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INTRODUCTION

�e physiological requirements of marine 

photosynthesizers dictate their reliance 

on a slew of nutrients that they must draw 

from seawater. In addition to the macro-

nutrients nitrogen, phosphorus, and (in 

some cases) silicon, marine phytoplank-

ton require metal micronutrients in order 

to photosynthesize, e�ciently �x carbon, 

protect themselves from oxidative stress, 

or access certain macronutrient pools 

(Fraústo da Silva and Williams, 2001; 

Morel et al., 2014). �e nutritional status 

and ecological composition of marine phy-

toplankton communities thus depend on 

what might be termed the “nutrientscape” 

of the sunlit surface ocean in which they 

live—i.e.,  the distributions and relative 

abundances of vital dissolved macro- and 

micronutrients (e.g.,  Dutkiewicz et  al., 

2009). Simultaneously, these distribu-

tions are shaped by how surface biological 

uptake and downward particulate export 

of nutrients interact with ocean circula-

tion to cycle and transport them through 

the global ocean (e.g.,  Sarmiento et  al., 

2007; Sunda, 2012). 

A process key to continued sur-

face-ocean primary productivity is the 

replenishment of nutrients, lost from 

the upper ocean through the sinking of 

biogenic particles, by the upwelling of 

deep, nutrient-rich waters, which happens 

primarily in the Southern Ocean sur-

rounding Antarctica (Toggweiler, 1994; 

Marshall and Speer, 2012; Talley, 2013). 

In addition, mode waters formed at the 

northern edge of the Southern Ocean ven-

tilate the thermocline of the low- latitude 

ocean (Morrison et  al., 2022), and the 

abundance and stoichiometry of nutrients 

in these waters provide a boundary con-

dition for the supply of nutrients to low- 

latitude ecosystems by coastal or equato-

rial upwelling (Sarmiento et al., 2004).

As a body of work beginning two 

decades ago has shown, the large-

scale distributions of dissolved macro-

nutrients—and the systematic di�er-

ences between these distributions—are 

largely determined by how biogeochem-

ical cycling of nutrients in the surface 

Southern Ocean, and its interaction with 

physical processes, modulates the nutri-

ent content of waters between the zones 

of deep-water upwelling and thermocline 

ventilation (Sarmiento et al., 2004, 2007; 

Weber and Deutsch, 2010; Holzer and 

Primeau, 2013; Holzer et al., 2014). Since 

ground-breaking studies in the 1970s, it 

has also been known that vertical pro�les 

of the concentrations of the metals zinc 

(Zn), cadmium (Cd), and nickel (Ni) in 

seawater mimic those of the major nutri-

ents (Figure 1; Boyle et al., 1976; Sclater 

et al., 1976; Bruland et al., 1978). By vastly 

expanding data coverage and providing 

basin-scale sections of the abundance 

and stable isotope composition of these 

micronutrient metals, the GEOTRACES 

program has allowed a reevaluation of 

the mechanisms responsible for this 

striking similarity. 

Micronutrient Mimics 

Zinc, Cd, and Ni are only a few of the 

micronutrients that phytoplankton need; 

we focus on them here for reasons both 

conceptual and practical. Conceptually, 

the similarities and di�erences between 

their elemental and isotopic distributions 

nicely illustrate how Southern Ocean 

processes can shape global nutrient dis-

tributions. Practically, they each have 

a stable isotope system that provides an 

additional constraint on their cycling, 

and there are su�cient data to character-

ize their behavior in the Southern Ocean. 

We thus only very brie�y consider the 

vital micronutrients iron and manga-

nese, whose global distributions are not 

a�ected by Southern Ocean processes 

(see Box 1), and do not discuss the micro-

nutrients cobalt, copper, and selenium, 

which are not controlled by the Southern 

Ocean or for which Southern Ocean data 

coverage remains too sparse.

Zinc, Cd, and Ni all display what have 

classically been called “nutrient-type” 

distributions (Bruland, 1983): that is, 

their dissolved concentrations are at a 

minimum in the surface mixed layer and 

increase both downward in the water col-

umn and in deep waters from the North 

Atlantic to the North Paci�c—thus mim-

icking the distributions of the macro-

nutrients. �is similarity can be seen in 

the vertical pro�les of Figure 1, which 

also reveal di�erences between the three 

metals: the distribution of dissolved Cd 

most closely resembles those of nitrate 

(NO3) and phosphate (PO4), exhibiting 

the same increase through the thermo-

cline and mid-depth maximum as these 
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major nutrients (Boyle et al., 1976). Zinc, 

on the other hand, bears more similar-

ity to silicic acid (Si(OH)4), with low 

concentrations extending from the sur-

face ocean deeper into the thermocline, 

and reaching a maximum closer to the 

base of the water column (Bruland et al., 

1978). A particularity of the Ni distribu-

tion (Sclater et  al., 1976) is that, unlike 

the macronutrients or Zn and Cd, its 

concentration in the surface ocean never 

decreases below about ~20% of deep- 

water values, even in the nutrient-poor 

subtropical gyres (in contrast to <1% 

for Zn and Cd).

