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ABSTRACT. The sustenance of marine primary productivity depends on the supply of
macro- and micronutrients to photosynthesizers in the ocean’s sunlit surface. Without
supply from the deep, sinking particles would deplete the upper ocean of these vital ele-
ments within decades. Over the last 20 years, it has been recognized that the Southern
Ocean, where nutrient-rich deep waters are brought to the surface and the water masses
that fill much of the upper ocean are formed, plays a pivotal role in replenishing upper-
ocean nutrients. Photosynthesizers that grow and take up nutrients within the Southern
Ocean circulation “hub” thus have an outsize influence on global-scale distributions of
macronutrients and many micronutrients. The GEOTRACES program has contributed
observations of the concentration and stable isotope composition of “nutrient-type”
metals like zinc, cadmium, and nickel, within the Southern Ocean and beyond it, that
are driving a sea change in our understanding of their marine cycles. Simultaneously,
our understanding of Southern Ocean circulation has been refined, with recognition of
the importance of longitudinal variability and subtropical overturning. Here, we aim to
bring together these two strands of progress, review insights gained into marine micro-

nutrient cycling, and consider the questions that remain to be resolved.

INTRODUCTION

The physiological requirements of marine
photosynthesizers dictate their reliance
on a slew of nutrients that they must draw
from seawater. In addition to the macro-
nutrients nitrogen, phosphorus, and (in
some cases) silicon, marine phytoplank-
ton require metal micronutrients in order
to photosynthesize, efficiently fix carbon,
protect themselves from oxidative stress,
or access certain macronutrient pools
(Fradsto da Silva and Williams, 2001;
Morel et al., 2014). The nutritional status
and ecological composition of marine phy-
toplankton communities thus depend on
what might be termed the “nutrientscape”
of the sunlit surface ocean in which they
live—i.e., the distributions and relative
abundances of vital dissolved macro- and
micronutrients (e.g., Dutkiewicz et al,
2009). Simultaneously, these distribu-
tions are shaped by how surface biological
uptake and downward particulate export
of nutrients interact with ocean circula-
tion to cycle and transport them through
the global ocean (e.g., Sarmiento et al,,
2007; Sunda, 2012).

A process key to continued sur-
face-ocean primary productivity is the
replenishment of nutrients, lost from
the upper ocean through the sinking of

biogenic particles, by the upwelling of
deep, nutrient-rich waters, which happens
primarily in the Southern Ocean sur-
rounding Antarctica (Toggweiler, 1994;
Marshall and Speer, 2012; Talley, 2013).
In addition, mode waters formed at the
northern edge of the Southern Ocean ven-
tilate the thermocline of the low-latitude
ocean (Morrison et al., 2022), and the
abundance and stoichiometry of nutrients
in these waters provide a boundary con-
dition for the supply of nutrients to low-
latitude ecosystems by coastal or equato-
rial upwelling (Sarmiento et al., 2004).

As a body of work beginning two
decades ago has shown, the large-
scale distributions of dissolved macro-
nutrients—and the systematic differ-
ences between these distributions—are
largely determined by how biogeochem-
ical cycling of nutrients in the surface
Southern Ocean, and its interaction with
physical processes, modulates the nutri-
ent content of waters between the zones
of deep-water upwelling and thermocline
ventilation (Sarmiento et al., 2004, 2007;
Weber and Deutsch, 2010; Holzer and
Primeau, 2013; Holzer et al., 2014). Since
ground-breaking studies in the 1970s, it
has also been known that vertical profiles
of the concentrations of the metals zinc

FACING PAGE. Photo of the Mertz Polynya (~67°S, 145°E) taken on the Swiss Polar Institute’s
Antarctic Circumnavigation Expedition (2016—-2017). Researchers were exploring physical, chemical,
and biological aspects of the ocean, atmosphere, and terrestrial sites on islands around Antarctica
as well as on the continent. Photo credit: G.F. de Souza

(Zn), cadmium (Cd), and nickel (Ni) in
seawater mimic those of the major nutri-
ents (Figure 1; Boyle et al,, 1976; Sclater
etal., 1976; Bruland et al., 1978). By vastly
expanding data coverage and providing
basin-scale sections of the abundance
and stable isotope composition of these
micronutrient metals, the GEOTRACES
program has allowed a reevaluation of
the mechanisms responsible for this
striking similarity.

Micronutrient Mimics

Zinc, Cd, and Ni are only a few of the
micronutrients that phytoplankton need;
we focus on them here for reasons both
conceptual and practical. Conceptually,
the similarities and differences between
their elemental and isotopic distributions
nicely illustrate how Southern Ocean
processes can shape global nutrient dis-
tributions. Practically, they each have
a stable isotope system that provides an
additional constraint on their cycling,
and there are sufficient data to character-
ize their behavior in the Southern Ocean.
We thus only very briefly consider the
vital micronutrients iron and manga-
nese, whose global distributions are not
affected by Southern Ocean processes
(see Box 1), and do not discuss the micro-
nutrients cobalt, copper, and selenium,
which are not controlled by the Southern
Ocean or for which Southern Ocean data
coverage remains too sparse.

