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Abstract— Legged robots have shown remarkable advantages
in navigating uneven terrain. However, realizing effective loco-
motion and manipulation tasks on quadruped robots is still
challenging. In addition, object and terrain parameters are
generally unknown to the robot in these problems. Therefore,
this paper proposes a hierarchical adaptive control framework
that enables legged robots to perform loco-manipulation tasks
without any given assumption on the object’s mass, the friction
coefficient, or the slope of the terrain. In our approach, we
first present an adaptive manipulation control to regulate the
contact force to manipulate an unknown object on unknown
terrain. We then introduce a unified model predictive control
(MPC) for loco-manipulation that takes into account the
manipulation force in our robot dynamics. The proposed MPC
framework thus can effectively regulate the interaction force
between the robot and the object while keeping the robot
balance. Experimental validation of our proposed approach
is successfully conducted on a Unitree A1 robot, allowing
it to manipulate an unknown time-varying load up to 7 kg
(60% of the robot’s weight). Moreover, our framework enables
fast adaptation to unknown slopes or different surfaces with
different friction coefficients.

I. INTRODUCTION

With a significant advantage in navigating rough terrain,

legged robots can be suitable for applications in disaster

rescue, the construction industry, last-mile delivery, or lo-

gistics. Such applications also require the capability of ma-

nipulating heavy packages. There have also been successful

mobile manipulation platforms using quadruped robots (e.g.,

ANYmal quadruped with an arm [2], [16], [5] and Spot mini

with an arm [22]). For a quadruped robot with a mounted

robotic arm, an MPC approach is introduced in [16] to

simultaneously control locomotion and manipulation (called

loco-manipulation). Instead of using a robotic arm, legged

robots could also leverage the use of their body [15] and legs

[13], [20] to perform manipulation tasks. These approaches,

however, are limited by the payload capacity of the robot

arm. In this paper, we are interested in leveraging the robot’s

body and locomotion to manipulate a heavy object.

A recent work [21] employs multiple quadruped robots

for towing a load with cables to reach a target while

avoiding obstacles. In this work, as well as in manipulation

in general, the controller often requires prior knowledge

of the manipulated object and terrain, such as the object’s

mass and friction coefficient. However, in many practical

applications, the parameters of the manipulated object are

generally unknown, and the robot should be able to adapt to
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Fig. 1: Unitree A1 robot manipulating an unknown object

of 5 kg on an unknown high-sloped terrain. Experimental

results: https://youtu.be/-EvSmJRrMFI.

a wide variety of objects. Some previous work has applied

adaptive control for collaborative manipulation in mobile

robots without any assumption on the object’s mass. They

have developed centralized controllers [9], [11] as well as

decentralized controllers [12], [19], [3], [6]. Nevertheless,

in these works, it is assumed that the object is attached

rigidly to the robots during the manipulation task. Moreover,

measurement of manipulators’ relative positions from the

center of mass is sometimes required [14].

The recent development of the model predictive control

(MPC) for legged robots [4], [10] enables robust locomotion

control with various gaits. Thanks to the capability of

addressing dynamic constraints associated with friction, an

MPC-based approach has also been implemented for robotic

manipulators [8]. In our proposed approach, we develop a

unified MPC framework to leverage robot locomotion to

effectively manipulate a heavy object without losing robot

balance. In addition, our method can adapt to a wide variety

of unknown objects and terrain properties. Our previous

work [18] incorporated adaptive control into the force-based

control framework to adapt to significant model uncertainty

for legged locomotion. In this paper, we introduce a hi-

erarchical adaptive control approach in combination with

MPC to realize effective loco-manipulation under significant

model uncertainty of object dynamics and terrain parameters.

To the best of our knowledge, we are the first to approach

solving the loco-manipulation task for quadruped robots

without prior information about the manipulated object.