�ese three elements also have dif-

fering roles in phytoplankton biochem-

istry. Zinc has the most diverse set of 

biochemical roles in photosynthesiz-

ers, including as the metal center in the 

enzyme carbonic anhydrase, import-

ant for the e�cient �xation of carbon 

(Morel et al., 1994, 2014). When ambient 

Zn concentrations are low, many phyto-

plankton can substitute cobalt or Cd 

for it (Lee and Morel, 1995; Sunda and 

Huntsman, 1995). Such “cambialistic” 

substitution for Zn may be the primary 

reason that Cd behaves as a micronutri-

ent in the sea, because its only known 

biochemical role is in a Cd-bearing car-

bonic anhydrase in some marine diatoms 

(Lane et  al., 2005). In phytoplankton, 

Ni is mainly used in nitrogen metabo-

lism or to protect from oxidative stress 

(Ragsdale, 2009): it is associated with 

the metallo enzyme urease, which cata-

lyzes the metabolism of urea to ammo-

nia; NiFe hydrogenase, which prevents 

the inhibition of nitrogen �xation by O2 

and H2 in diazotrophs; and a Ni-bearing 

superoxide dismutase primarily found in 

cyanobacteria, which gets rid of harmful 

reactive oxygen species.

At the time when the �rst analyses of 

these micronutrients in sea water were 

made, the marine biogeochemical para-

digm interpreted major nutrient distri-

butions in an essentially one-dimensional 

fashion (e.g.,  Broecker and Peng, 1982). 

In that view, concentrations of silicic acid 

increase deeper in the water column than 

the other two macronutrients (Figure 1) 

because siliceous hard parts dissolve more 

slowly than bacteria decompose organic 

matter—so that Si is released from sink-

ing particles at greater depths than NO3 

and PO4. �e similarities between the 

distributions of Zn, Cd, and Ni and the 

macronutrients were analogously inter-

preted as resulting from directly coupled 

cycling: for instance, that pro�les of Zn 

and Si look similar because Zn is incor-

porated into the siliceous frustules of dia-

toms (Bruland et al., 1978). But we now 

know that the marine distributions of dis-

solved nutrients are produced by a com-

plex set of three-dimensional interactions 

between biologically driven �uxes and 

physical transport and mixing processes. 

On both these fronts, Southern Ocean 

processes play a key role at the scale of 

the global ocean.

THE SOUTHERN OCEAN 

CIRCULATION HUB

�e current paradigm for explaining 

Southern Ocean nutrient resupply 

emphasizes a longitudinally averaged, 

two-dimensional framework with the 

meridional overturning circulation as 

the primary driver of upward nutrient 

transport (e.g.,  Sarmiento et  al., 2004; 

Morrison et  al., 2015). �e upwelling 

limb of the overturning circulation is 

largely controlled by the westerly winds 

over the Southern Ocean, which drive 

northward Ekman transport in the sur-

face layer. South of the latitude where the 

westerly winds are strongest (~50°S), the 

Ekman transport is divergent and thus 

draws up nutrient-rich deep waters from 

below, along the sloping density layers of 

the Southern Ocean. Upon reaching the 

surface mixed layer, one portion of these 

upwelled waters �ows northward in the 
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FIGURE 1. Profiles of the macronutrients (upper row) and metal micronutrients (lower row) from the 

subtropical North Pacific (32.7°N, 145°W) are plotted as reported by Bruland (1980).
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“upper” overturning cell, while the other 

portion �ows south toward Antarctica 

in the “lower” overturning cell. It is the 

upper overturning cell that dominates 

the supply of nutrients for global primary 

production, due to its northward sur-

face �ow (Marinov et al., 2006; Primeau 

et al., 2013). �e upwelling waters of the 

lower overturning cell have limited res-

idence time when they outcrop at the 

surface around Antarctica, as they are 

rapidly returned to the abyss, in�uenc-

ing deep water nutrient distributions 

(Sarmiento et al., 2007).

Recent work has highlighted the 

unique three-dimensional structure of 

Southern Ocean upwelling. Rather than 

being longitudinally homogeneous, 

the upwelling is intensi�ed in a hand-

ful of eddy hotspots on the eastern side 

of large bathymetric features (Figure 2a; 

e.g.,  Foppert et  al., 2017; Tamsitt et  al., 

2017). �e localization of the upwelling 

is particularly prominent at ~1,000  m 

depth (Tamsitt et  al., 2017; Yung et  al., 

2022), but localization is also evident 

at the base of the mixed layer (Viglione 

and �ompson, 2016). Modeling studies 

suggest that the net circumpolar upwell-

ing transport of nutrients along isopyc-

nals is similarly dominated by eddies at 

a small number of localized hotspots 

(Dufour et al., 2015). In addition to this 

intensi�ed upwelling transport at eddy 

hotspots, there may also be signi�cant 

larger-scale inter-basin di�erences in 

upwelling transport of deep waters into 

the mixed layer (Viglione and �ompson, 

2016; Prend et  al., 2022). However, an 

open question remains regarding what 

impact any longitudinal variations in 

nutrient delivery to the mixed layer have 

on the distribution of nutrients and phy-

toplankton ecology across the Southern 

Ocean. �e distribution of biogeochem-

ical properties in the surface Southern 

Ocean is strongly guided by the Antarctic 

Circumpolar Current (ACC), whose �ow 

is organized into a series of jets aligned 

with strong density fronts (i.e.,  sharp 

changes in the physical structure of the 

water column on either side of the jet). 

Nutrient concentrations in the surface 

Southern Ocean are generally homo-

geneous between these fronts, with the 

strongest concentration gradients coin-

ciding with the physical front (Pollard 

et al., 2002). It may be that, despite inho-

mogeneous upwelling, the strong �ow 

of the ACC, as well as lateral mixing by 

eddies, smooths out longitudinal (along-

front) gradients in nutrient concentra-

tions (e.g., Morrison et al., 2022).