Zinc, Cd, and Ni all display what have
classically been called “nutrient-type”
distributions (Bruland, 1983): that is,
their dissolved concentrations are at a
minimum in the surface mixed layer and
increase both downward in the water col-
umn and in deep waters from the North
Atlantic to the North Pacific—thus mim-
icking the distributions of the macro-
nutrients. This similarity can be seen in
the vertical profiles of Figure 1, which
also reveal differences between the three
metals: the distribution of dissolved Cd
most closely resembles those of nitrate
(NO,) and phosphate (PO,), exhibiting
the same increase through the thermo-
cline and mid-depth maximum as these
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major nutrients (Boyle et al., 1976). Zinc,
on the other hand, bears more similar-
ity to silicic acid (Si(OH),), with low
concentrations extending from the sur-
face ocean deeper into the thermocline,
and reaching a maximum closer to the
base of the water column (Bruland et al.,
1978). A particularity of the Ni distribu-
tion (Sclater et al., 1976) is that, unlike
the macronutrients or Zn and Cd, its
concentration in the surface ocean never
decreases below about ~20% of deep-
water values, even in the nutrient-poor
subtropical gyres (in contrast to <1%
for Zn and Cd).

These three elements also have dif-
fering roles in phytoplankton biochem-
istry. Zinc has the most diverse set of
biochemical roles in photosynthesiz-
ers, including as the metal center in the
enzyme carbonic anhydrase, import-
ant for the efficient fixation of carbon
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(Morel et al., 1994, 2014). When ambient
Zn concentrations are low, many phyto-
plankton can substitute cobalt or Cd
for it (Lee and Morel, 1995; Sunda and
Huntsman, 1995). Such “cambialistic”
substitution for Zn may be the primary
reason that Cd behaves as a micronutri-
ent in the sea, because its only known
biochemical role is in a Cd-bearing car-
bonic anhydrase in some marine diatoms
(Lane et al., 2005). In phytoplankton,
Ni is mainly used in nitrogen metabo-
lism or to protect from oxidative stress
(Ragsdale, 2009): it is associated with
the metalloenzyme urease, which cata-
lyzes the metabolism of urea to ammo-
nia; NiFe hydrogenase, which prevents
the inhibition of nitrogen fixation by O,
and H, in diazotrophs; and a Ni-bearing
superoxide dismutase primarily found in
cyanobacteria, which gets rid of harmful
reactive oxygen species.
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FIGURE 1. Profiles of the macronutrients (upper row) and metal micronutrients (lower row) from the
subtropical North Pacific (32.7°N, 145°W) are plotted as reported by Bruland (1980).
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At the time when the first analyses of
these micronutrients in seawater were
made, the marine biogeochemical para-
digm interpreted major nutrient distri-
butions in an essentially one-dimensional
fashion (e.g., Broecker and Peng, 1982).
In that view, concentrations of silicic acid
increase deeper in the water column than
the other two macronutrients (Figure 1)
because siliceous hard parts dissolve more
slowly than bacteria decompose organic
matter—so that Si is released from sink-
ing particles at greater depths than NO,
and PO,. The similarities between the
distributions of Zn, Cd, and Ni and the
macronutrients were analogously inter-
preted as resulting from directly coupled
cycling: for instance, that profiles of Zn
and Si look similar because Zn is incor-
porated into the siliceous frustules of dia-
toms (Bruland et al., 1978). But we now
know that the marine distributions of dis-
solved nutrients are produced by a com-
plex set of three-dimensional interactions
between biologically driven fluxes and
physical transport and mixing processes.
On both these fronts, Southern Ocean
processes play a key role at the scale of
the global ocean.

THE SOUTHERN OCEAN
CIRCULATION HUB
The current paradigm for explaining

resupply
emphasizes a longitudinally averaged,

Southern Ocean nutrient
two-dimensional framework with the
meridional overturning circulation as
the primary driver of upward nutrient
transport (e.g., Sarmiento et al., 2004;
Morrison et al., 2015). The upwelling
limb of the overturning circulation is
largely controlled by the westerly winds
over the Southern Ocean, which drive
northward Ekman transport in the sur-
face layer. South of the latitude where the
westerly winds are strongest (~50°S), the
Ekman transport is divergent and thus
draws up nutrient-rich deep waters from
below, along the sloping density layers of
the Southern Ocean. Upon reaching the
surface mixed layer, one portion of these
upwelled waters flows northward in the



“upper” overturning cell, while the other
portion flows south toward Antarctica
in the “lower” overturning cell. It is the
upper overturning cell that dominates
the supply of nutrients for global primary
production, due to its northward sur-
face flow (Marinov et al., 2006; Primeau
et al., 2013). The upwelling waters of the
lower overturning cell have limited res-
idence time when they outcrop at the
surface around Antarctica, as they are
rapidly returned to the abyss, influenc-
ing deep water nutrient distributions
(Sarmiento et al., 2007).

Recent work has highlighted the
unique three-dimensional structure of
Southern Ocean upwelling. Rather than
being  longitudinally homogeneous,
the upwelling is intensified in a hand-
ful of eddy hotspots on the eastern side
of large bathymetric features (Figure 2a;
e.g., Foppert et al., 2017; Tamsitt et al.,
2017). The localization of the upwelling
is particularly prominent at ~1,000 m
depth (Tamsitt et al., 2017; Yung et al,,
2022), but localization is also evident
at the base of the mixed layer (Viglione
and Thompson, 2016). Modeling studies
suggest that the net circumpolar upwell-
ing transport of nutrients along isopyc-
nals is similarly dominated by eddies at
a small number of localized hotspots
(Dufour et al., 2015). In addition to this
intensified upwelling transport at eddy
hotspots, there may also be significant
larger-scale inter-basin differences in
upwelling transport of deep waters into
the mixed layer (Viglione and Thompson,
2016; Prend et al., 2022). However, an
open question remains regarding what
impact any longitudinal variations in
nutrient delivery to the mixed layer have
on the distribution of nutrients and phy-
toplankton ecology across the Southern
Ocean. The distribution of biogeochem-
ical properties in the surface Southern
Ocean is strongly guided by the Antarctic
Circumpolar Current (ACC), whose flow
is organized into a series of jets aligned
with strong density fronts (i.e., sharp
changes in the physical structure of the
water column on either side of the jet).