In our approach, we first introduce an adaptive control20
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scheme to generate the interaction forces for the manip-

ulation tasks. The controller will drive the object to fol-

low the desired trajectory even under significant model

uncertainty. Then, we will integrate the interaction force

as the manipulation state into the MPC formulation we

already had for locomotion control. Therefore, we will have

a unified MPC framework for the loco-manipulation task

that regulates the interaction forces for manipulation while

maintaining robust locomotion. Our approach is successfully

validated in both high-fidelity simulations and hardware ex-

periments. Although the conventional MPC for locomotion

[4] fails to manipulate objects toward the desired trajectory,

our proposed hierarchical adaptive controller can effectively

adapt to unknown time-varying loads and terrain parameters

(e.g., slope and friction coefficient) with a minimal tracking

error in the object motion. Thanks to this combination of

controllers, our method can also allow the robot to climb

an unknown slope while manipulating an object with an

unknown mass of 5 kg (shown in Fig. 1).

The remainder of the paper is organized as follows. Sec. II

presents an overview of the control system. The proposed

method, including the design of the adaptive controller for

manipulation and unified MPC, is elaborated in Sec. III.

Furthermore, the numerical and experimental validation are

shown in Sec. IV and Sec. V, respectively. Finally, Sec. VI

provides concluding remarks.

II. SYSTEM OVERVIEW

Our proposed control architecture is illustrated in Fig. 2.

Our approach is based on a hierarchical adaptive control

system to generate the required manipulation force. Then

an MPC framework regulates the interaction force while

keeping the robot balance. In this section, we will briefly

introduce our approach and block diagram shown in Fig. 2,

then, in Sec. III, we will elaborate on our proposed method.

The user defines appropriate input to generate the desired

trajectory, including xy-velocity and yaw rate. Then, desired

xy-position and yaw are determined by integrating the

corresponding velocity. z position contains a constant value

of 0.3 m, and the remaining desired states (roll, roll rate,

pitch, pitch rate, and z-velocity) are always zero.

The gait scheduler utilizes independent boolean variables

to define contact states scheduled sφ ∈ {1 = contact, 0 =
swing} and switch each leg between swing and stance

phases. Based on the contact schedule, the controller will

execute either position control for swing legs (pf ) or MPC

for stance legs. More details on gait definition in the gait

scheduler and swing leg controller can be found in [1], [4].

The state estimation includes contact estimation (ŝ), robot

state (x̂), and the manipulated object state (x̂b). However,

obtaining the object state in a practical situation requires

additional equipment for motion tracking. In Sec. III, we

will describe how to eliminate the object state estimation

and instead use the robot state.

First, a high-level adaptive controller generates the desired

interaction force (Fb) for the manipulation task. Since the

object parameters such as mass mb and external force fk are
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Fig. 2: Block diagram of proposed hierarchical adaptive

loco-manipulation control system

unknown, the adaptive controller exploits the estimated value

for mass m̂b and vector of unknown parameters in external

force θ̂. The estimated parameters are governed by appro-

priate update laws to guarantee stable trajectory tracking.

Then, the computed force from the adaptive controller will

be integrated into the MPC to regulate the Fb while having

robust locomotion. Now, the MPC solves the locomotion

and manipulation control problem simultaneously. Finally,

the ground reaction forces F achieved by MPC will be

converted to the joint torques (τd) [4].

III. PROPOSED METHOD - HIERARCHICAL ADAPTIVE

LOCO-MANIPULATION CONTROL

The MPC introduced in [4] considers only locomotion

control. In this paper, we propose a hierarchical control

system based on an adaptive controller to solve the lo-

comotion and manipulation tasks simultaneously. First, we

introduce an adaptive controller to generate force for object

manipulation. Then we consider the computed force as a

state in the MPC formulation and make a unified MPC for

the loco-manipulation control. The unified MPC regulates

the interaction force required for manipulation to achieve

stable locomotion during the loco-manipulation task.

A. Adaptive Control for Manipulation

Let us consider the translational motion of a rigid object

to be manipulated as shown in Fig. 2. The linear motion is

given by:

Fb = mbẍ+ fk (1)

where Fb ∈ R
3 is the applied force to the rigid object,

mb and ẍ ∈ R
3 are the mass and the acceleration of the

rigid object, and fk ∈ R
3 represents any external forces and

nonconservative forces such as friction force. For example,

when the object is on an α-angle slope, the fk also contains

the projection of the object’s weight along the slope surface

(mbg sinα).

