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PERSPECTIVE

GEOTRACES REFLECTIONS
By Robert F. Anderson

SPECIAL ISSUE ON TWENTY YEARS OF GEOTRACES

Though geochemists have long sought to 

understand biogeochemical cycles, initial 

attempts to measure the extremely low 

concentrations of trace elements in sea-

water were frustrated by contamination 

problems. It was not until the 1970s that 

contamination-free methods were devel-

oped, launching a new era of research to 

characterize the biogeochemical cycles of 

trace elements in the ocean. 

Nevertheless, by the beginning of the 

new millennium, after two decades of 

improved and, generally, contamination- 

free sample collection, work was pro-

ceeding so slowly that description of 

the marine biogeochemical cycles of 

most trace elements was beyond reach. 

For example, by 2003, dissolved iron 

(dFe) profiles from the surface ocean 

to >2,000 m had been reported for no 

more than two dozen locations world-

wide (Anderson et al., 2014). Despite reli-

able data, for the most part, they were 

grossly inadequate to define biogeochem-

ical cycling of Fe. 

Efforts would have to be coordinated 

to characterize the global biogeochem-

ical cycle of any trace element: no sin-

gle nation, let alone an individual inves-

tigator, could hope to compile sufficient 

information. This recognition led to the 

creation of the GEOTRACES program 

(https://www.geotraces.org/), an inter-

national study of the marine biogeo-

chemistry of trace elements and their 

isotope (TEIs). 

The objectives of the program were 

straightforward: to determine ocean dis-

tributions of TEIs globally and to under-

stand the processes that control them 

well enough to code the defining param-

eters into models. Achieving the neces-

sary global coverage required contribu-

tions from many investigators in many 

nations, which, in turn, led to two further 

prerequisites: intercalibration, to ensure 

internal consistency of data generated by 

different labs (Aguilar-Islas et al., 2024, in 

this issue) and a data management sys-

tem that combined the international suite 

of intercalibrated data into a single data-

base that was available in multiple for-

mats, including graphical illustration of 

the results in an electronic atlas (Schlitzer 

and Mieruch-Schnülle, 2024, in this 

issue). These prerequisites were put into 

place in advance of the global study. 

International workshops held in 2007, 

focusing on the Pacific, Atlantic, and 

Indian Oceans, enabled investigators to 

identify target locations, either where 

strong sources or sinks of TEIs were 

thought to exist, or where internal cycling 

processes (biological uptake, regener-

ation, abiotic scavenging, transport by 

ocean circulation) have a strong influ-

ence over TEI distributions. Investigation 

of the Arctic and Southern Oceans began 

in 2007 under the International Polar 

Year (IPY). Although GEOTRACES 

was not ready at that time to under-

take a full study of all TEIs of interest, 

the development of new technologies 

for the collection of contamination-free 

samples (de Baar et  al., 2008) in prepa-

ration for GEOTRACES allowed some 

GEOTRACES investigators to partic-

ipate in the IPY. More complete plan-

ning for Arctic Ocean work (Jensen and 

Colombo, 2024, in this issue) was orga-

nized during an international workshop 

in 2009. Workshop reports, containing 

recommendations for a global survey, are 

available at https://www.geotraces.org/

planning-documents/. 

A global survey of TEI distributions 

(Figure 1) was designed using the targeted 

locations noted above, enabling investi-

gators to develop, and in some cases test, 
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hypotheses concerning sources, sinks, 

and internal cycling of TEIs. The global 

survey is nearly complete. An interac-

tive map with up-to-date information 

about GEOTRACES sections, as well 

as GEOTRACES process studies and 

the locations of compliant data (meets 

GEOTRACES standards of intercalibra-

tion), can be found at https://www.bodc.

ac.uk/geotraces/cruises/section_maps/

interactive_map/. By comparison with 

hydrographic data, the TEI data are still 

sparse, but they are adequate to convey a 

three-dimensional view of TEI distribu-

tion at the ocean basin scale, for example, 

dFe in Figure 2. 

GEOTRACES has nearly completed 

the first part of its mission: to estab-

lish the distributions of key TEIs glob-

ally. However, much remains to be done 

to identify the processes that control 

TEI distributions, the rates of those pro-

cesses, and their sensitivity to chang-

ing environmental conditions. As fore-

seen in the GEOTRACES science plan 

(GEOTRACES Planning Group, 2006), 

there is a need now for synthesis, which 

includes modeling and process studies. 

Iron (see also Conway et  al., 2024, in 

this issue) provides an example of new 

insights gained by GEOTRACES because, 

though essential for all organisms, it is so 

insoluble in oxygenated seawater that its 

low concentration, often <0.1 nmol kg–1 

in surface waters, is thought to limit 

the growth of phytoplankton through-

out much of the ocean (Browning and 

Moore, 2023). Furthermore, the distri-

bution of iron is influenced by multiple 

complicating factors. For example, opera-

tionally defined dissolved iron (iron pass-

ing through a filter with a pore diame-

ter of 0.2 µm or 0.4 µm) consists of both 

colloidal and soluble forms (the latter is 

thought to exist in true solution, although 

this is also operationally defined based on 

passing through a membrane with a nom-

inal pore diameter; e.g., 0.02 µm). Soluble 

Fe exists almost entirely as organic 

complexes (Gledhill and Buck, 2012). 