Nutrient concentrations in the surface
Southern Ocean are generally homo-
geneous between these fronts, with the
strongest concentration gradients coin-
ciding with the physical front (Pollard
et al., 2002). It may be that, despite inho-
mogeneous upwelling, the strong flow
of the ACC, as well as lateral mixing by
eddies, smooths out longitudinal (along-
front) gradients in nutrient concentra-
tions (e.g., Morrison et al., 2022).

The mode waters of the global thermo-
cline are replenished and enriched by
subduction on the northern edge of the

Antarctic Circumpolar Current (Sallée
et al., 2010). The subducting waters are
a mixture of both northward-flowing
Southern Ocean surface waters and sub-
tropical waters flowing southward in
western boundary currents (Figure 2b).
While many nutrients exhibit negligible
concentrations in the subtropical source
waters, it is still necessary to consider
contributions from both northern and
southern source waters to understand
nutrient distributions in the mode waters
(Ferndndez Castro et al,, 2022). Many
conceptual frameworks and schematics
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FIGURE 2. The three-dimensional structure of the physical processes impacting nutrients in the
Southern Ocean. (a) The inhomogeneous spatial distribution of simulated upwelling of deep waters
at 1,000 m depth. Reproduced from Tamsitt et al. (2017) (b) Processes (enumerated) contributing to
the export of nutrients northwards into the global thermocline. Blue colors show potential density,
and orange colors show potential vorticity on a density surface in the interior. Low potential vorticity
is an indicator of recently ventilated mode water. Reproduced from Morrison et al. (2022)
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of mode water formation focus exclu-
sively on the role of the two-dimensional
longitudinally averaged overturning cir-
culation (e.g., Sarmiento et al., 2004;
Marinov et al., 2006). However, like
the upwelling, the transfer of nutrients
from the surface of the Southern Ocean
northward into the global thermocline
is a complex, three-dimensional pro-
cess (Morrison et al., 2022). Subduction
of waters from the mixed layer into the
interior occurs in localized hotspots,
with substantial inter-basin differences
(Sallée et al., 2010). After subduction,
water mass properties are rapidly homog-
enized across the mode waters by eddy
mixing and gyre circulation (e.g., Gupta
et al., 2022). Eddy-driven mixing along
isopycnals may also contribute substan-
tially to the northward flux of nutrients

into the mode waters, depending on
the nutrient gradient along isopycnals
(Fripiat et al., 2021).

THE SOUTHERN OCEAN
NUTRIENT HUB

The role of the Southern Ocean in both
the upwelling of deep waters and the ven-
tilation of the low-latitude thermocline
makes it an important “hub” of the global
overturning circulation. As a result, the
physical and biogeochemical properties
of abyssal, intermediate, and upper-ocean
water masses formed here influence
tracer distributions at a near-global scale.
When it comes to the distributions of
macro- and micronutrients, what is par-
ticularly important is how the uptake of
nutrients by Southern Ocean ecosystems
modifies the properties of nutrient-rich

BOX 1. IRON AND MANGANESE

Because they are required in the photosynthetic apparatus, iron (Fe) and manga-
nese (Mn) are vital micronutrients for all marine phytoplankton (Fradsto da Silva
and Williams, 2001)—but their global marine distributions are not controlled by
Southern Ocean biogeochemistry. Instead, the main controlling factor is their low
solubility in oxygenated seawater, which results in the formation of authigenic
(oxyhydr)oxide phases (Sunda and Huntsman, 1987; Tagliabue et al., 2023) or
sorption to particles, processes that remove Fe and Mn from seawater. Thus,
despite the stabilization of Fe above inorganic solubility by chelating ligands (see
Box 2), both these metals have short marine residence times on the order of
decades to centuries (Landing and Bruland, 1987; Tagliabue et al., 2017), and
their concentrations in the deep ocean remain low (in the case of Fe) or even
decrease (Mn) relative to surface concentrations, rather than increasing as for
Zn, Cd, and Ni.

This difference in aqueous geochemistry has important implications for the
supply of Fe and Mn to Southern Ocean ecosystems: upwelling of deep waters
provides plenty of macronutrients together with Zn, Cd, and Ni to the surface, but
the low deep-water concentrations of Fe and Mn mean that there is a relative
dearth of these metals in the upwelling-influenced Southern Ocean, one that is
exacerbated by limited atmospheric deposition and distance from the continents.
A consequence is the well-known limitation of Southern Ocean productivity by
Fe (Martin et al., 1990; Moore et al., 2013), demonstrated in situ by Fe enrichment
experiments carried out around the turn of the millennium (e.g., Boyd et al., 2000;
Gervais et al., 2002; Coale et al., 2004). More recently, evidence has emerged
that the low Mn concentrations of the surface Southern Ocean can also lead to
(co-)limitation of productivity by Mn (Wu et al., 2019; Pausch et al., 2019; Browning
et al.,, 2021; Latour et al., 2021; Balaguer et al., 2022, 2023).
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waters upwelled to the surface, before
they are subducted into the ocean interior
as mode and intermediate waters.