�e mode waters of the global thermo-

cline are replenished and enriched by 

subduction on the northern edge of the 

Antarctic Circumpolar Current (Sallée 

et  al., 2010). �e subducting waters are 

a mixture of both northward-�owing 

Southern Ocean surface waters and sub-

tropical waters �owing southward in 

western boundary currents (Figure 2b). 

While many nutrients exhibit negligible 

concentrations in the subtropical source 

waters, it is still necessary to consider 

contributions from both northern and 

southern source waters to understand 

nutrient distributions in the mode waters 

(Fernández Castro et  al., 2022). Many 

conceptual frameworks and schematics 

(b) Processes Impacting Northward Nutrient Transport

FIGURE 2. The three-dimensional structure of the physical processes impacting nutrients in the 

Southern Ocean. (a) The inhomogeneous spatial distribution of simulated upwelling of deep waters 

at 1,000 m depth. Reproduced from Tamsitt et al. (2017) (b) Processes (enumerated) contributing to 

the export of nutrients northwards into the global thermocline. Blue colors show potential density, 

and orange colors show potential vorticity on a density surface in the interior. Low potential vorticity 

is an indicator of recently ventilated mode water. Reproduced from Morrison et al. (2022)
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of mode water formation focus exclu-

sively on the role of the two- dimensional 

longitudinally averaged overturning cir-

culation (e.g.,  Sarmiento et  al., 2004; 

Marinov et  al., 2006). However, like 

the upwelling, the transfer of nutrients 

from the surface of the Southern Ocean 

northward into the global thermocline 

is a complex, three-dimensional pro-

cess (Morrison et al., 2022). Subduction 

of waters from the mixed layer into the 

interior occurs in localized hotspots, 

with substantial inter-basin di�erences 

(Sallée et  al., 2010). A�er subduction, 

water mass properties are rapidly homog-

enized across the mode waters by eddy 

mixing and gyre circulation (e.g., Gupta 

et  al., 2022). Eddy-driven mixing along 

isopycnals may also contribute substan-

tially to the northward �ux of nutrients 

into the mode waters, depending on 

the nutrient gradient along isopycnals 

(Fripiat et al., 2021).

THE SOUTHERN OCEAN 

NUTRIENT HUB

�e role of the Southern Ocean in both 

the upwelling of deep waters and the ven-

tilation of the low-latitude thermocline 

makes it an important “hub” of the global 

overturning circulation. As a result, the 

physical and biogeochemical properties 

of abyssal, intermediate, and upper-ocean 

water masses formed here in�uence 

tracer distributions at a near-global scale. 

When it comes to the distributions of 

macro- and micronutrients, what is par-

ticularly important is how the uptake of 

nutrients by Southern Ocean ecosystems 

modi�es the properties of nutrient- rich 

waters upwelled to the surface, before 

they are subducted into the ocean interior 

as mode and intermediate waters.

�is is shown most clearly by the 

e�ect of Southern Ocean nutrient uptake 

on macronutrients (Sarmiento et  al., 

2004, 2007). Primary production in the 

high-latitude Southern Ocean is domi-

nated by diatoms—phytoplankton with 

opaline cell walls that thrive in dynamic, 

highly seasonal and competitive envi-

ronments (Margalef, 1978). Probably 

as the combined result of limitation by 

light and Fe (see Box 1) and adaptation to 

Si-rich waters fed by deep-water upwell-

ing, Southern Ocean diatoms are heavily 

silici�ed (Baines et  al., 2010). �ey thus 

draw down Si much more strongly than 

the other major nutrients NO3 and PO4, 

so that as surface waters spiral northward 

across the fronts of the ACC, Si is depleted 

more quickly (i.e.,  further south) than 

nitrate or phosphate (Figure 3). Surface 

ocean Si concentrations are generally 

depleted north of the Polar Front, the 

southernmost of the ACC fronts north of 

the upwelling zone (Pollard et al., 2002). 

�e mode and intermediate waters 

formed at the northern edge of the ACC 

inherit this surface signal and are thus 

relatively poor in Si—a characteristic that 

they impart to the low-latitude thermo-

cline. �us, the fact that Si concentra-

tions in the upper ocean are low rela-

tive to nitrate and phosphate (Figure 1), 

and increase deeper in the thermocline, 

has less to do with the fact that disso-

lution of (Si-bearing) opal takes place 

deeper than the remineralization of 

(N- and P-bearing) organic matter; rather, 

it stems from the fact that high-latitude 

diatoms have more e�ciently stripped 

Si out of the source regions of the waters 

that ventilate the thermocline (Sarmiento 

et al., 2004, 2007; Holzer et al., 2014).

Macronutrient Isotopes 

and the Global Reach 

of Southern Ocean Uptake

�is southerly view of global marine 

nutrient cycling emerged shortly before 

the �rst GEOTRACES expeditions during 

BOX 1. IRON AND MANGANESE

Because they are required in the photosynthetic apparatus, iron (Fe) and manga-

nese (Mn) are vital micronutrients for all marine phytoplankton (Fraústo da Silva 

and Williams, 2001)—but their global marine distributions are not controlled by 

Southern Ocean biogeochemistry. Instead, the main controlling factor is their low 

solubility in oxygenated seawater, which results in the formation of authigenic 

(oxyhydr)oxide phases (Sunda and Huntsman, 1987; Tagliabue et  al., 2023) or 

sorption to particles, processes that remove Fe and Mn from seawater. Thus, 

despite the stabilization of Fe above inorganic solubility by chelating ligands (see 

Box 2), both these metals have short marine residence times on the order of 

decades to centuries (Landing and Bruland, 1987; Tagliabue et  al., 2017), and 

their concentrations in the deep ocean remain low (in the case of Fe) or even 

decrease (Mn) relative to surface concentrations, rather than increasing as for 

Zn, Cd, and Ni. 

