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Abstract— Recent studies on quadruped robots have focused
on either locomotion or mobile manipulation using a robotic
arm. However, legged robots can manipulate large objects using
non-prehensile manipulation primitives, such as planar pushing,
to drive the object to the desired location. This paper presents a
novel hierarchical model predictive control (MPC) for contact
optimization of the manipulation task. Using two cascading
MPCs, we split the loco-manipulation problem into two parts:
the first to optimize both contact force and contact location
between the robot and the object, and the second to regulate
the desired interaction force through the robot locomotion.
Our method is successfully validated in both simulation and
hardware experiments. While the baseline locomotion MPC
fails to follow the desired trajectory of the object, our proposed
approach can effectively control both object’s position and
orientation with minimal tracking error. This capability also
allows us to perform obstacle avoidance for both the robot and
the object during the loco-manipulation task.

[. INTRODUCTION

Legged robots have great potential to interact with the
environment and have demonstrated significant performance
for locomotion, such as high-speed running and robust
walking on challenging terrains [1], [2], [3], [4], [S], [6],
[7], [8]. Nevertheless, with the existing control and planning
algorithms, most applications for quadruped robots focus on
navigation and inspection, which always try to avoid ob-
jects/obstacles even if they are movable [9], [10], [11]. In this
paper, we are interested in leveraging legged robots’ agile
mobility and their capability to interact with the environment
to manipulate a heavy object during locomotion.

In mobile manipulation, robots can exhibit different modes
of interaction with the object. For example, mobile robots
equipped with a robotic arm [12], [13], [14], [15], [16], [17]
can enable basic manipulation tasks such as door opening,
pick-and-place, and load carrying. However, such setups are
limited to small and light payloads due to the force limit of
the robot arm and gripper’s size. For legged robots, manipu-
lation with their feet is also an intriguing idea as quadrupedal
animals can use their legs or limbs for manipulation[18],
[19]. However, this setup is highly challenging for loco-
manipulation tasks with quadruped robots since it requires
them to move and manipulate the object simultaneously,
drastically decreasing their ability to balance. Therefore,
this paper tackles the problem of loco-manipulation for
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Fig. 1: Motion snapshots of Unitree Al robot manipulating a 5 kg object to
follow a circular trajectory. Supplemental video: https://youtu.be/
amzgE4-Yrig

quadruped robots using a planar pushing motion. For large
and heavy objects, non-prehensile manipulation, such as
pushing, offers tremendous advantages. When the object is
too large or heavy to grasp, pushing using the whole body
becomes one of the few options to manipulate it effectively.
In addition, this method also allows quadruped robots to
manipulate objects without adding a heavy robotic arm.
Pushing is a widely used motion primitive and has been
thoroughly studied by the manipulation community. The
mechanics of planar pushing is well-studied in [20], [21],
[22]. Motion planning algorithms are introduced in [23],
[24] to find open-loop trajectories to drive the object to the
target pose. These approaches rely on the assumption that the
manipulator always sticks with the object for the entirety of
the push. To handle the complexity associated with frictional
contact interactions, motion planning algorithms developed
by the robotic manipulation community manage to handle
different mode sequences [25], [26], [27]. Nevertheless, these
approaches are computationally heavy due to the nonlinear
and non-convex optimization programs. A recent work, in
[28], proposes a real-time controller to reason across different
contact modes, including sticking and sliding, using an online
approximation for the offline mix-integer program.

The recent developments on model predictive control
(MPC) for legged robot locomotion in [1], [16], [29] suggest
that optimal control action can be computed online given
a proper contact schedule. However, these works mainly
focus on locomotion. To simultaneously achieve locomotion
and manipulation tasks, we propose a novel hierarchical
MPC framework including (1) high-level manipulation MPC
to optimize for both contact force and contact location of
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Fig. 2: Control architecture of the proposed framework for non-prehensile
loco-manipulation

the manipulation task; and (2) low-level loco-manipulation
MPC to regulate the interaction force between the robot
and the object while maintaining the desired locomotion
performance. Both MPC problems are solved effectively in
real-time and allow us to consider the problem’s physical
constraints, such as limits on the interaction force and contact
location of the robot head on the object surface. Numerical
and experimental validation has shown that our approach
outperforms locomotion MPC or heuristic approach for loco-
manipulation. Thanks to the capability of optimizing contact
location and interaction force simultaneously, our approach
can allow legged robots to manipulate heavy objects effec-
tively with highly accurate position and orientation tracking.
Thus, this enables the execution of collision-free trajectory
for both the robot and the object.