This is shown most clearly by the
effect of Southern Ocean nutrient uptake
on macronutrients (Sarmiento et al.,
2004, 2007). Primary production in the
high-latitude Southern Ocean is domi-
nated by diatoms—phytoplankton with
opaline cell walls that thrive in dynamic,
highly seasonal and competitive envi-
ronments (Margalef, 1978). Probably
as the combined result of limitation by
light and Fe (see Box 1) and adaptation to
Si-rich waters fed by deep-water upwell-
ing, Southern Ocean diatoms are heavily
silicified (Baines et al., 2010). They thus
draw down Si much more strongly than
the other major nutrients NO, and PO,,
so that as surface waters spiral northward
across the fronts of the ACC, Siis depleted
more quickly (i.e., further south) than
nitrate or phosphate (Figure 3). Surface
ocean Si concentrations are generally
depleted north of the Polar Front, the
southernmost of the ACC fronts north of
the upwelling zone (Pollard et al., 2002).

The mode and intermediate waters
formed at the northern edge of the ACC
inherit this surface signal and are thus
relatively poor in Si—a characteristic that
they impart to the low-latitude thermo-
cline. Thus, the fact that Si concentra-
tions in the upper ocean are low rela-
tive to nitrate and phosphate (Figure 1),
and increase deeper in the thermocline,
has less to do with the fact that disso-
lution of (Si-bearing) opal takes place
deeper than the remineralization of
(N- and P-bearing) organic matter; rather,
it stems from the fact that high-latitude
diatoms have more efficiently stripped
Si out of the source regions of the waters
that ventilate the thermocline (Sarmiento
et al., 2004, 2007; Holzer et al., 2014).

Macronutrient Isotopes

and the Global Reach

of Southern Ocean Uptake

This southerly view of global marine
nutrient cycling emerged shortly before
the first GEOTRACES expeditions during



the International Polar Year 2007-2008, and has been substanti-
ated by macronutrient stable isotope data that emerged partly
from those early Southern Ocean transects. Phosphorus has only
one stable isotope, but the stable isotope compositions of seawater
nitrate and silicic acid are expressed using the § notation, which
represents the deviation (in parts per thousand) of the isotope
ratio "N/"N or *Si/**Si from that of a standard, for example:

15N/14N
8" N(%o) = ( ( anple_ 1) x 1,000. (1)

N/ N andara

An increase in the §'°N of seawater nitrate (§'°N-NO,) or the
8%Si of silicic acid thus reflects an enrichment in the heavier iso-
topes of these elements. Biological uptake of nitrate and silicic acid
is associated with isotope fractionation (Wada and Hattori, 1978;
De La Rocha et al,, 1997), with preferential uptake of the lighter
isotopes leaving the residual dissolved pool isotopically heavy
(i.e., with high 8"°N-NO, or §°Si). Thus, in the Southern Ocean,
as the concentrations of nitrate and silicic acid decrease across the
fronts of the ACC, §"°N-NO, and §”°Si increase (Figure 3; Sigman
et al,, 1999; Varela et al., 2004). These isotopic fingerprints of bio-
logical uptake are inherited by mode and intermediate waters when
they form at the northern edge of the ACC—thus making nitrate
and silicic acid in the thermocline isotopically heavy relative to the
deep ocean (Sigman et al., 2000; Fripiat et al., 2011, 2023).

It is the presence of these water masses that causes §'°N-NO,
and 8Si to increase at intermediate depths (Figure 4) in most of
the mid- and low-latitude ocean; indeed, the thermocline distri-
butions of §"°N-NO, and §*Si trace the equatorward spreading of
mode and intermediate waters within the subtropical gyre circula-
tion (de Souza et al., 2012a; Rafter et al., 2013; Grasse et al., 2020).
In the Pacific, the biogeochemical impact of southern-sourced
mode and intermediate waters is mostly restricted to the Southern
Hemisphere (e.g., Sarmiento et al., 2004), but in the Atlantic
Ocean, elevated §'°N-NO, and 8°°Si signals extend all the way to
the North Atlantic and Arctic Oceans. This is because the upper
limb of the overturning circulation transports southern-sourced
waters into the Northern Hemisphere, eventually feeding the for-
mation of North Atlantic Deep Water (Talley, 2013). Nitrate and
silicic acid in North Atlantic Deep Water, whose constituent water
masses form in the subpolar North Atlantic and Arctic, thus bear
the telltale elevated §"°N-NO, and §Si values that result from
biological uptake at the other end of the globe, around Antarctica
(de Souza et al., 2012b, 2015; Brzezinski and Jones, 2015; Holzer
and Brzezinski, 2015; Marconi et al., 2015; Varela et al., 2016).