This di�erence in aqueous geochemistry has important implications for the 

supply of Fe and Mn to Southern Ocean ecosystems: upwelling of deep waters 

provides plenty of macronutrients together with Zn, Cd, and Ni to the surface, but 

the low deep-water concentrations of Fe and Mn mean that there is a relative 

dearth of these metals in the upwelling-influenced Southern Ocean, one that is 

exacerbated by limited atmospheric deposition and distance from the continents. 

A consequence is the well-known limitation of Southern Ocean productivity by 

Fe (Martin et al., 1990; Moore et al., 2013), demonstrated in situ by Fe enrichment 

experiments carried out around the turn of the millennium (e.g., Boyd et al., 2000; 

Gervais et al., 2002; Coale et al., 2004). More recently, evidence has emerged 

that the low Mn concentrations of the surface Southern Ocean can also lead to 

(co-)limitation of productivity by Mn (Wu et al., 2019; Pausch et al., 2019; Browning 

et al., 2021; Latour et al., 2021; Balaguer et al., 2022, 2023).
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the International Polar Year 2007–2008, and has been substanti-

ated by macronutrient stable isotope data that emerged partly 

from those early Southern Ocean transects. Phosphorus has only 

one stable isotope, but the stable isotope compositions of seawater 

nitrate and silicic acid are expressed using the δ notation, which 

represents the deviation (in parts per thousand) of the isotope 

ratio 15N/14N or 30Si/28Si from that of a standard, for example: 

 

δ15N(‰) = ( – 1) × 1,000.
(15N/14N)sample

(15N/14N)standard  

(1)

An increase in the δ15N of seawater nitrate (δ15N-NO3) or the 

δ30Si of silicic acid thus re�ects an enrichment in the heavier iso-

topes of these elements. Biological uptake of nitrate and silicic acid 

is associated with isotope fractionation (Wada and Hattori, 1978; 

De La Rocha et al., 1997), with preferential uptake of the lighter 

isotopes leaving the residual dissolved pool isotopically heavy 

(i.e., with high δ15N-NO3 or δ30Si). �us, in the Southern Ocean, 

as the concentrations of nitrate and silicic acid decrease across the 

fronts of the ACC, δ15N-NO3 and δ30Si increase (Figure 3; Sigman 

et al., 1999; Varela et al., 2004). �ese isotopic �ngerprints of bio-

logical uptake are inherited by mode and intermediate waters when 

they form at the northern edge of the ACC—thus making nitrate 

and silicic acid in the thermocline isotopically heavy relative to the 

deep ocean (Sigman et al., 2000; Fripiat et al., 2011, 2023). 

It is the presence of these water masses that causes δ15N-NO3 

and δ30Si to increase at intermediate depths (Figure 4) in most of 

the mid- and low-latitude ocean; indeed, the thermocline distri-

butions of δ15N-NO3 and δ30Si trace the equatorward spreading of 

mode and intermediate waters within the subtropical gyre circula-

tion (de Souza et al., 2012a; Ra�er et al., 2013; Grasse et al., 2020). 

In the Paci�c, the biogeochemical impact of southern-sourced 

mode and intermediate waters is mostly restricted to the Southern 

Hemisphere (e.g.,  Sarmiento et  al., 2004), but in the Atlantic 

Ocean, elevated δ15N-NO3 and δ30Si signals extend all the way to 

the North Atlantic and Arctic Oceans. �is is because the upper 

limb of the overturning circulation transports southern-sourced 

waters into the Northern Hemisphere, eventually feeding the for-

mation of North Atlantic Deep Water (Talley, 2013). Nitrate and 

silicic acid in North Atlantic Deep Water, whose constituent water 

masses form in the subpolar North Atlantic and Arctic, thus bear 

the telltale elevated δ15N-NO3 and δ30Si values that result from 

biological uptake at the other end of the globe, around Antarctica 

(de Souza et al., 2012b, 2015; Brzezinski and Jones, 2015; Holzer 

and Brzezinski, 2015; Marconi et al., 2015; Varela et al., 2016).

From Macronutrients to Micronutrients

�e Southern Ocean control on large-scale nutrient cycling dis-

cussed above is generalizable to the micronutrients: if Southern 

Ocean ecosystems tend to take up a nutrient in excess of the 

major nutrients nitrate or phosphate, its large-scale distribu-

tion will be skewed toward the deep and abyssal ocean, because 

e�cient export to depth in the Southern Ocean will reduce its 
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FIGURE 3. Latitudinal variation in macro- and micronutrient concen-

trations and isotopic compositions in the surface Southern Ocean. 