The rest of the paper is organized as follows. Section II
introduces the pushing configuration for the robot and object
system and presents the proposed control architecture and
the two MPC in detail. Then, Section III shows simulation
and hardware experiments results. Finally, Section IV draws
conclusion remarks.

II. PROPOSED FRAMEWORK
A. System Overview

This paper investigates the pushing task of an arbitrary
object along a planned trajectory in the = and y world frame
positions and the yaw angle ¢. We assume that we have
knowledge of all the geometric and inertial properties of
the pushed object and that we can obtain feedback on its
center of mass position and yaw angle. Our configuration
involves the robot pushing on a predetermined object surface
while being able to adjust the contact location. This enables
the robot to push the object forward while changing its
orientation to follow the desired trajectory. To address the
complexity of the loco-manipulation problem, we propose
a hierarchical control structure as illustrated in Fig 2. First,
the contact optimizer MPC is used to compute the required
control input, i.e., contact force and contact point on the
object surface, to drive the manipulated object to the desired
states. Then, the loco-manipulation MPC is used to regulate
the desired interaction force and contact location to track the

planned trajectory for the object-robot system based on the
output of the contact optimizer MPC. The two MPCs use
the same prediction horizon, so the predicted values for the
contact interaction by the contact optimizer MPC are used
as inputs for the loco-manipulation MPC. The integration
between the two MPCs gives us a unified control framework
to solve the loco-manipulation problem, allowing us to
drive the manipulated object to the desired location while
maintaining robot balance. The other component of the high-
level control, the swing leg controller, tracks the position of
the swing legs based on a heuristic policy. Moreover, based
on a predefined contact schedule, the gait generator assigns
a boolean variable representing either stance or swing phase
to each leg. More details about the last two components
can be found in [1]. Having presented the overview of our
approach, we now introduce the contact optimizer and loco-
manipulation MPC in detail.

B. Contact Optimizer MPC

This first controller uses a simplified model of manipu-
lated object dynamics. In this paper, we are interested in
controlling the object’s position and yaw angle. Therefore
we can use the following simplified 2D rigid body dynamics
equations under the effect of friction forces:

mf)obj = fp, + fc (1)
Lo, =f. xd @)

where p.p; represents the position of the object in the world
frame, f,, is the frictional force between the object and
ground, f. is the contact force applied to the object by the
robot in world frame, I, and w, are the moment of inertia and
angular velocity of the object in the vertical direction with
respect to its center of mass, and d is the vector between the
contact point and object center of mass in world frame. If we
consider the contact force and the contact point as control
variables for the problem, the previous set of equations is
nonlinear. To linearize these equations and use them as model
dynamics in a linear MPC, we can make certain assumptions.
The first one consists of a small enough MPC frequency
update so that we can consider that the contact force will only
vary by a small amount between iterations. As a result, we
can use the known value of force computed at the previous
controller update, f,,, as the contact force in equation (2).
Moreover, we can simplify the definition of the contact point
d by assuming that the contact force f, always acts in the
direction perpendicular to the object’s surface. Under this
assumption, the contact point d is defined as the distance
from the object’s center of mass to the surface’s normal
direction, as illustrated in Fig. 3. With these assumptions,
equations (2) become linear and can be used to represent the
object dynamics in the state space form:

%X = Ax + Bu 3)
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Fig. 3: Object-robot system overview and representation of the offset
trajectory derived from the contact point optimization. dg is the contact
point location at the current time instant, while d1,d2, ... are the contact
location to offset the trajectory from the contact optimizer MPC.
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the matrices are
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“)
Here we assumed that the frictional force f, is expressed
as —umyg for both x and y directions, the body frame contact
force f. can be expressed in world frame using a rotation
matrix Ry € R2, and fe, 1s the contact force computed at
the previous controller update.
After discretizing the dynamics model equations, we use
a classic quadratic programming (QP) formulation to solve
the MPC problem with N horizons. The cost function