From Macronutrients to Micronutrients

The Southern Ocean control on large-scale nutrient cycling dis-
cussed above is generalizable to the micronutrients: if Southern
Ocean ecosystems tend to take up a nutrient in excess of the
major nutrients nitrate or phosphate, its large-scale distribu-
tion will be skewed toward the deep and abyssal ocean, because
efficient export to depth in the Southern Ocean will reduce its
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FIGURE 3. Latitudinal variation in macro- and micronutrient concen-
trations and isotopic compositions in the surface Southern Ocean.
The upper four rows show data from the GEOTRACES GIPY04/
GIPYO5 transect mostly along the zero meridian (Abouchami et al.,
20M1; Fripiat et al., 201; Zhao et al., 2014; Wyatt et al.,, 2014). No
615N—NO3 data are available for this transect; see Sigman et al. (1999)
for a Pacific-sector cross-frontal 8"N-NO, section. The bottom row
shows data from the surface ocean (<25 m) from GEOTRACES GIPY06
transect along ~140°W. These data are unpublished and reproduced
with kind permission of Andrew Bowie. PF and SAF denote approx-
imate positions of the Polar Front and Subantarctic Front. Error bars
on isotopic data represent uncertainty as reported by the authors.
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concentrations in the thermocline and,
ultimately, in deep waters formed at high
northern latitudes. By providing data-
sets of consistently co-sampled micro-
nutrient metals and macronutrients, the
GEOTRACES program has enabled the
systematic study of their relationships in
the surface Southern Ocean, while basin-
scale sections of metal concentrations
and isotopes provide larger-scale con-
straints. Next, we review the progress
made in understanding the role of the
Southern Ocean in the marine Zn, Cd,
and Ni cycles in the GEOTRACES era.

Zinc and Its Isotopes

Given what we know about how highly
silicified Southern Ocean diatoms gov-
ern the marine Si distribution, it might
be thought that the similarity between Zn

8N-NOs (%o)

and Si comes about because these diatoms
also incorporate a lot of Zn into their sili-
ceous frustules (Bruland et al., 1978). But
because of its importance in the biochem-
istry of these eukaryotes, most of their cel-
lular Zn is situated in their organic matter,
with at most a few percent in the frustule
(Ellwood and Hunter, 2000; Twining
et al., 2014; although see the recent results
of Grun et al.,, 2023). Why, then, does the
marine Zn distribution not look more like
that of NO; and PO,, which are released
back to seawater when organic matter
is remineralized? The answer lies in the
fact that phytoplankton trace metal quo-
tas exhibit considerable variability at both
the phenotypic and physiological levels
(e.g., Ho et al., 2003; Twining and Baines,
2013). So, on the one hand, eukaryotic
phytoplankton have generally higher cel-
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FIGURE 4. Profiles of the isotopic composition of macronutrients (upper row) and micronutrients
(lower row) in the southern (sub)tropics. Micronutrient isotope data are all from the same station
(GR15) occupied during GEOTRACES section GP19 in the southwest Pacific (Takano et al., 2017;
Sieber et al., 2019; see also Figure 5). Macronutrient isotope data are from de Souza et al. (2012b)
and Rafter et al. (2013). Error bars show uncertainty as reported by the authors.
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lular Zn quotas than prokaryotes (Saito
etal., 2003), and diatoms have even higher
Zn quotas than other co-existing eukary-
otes. On the other hand, laboratory cul-
tures have shown that the Zn quotas of
diatoms and other eukaryotic phyto-
plankton increase when they are growth-
limited by Fe (Sunda and Huntsman,
2000) or when ambient seawater has
higher concentrations of the free Zn ion
(see Box 2; Sunda and Huntsman, 1992).
So, when deep-water upwelling in
the Southern Ocean supplies plenty
of Zn to Fe-limited diatom communi-
ties, the ecosystem response is to take up
large amounts of Zn: diatoms growing
in Zn-rich waters south of the Antarctic
Polar Front have Zn:P ratios that can be
more than 10 times those of low-latitude
phytoplankton (Twining and Baines,
2013). As a result, Zn drawdown across
the fronts of the ACC is as strong as that
of Si, with Zn concentrations decreasing
by a factor of 3 across the Antarctic Polar
Front and becoming essentially depleted,
together with Si, in the formation regions
of mode and intermediate waters further
north (Figure 3, Ellwood, 2004, 2008;
Zhao et al., 2014; Janssen et al., 2020).
Thus, although there is no biochemical
coupling between their uptakes, the fact
that Southern Ocean ecosystems strip
both Si and Zn from surface waters means
that Zn is “trapped” within the Southern
Ocean like Si, rather than being exported
into the low-latitude thermocline like
NO, and PO, (Vance et al., 2017; de Souza
etal., 2018). While this leading-order role
of Southern Ocean uptake in governing
the marine Zn distribution is clear from
numerous studies (e.g., Roshan et al,
2018; Weber et al., 2018; Middag et al.,
2019), it has been proposed that addi-
tional processes involving the reversible
sorption of Zn to sinking particles must
work north of the Southern Ocean, in
order to maintain the similarity between
the Zn and Si distributions even in regions
not dominated by Southern Ocean water
masses, such as the North Pacific (John
and Conway, 2014; Weber et al., 2018;
Zheng et al., 2021; Sieber et al., 2023a).