The upper four rows show data from the GEOTRACES GIPY04/

GIPY05 transect mostly along the zero meridian (Abouchami et al., 

2011; Fripiat et  al., 2011; Zhao et  al., 2014; Wyatt et  al., 2014). No 

δ15N-NO3 data are available for this transect; see Sigman et al. (1999) 

for a Pacific-sector cross-frontal δ15N-NO3 section. The bottom row 

shows data from the surface ocean (<25 m) from GEOTRACES GIPY06 

transect along ~140°W. These data are unpublished and reproduced 

with kind permission of Andrew Bowie. PF and SAF denote approx-

imate positions of the Polar Front and Subantarctic Front. Error bars 

on isotopic data represent uncertainty as reported by the authors.
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concentrations in the thermocline and, 

ultimately, in deep waters formed at high 

northern latitudes. By providing data-

sets of consistently co-sampled micro-

nutrient metals and macronutrients, the 

GEOTRACES program has enabled the 

systematic study of their relationships in 

the surface Southern Ocean, while basin-

scale sections of metal concentrations 

and isotopes provide larger-scale con-

straints. Next, we review the progress 

made in understanding the role of the 

Southern Ocean in the marine Zn, Cd, 

and Ni cycles in the GEOTRACES era.

Zinc and Its Isotopes

Given what we know about how highly 

silici�ed Southern Ocean diatoms gov-

ern the marine Si distribution, it might 

be thought that the similarity between Zn 

and Si comes about because these diatoms 

also incorporate a lot of Zn into their sili-

ceous frustules (Bruland et al., 1978). But 

because of its importance in the biochem-

istry of these eukaryotes, most of their cel-

lular Zn is situated in their organic matter, 

with at most a few percent in the frustule 

(Ellwood and Hunter, 2000; Twining 

et al., 2014; although see the recent results 

of Grun et al., 2023). Why, then, does the 

marine Zn distribution not look more like 

that of NO3 and PO4, which are released 

back to seawater when organic matter 

is remineralized? �e answer lies in the 

fact that phytoplankton trace metal quo-

tas exhibit considerable variability at both 

the phenotypic and physiological levels 

(e.g., Ho et al., 2003; Twining and Baines, 

2013). So, on the one hand, eukaryotic 

phytoplankton have generally higher cel-

lular Zn quotas than prokaryotes (Saito 

et al., 2003), and diatoms have even higher 

Zn quotas than other co-existing eukary-

otes. On the other hand, laboratory cul-

tures have shown that the Zn quotas of 

diatoms and other eukaryotic phyto-

plankton increase when they are growth- 

limited by Fe (Sunda and Huntsman, 

2000) or when ambient seawater has 

higher concentrations of the free Zn ion 

(see Box 2; Sunda and Huntsman, 1992).

So, when deep-water upwelling in 

the Southern Ocean supplies plenty 

of Zn to Fe-limited diatom communi-

ties, the ecosystem response is to take up 

large amounts of Zn: diatoms growing 

in Zn-rich waters south of the Antarctic 

Polar Front have Zn:P ratios that can be 

more than 10 times those of low- latitude 

phytoplankton (Twining and Baines, 

2013). As a result, Zn drawdown across 

the fronts of the ACC is as strong as that 

of Si, with Zn concentrations decreasing 

by a factor of 3 across the Antarctic Polar 

Front and becoming essentially depleted, 

together with Si, in the formation regions 

of mode and intermediate waters further 

north (Figure 3, Ellwood, 2004, 2008; 

Zhao et  al., 2014; Janssen et  al., 2020). 

�us, although there is no biochemical 

coupling between their uptakes, the fact 

that Southern Ocean ecosystems strip 

both Si and Zn from surface waters means 

that Zn is “trapped” within the Southern 

Ocean like Si, rather than being exported 

into the low-latitude thermocline like 

NO3 and PO4 (Vance et al., 2017; de Souza 

et al., 2018). While this leading-order role 

of Southern Ocean uptake in governing 

the marine Zn distribution is clear from 

numerous studies (e.g.,  Roshan et  al., 

2018; Weber et  al., 2018; Middag et  al., 

2019), it has been proposed that addi-

tional processes involving the reversible 

sorption of Zn to sinking particles must 

work north of the Southern Ocean, in 

order to maintain the similarity between 

the Zn and Si distributions even in regions 

not dominated by Southern Ocean water 

masses, such as the North Paci�c (John 

and Conway, 2014; Weber et  al., 2018; 

Zheng et al., 2021; Sieber et al., 2023a).
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�e most intriguing aspect of marine 

Zn is its stable isotope composition 

δ66Zn, which has a seawater distribution 

unique among the nutrient isotope sys-

tems. Even though most phytoplankton 

have been shown to preferentially take 

up the light isotopes of Zn in laboratory 

culture (e.g.,  John et  al., 2007; Samanta 

et al., 2018; Köbberich and Vance, 2019), 

seawater δ66Zn is low in the thermocline 

and surface ocean, rather than high as for 

the macronutrients (Figure 4; Conway 

and John, 2014; Takano et al., 2017; John 

et al., 2018). �is is certainly not the result 

of Southern Ocean isotope fractionation: 

here, as surface Zn concentrations drop 

precipitously toward the north, δ66Zn val-

ues show a minimal but just-resolvable 

increase (Zhao et  al., 2014; Wang et  al., 

2019; Sieber et  al., 2020). But this slight 

signal of biological fractionation appears 

to be lost north of the Subantarctic Front 

(Figure 3; Zhao et  al., 2014; Ellwood 

et  al., 2020; Sieber et  al., 2020), perhaps 

because of the admixture of isotopi-

cally light zinc carried southward in sub-

tropical thermocline waters (Figure 2b; 

Takano et al., 2017; Samanta et al., 2017). 