N
I}clllﬁl Z(Xi-H —Xit1,e; 1T Q(xi41 *Xi+1,ref)+u¢TRuiy )
i=1
is minimized to reduce the difference between the object’s
current and reference states and the control effort, with
diagonal weight matrices () and R for the states and inputs.
The MPC controller determines the optimal contact force f.
and contact point d by considering inequality constraints on
d and f., represented as:

Amin < d < dmaz (6)

The first constraint ensures that the contact point remains
within the limits of the object’s dimension, while the second
constraint ensures that contact is maintained and the pushing
action is stable, without requiring an instantaneous force,
Fiaz, that is too large to affect the locomotion’s stability.
The optimized result of this MPC has two impacts on
the loco-manipulation MPC, which are discussed in the
following section.

C. Loco-manipulation MPC

To effectively regulate the desired contact force f. and
contact location d derived from the contact optimizer MPC

in Section II-B, we present a unified loco-manipulation MPC
that takes into account these two variables in the control
design. In comparison with the locomotion MPC [1], the
following are the main developments of our framework for
loco-manipulation.

e Our loco-manipulation MPC considers the interaction
force f. between the robot and the object in the robot
dynamics. Therefore, it can regulate the desired manip-
ulation force while maintaining desired performance for
locomotion.

o The reference trajectory of the robot locomotion is
also automatically updated based on the desired contact
location d as well as real-time feedback of the object
state.

The modified single rigid body dynamics (SRBD) equa-
tions used for MPC are presented as follows:

4
mp =Y f;—f, — £, ®)
i=1
d 4
Sl = ;m —p) xfi. )

In these equations, p and r; represent the body position and
foot position of the robot in the world frame, respectively.
I and w are the rotational inertia matrix of the robot
body and its angular velocity expressed in the body frame.
Additionally, f;, f;, and f. denote the vectors for reaction
forces, gravitational forces, and contact force with the object,
expressed in the world frame. We assume that the contact
force f. always acts in the longitudinal direction of the
robot body frame. Since we approximate the contact location
as the center of the robot head, the contact force passes
through the robot’s center of mass and does not affect
the rotational dynamics of the robot. This assumption is
reasonable with the geometric configuration of the robot
used both in simulation and experiments. Furthermore, we
use the SRBD equations with the additional assumption that
the contribution of the leg joints to the robot dynamics is
negligible.

These equations are discretized and used in an MPC
formulation with N horizons and a prediction horizon rep-
resenting an entire gait cycle. The MPC is formulated as
a quadratic program (QP) that can efficiently be solved in
real-time. The cost function for the MPC problem is similar
to (5). However, in this case, x represents the states of the
robot body, and u represents the reaction forces on the four
feet.

The second deviation from a conventional MPC for legged
robots is related to the definition of the reference states. In
our approach, we start with the nominal reference trajectory
for the object-robot system and modify it by incorporating
the contact point d computed by the contact optimizer MPC.
The changes to the reference trajectory occur only in the
x —y plane trajectory, as depicted in Fig 3. We use the same
prediction horizon for both MPCs and adjust the trajectory
by the optimal distance d; for each horizon. Additionally, we
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Fig. 4: Comparison of box’s  — y plane position and yaw angle following
a straight line trajectory for the three controllers. Results obtained in
simulation pushing a box of mass m = 5 kg and coefficient of friction
©=0.5.

set the desired yaw angle of the robot to be equal to the yaw
angle of the box. As the position gains in the cost function’s
Q matrix plays a crucial role in tracking the contact point’s
location, we set them to a relatively high value.

III. RESULTS

This section presents the validation and results of simu-
lation and hardware experiments using a Unitree Al robot.
For simplification purposes, we show results using a box of
mass m and known dimensions, but as we showed in the
previous section, the proposed framework is generalizable to
an arbitrary object.

