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ARTICLE INFO ABSTRACT

Editor: Po Teen Lim Protoceratium reticulatum is the main yessotoxin-producer along the Chilean coast. Thus far, the yessotoxin levels
recorded in this region have not posed a serious threat to human health. However, a bloom of P. reticulatum
during the austral summer of 2022 caused the first ban of shellfish collection, due to the high toxin levels. A
bloom of P. reticulatum during the austral summer of 2020 allowed an evaluation of the fine-scale distribution of
the dinoflagellate during a tidal cycle. High-resolution measurements of biophysical properties were carried out
in mid-summer (February 18-19) at a fixed sampling station in Puyuhuapi Fjord, Chilean Patagonia, as part of an
intensive 24-h biophysical experiment to monitor the circadian distributions of P. reticulatum vegetative cells and
yessotoxins. High P. reticulatum cell densities (>20 x 10° cells L") were found in association with a warmer
(14.5-15 °C) and estuarine (23.5-24.5 g kg’l) sub-surface water layer (6-8 m). P. reticulatum cell numbers and
yessotoxins followed a synchronic distribution pattern consistent with the excursions of the pycnocline.
Nevertheless, the surface aggregation of the cells was modulated by the light cycle, suggesting daily vertical
migration. The yessotoxin content per P. reticulatum cell ranged from 9.4 to 52.2 pg. This study demonstrates
both the value of fine-scale resolution measurements of biophysical properties in a highly stratified system and
the potential ecosystem impact of P. reticulatum strains producing high levels of yessotoxins.
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1. Introduction Norway (Ramstad et al., 2001), Greenland (Sala-Pérez et al., 2016), Italy

(Ciminiello et al., 2003), Canada and the United Kingdom (Stobo et al.,

Protoceratium reticulatum (Biitschli., 1885) is a dinoflagellate with a
wide geographical distribution (Paz et al, 2008, 2004). Its
yessotoxin-producing ability was initially identified in strains from New
Zealand (Satake et al., 1997) and later in those from Spain (Paz et al.,
2004), the United States (Paz et al., 2007), Japan (Satake et al., 1999),
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2003), Argentina (Akselman et al., 2015), and Chile (Alvarez et al.,
2011; Diaz et al., 2022; Yasumoto and Takizawa, 1997), among others.

Yessotoxins (YTXs) comprise a group of ~100 lipophilic toxin ana-
logues (Miles et al., 2005). These marine polyether were first isolated in
1986 in Japan, from the scallop Pactinopecten yessoensis (Murata et al.,
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1987). They are potent cytotoxins (Pérez-Gomez et al., 2006) with
cardiotoxic effects when injected intraperitoneally in mice (Aune et al.,
2002; Terao et al.,, 1990); their oral toxicity, by contrast, is low.
Although there are no reports of intoxications in humans (Munday et al.,
2008), the known toxic effects of YTXs have led European authorities to
stipulate a maximum permitted limit in shellfish of 3.75 mg YTX
equivalents kg™' (European Commission, 2013).

Most of the YTX analogues found so far are produced by Proto-
ceratium reticulatum (Paz et al., 2008), which releases them into the
surrounding aqueous environment (Hess and Aasen, 2007). However,
other dinoflagellate species also produce YTXs, including Lingulaulax
polyedra (Stein) Dodge (Paz et al., 2004), Gonyaulax spinifera (Claparede
& Lachmann) Diesing (Rhodes et al., 2006; Riccardi et al., 2009), and
Gonyaulax taylorii (Alvarez et al., 2016).

YTXs have been associated with marine invertebrate mortalities in
different parts of the world. Mass mortalities of clams (Donax serra) and
mussels (Choromytilus meridionalis and Aulacomya atra) off the coast of
South Africa were recorded during a bloom of P. reticulatum (Grindley
and Nel, 1968; Horstman, 1981). Pitcher et al. (2019) reported the death
of millions of farmed abalone in South Africa during a bloom of the
dinoflagellates G. spinifera and L. polyedrum. Mass mortalities of abalone
(Haliotis rufescens) have also been identified in association with the
presence of YTXs produced by G. spinifera (Rogers-Bennett et al., 2012).
Jurgens et al. (2015) documented a severe mortality event, possibly
attributable to a YTX bloom, affecting the urchin Strongylocentrotus
purpuratus and the starfish Leptaterias sp., with a mortality rate of nearly
99 % over ~100 linear km of coastline of California (United States). The
Chilean coast has also not been spared, as a mass mortality of in-
vertebrates (sea urchins, cuttlefish and sea stars) in northern Chile
during the austral summer of 2019 was shown to be associated with the
presence of YTXs Alvarez et al. (2020). In 2022, the first preventive
closure due to YTXs was declared in Chile, based on concern regarding
the apparently increasing toxicity of these previously unconsidered
events.