What exact processes are responsible for 

low subtropical δ66Zn is currently under 

debate, with two contrasting hypothe-

ses suggested: (1) the removal of isotopi-

cally heavy Zn sorbed to sinking particles 

(John and Conway, 2014; Weber et  al., 

2018; Sieber et al., 2023a), which requires 

chelation by natural organic ligands 

(see Box 2) to prefer isotopically light Zn, 

at odds with laboratory studies of organic 

chelators (e.g., Ban et al., 2002; Marković 

et al., 2017); or (2) the addition of isotopi-

cally light Zn from external sources that 

may be anthropogenic (Lemaitre et  al., 

2020; Liao et  al., 2020), although analy-

ses of open-marine aerosols (Dong et al., 

2013; Packman et al., 2022; Zhang et al., 

2024) have thus far not revealed Zn iso-

tope compositions that can explain the 

lowest δ66Zn values observed in ther-

mocline waters. Whether either, both, or 

neither of these hypotheses explains the 

thermocline δ66Zn distribution remains 

the subject of active research. 

Cadmium and Its Isotopes

Dissolved and particulate marine data 

consistently show that, of all the trace 

metals, Cd behaves most similarly to 

the macronutrients, being cycled tightly 

together with P (e.g.,  Abouchami et  al., 

2011; Twining et al., 2015; Yang et al., 2018; 

Middag et al., 2018; Ohnemus et al., 2019; 

Cloete et  al., 2021). Its isotopic behav-

ior, too, is most like the macronutrient 

systems δ15N-NO3 and δ30Si. Biological 

uptake fractionates the isotopes of Cd, 

and as the concentrations of Cd decrease 

across the fronts of the ACC, it becomes 

increasingly enriched in the heavy iso-

topes (i.e.,  δ114Cd increases; Figure 3; 

Abouchami et al., 2011; Xue et al., 2013). 

�is similarity to the macronutrient sta-

ble isotope systems extends to much of 

the global ocean: as with δ15N-NO3 and 

δ30Si, Cd subducted in the mode and 

intermediate waters is isotopically heavy 

(Figure 4; Abouchami et al., 2014; Sieber 

et al., 2019a), and this elevated δ114Cd sig-

nal can be traced through the subtropi-

cal thermocline (Conway and John, 2015; 

Xie et al., 2017; George et al., 2019; Sieber 

et al., 2019b, 2023b) all the way into North 

Atlantic Deep Water (Abouchami et  al., 

2014; Conway and John, 2015).

But given its limited biochemical role, 

why should phytoplankton uptake of Cd 

so exactly mimic phosphate? In fact, in 

detail it does not: Southern Ocean surface 

transects show that Cd is taken up more 

strongly relative to PO4, with Cd reaching 

low levels north of the Subantarctic Front, 

while PO4 remains undepleted (Figure 3; 

Ellwood, 2008; Abouchami et  al., 2011; 

Baars et al., 2014). �is is consistent with 

two independent sets of observations. 

First, particulate data show that biogenic 

particles in the Southern Ocean are highly 

enriched in Cd relative to P (Bourne et al., 

2018; Twining and Baines, 2013). Second, 

cultures of eukaryotic phytoplankton and 

incubations of natural assemblages have 

shown that they will take up more Cd 

under conditions found in the surface 

Southern Ocean: under growth limitation 

by Fe (Cullen et  al., 2003), at high con-

centrations of the free Cd ion (see Box 2; 

Lee et  al., 1995; Sunda and Huntsman, 

1998), or at low concentrations of free 

Mn or Zn (see Box 1; Cullen et al., 1999; 

Sunda and Huntsman, 2000). So, Fe- and/

or Mn-limited Southern Ocean diatom 

communities would be expected to take 

up more Cd even south of the Polar Front, 

and Cd uptake should increase even more 

strongly when Zn is reduced to low lev-

els to its north, as is indeed observed 

(Figure 3; Sunda and Huntsman, 2000; 

Ellwood, 2008). 

BOX 2. METAL SPECIATION IN SEAWATER

Metals dissolved in seawater exist in a variety of complexes, both inorganic 

and organic. In laboratory culture, it is found that phytoplankton metal uptake 

is a function of the concentration of the free metal ion in the ambient medium 

(i.e.,  that portion of the dissolved pool that is not complexed; e.g., Sunda and 

Guillard, 1976; Xu et al., 2007). In surface seawater, dissolved Zn and Cd (and to 

a lesser degree Ni) are dominantly complexed by strong but mostly uncharac-

terized organic ligands that considerably reduce the concentrations of their free 

divalent ions (e.g., Ellwood, 2004; Kim et al., 2015; Boiteau et al., 2016). Probably 

as the combined consequence of higher metal concentrations and degradation 

of the organic molecules, Zn and Cd are less strongly complexed by organic 

ligands in the deep ocean (Bruland, 1989, 1992). Thus, as GEOTRACES obser-

vations have shown, the upwelling of deep waters in the Southern Ocean pro-

vides higher concentrations of free Zn and Cd to surface ecosystems south of the 

Antarctic Polar Front (Baars and Croot, 2011; Baars et al., 2014).
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�e stronger Southern Ocean uptake 

of Cd has also helped to clarify a feature 

of its distribution that long perplexed 

oceanographers: the low Cd:PO4 ratio of 

North Atlantic Deep Water that results in 

a slight nonlinearity (known a�ection-

ately as “the kink”) in the Cd–PO4 rela-

tionship in the Atlantic Ocean (Boyle, 

1988; Frew and Hunter, 1992; de Baar 

et al., 1994). In the context of the Southern 

Ocean nutrient hub as it works for Zn and 

Si, and the in�uence of uptake on the Cd 

distribution in the Southern Ocean sur-

face, it has become clear that the rela-

tive Cd-poverty of North Atlantic waters 

comes about because Southern Ocean 

phytoplankton reduce Cd concentra-

tions in the upper limb of the overturning 

circulation slightly more than they do 

PO4 (Baars et al., 2014; Quay et al., 2015; 

Middag et al., 2018; Roshan and DeVries, 

2021), such that Cd is depleted relative to 

PO4 in the thermocline (Figure 5).