The mass of the rigid object (mb) and the external force

(fk) are unknown to the robot. The external forces can be

rewritten as:

fk = Yfθ (2)
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where Yf is the known regressor matrix and θ is the vector

of unknown parameters related to external forces.

A linear combination of position and velocity error s

typically has been used in the adaptive controller for manipu-

lators [17], which can exhibit exponentially stable dynamics

on the surface s = 0. Therefore, we define the following

composite error:

s = ė+ λe (3)

which e = x−xd and ė = ẋ− ẋd are linear tracking error

and linear velocity error for the rigid object.

Let us consider a Lyapunov function candidate as follows:

V (t) =
1

2
(sTPs+ m̃T

b Γm
−1m̃b + θ̃T

Γf
−1θ̃) (4)

where m̃b = m̂b −mb is the mass estimation error with m̂b

being mass estimation. Similarly, θ̃ = θ̂ − θ is the external

force parameter estimation error with θ̂ being external force

parameter estimation. P , Γm, and Γf are constant positive

definite matrices, which correspond to adaptation gains.

Using the fact that the estimation error derivatives ˙̃mb,
˙̃
θ

are the same as the estimation derivative ˙̂mb,
˙̂
θ, since the

real values are constant, and by differentiating the V (t), we

will have:

V̇ (t) = sTP ṡ+ m̃T
b Γm

−1 ˙̂mb + θ̃T
Γf

−1 ˙̂θ. (5)

We can expand the term

sTP ṡ = sTP (ë+ λė) = sTP [ẍ− (ẍd − λė)] (6)

Let us define Ym = ẍd − λė. By assigning P = mbI3
and considering the equation (1), the equation (6) can be

rewritten as:

sTP ṡ = sT (Fb − Yfθ − Ymmb) (7)

and Lyapunov function derivative would be:

V̇ (t) =sT (Fb − Yfθ − Ymmb) (8)

+ m̃T
b Γm

−1 ˙̂mb + θ̃T
Γf

−1 ˙̂θ.

Now, we will propose the control and adaptation laws. Let

Fb = Ymm̂b + Yf θ̂ −KDs (9)

where KD is a positive definite matrix. This control law

contains terms related to estimated dynamics (Ymm̂b+Yf θ̂)

and a PD term (KDs) which can lead the system to track

the desired translational motion. Moreover, the proposed

adaptation laws are:

˙̂mb = −ΓmYm
Ts (10)

˙̂
θ = −ΓfYf

Ts (11)

B. Stability Proof

Substituting control law (9) into Lyapunov function

derivative (8) yields

V̇ (t) = sT (Yf θ̃ + Ymm̃b)− sTKDs

+ m̃T
b Γm

−1 ˙̂mb + θ̃T
Γf

−1 ˙̂θ. (12)

and substituting adaptation laws (10) and (11) into (12),

yields

V̇ (t) = −sTKDs ≤ 0 (13)

Since V (t) is positive definite and decrescent and V̇ (t) is

negative semi-definite, the system is uniformly stable based

on the Lyapunov theorem [17]. Therefore, s, m̃b, and θ̃ will

be remained bounded.

From (13), it can be perceived that V (t) has a finite limit.

Moreover, it can be easily proven that ṡ is bounded [3].

Thus, from expression of V̈ (t) = −2sTKDṡ, the V̈ (t) is

bounded. Now, since V̇ (t) is uniformly continuous in time

(V̈ (t) is bounded) and V (t) is lower bounded, then based on

the second version of Barbalat’s Lemma [17], V̇ (t) → 0 as

t→ ∞. It implies that s → 0 as t→ ∞. When s = 0 it can

be obtained that ė = −λe, which defines an asymptotically

stable system.

C. Unified MPC for Loco-manipulation Control

In this subsection, we will introduce our proposed method

for loco-manipulation control by integrating the manipu-

lation force (Fb) provided by adaptive control presented

in Sec. III-A with the conventional MPC developed for

quadrupeds’ locomotion [4]. The goal is to have a unified

MPC formulation for quadrupeds to manipulate a rigid

object with unknown parameters on unknown terrains while

having robust locomotion.