In the Chilean fjord system, low salinities generate sharp/pro-
nounced haloclines and pycnoclines that hinder vertical mixing between
surface and very deep water layers. The physical barriers created by the
strong haline stratification directly affect the distribution of planktonic
populations, including those of harmful algal bloom (HAB)-forming
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HAB-forming dinoflagellates are the “thin layers” of the water column,
where the physiological parameters greatly differ from those at other
depths (GEOHAB, 2008). Nonetheless, these layers may escape detec-
tion by conventional sampling methods (Escalera et al., 2012). While
aggregates of P. reticulatum in this type of vertical structure has been
observed in the Chilean fjord system (Alves de Souza et al., 2014), the
spatiotemporal variations of vegetative cells of this species and YTX
concentrations during intensive tidal cycles have yet to be studied at the
same scale. Thus, in this work we evaluated the fine-scale distribution of
P. reticulatum vegetative cells and YTXs released by the dinoflagellate
during a tidal cycle at a fixed sampling station in Puyuhuapi Fjord,
Chilean Patagonia.

2. Material and methods
2.1. Study area

The southern coast of Chile, from 41 to 55 ° S, constitutes one of the
most extensive fjord and channel systems in the world (Fig. 1). This
highly stratified system, due to heavy freshwater inflow from rivers and
glacier melting, has a rugged bathymetry and a highly dissected coast-
line. In addition, the area is subject to heavy rainfall exhibiting strong
seasonal and latitudinal patterns, with an average of 2700 mm year
and up to 5000 mm in exceptional years (Pickard, 1971; Sauter, 2020).
Water column stratification in the fjord is extremely variable and is
maximal in the innermost areas subject to tidal energy perturbations
(Valle-Levinson, 2010). These features make the Chilean fjords region a
unique system for the study of HABs and their physical-biological in-
teractions at different spatial and temporal scales.

The 100-km long Puyuhuapi Fjord, located in the Aysén region
(northern Patagonia), forms part of the fjord system. It has two con-
nections with oceanic waters, through the Moraleda Channel at the
mouth and the Jacaf Channel close to the head (Schneider et al., 2014).
The main freshwater inputs are from riverine inflows and rainfall. The
mouth of the main river flowing into Puyuhupi Fjord (Cisnes River,
average discharge 218 m3s™!) is located in the middle reaches of the
fjord. The characteristics of the river flow affect the hydrodynamic
conditions within the fjord system, including stratification and the water
residence time, which in Puyuhuapi Fjord is up to ~250 days (Pinilla,
2018; Pinilla et al., 2019), and directly promote phytoplankton

species (GEOHAB, 2010). Preferred sites of aggregation for
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Fig. 1. Map of the study area showing A) the northern Chilean Patagonia fjord system (the box delimits the Puyuhuapi Fjord) and B) Puyuhuapi Fjord, showing the
sampling station (full red circle) where our 24-h biophysical experiment was carried out in February 2020.
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retention and HAB development (Diaz et al., 2023a, 2021).

The Patagonian fjords are of the two-layered estuarine-type. The two
well-defined layers are formed by a superficial and more variable layer,
the estuarine water (EW), and a more uniform saltier lower layer, the
sub-Antarctic water (SAAW), with salinity > 33 at 150 m depth. An
intermediate layer, the modified sub-Antarctic water (MSAAW), with
salinities between 31 and 33, is formed by the mixture of the EW and
SAAW layers. Furthermore, depending on freshwater inputs, different
water masses can be identified within the estuarine surface water:
freshwater (FW, salinity < 11), estuarine freshwater (EFW, salinity
ranging from 11 to 21), and estuarine saline water (ESW, salinity
ranging from 21 to 31) (Pérez-Santos et al., 2014; Schneider et al.,
2014).

2.2. Field sampling

High-resolution measurements of physical and biological variables
were carried out during a 24-h cycle at a fixed sampling station in
Puyuhuapi Fjord, NW Patagonia, to study the small-scale interactions
that modulate the distribution patterns of P. reticulatum and associated
YTXs (Fig. 1B). The 24-h biophysical cycle was carried out from 18 to 19
February 2020.