The most intriguing aspect of marine
Zn is its stable isotope composition
8%7n, which has a seawater distribution
unique among the nutrient isotope sys-
tems. Even though most phytoplankton
have been shown to preferentially take
up the light isotopes of Zn in laboratory
culture (e.g., John et al,, 2007; Samanta
et al., 2018; Kobberich and Vance, 2019),
seawater 8°Zn is low in the thermocline
and surface ocean, rather than high as for
the macronutrients (Figure 4; Conway
and John, 2014; Takano et al., 2017; John
etal., 2018). This is certainly not the result
of Southern Ocean isotope fractionation:
here, as surface Zn concentrations drop
precipitously toward the north, §°Zn val-
ues show a minimal but just-resolvable
increase (Zhao et al.,, 2014; Wang et al,,
2019; Sieber et al., 2020). But this slight
signal of biological fractionation appears
to be lost north of the Subantarctic Front
(Figure 3; Zhao et al.,, 2014; Ellwood
et al., 2020; Sieber et al., 2020), perhaps
because of the admixture of isotopi-
cally light zinc carried southward in sub-
tropical thermocline waters (Figure 2b;
Takano et al., 2017; Samanta et al., 2017).
What exact processes are responsible for
low subtropical 8°Zn is currently under
debate, with two contrasting hypothe-
ses suggested: (1) the removal of isotopi-
cally heavy Zn sorbed to sinking particles
(John and Conway, 2014; Weber et al.,
2018; Sieber et al., 2023a), which requires
chelation by natural organic ligands
(see Box 2) to prefer isotopically light Zn,
at odds with laboratory studies of organic
chelators (e.g., Ban et al.,, 2002; Markovi¢
etal., 2017); or (2) the addition of isotopi-
cally light Zn from external sources that
may be anthropogenic (Lemaitre et al.,
20205 Liao et al,, 2020), although analy-
ses of open-marine aerosols (Dong et al.,
2013; Packman et al., 2022; Zhang et al.,
2024) have thus far not revealed Zn iso-
tope compositions that can explain the
lowest 8%Zn values observed in ther-
mocline waters. Whether either, both, or
neither of these hypotheses explains the
thermocline §%Zn distribution remains
the subject of active research.

Cadmium and Its Isotopes
Dissolved and particulate marine data
consistently show that, of all the trace
metals, Cd behaves most similarly to
the macronutrients, being cycled tightly
together with P (e.g., Abouchami et al.,
2011; Twiningetal., 2015; Yangetal., 2018;
Middag et al., 2018; Ohnemus et al., 2019;
Cloete et al., 2021). Its isotopic behav-
ior, too, is most like the macronutrient
systems §"°N-NO; and §Si. Biological
uptake fractionates the isotopes of Cd,
and as the concentrations of Cd decrease
across the fronts of the ACC, it becomes
increasingly enriched in the heavy iso-
topes (i.e, 8'*Cd increases; Figure 3;
Abouchami et al.,, 2011; Xue et al., 2013).
This similarity to the macronutrient sta-
ble isotope systems extends to much of
the global ocean: as with §°N-NO, and
8%Si, Cd subducted in the mode and
intermediate waters is isotopically heavy
(Figure 4; Abouchami et al., 2014; Sieber
etal.,, 2019a), and this elevated §'"*Cd sig-
nal can be traced through the subtropi-
cal thermocline (Conway and John, 2015;
Xie et al.,, 2017; George et al., 2019; Sieber
etal,, 2019b, 2023b) all the way into North
Atlantic Deep Water (Abouchami et al,,
2014; Conway and John, 2015).

But given its limited biochemical role,
why should phytoplankton uptake of Cd

so exactly mimic phosphate? In fact, in
detail it does not: Southern Ocean surface
transects show that Cd is taken up more
strongly relative to PO,, with Cd reaching
low levels north of the Subantarctic Front,
while PO, remains undepleted (Figure 3;
Ellwood, 2008; Abouchami et al., 2011;
Baars et al., 2014). This is consistent with
two independent sets of observations.
First, particulate data show that biogenic
particles in the Southern Ocean are highly
enriched in Cd relative to P (Bourne et al.,
2018; Twining and Baines, 2013). Second,
cultures of eukaryotic phytoplankton and
incubations of natural assemblages have
shown that they will take up more Cd
under conditions found in the surface
Southern Ocean: under growth limitation
by Fe (Cullen et al,, 2003), at high con-
centrations of the free Cd ion (see Box 2;
Lee et al., 1995; Sunda and Huntsman,
1998), or at low concentrations of free
Mn or Zn (see Box 1; Cullen et al., 1999;
Sunda and Huntsman, 2000). So, Fe- and/
or Mn-limited Southern Ocean diatom
communities would be expected to take
up more Cd even south of the Polar Front,
and Cd uptake should increase even more
strongly when Zn is reduced to low lev-
els to its north, as is indeed observed
(Figure 3; Sunda and Huntsman, 2000;
Ellwood, 2008).