A. Simulation

The Matlab Simscape Multibody package is utilized in
the simulation, which enables the representation of the
interactions among the robot, object, and ground plane. Both
MPCs have a prediction horizon of 30 ms and a sampling
frequency of 3 ms, resulting in ten horizons consistent with
the baseline locomotion controllers. The loco-manipulation
MPC takes the predicted optimal contact force and contact
point distance for all ten horizons as inputs. The mass of the
box is 5 kg, and the coefficient of friction between the box
and the ground is 0.5.

First, we present the comparison in performing two tasks
between 3 types of controllers:

o Baseline locomotion MPC with a fixed contact location.

e Locomotion MPC + a heuristic policy to adjust the

contact location

Reference

1t ——— Proposed approach |
w
~
g
Z 05
>

0

Time (s)

Fig. 5: Tracking of the box velocity with step changes every 2 seconds to
the desired velocity. Results obtained in simulation pushing a box of mass
m =5 kg and coefficient of friction p = 0.5.

e Our proposed controller using hierarchical MPC to
optimize for both contact force and contact location.

To better emphasize the advantage of our proposed ap-
proach with contact optimization, we also investigate a
heuristic policy to adjust the contact location to allow the
robot to control the yaw motion of the object. The heuristic
policy commands a positive or negative lateral velocity, in the
robot frame, based on the yaw angle direction, to properly
change the contact point and adjust the box direction of
motion, as follows:

des

Vy = Uy Sign(wbox - wtarget) (10)

where 1y, is the yaw angle of the box, ¥;4rge is the yaw
des

angle from the current box position to the target, and vy“® is
a constant desired lateral velocity in the robot’s body frame.
With this policy, the robot tries to align the box orientation
to face the target. Still, unlike our proposed approach, the
robot could fail the task by losing contact with the box since
there is no constraint to keep the contact within limits.

The first task is reaching the desired target location fol-
lowing a straight line. The results are presented in Fig. 4.
Here, we can see that the baseline locomotion MPC fails,
while the other two approaches can reach the target. On the
contrary, only the proposed approach can keep the robot in a
straight line toward the target, thanks to the optimized contact
point location updating in real-time based on the dynamics
of the box. Moreover, in Fig. 5, we can see that the proposed
controller can effectively track sudden changes in the desired
velocity for the object-robot system, thanks to the optimal
values of contact force computed in the contact optimizer
MPC.

The next task consists in reaching the desired target while
following a curved trajectory, in this case, one-quarter of
a circle. The baseline locomotion MPC immediately fails,
losing contact with the box since there is no policy to
adjust the contact point location. With this task, we can
highlight the difference between a controller that considers
the manipulated object dynamics and adjusts its action in real
time and a simple policy for changing the pushing contact
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Fig. 6: Comparison of box’s  — y plane position and yaw angle following
a quarter circle trajectory for the three controllers. Results obtained in
simulation pushing a box of mass m = 5 kg and coefficient of friction
n=0.5.

point. Fig. 6 shows the results for this task, and we can see
that, while both controllers can accomplish the task, only
our proposed approach can successfully follow the desired
trajectory. This occurs because the heuristic controller is
limited to tracking only the box’s yaw angle while the robot
pushes it forward to reach the target. Instead, our proposed
approach shows that it can dynamically change contact points
to adjust the box position and orientation, always maintaining
the contact location within limits.

One real-world scenario where our proposed controller can
be applied is pushing an object through a path while avoiding
environmental obstacles. The obstacle avoidance policy is
not the focus of this paper, and we can assume the desired
trajectory is already collision-free. With the following plots,
we want to show the capability of following sharp changes
in the direction of motion, typically occurring in obstacle
avoidance. Fig 7 shows our controller’s ability to change the
contact point to react quickly to sharp changes in desired yaw
angle, unlike the other two controllers that fail by colliding
with the obstacles. One limitation of our approach is that
the desired forward velocity must be tuned down during the
turns to facilitate the motion. While during straight pushing,
we can track velocity larger than 0.5 m/s, during a sharp
turn, we have to limit it to 0.1 m/s.