2.2.1. Hydrographic measurements

Vertical profiles of temperature and salinity were obtained with an
RBR Oceanographic CTD profiler, model Concerto 3 (http://www.rbr-g
lobal.com). The CTD probe was cast hourly to 50 m depth with a sam-
pling rate of 8 Hz (8 measurements per second). CTD data were pro-
cessed using the software provided by the manufacturer and depicted
using Ocean Data View software version 5.1 (Schlitzer, 2015).

2.2.2. Phytoplankton and yessotoxins

Unconcentrated seawater samples (125 mL) for quantitative analyses
of microphytoplankton were collected every 2 h at 2-m intervals from
the surface to 20 m depth, using 5-L Niskin bottles, and immediately
fixed with neutral Lugol’s iodine solution (Lovegrove, 1960).

For YTX analyses, bottle samples were collected every 2 h at 4-m
intervals from the surface to 20 m (6 fixed depths); 1-L aliquots were
filtered through Whatman GF/F fiberglass filters (25 mm @, 0.7 pm pore
size; Whatman, Maidstone, England). The filters and filtered material
were placed in a cryotube, mixed with 1 mL of analytical grade meth-
anol, and stored in the laboratory at —20 °C until the analysis.

Vertical hauls (0-20 m) with a 20-um mesh net were also collected
every hour for YTX analyses. The entire content of the net was filtered
through Whatman GF/F fiberglass filters (25 mm @, 0.7 pm pore size).
The filters and filtered material were placed in a cryotube, mixed with 1
mL of analytical grade methanol, and stored in the laboratory at —20 °C
until the analysis.

For quantitative analyses of microphytoplankton, 10-mL aliquots of
unconcentrated, acidic Lugol’s-fixed samples were left to sediment for
24 h and then observed under an inverted microscope (Olympus CKX41)
using the method described in Utermohl (1958). To enumerate large
species such as P. reticulatum, the entire surface of the chamber was
scannec} at a magnification of x 100, resulting in a detection limit of 100
cellsL™.

2.2.3. Sample preparation and toxin analysis

To extract toxins from the bottle and net-tow samples, the cryotubes
were centrifuged (4000 g; 10 min) and the obtained pellet was resus-
pended in 1 mL of methanol (100 %). Cells in the suspension were dis-
rupted with a Branson Ultrasonic 250 sonifier (Danbury, CT, USA). The
extract was clarified by centrifugation (20,000 g; 20 min), filtered
through 0.22-pm Clarinert nylon syringe filters (13 mm diameter)
(Bonna-Agela Technologies, Torrance, CA, USA), and stored in an
autosampler vial at —20 °C until the analysis.

The presence of YTXs and homo-yessotoxins (homo-YTXs) in the
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extracts was detected by liquid chromatography/high resolution mass
spectrometry (LC-HRMS) following the method described by Regueiro
et al. (2011) with slight modifications. The instrumental analysis was
developed using a Dionex Ultimate 3000 UHPLC system (Thermo Fisher
Scientific, Sunnyvale, CA, USA). A reversed-phase HPLC column Gemini
NX-C18 (50 mm x 2 mm; 3 pm) with an Ultra Guard C18 column
(Phenomenex, Torrance, CA, USA) was used. The flow rate was set to
0.35 mL min~! and the injection volume was 10 pL. The mobile phase
was used in gradient mode as follows: 81 % of eluent A (100 % water
containing 6.7 mM NH40H) and 19 % of eluent B (90 % acetonitrile: 10
% water with 6.7 mM NH4OH) held for 1 min, followed by a linear
increase to 95 % B for 5 min, a 2-min hold, and then a return to the initial
condition of 19 % B. The column was re-equilibrated for 5 min.

YTXs and homo-YTX were detected using a HRMS system (Q Exactive
Focus) equipped with an electrospray interphase HESI II (Thermo Fisher
Scientific, Sunnyvale, CA, USA) operated in negative ionization mode
with a spray voltage of 3 kV and in positive ionization mode with a spray
voltage of 3.5 kV. The temperature of the ion transfer tube and the HESI
vaporizer was set at 200 °C and 350 °C, respectively. Nitrogen (>99.98
%) was employed as the sheath gas and the auxiliary gas, at pressures of
30 and 4 arbitrary units, respectively. Data were acquired in selected ion
monitoring (SIM) and data-dependent (ddMS?) acquisition modes (for
quantification and confirmation, respectively). All analyses were per-
formed with a mass inclusion list, including the precursor ion masses,
expected retention time window, and collision energy for each toxin. In
SIM mode, the mass was set to 570.2330 m/z and 577.2396 m/z for YTX
and homo-YTX, respectively. The scan mass range was set at m/z
100-1000, with a mass resolution of 35,000, an automatic gain control
(AGQC) of 2 x 105, and a maximum injection time (IT) of 3000 ms. For
ddMS? the mass resolution was set at 70,000, the AGC at 2 x 10°, and
the IT at 3000 ms. In both cases, the isolation windows were 2 m/z. The
toxin concentration in the extracts was quantified by comparing the
areas or the peaks obtained in the chromatograms with those of certified
reference materials obtained from the NCR, Canada. The method’s
quantification limit was 8 ng mL™! for YTX and 5 ng mL™! for homo-YTX.