BOX 2. METAL SPECIATION IN SEAWATER

Metals dissolved in seawater exist in a variety of complexes, both inorganic
and organic. In laboratory culture, it is found that phytoplankton metal uptake
is a function of the concentration of the free metal ion in the ambient medium
(i.e., that portion of the dissolved pool that is not complexed; e.g., Sunda and
Guillard, 1976; Xu et al., 2007). In surface seawater, dissolved Zn and Cd (and to
a lesser degree Ni) are dominantly complexed by strong but mostly uncharac-
terized organic ligands that considerably reduce the concentrations of their free
divalent ions (e.g., Ellwood, 2004; Kim et al., 2015; Boiteau et al., 2016). Probably
as the combined consequence of higher metal concentrations and degradation
of the organic molecules, Zn and Cd are less strongly complexed by organic
ligands in the deep ocean (Bruland, 1989, 1992). Thus, as GEOTRACES obser-
vations have shown, the upwelling of deep waters in the Southern Ocean pro-
vides higher concentrations of free Zn and Cd to surface ecosystems south of the
Antarctic Polar Front (Baars and Croot, 2011; Baars et al., 2014).
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The stronger Southern Ocean uptake
of Cd has also helped to clarify a feature
of its distribution that long perplexed
oceanographers: the low Cd:PO, ratio of
North Atlantic Deep Water that results in
a slight nonlinearity (known affection-
ately as “the kink”) in the Cd-PO, rela-
tionship in the Atlantic Ocean (Boyle,
1988; Frew and Hunter, 1992; de Baar
etal., 1994). In the context of the Southern
Ocean nutrient hub as it works for Zn and
Si, and the influence of uptake on the Cd
distribution in the Southern Ocean sur-
face, it has become clear that the rela-
tive Cd-poverty of North Atlantic waters
comes about because Southern Ocean
phytoplankton reduce Cd concentra-
tions in the upper limb of the overturning
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circulation slightly more than they do
PO, (Baars et al., 2014; Quay et al., 2015;
Middag et al., 2018; Roshan and DeVries,
2021), such that Cd is depleted relative to
PO, in the thermocline (Figure 5).

Nickel and Its Isotopes

Perhaps because it is never drawn down
to very low concentrations in the surface
ocean, nickel has until recently received
less attention than Zn and Cd, and thus
concentration and especially isotopic data
are sparser for this metal. Nonetheless, it
is clear that across the fronts of the ACC,
Ni concentrations decrease much less
strongly than those of Zn and Cd. Surface
Ni concentrations decrease by just 20%
across the Polar Front, and remain above
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FIGURE 5. Meridional sections of phosphate, silicic acid, and Cd in the southern Pacific
from GEOTRACES section GP19. Macronutrient data are from the GEOTRACES IDP2021
(GEOTRACES Intermediate Data Product Group, 2021) and reproduced with kind permission
of Toshitaka Gamo and Hajime Obata. Cadmium data are from Sieber et al. (2019).
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3 nmol kg™'—~50% of the highest surface
Southern Ocean concentrations—even
north of the Subantarctic Front, where
both Zn and Cd are depleted (Figure 3;
Ellwood, 2008; Janssen et al., 2020). In
the oligotrophic subtropics, where all
inorganic macro- and micronutrients are
at very low concentrations, Ni is pres-
ent at around 2 nmol kg', 20% of deep-
ocean levels (Figure 1; Middag et al.,
2020). It was proposed that this con-
centration might represent a pool that is
not bioavailable (Price and Morel, 1991;
Mackey et al., 2002), but recently, nutri-
ent amendments have shown that both
eukaryotic and prokaryotic phytoplank-
ton can draw down this pool of seawater
Ni significantly when provided with suf-
ficient other nutrients (John et al., 2022).
Thus, based on biogeochemical model-
ing, it has been suggested that the non-
zero subtropical Ni minimum instead
represents a residual pool of Ni “left
over” once other nutrients have been
depleted, due to the low Ni require-
ments of Southern Ocean ecosystems
(John et al., 2022).

Certainly, a smaller drawdown of Ni
in the Southern Ocean is consistent with
its limited role in eukaryote biochemis-
try. Its only known use in these organ-
isms is in urease, which phytoplankton
obligately need when their only nitrogen
source is urea (Price and Morel, 1991;
Egleston and Morel, 2008), but which
may be less important in the nitrate-rich
Southern Ocean, where urea is only sea-
sonally an important nitrogen source,
mostly in the Subantarctic (e.g., Joubert
et al, 2011). Furthermore, sparse sea-
sonally resolved observations also sug-
gest only limited Ni uptake by Southern
Ocean ecosystems, with summertime
mixed-layer Ni concentrations only
~10% lower than in winter both south
and north of the Subantarctic Front
(Ellwood, 2008; Cloete et al., 2019). This
makes it plausible that the marine Ni dis-
tribution, like that of Zn and Cd, is also
driven by the stoichiometric require-
ments of diatom-dominated ecosystems
in the Southern Ocean.



At the same time, the stable isotope
composition of dissolved Ni (8§%Ni)
shows that the subtropics cannot just be
a passive receptacle for the Ni leftovers of
the high latitudes. Values of §*Ni show
no resolvable variability in the Southern
Ocean (Cameron and Vance, 2014; Wang
et al., 2019; Archer et al., 2020) or in the
subpolar North Atlantic (Lemaitre et al.,
2022). In the subtropical ocean, how-
ever, 6“Ni increases through the upper
thermocline to maxima in the surface
(Figure 4; Takano et al., 2017; Archer
et al., 2020; Yang et al, 2021; Lemaitre
et al., 2022). Lemaitre et al. (2022) argue
that this isotopic divide results from Ni
cycling processes particular to the oli-
gotrophic subtropical ocean, in which
the dearth of inorganic nitrogen sources
and the domination of the phytoplankton
community by prokaryotes should both
tend to increase relative Ni demand (see
earlier section on Micronutrient Mimics).

This poses an interesting question
that remains unresolved: is the marine
Ni distribution driven by low-latitude
Ni demand by prokaryotes, or instead
by the limited Ni requirement of high-
latitude eukaryote-dominated ecosys-
tems? In the latter case, the global Ni dis-
tribution is controlled from the south
much like those of the macronutrients
as well as Zn and Cd (John et al., 2022);
in the former, the reduction of Ni con-
centrations in the Subantarctic, and with
it the global Ni distribution, is at least
partially driven by subtropical Ni draw-
down, and the contribution of subtrop-
ical waters to Southern Ocean mode
waters (Figure 2b; Ferndndez Castro
et al., 2022). This would make the bio-
geochemical controls on the marine
Ni cycle unique among the elements
considered here.