Fb is the force that controls the rigid object manipulation,

and Fr is the force exerted on the robot when manipulating

a rigid object (see Fig. 2). When the robot contacts the rigid

object, we can assume that the robot and the rigid object

are attached. Therefore, all the state measurements of rigid

objects required for control law (9) (such as ė, e, and ẍd)

will be equally the same as the corresponding parameter of

the robot. Moreover, it can be implied that the force applied

to the rigid object is equal and opposite to the force applied

to the robot, which means Fr = −Fb. Thus, we can compute

the Fr according to equations (9), (10), and (11), by using

robot states measurement. For consistency with III-A, the

notation −Fb will be used instead of Fr throughout the rest

of the paper.

Now, we can write the robot dynamic equation for the

loco-manipulation control based on the state representation

presented in [4]:

Ẋ = DX +HF + Fb/m (14)
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ṗc

ωb

||g||













∈ R
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D =




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



03 03 I3 03 03×1

03 03 03 Rz(ψ) 03×1

03 03 03 03
g

||g||

03 03 03 03 03×1

01×3 01×3 01×3 01×3 0,


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


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∈ R
13×13

H =


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







03 . . . 03

03 . . . 03

I3/m . . . I3/m
I−1

G [p1 − pc]× . . . I−1

G [p4 − pc]×
01×3 . . . 01×3













∈ R
13×12

where m is the robot’s mass, IG ∈ R
3×3 is the moment

of inertia in the world frame, g ∈ R
3 is the gravity vector,

Rz(ψ) is the rotation matrix corresponding to the yaw angle

ψ, pc ∈ R
3 is the position of the center of mass (COM),

and pi ∈ R
3 (i ∈ {1, 2, 3, 4}) are the positions of the feet,

p̈c ∈ R
3 is body’s linear acceleration, ω̇b ∈ R

3 is angular

acceleration, and F = [F T
1 ,F

T
2 ,F

T
3 ,F

T
4 ]T ∈ R

12 are the

ground reaction forces acting on each of the robot’s four feet.

Similar to what has been shown in Fig. 2, the Fr is applied

to the robot’s head, which is approximately along the body’s

center of mass. Hence, we can neglect the moment resulting

from Fr around the robot’s center of mass in equation (14).

Since linear MPC will predict the dynamic over a finite

time horizon, it requires linear discrete-time dynamics. How-

ever, to employ a conventional discretization method such

as zero-order hold, the manipulation term Fb/m in (14)

must be combined into the state vector in order to create an

augmented vector for MPC formulation. Hence, the equation

(14), can be written as follows:

η̇ = D̄η + H̄F (16)

where

η =

[

X

Fb/m

]

∈ R
16 (17)

D̄ =









D13×13

06×3

I3×3

04×3

03×13 03×3









∈ R
16×16

H̄ =

[

H

03×12

]

∈ R
16×12

where η is the augmented vector. Therefore, a linear MPC

can be designed as follows:

min
F

k−1
∑

i=0

X̃T
i+1QX̃i+1 + Fi

TRFi (18)

s.t. X̃i+1 = Xi+1 −Xi+1,d

ηi+1 = D̄t,iηi + H̄t,iFi

d ≤ CFi ≤ d̄

where k is the number of horizons, Xi,d is the system de-

sired state at time step i, Fi is the computed ground reaction

forces at time step i, Q and R are diagonal positive semi-

definite matrices, D̄t,i and H̄t,i are discrete-time system

dynamics matrices. The d ≤ CFi ≤ d̄ represents friction

cone constraints which are defined in [7].

IV. NUMERICAL SIMULATION

In this section, we validate the effectiveness of the pro-

posed method in a high-fidelity simulation of the A1 robot

from Unitree. The controller is implemented in ROS, and we

use Gazebo as the simulator. In simulations, we want to show

an A1 robot manipulates an unknown object while trying to

adapt to terrain uncertainty. To this end, we construct multi-

ple simulation scenarios with two perspectives: 1) Adapt to

object uncertainty, 2) Adapt to terrain uncertainty.