3. Results
3.1. Hydrographic conditions

The hydrographic measurements revealed a strong thermohaline
stratification during the 24-h experiment (Fig. 2). A thermal inversion
throughout the study cycle was observed, attributable to the proximity
of the fixed sampling station to the mouth of the Cisnes River. Thus, a
four-layer structure was clearly evidenced: a colder (12.5-14.5 °C) and
fresher (salinity < 11 g kg™") water layer < 2 m thick; a warmer (14.5-15
°C) and saltier (11-21 g kg’l) sub-surface (2-5 m) water layer, the EFW
(Fig. 2A, B); from 5 to 25 m, a third, colder (12-14 °C) and saltier (21-31
g kg™1) layer, the ESW; and at depths below 25 m, the MSAAW (salinity
31-33 g kg~ !; Fig. 2A, B).

The thermohaline gradient in the surface layer contributed to the
strong stratification in the top 5 m, which persisted throughout the
experiment (Fig. 2C) and had a maximal buoyancy frequency of up to
120 cycles h™! (Fig. 2D). Below 20 m depth, the buoyancy frequency did
not exceed 20 cycles h™1. The isopycnals followed a temporal pattern,
with a clear semidiurnal tidal signal.

3.2. Distribution of P. reticulatum and yessotoxins

Both P. reticulatum and YTXs were detected throughout the 24-h
experiment (Fig. 3). All of the analyzed samples collected at discrete
depths (each 2 m) contained evidence of the daily vertical migration
(DVM) of P. reticulatum during the 24 h biophysical experiment, with
cell maxima remaining associated with a warmer (14.5-15 °C) and
estuarine (23.5-24.5 g kg’l) sub-surface water layer (6-8 m).

Maximum cells densities of P. reticulatum (>10,000 cells L’l) were
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concentrated in the sub-surface layer, with a vertical distribution
pattern that followed the excursions of the pycnocline (Fig. 3A). Despite
this clear pattern, densities of 7000 cells L™ were also recorded very
close to the surface (2 m) at the beginning of the cycle (Fig. 3A), asso-
ciated with a temperature of 15.5 °C and a salinity of 18.8 g kg™!
(Fig. 2A-B). By the end of the cycle there was an increase in the cell
density, with a maximum > 20 x 103 cells L™} (Fig. 3A), suggesting DVM
induced by the light cycle and modulated by the undulations of the
pycnocline.

The distribution of YTXs followed a spatiotemporal pattern very
similar to that of P. reticulatum cells, with a significant increase in the
concentration of YTXs by the end of the cycle (Fig. 3B). The absence of
other YTX-producing phytoplankton species, such as Lingulaulax poly-
edra, Gonyaulax spinifera, and Gonyaulax taylorii, in the samples from
either the net or the bottles points to P. reticulatum as the main, or
perhaps the only, causative agent of the detected YTX. Estimates of the
YTX content per cell at the layer (8 m) where the cell maximum was
recorded ranged from 9.4 to 52.2 pg (Fig. 3B). Likewise, YTXs were
detected in 100 % of the net-towed samples, with concentration maxima
occurring at 19:00 h, 11:00 h, 13:00 h, and 14:00 h (147.5,119.7,138.9,
413.5 ng YTX mL Y, respectively) (Fig. 4).

The LC-HRMS analysis revealed the presence of YTX in all plankton
samples in which P. reticulatum was present (Fig. 4). The analysis
showed a first chromatography peak characterized by a retention time of
4.51 min and with a doubly charged ion [M + 2H]2- at m/z 570.2323.
The MS/MS fragmentation mass spectrum of the parent mass at
570.2323 m/z confirmed the identification of YTX, as the characteristic
fragment ions at m/z 467.1679 396.1355 m/z were detected (Fig. 5). No
homo-YTX was found in the plankton samples.