100
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= 0
=
-100
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Time (s)
3l
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9| —— MPC + Heuristic policy
——— Proposed approach
6
Qb;

Fig. 7: Following a collision-free trajectory in an obstacle avoidance
scenario. Box’s © — y plane position and yaw angle are shown.

B. Hardware Experiments

We validate our proposed approach for hardware experi-
ments using a Unitree Al robot with a low-friction head to
avoid sticking between the head and the box surface. The
box mass we use in experiments is 5 kg, and we assume a
coefficient of friction of 0.2 between the box surface and the
ground. The width of the surface where the robot is pushing
is 0.25 m, which translated into a constraint on the contact
location of the robot head, such that its position is within the
range of -0.08 m and 0.08 m from the center of the box. The
yaw angle and position feedback for both robot and box are
obtained using an Optitrack motion capture system (MoCap).
Due to the high precision required to follow the optimal
contact point on the box, we could not rely consistently
on the robot’s internal state estimation, which demonstrated
drift in position estimation. The MoCap system comprises
6 Optitrack Prime”™ 13W, for improved tracking of ground
objects, with a tracking frequency of 100Hz. The trackable
surface area by the MoCap for the hardware experiments is
2 meters by 2 meters.

The first task is to follow a straight line and maintain
a constant yaw angle, similar to the simulation results
presented in Fig. 4. In the experimental results presented in
Fig. 8, the controller effectively corrects the box’s direction
to keep it on the desired trajectory, even in the presence of
model uncertainties such as values of the friction coefficient
and box inertia. From (c), we can see that the optimized
contact location remains within the boundaries imposed by
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Fig. 8: Straight line experiment results. a) Pushed box yaw angle; b) Pushed
box trajectory; ¢) Optimized contact location. Origin at the center of the
box’s surface; d) Optimized contact force.

the dimensions of the box, thanks to the constraints enforced
by the contact optimizer MPC. Furthermore, the optimized
contact location varies appropriately to track the desired
yaw angle. The MPC formulation ensures that the optimized
contact force (in (d)) is higher during the initial phase when
the box needs to accelerate to the desired velocity and then
settles to a steady-state value required to maintain the desired
speed against the friction force acting on the box.

The second task is to maintain a constant yaw rate and
velocity for the box. The results are shown in Fig. 9. We
can see that the controller is able to track both the yaw
rate and the velocity of the box after an initial settling
period where the box needs to be accelerated. To follow
the desired yaw rate, the contact optimizer MPC saturates
the contact location to the maximum value imposed by the
box dimensions. This means we are tracking the maximum
yaw rate and that, in case we would command a higher yaw
rate, the robot would still keep the contact location within
limits thanks to the constraints in the MPC formulation.
Considering the results from both tasks, we have shown that
thanks to the hierarchical structure of our approach, we can
effectively track the yaw angle, yaw rate, and velocity of the
box while maintaining stable locomotion under the effect of
the interaction forces between the robot and the box.
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Fig. 9: Constant yaw rate experiment results. a) Pushed box yaw rate; b)
Pushed box velocity; c) Optimized contact location. Origin at the center of
the box’s surface; d) Optimized contact force.

IV. CONCLUSIONS

To solve the challenging problem of body loco-
manipulation, we have presented a practical approach with a
hierarchical structure comprising two MPCs. The nonlinear
nature of the problem is simplified through this hierarchi-
cal structure. Our approach’s effectiveness is demonstrated
using numerical and experimental validations. Our proposed
method outperforms other controllers in simulation by im-
proving the loco-manipulation problem due to contact point
location and contact force optimization. This feature enables
the robot to follow diverse trajectories with changes in veloc-
ity and sharp turns, making it applicable in many scenarios.
Because of the imposed constraints on the manipulation
problem, we can ensure that the robot is always in contact
with the box and never exceeds the object’s dimensions.
In experiments, we have replicated the results obtained in
simulation, showing the successful implementation of contact
optimization. Furthermore, we showed our approach can
effectively push a box of 5 kg, accounting for 50% of the
robot mass. In the future, we plan to extend our framework
to consider online obstacle avoidance, enabling the robot to
navigate an environment with obstacles while pushing an
object.
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