Nickel and Its Isotopes

Perhaps because it is never drawn down 

to very low concentrations in the surface 

ocean, nickel has until recently received 

less attention than Zn and Cd, and thus 

concentration and especially isotopic data 

are sparser for this metal. Nonetheless, it 

is clear that across the fronts of the ACC, 

Ni concentrations decrease much less 

strongly than those of Zn and Cd. Surface 

Ni concentrations decrease by just 20% 

across the Polar Front, and remain above 

3 nmol kg–1—~50% of the highest surface 

Southern Ocean concentrations—even 

north of the Subantarctic Front, where 

both Zn and Cd are depleted (Figure 3; 

Ellwood, 2008; Janssen et  al., 2020). In 

the oligotrophic subtropics, where all 

inorganic macro- and micronutrients are 

at very low concentrations, Ni is pres-

ent at around 2 nmol kg–1, 20% of deep-

ocean levels (Figure 1; Middag et  al., 

2020). It was proposed that this con-

centration might represent a pool that is 

not bioavailable (Price and Morel, 1991; 

Mackey et al., 2002), but recently, nutri-

ent amendments have shown that both 

eukaryotic and prokaryotic phytoplank-

ton can draw down this pool of sea water 

Ni signi�cantly when provided with suf-

�cient other nutrients (John et al., 2022). 

�us, based on biogeochemical model-

ing, it has been suggested that the non-

zero subtropical Ni minimum instead 

represents a residual pool of Ni “le� 

over” once other nutrients have been 

depleted, due to the low Ni require-

ments of Southern Ocean ecosystems 

(John et al., 2022).

Certainly, a smaller drawdown of Ni 

in the Southern Ocean is consistent with 

its limited role in eukaryote biochemis-

try. Its only known use in these organ-

isms is in urease, which phytoplankton 

obligately need when their only nitrogen 

source is urea (Price and Morel, 1991; 

Egleston and Morel, 2008), but which 

may be less important in the nitrate-rich 

Southern Ocean, where urea is only sea-

sonally an important nitrogen source, 

mostly in the Subantarctic (e.g.,  Joubert 

et  al., 2011). Furthermore, sparse sea-

sonally resolved observations also sug-

gest only limited Ni uptake by Southern 

Ocean ecosystems, with summertime 

mixed-layer Ni concentrations only 

~10% lower than in winter both south 

and north of the Subantarctic Front 

(Ellwood, 2008; Cloete et al., 2019). �is 

makes it plausible that the marine Ni dis-

tribution, like that of Zn and Cd, is also 

driven by the stoichiometric require-

ments of diatom-dominated ecosystems 

in the Southern Ocean.

FIGURE 5. Meridional sections of phosphate, silicic acid, and Cd in the southern Pacific 

from GEOTRACES section GP19. Macronutrient data are from the GEOTRACES IDP2021 

(GEOTRACES Intermediate Data Product Group, 2021) and reproduced with kind permission 

of Toshitaka Gamo and Hajime Obata. Cadmium data are from Sieber et al. (2019).
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At the same time, the stable isotope 

composition of dissolved Ni (δ60Ni) 

shows that the subtropics cannot just be 

a passive receptacle for the Ni le�overs of 

the high latitudes. Values of δ60Ni show 

no resolvable variability in the Southern 

Ocean (Cameron and Vance, 2014; Wang 

et al., 2019; Archer et al., 2020) or in the 

subpolar North Atlantic (Lemaitre et al., 

2022). In the subtropical ocean, how-

ever, δ60Ni increases through the upper 

thermocline to maxima in the surface 

(Figure 4; Takano et  al., 2017; Archer 

et  al., 2020; Yang et  al., 2021; Lemaitre 

et al., 2022). Lemaitre et al. (2022) argue 

that this isotopic divide results from Ni 

cycling processes particular to the oli-

gotrophic subtropical ocean, in which 

the dearth of inorganic nitrogen sources 

and the domination of the phytoplankton 

community by prokaryotes should both 

tend to increase relative Ni demand (see 

earlier section on Micronutrient Mimics).

�is poses an interesting question 

that remains unresolved: is the marine 

Ni distribution driven by low-latitude 

Ni demand by prokaryotes, or instead 

by the limited Ni requirement of high- 

latitude eukaryote-dominated ecosys-

tems? In the latter case, the global Ni dis-

tribution is controlled from the south 

much like those of the macronutrients 

as well as Zn and Cd (John et al., 2022); 

in the former, the reduction of Ni con-

centrations in the Subantarctic, and with 

it the global Ni distribution, is at least 

partially driven by subtropical Ni draw-

down, and the contribution of subtrop-

ical waters to Southern Ocean mode 

waters (Figure 2b; Fernández Castro 

et  al., 2022). �is would make the bio-

geochemical controls on the marine 

Ni cycle unique among the elements  

considered here.