4. Discussion

Although P. reticulatum and YTXs were first detected in the Chilean
fjords systems more than 25 years ago (Lembeye, 2004; Yasumoto and
Takizawa, 1997), the physiological conditions, ecology, and environ-
mental forcing that modulate its spatiotemporal distribution patterns in
these types of systems are still poorly understood. In 2022, high levels of
YTXs caused the first preventive closure of the shellfish harvest in Chile,
but whether the high toxicity was part of an increasing trend of
P. reticulatum in this area or merely a sporadic event remains to be
determined. Our study is the first in Chile, and, to our knowledge, in the
world, to have examined the 24-h vertical distribution patterns of
vegetative cells of P. reticulatum and of YTXs in the water column at the
same scale during a high-resolution field experiment.

Harmful Algae 135 (2024) 102649
4.1. Synchronic distribution pattern and diel modulation

Microscale physical-biological interactions in fjords and semi-
enclosed systems are modulated both spatially and temporally by pro-
cesses such as turbulence, tidal cycles, and circadian rhythms (GEOHAB,
2010). In this study, the spatiotemporal distribution of P. reticulatum
cells and YTXs showed a perfect synchrony, thus implicating the dino-
flagellate as the main producer of YTX during the study period, since
other species known to produce YTXs, such as Lingulaulax polyedra
(Stein) Dodge (Paz et al., 2004), Gonyaulax spinifera (Claparede &
Lachmann) Diesing (Rhodes et al., 2006; Riccardi et al., 2009), and
Gonyaulax taylorii (Alvarez et al., 2016), were not detected.

Erga et al. (2015) investigated a Norwegian strain of P. reticulatum
and found a DVM-type pattern modulated by positive phototaxis. In a
laboratory experiment, the authors simulated stratified marine condi-
tions and observed dense surface patches of P. reticulatum cells after 1-2
h of light exposure. In that experiment, the cells needed 4 days to cross a
weak (4.5 g kg™!) halocline and 8-10 days to cross a stronger (14.1 g
kg ™) halocline. The cell aggregations at the surface observed by Erga
et al. (2015) are consistent with the results of our 24-h field experiment,
in which cell aggregations were observed between 08:00 and 16:00 h,
with a maximum at 12:00 h (Fig. 3A). DVM has also been obsserved for
other red-tide microalgae, such as Dinophysis acuta (Baldrich et al.,
2021), Chattonella antiqua, and Karenia mikimotoi (Shitaka et al., 2014).
Baldrich et al. (2021) during a field experiment of 48 h carried out in
summer 2019 at the same fjord. D. acuta followed an inverse DVM
pattern, with maximum cell densities closer to the surface at night. In
that study, carried out at an oceanographic buoy platform located 17 km
from the mouth of Cisnes River, the DVM of D. acuta was between 4 and
8 m over 12 h and was modulated by prey availability. By contrast, our
study was conducted much closer to the river’s mouth (2.5 km), where
the influence of freshwater is greater. The strong physical barrier
generated by the intense halocline during the 24-h cycle (up to 25.6 g
kg™ between the surface and 10 m depth) in Puyuhuapi Fjord, attrib-
utable to the large freshwater supply (mean 218 m® s1) from the Cisnes
River, significantly restricted the DVM of P. reticulatum.

Guerrini et al. (2007) showed that P. reticulatum can grow in over a
wide salinity range of 20-44 g kg ™", although the highest growth rate (u
= 0.5) was recorded at a salinity of 22 g kg™'. The authors also deter-
mined that cell toxicity changed with changes in salinity and was greater
at a salinity of 32, at which YTX production was 21.2 + 2.6 pg cell 1,
Our results similarly showed the presence of cells across a wide salinity
range, from 3.5 to 32 g kg~!, although the highest cell densities occurred
within a narrower range of 20-30 g kg™! (Fig. 6).
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4.2. Toxicity of a local strain and potential implications

In Chilean Patagonia, the presence of YTX in plankton samples from
Reloncavi Fjord (Los Lagos region) was reported by Alves de Souza et al.
(2014), who measured values of ~0.0032 ng mL! in association with a
P. reticulatum bloom (ca. 2.2 x 10° cell L™!). The concentration of YTX
(maximum of 420 ng mL ™) was lower than that reported in Puyuhuapi
Fjord but the cell density was higher (>10,000 cells L™}), suggesting that
the Reloncavi Fjord population was less toxic than that from Puyuhuapi
Fjord. In samples from the latter, YTX production ranged from 9.4 to
52.2 pg YTX cell™}, which was substantially higher than that determined

by Alvarez et al. (2011) during a P. reticulatum bloom in northern Chile,
where production ranged from 0.2 to 0.4 pg cell*. However, in both
cases, these values may be inaccurate, because the determinations were
made in phytoplankton samples. A precise analysis of the toxin content
of P. reticulatum strains requires a laboratory study of cultures estab-
lished from cells isolated along the Chilean coast.