PERSPECTIVES

Data from the first two decades of
GEOTRACES show that the Southern
Ocean control on global macronutrient
distributions is generalizable to numerous
micronutrient metals. Simultaneously,
physical oceanographic research over the

last decade has increasingly revealed the
zonal asymmetry of physical Southern
Ocean processes key to biogeochemi-
cal tracer transport (Figure 2; Morrison
et al., 2022; Gray, 2024)—for instance,
that the pathways of upwelling and sub-
duction in the Southern Ocean are con-
centrated in discrete hotspots in the
longitudinal direction (e.g., Sallée et al,,
2010; Tamsitt et al., 2017).

It remains unknown to what extent
this heterogeneity in the physical system
impacts the distribution of biogeochemi-
cal tracers. Southern Ocean mode waters
exhibit co-variation between biogeochem-
ical and physical properties that is con-
sistent between ocean basins (Bushinsky
and Cerovecki, 2023). Observations also
show that surface-ocean nutrient concen-
trations are generally homogeneous in the
longitudinal direction between Southern
Ocean fronts (Pollard et al., 2002), with
distributions instead dominated by strong
variations in the latitudinal direction
(Figure 3). This suggests that the time-
scales of lateral eddy-driven mixing (also
known as isopycnal diffusion) and trans-
port by the ACC in the along-front direc-
tion may be fast enough to smooth out any
variability arising from localized hotspots
of upwelling and subduction. However,
research on the three-dimensional struc-
ture of physical-biogeochemical inter-
actions in the Southern Ocean is in its
infancy (Gray, 2024). More research is
needed to robustly determine whether a
two-dimensional (depth-latitude), longi-
tudinally averaged framework is sufficient
to understand the cycling of nutrients and
micronutrients in the Southern Ocean.

A further recent development is
broader recognition of the role that sub-
tropical thermocline waters play in set-
ting the (biogeochemical) proper-
ties of Southern Ocean mode waters
(Tudicone et al., 2011; Morrison et al,,
2022; Ferndndez Castro et al., 2022).
Progress in our understanding of how
this contribution impacts macro- and
micronutrients may be made by consid-
ering biogeochemical edge cases such
as the metal chromium (Cr), which has

no known biological role (Fratsto da
Silva and Williams, 2001) but displays a
muted gradient across the fronts of the
ACC that could result from mixing of
subtropical and subpolar waters (Rickli
et al., 2019). South of the ACC, the influ-
ence of biogeochemical cycling in the
gyres of the Ross and Weddell Seas on
the vertical—and, subsequently, larger-
scale—redistribution of macro- and
micronutrients (e.g., MacGilchrist et al.,
2019; Sieber et al., 2020) deserves more
focused study.

When
trients Zn, Cd, and Ni specifically,
GEOTRACES data have not only clari-
fied the role of the Southern Ocean hub in
their marine cycles, but also raised ques-

it comes to the micronu-

tions that remain to be answered in the
years to come.

For Zn, it is the isotopic distribution
that remains most debated: will we be
able to resolve whether the low §%Zn of
the low-latitude thermocline is a result of
internal biogeochemical cycling or exter-
nal input? Doing so will require chal-
lenging work, in the lab and in the natu-
ral environment, to robustly quantify the
direction and magnitude of the isotope
effect associated with binding to natural
seawater ligands, provide observational
constraints on the distribution coeffi-
cients of Zn sorption to different kinds of
marine particles, and better characterize
the isotopic composition of atmospheric
sources of Zn to the ocean.

The large-scale systematics of Cd
and its isotopes are less contentious, but
one open question pertains to the role
of the tropical ocean, including tropi-
cal oxygen-minimum zones, in modify-
ing the Cd-PO, relationship determined
by the Southern Ocean. There appears
to be a small preferential loss of sea-
water Cd in the shallow tropical subsur-
face (Ohnemus et al., 2017; Guinoiseau
et al., 2019; de Souza et al., 2022; Sieber
et al., 2023b), but whether this is driven
by biology or redox conditions (or both,
or neither) is currently unclear; a useful
first step would be a more detailed char-
acterization of the associated Cd-rich
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particulates (Ohnemus et al., 2019). The
exact controls on the §''*Cd systemat-
ics of the thermocline also remain to be
elucidated (Xie et al., 2019), and here
isotope-enabled models of ocean biogeo-
chemistry may prove to be useful tools.
Open questions abound when it
comes to the marine cycle of nickel.
Is its cycle driven primarily by low-
latitude prokaryote-dominated ecosys-
tems (Lemaitre et al., 2022) or by high-
latitude Southern Ocean uptake as for
the Zn and Cd (John et al., 2022)? And
is the Southern Ocean Ni gradient driven
primarily by regional uptake, or rather
by the influence of Ni-poor subtropi-
cal waters transported southwards into
the Subantarctic? Do prokaryotic and
eukaryotic phytoplankton fractionate the
isotopes of Ni differently during uptake?
What is the affinity of Ni for sorption
to various types of marine particles? As
work proceeds at sea, in the clean lab, and
on computing clusters, answers to these
questions and more will emerge.
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