Although the structure of the complex-

ing ligands is unknown in most cases 

(Boiteau et al., 2016, 2019), there is grow-

ing evidence that humic compounds 

are important ligands (Dulaquais et  al., 

2023; Fourquez et  al., 2023). Whitby 

et al. (2024, in this issue) provide a more 

in-depth review of trace metal speciation. 

Colloidal forms, the abundance of which 

varies spatially, may be either organic or 

inorganic and constitute about half of 

the operationally defined dissolved Fe in 

seawater (e.g.,  Nishioka et  al., 2001; Wu 

et  al., 2001; Bergquist et  al., 2007; Boye 

et  al., 2010; Fitzsimmons et  al., 2017; 

Kunde et  al., 2019; Lough et  al., 2019; 

Homoky et al., 2021; Jensen et al., 2021; 

Tagliabue et al., 2022). 

With multiple contributing sources 

(rivers, dust, hydrothermal fluids, and 

sediments), the total supply rate of iron 

is difficult to quantify (Tagliabue et  al., 

2017; Somes et  al., 2021). Biological 

uptake of Fe, and abiotic scavenging, pro-

cesses that remove Fe from the ocean, 

are both sensitive to the chemical specia-

tion and physical form of Fe (e.g., Wang 

and Guo, 2000; Chen and Wang, 2001). 

These factors create large uncertainty in 

the rates of supply, removal, and internal 

cycling of Fe in the ocean, as illustrated 

by the two orders of magnitude spread of 

estimated residence times of dFe in the 

ocean among 13 models presented in the 

first iron model intercomparison project 

(Tagliabue et al., 2016). As these models 

were tuned to match observed dFe distri-

butions, the range of residence times is a 

measure of the uncertainty in the rates of 

supply and removal.

Several studies have since attempted 

to improve global models of iron in 

the ocean (see Tagliabue and Weber, 

2024, in this issue). For example, Somes 

et al. (2021) combined the University of 

Victoria Earth System Climate Model 

with the Model of Ocean Biogeochemis-

try and Isotopes (MOBI), incorporating 

estimates of iron supply by dust, by reduc-

tive sediment dissolution, and by hydro-

thermal fluids. They varied the inputs of 

Fe from dust and from sediments and 

used either constant or variable concen-

trations of Fe-binding ligands. For each 

scenario, scavenging (removal) rates were 

tuned to achieve an approximation of the 

observed dFe distribution. High rates of 

Fe supply and removal were required to 

match observed spatial gradients in dFe 

concentration. Consequently, average 

surface and global-ocean residence times 

of dFe were short, 0.83 and 7.5 years, 

FIGURE 1. Status of the GEOTRACES global survey of trace elements and their isotopes, omit-

ting the Arctic Ocean. Sections in black were completed as the GEOTRACES contribution to the 

International Polar Year. Sections in yellow were completed, as of February 1, 2024, as part of the 

primary GEOTRACES global survey. Sections in red are being considered but not yet completed. 

This figure is available from https://www.bodc.ac.uk/geotraces/cruises/section_maps/interactive_

map/ where an interactive version is available with more information about each cruise. 
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respectively. This estimate for the global- 

ocean residence times of dFe is at the 

low end of the range obtained in previ-

ous models (Tagliabue et  al., 2016), and 

much lower than the often-used estimate 

of deep-water scavenging residence time 

for dFe of 270 ± 140 years (Bergquist 

and Boyle, 2006). 

Short residence times of dFe, 

which imply high rates of supply and 

removal, are supported by results from 

radionuclide- based methods employed 

in GEOTRACES. Investigators have used 
7Be to estimate the supply of Fe from the 

atmosphere (Kadko et al., 2020), 234Th to 

estimate the export of Fe from the sur-

face ocean (Black et al., 2020), and com-

bined 230Th with 232Th to estimate the 

supply of dFe from atmospheric sources 

to surface waters (Hayes et al., 2015, 2017; 

Hayes, 2024, in this issue). While the sur-

face-ocean dFe residence times esti-

mated by these methods ranged widely 

(with season and proximity to produc-

tive upwelling systems), they were com-

parable to the average value generated by 

Somes et  al. (2021). Likewise, full water 

column dFe replacement times estimated 

for the tropical North Atlantic Ocean by 

combining 230Th with 232Th were also at 

the low end of model estimates (four to 

eight years; Hayes et al., 2018), consistent 

with the global-ocean residence times of 

dFe reported by Somes et al.

Agreement between model estimates 

and radionuclide-based methods, noted 

above, provides incentive to combine 

radionuclides and trace element data in 

future synthesis efforts that aim to con-

strain rates of TEI supply and removal. 