In these simulations, the robot manipulates an object

in one direction (e.g., along the x-axis). So, since we

simulate our model for one direction (1-D) manipulation,

we can ignore the two other components (yz-direction) of

Fb. Therefore, for adaptive controller, the design parameters

become scalar, and we set the parameters as follow: λ = 2,

KD = 200, Γm = 10, and Γf = 10. In addition, all the

estimated parameters (m̂b, θ̂) start from zero. Note that the

manipulation force Fb is a 3-D vector in general. Although

we consider the robot manipulating an object along one axis

in our implementation, the framework developed in Sec. III

is not limited to 1-D manipulation problems.

A. Adapt to Object Uncertainty

First, we will compare the performance of our proposed

method with the conventional MPC presented in [4] to verify

the effectiveness of our framework. We tested our controller

when the robot tries to push an object of 3 kg and 5 kg
with the desired velocity of 0.3 m/s. The friction coefficient

between the ground and the object is 0.6. All the parameters

related to the object’s inertia and geometry are unknown

to the robot. As shown in Fig. 3, while the conventional

MPC fails to track the desired velocity, our proposed method

shows an accurate tracking result.

The mass estimation for the 5 kg object is also provided in

Fig. 3d. As shown in Fig. 3, the mass estimation error will be

maintained within the small range. Remember equation (13)

in Sec. III-B, we proved that the mass estimation error (m̃b)

will remain bounded. In addition, the magnitude of the error

can be reduced by increasing the adaptation gain Γm. By

increasing the Γm, the control signals will be updated faster;

however, for the reliability and robustness of the control

scheme, it is essential to obtain smooth control signals.

Comparing Fig. 3c and Fig. 3d indicates that the estimated

mass increases when the robot starts walking, even before

contacting the object. This is plausible due to the error in

velocity tracking at the start of walking since the adaptation

law (10) depends on the composite error s.
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(a) Simulation snapshot of the A1 robot while manipulating
an unknown 5 kg object
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(b) Velocity tracking for a 3 kg object
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(c) Velocity tracking for a 5 kg object
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0
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�
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Estimated Object Mass
Actual Object Mass

(d) Mass estimation for 5 kg object

Fig. 3: Comparing simulation results of the proposed method

and conventional MPC for the robot while manipulating an

unknown object.

B. Adapt to Terrain Uncertainty

We aim to examine the robot’s capability to adapt to

terrain uncertainty. To this end, we simulate the robot navi-

gating various terrain with different friction properties while

pushing an unknown 5 kg object with the desired velocity of

0.3 m/s. Some simulation snapshots are presented in Fig. 4.

The robot starts from a hardwood ground with a friction

coefficient of 0.3; then, it passes across a grass field with a

friction coefficient of 0.8. The robot’s velocity is depicted in

Fig. 4c. According to Fig. 4c, when the robot tries to transit

from hardwood ground to grass, the tracking error increases

until the robot entirely moves on the grass. In the transition

part, the object is on the grass, so a greater force is required

for manipulation. However, the robot’s feet are still on the

(a) Hardwood ground (b) Grass field

0 2 4 6 8 10
Time [s]

0.0

0.2

0.4

Ve
lo

ci
ty

 [m
/s]

Transition PartHardwood

Grass

Actual Velocity
Desired Velocity

(c) Velocity tracking for an unknown 5 kg object

Fig. 4: Navigating surfaces with different friction prop-

erties. The transition part indicates when the robot tries to

cross the hardwood ground to the grass field.

hardwood, and due to the small friction on the hardwood,

the robot cannot exert enough force for object manipulation.

V. HARDWARE EXPERIMENT

We successfully implemented our proposed method on

robot hardware. In experiments, similar to simulations, we

try to follow two perspectives: 1) Adapt to object uncer-

tainty, and 2) Adapt to terrain uncertainty. To examine

these viewpoints, we tested the A1 robot by manipulating

a time-varying load and climbing a high-sloped terrain

while pushing an object. More details of the robot’s object

manipulation are shown in the supplemental video1.

