired velocity and then

settles to a steady-state value required to maintain the desired

speed against the friction force acting on the box.

The second task is to maintain a constant yaw rate and

velocity for the box. The results are shown in Fig. 9. We

can see that the controller is able to track both the yaw

rate and the velocity of the box after an initial settling

period where the box needs to be accelerated. To follow

the desired yaw rate, the contact optimizer MPC saturates

the contact location to the maximum value imposed by the

box dimensions. This means we are tracking the maximum

yaw rate and that, in case we would command a higher yaw

rate, the robot would still keep the contact location within

limits thanks to the constraints in the MPC formulation.

Considering the results from both tasks, we have shown that

thanks to the hierarchical structure of our approach, we can

effectively track the yaw angle, yaw rate, and velocity of the

box while maintaining stable locomotion under the effect of

the interaction forces between the robot and the box.

Fig. 9: Constant yaw rate experiment results. a) Pushed box yaw rate; b)
Pushed box velocity; c) Optimized contact location. Origin at the center of
the box’s surface; d) Optimized contact force.

IV. CONCLUSIONS

To solve the challenging problem of body loco-

manipulation, we have presented a practical approach with a

hierarchical structure comprising two MPCs. The nonlinear

nature of the problem is simplified through this hierarchi-

cal structure. Our approach’s effectiveness is demonstrated

using numerical and experimental validations. Our proposed

method outperforms other controllers in simulation by im-

proving the loco-manipulation problem due to contact point

location and contact force optimization. This feature enables

the robot to follow diverse trajectories with changes in veloc-

ity and sharp turns, making it applicable in many scenarios.

Because of the imposed constraints on the manipulation

problem, we can ensure that the robot is always in contact

with the box and never exceeds the object’s dimensions.

In experiments, we have replicated the results obtained in

simulation, showing the successful implementation of contact

optimization. Furthermore, we showed our approach can

effectively push a box of 5 kg, accounting for 50% of the

robot mass. In the future, we plan to extend our framework

to consider online obstacle avoidance, enabling the robot to

navigate an environment with obstacles while pushing an

object.
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