Improvement can be expected as lim-

itations of observational and model-

ing approaches are overcome. For exam-

ple, the Somes et  al. (2021) model does 

not contain non-reductive mobili-

zation of dFe from sediments, or the 

release of colloidal Fe, both of which 

have been shown to be important com-

ponents of the ocean Fe cycle (Conway 

and John, 2014; Homoky et  al., 2021). 

Radionuclide-based methods, on the 

other hand, require assumptions about 

the solubility of Fe derived from aerosols 

(Kadko et al., 2020), about the lithogenic 

Fe/Al ratio (Black et  al., 2020), and/or 

about the relative solubility of Fe and Th 

(Hayes et al., 2015, 2018). Future synthe-

sis studies that address these assump-

tions will provide new insight into criti-

cal biogeochemical cycles.

New understanding of biogeochemi-

cal cycling has come from process stud-

ies as well as from the global survey. For 

example, time-series measurements at 

the Bermuda-Atlantic Time Series sta-

tion (BATS) show a strong seasonal vari-

ability of dFe in surface water that is not 

accompanied by an equivalent variabil-

ity of ligands (Tagliabue et al., 2023). This 

suggests that much of the dFe supplied 

during the summer dust maximum is 

removed by formation of authigenic col-

loids that then coagulate into larger, set-

tling particles (Tagliabue et  al., 2023), a 

process that was not considered in pre-

vious models. This shows how studies 

can be designed to address critical pro-

cesses that cannot be extracted from 

global survey data. 

While this article focuses on Fe, uncer-

tainties about sources, speciation, and 

FIGURE 2. Dissolved Fe concentrations in the Atlantic (a) and Pacific (b) Oceans extracted from the eGEOTRACES electronic atlas (https://www.

egeotraces.org/). Elevated concentrations of dissolved Fe are seen around the crests of mid ocean ridges, indicating hydrothermal sources, and near 

continental margins, indicating mobilization from sediments and from dust. Data are available in the GEOTRACES Intermediate Data Product IDP2021 

(IDP, 2021). Images courtesy of Reiner Schlitzer, Alfred Wegener Institute 
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removal processes also limit our under-

standing of the marine biogeochemical 

cycles of other trace elements. For exam-

ple, although it was established decades 

ago that most dissolved Cu in seawater 

exists as organic complexes (Coale and 

Bruland, 1990), it was recently discov-

ered that much of the organically com-

plexed Cu may be inert (unavailable for 

biological uptake or abiotic scaveng-

ing; Moriyasu et  al., 2023). The possi-

ble existence of organically complexed 

or colloidal inert Cu was noted in previ-

ous GEOTRACES studies (Ruacho et al., 

2020), and terrestrial sources of these 

chemical species have been suggested 

(Zitoun et  al., 2021; Moriyasu et  al., 

2023), but the impact of these inert forms 

on the biogeochemical cycle of Cu has 

not yet been explored in models (Richon 

and Tagliabue, 2019; Roshan et al., 2020). 

Future studies that establish the nature 

and source(s) of these inert forms, as 

well as their impact on the marine bio-

geochemical cycle of Cu, will constitute a 

major advance of the field.

Synthesis in GEOTRACES has also led 

to some notable advances in our under-

standing of TEIs. For example, the strong 

correlation between dissolved Zn and dis-

solved Si has been known since the first 

reliable Zn data were produced (Bruland, 

1980). However, the incorporation of Zn 

into diatom frustules cannot explain this 

correlation given their low Zn concen-

tration (Ellwood and Hunter, 2000). An 

alternative hypothesis to explain the cor-

relation centers on the mixing of deep 

waters in the Southern Ocean that are 

rich in both Zn and Si, combined with the 

strong biological uptake of both Si and Zn 

in Southern Ocean surface waters (Vance 

et al., 2017; de Souza and Morrison, 2024, 

in this issue). Some models largely repro-

duce the global correlation with ele-

vated biological Zn/Si uptake ratios in 

the Southern Ocean (de Souza et  al., 

2018). However, other models (Roshan 

et al., 2018; Weber et al., 2018) also need 

to incorporate abiotic reversible scav-

enging of Zn to fit global observations 

of Zn distribution. Further modeling of 

GEOTRACES data confirms the impor-

tance of reversible scavenging while also 

explaining the vertical distribution of 

the isotopic composition of dZn (Sieber 

et  al., 2023), illustrating the multiple 

steps involved in establishing the global 

distribution of TEIs, a process facilitated 

by the global and internally consistent 

data of GEOTRACES. 

Other advances based on GEOTRACES 

findings are described in the papers 

that follow in this issue and elsewhere 

(e.g., Anderson, 2020). The wealth of data 

(Figures 1 and 2) has already resolved 

previously unanswered questions, but the 

combination of different observational 

methods together with different mod-

eling approaches is leading to unprece-

dented opportunities. We welcome and 

look forward to continued synthesis of 

GEOTRACES results and to novel pro-

cess studies that will contribute even fur-

ther to our understanding of global bio-

geochemical cycles of TEIs.
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