A. Adapt to Object Uncertainty

To verify the effectiveness of our method, we designed

two experiments with varying object mass. For the first

experiment, the robot starts by confronting an object for

manipulation. After a while, we remove the object, and

the robot continues walking normally. Again, after a few

seconds, we put the object in front of the robot and made the

robot manipulate the box again. The successive load/unload

experiment demonstrates that the method is not necessarily

restricted to loco-manipulation control and can handle lo-

comotion only as well. Moreover, it is not an obligation to

have a rigid connection between the robot and the object

during the whole loco-manipulation operation. The velocity

tracking for the experiment is presented in Fig. 5.

Furthermore, we tested the robot with a time-varying mass

object. The robot starts to push a 4 kg object, and then we

will add three more 1 kg water bottles sequentially. The

velocity result is presented in Fig. 6. According to Fig. 6c,

although the object mass changes during the experiment, the

robot has a smooth velocity, and the plot shows that the robot

can adapt to the object uncertainty online.

1https://youtu.be/-EvSmJRrMFI
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(a) Loading (b) Unloading
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(c) Velocity tracking for an unknown 5 kg object

Fig. 5: Results for load/unload experiment.

(a) Start point (b) Final point
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(c) Velocity tracking for an unknown time-varying load (from 4 kg to 7

kg)

Fig. 6: Results for manipulating an unknown time-varying

load up to 7 kg.

B. Adapt to Terrain Uncertainty

To examine the robot’s adaptation to terrain uncertainty,

we tested the robot to manipulate an object on a high-sloped

terrain. The robot tries to push an unknown 5 kg object

on the slope. The results are presented in Fig. 7. The plot

in Fig. 7c shows the robot’s velocity along the slope. The

experiment starts with robot locomotion only, then the robot

reaches the object and manipulates it along the slope.

While the object is on the slope, an additional term

(mbg sinα) will be added to the dynamic equation, repre-

senting the projection of the object’s weight along the slope

surface. This term can be considered as an external force

(fk) in equation (1). Thus, the adaptive controller designed

in Sec. III-A can handle the terrain uncertainty without

having any information about the slope angle, and the robot

is capable of manipulating the object while climbing the

slope. However, to adjust the robot’s pitch angle on the slope,

(a) Locomotion only (b) Loco-manipulation

0 2 4 6 8
Time [s]

0.0

0.2

0.4

Ve
lo

ci
ty

 [m
/s]

Locomotion only Loco-manipulation

Actual Velocity
Desired Velocity

(c) The velocity of the robot along the slope

Fig. 7: Results for manipulating an unknown 5 kg object on

a high-sloped terrain.

we estimate the slope angle based on the foot placement

measurements. By considering the robot’s front and rear feet

position along the x-axis and z-axis, we can adjust the pitch

angle to make the robot’s body parallel to the slope. Again,

note that the controller does not have any information about

the slope’s angle and friction properties between the object

and the slope.

VI. CONCLUSION

In summary, we have presented a hierarchical adaptive

control approach for quadruped robots to manipulate un-

known objects while maintaining robot balance. We de-

signed an adaptive controller to generate appropriate force

commands for the manipulation task; then, we introduced

a unified MPC that simultaneously considers locomotion

and manipulation control. We have demonstrated the effec-

tiveness of our method using numerical and experimental

validations. The robot can manipulate an unknown time-

varying load up to 7 kg. Additionally, it can push an

unknown 5 kg object and climb a slope while maintaining

accurate trajectory tracking. In contrast, the baseline MPC

fails even to move the manipulated object. Moreover, our

approach has shown that the robot can navigate the terrain

with multiple friction coefficients. Therefore, our proposed

method not only can compensate for the object uncertainty

but also can adapt to unknown terrain properties.

In the future, we aim to extend our framework to two-

and three-dimensional manipulation tasks. We also plan to

develop hierarchical adaptive control for the collaborative

manipulation of rigid objects using multiple quadrupeds.
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