PERSPECTIVES

Data from the �rst two decades of 

GEOTRACES show that the Southern 

Ocean control on global macronutrient 

distributions is generalizable to numerous 

micronutrient metals. Simultaneously, 

physical oceanographic research over the 

last decade has increasingly revealed the 

zonal asymmetry of physical Southern 

Ocean processes key to biogeochemi-

cal tracer transport (Figure 2; Morrison 

et  al., 2022; Gray, 2024)—for instance, 

that the pathways of upwelling and sub-

duction in the Southern Ocean are con-

centrated in discrete hotspots in the 

longitudinal direction (e.g.,  Sallée et  al., 

2010; Tamsitt et al., 2017). 

It remains unknown to what extent 

this heterogeneity in the physical system 

impacts the distribution of biogeochemi-

cal tracers. Southern Ocean mode waters 

exhibit co-variation between biogeochem-

ical and physical properties that is con-

sistent between ocean basins (Bushinsky 

and Cerovečki, 2023). Observations also 

show that surface-ocean nutrient concen-

trations are generally homogeneous in the 

longitudinal direction between Southern 

Ocean fronts (Pollard et  al., 2002), with 

distributions instead dominated by strong 

variations in the latitudinal direction 

(Figure 3). �is suggests that the time-

scales of lateral eddy-driven mixing (also 

known as isopycnal di�usion) and trans-

port by the ACC in the along-front direc-

tion may be fast enough to smooth out any 

variability arising from localized hotspots 

of upwelling and subduction. However, 

research on the three- dimensional struc-

ture of physical–biogeochemical inter-

actions in the Southern Ocean is in its 

infancy (Gray, 2024). More research is 

needed to robustly determine whether a 

two-dimensional (depth–latitude), longi-

tudinally averaged framework is su�cient 

to understand the cycling of nutrients and 

micronutrients in the Southern Ocean. 

A further recent development is 

broader recognition of the role that sub-

tropical thermocline waters play in set-

ting the (biogeochemical) proper-

ties of Southern Ocean mode waters 

(Iudicone et  al., 2011; Morrison et  al., 

2022; Fernández Castro et  al., 2022). 

Progress in our understanding of how 

this contribution impacts macro- and 

micronutrients may be made by consid-

ering biogeochemical edge cases such 

as the metal chromium (Cr), which has 

no known biological role (Fraústo da 

Silva and Williams, 2001) but displays a 

muted gradient across the fronts of the 

ACC that could result from mixing of 

subtropical and subpolar waters (Rickli 

et al., 2019). South of the ACC, the in�u-

ence of biogeochemical cycling in the 

gyres of the Ross and Weddell Seas on 

the vertical— and, subsequently, larger- 

scale— redistribution of macro- and 

micronutrients (e.g.,  MacGilchrist et  al., 

2019; Sieber et  al., 2020) deserves more 

focused study.

When it comes to the micronu-

trients Zn, Cd, and Ni speci�cally, 

GEOTRACES data have not only clari-

�ed the role of the Southern Ocean hub in 

their marine cycles, but also raised ques-

tions that remain to be answered in the 

years to come. 

For Zn, it is the isotopic distribution 

that remains most debated: will we be 

able to resolve whether the low δ66Zn of 

the low-latitude thermocline is a result of 

internal biogeochemical cycling or exter-

nal input? Doing so will require chal-

lenging work, in the lab and in the natu-

ral environment, to robustly quantify the 

direction and magnitude of the isotope 

e�ect associated with binding to natural 

seawater ligands, provide observational 

constraints on the distribution coe�-

cients of Zn sorption to di�erent kinds of 

marine particles, and better characterize 

the isotopic composition of atmospheric 

sources of Zn to the ocean.

�e large-scale systematics of Cd 

and its isotopes are less contentious, but 

one open question pertains to the role 

of the tropical ocean, including tropi-

cal oxygen-minimum zones, in modify-

ing the Cd–PO4 relationship determined 

by the Southern Ocean. �ere appears 

to be a small preferential loss of sea-

water Cd in the shallow tropical subsur-

face (Ohnemus et  al., 2017; Guinoiseau 

et al., 2019; de Souza et al., 2022; Sieber 

et al., 2023b), but whether this is driven 

by biology or redox conditions (or both, 

or neither) is currently unclear; a useful 

�rst step would be a more detailed char-

acterization of the associated Cd-rich 
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particulates (Ohnemus et al., 2019). �e 

exact controls on the δ114Cd systemat-

ics of the thermocline also remain to be 

elucidated (Xie et  al., 2019), and here 

isotope- enabled models of ocean biogeo-

chemistry may prove to be useful tools.

Open questions abound when it 

comes to the marine cycle of nickel. 

Is its cycle driven primarily by low- 

latitude prokaryote- dominated ecosys-

tems (Lemaitre et  al., 2022) or by high- 

latitude Southern Ocean uptake as for 

the Zn and Cd (John et  al., 2022)? And 

is the Southern Ocean Ni gradient driven 

primarily by regional uptake, or rather 

by the in�uence of Ni-poor subtropi-

cal waters transported southwards into 

the Subantarctic? Do prokaryotic and 

eukaryotic phytoplankton fractionate the 

isotopes of Ni di�erently during uptake? 

What is the a�nity of Ni for sorption 

to various types of marine particles? As 

work proceeds at sea, in the clean lab, and 

on computing clusters, answers to these 

questions and more will emerge.
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