The high cellular YTX content estimated in the P. reticulatum popu-
lation from Puyuhuapi Fjord is similar to that reported in cells selected
from natural samples and in cultures from Italy (12 pg cell™) (Cimi-
niello et al., 2003), Norway (19-34 pg cell 1) (Samdal et al., 2004),
Spain (2.9-28.7 pg cell’l) (Paz et al., 2007), Japan (47-59 pg cell’l)
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(Suzuki et al., 2007), and the United States (26.6 pg cell™) (King et al.,
2021).

Given the high cellular YTX content and high cell densities of
P. reticulatum, shellfish consumption may pose a health risk to local
consumers. In Norway, a high toxin content (ca. 30 pg cell™!) and low
densities of P. reticulatum (2200 cell L’l) were shown to be sufficient to
contaminate blue mussels with YTX levels above those triggering har-
vest bans (Aasen et al., 2005). However, even YTX toxin values below
regulatory limits could have a significant impact on the shellfish sector
economy, by lowering larval survival and viability, as demonstrated for
several mollusk species, including the commercially important scallop
Argopecten purpuratus (Nieves et al., 2024, and references therein).
Further research is needed to determine the relationship between
P. reticulatum blooms, toxin accumulation, and the risk to shellfish banks
in the Chilean fjord system.

4.3. Future perspectives

In recent years, blooms of YTX producers such as the dinoflagellate
P. reticulatum, have threatened the mussel industry in the Los Lagos
region. During the summer of 2009, a moderate P. reticulatum bloom
(2.2 x 10° cell L™1) correlated positively with the moderate to high
concentrations of YTX in shellfish (51-496 ng g™!) and in plankton
concentrates (3.2 ng L‘l) in Reloncavi Fjord, Los Lagos (Alves de Souza
et al., 2014). In the summer of 2015, densities of P. reticulatum of ~12 x
10% cell L™ were reported at Bahia Huelmo—an important mussel
cultivation area within Reloncavi Sound—associated with YTX con-
centrations in the mussel Mytilus chilensis as high as 2.65 mg YTX eq.
kg™, which was close to the regulatory level (3.75 mg YTX eq. kg™),
although a closure decree was not implemented. In the late summer of
2022, an intense bloom of P. reticulatum occurred in Reloncavi Sound,
with YTX concentrations in the mussel M. chilensis reaching 17.02 mg
kg'1 (Res. Ex. 4502/2022). This event was the first in Chile’s history in
which a closure decree was triggered due to YTX concentrations
exceeding the maximum level permissible for seafood consumed by
humans (3.75 mg YTX kg ~!). While Gonyaulax taylorii was identified as a
YTX producer in northern Chile (Alvarez et al., 2016) and its presence in
the Chilean fjord system cannot be ruled out, the P. reticulatum bloom
that was the focus of our study proved to be almost monospecific.

What are the implications of our results regarding recent YTX bloom
events in Chile? Our study demonstrated positive phototaxis by
P. reticulatum, with high-density patches formed at certain hours of the
day. This pattern can facilitate toxin accumulation and the transfer of
toxins to higher trophic levels (Erga et al., 2015; Manfrin et al., 2012).
The estuarine conditions and warmer water determined in our study
may also have promoted the bloom initiation and development, as
suggested in other studies of the Patagonian fjord system (Diaz and
Figueroa, 2023; Diaz et al., 2023b). The relevance of these environ-
mental factors was established in previous reports showing that low
salinities and high temperatures are related to a higher cell toxin con-
tent, an effect that could be due to less release of YTXs into the extra-
cellular medium, a higher rate of YTX production, or both (Guerrini
et al., 2007).

5. Conclusions

A synchronic distribution pattern of the dinoflagellate P. reticulatum
and YTXs in Puyuhuapi Fjord, a highly stratified system in northern
Patagonia, was evidenced during a 24-h biophysical experiment. The
absence of other YTX-producing species in the phytoplankton commu-
nity, such as Lingulaulax polyedra, Gonyaulax spinifera, and Gonyaulax
taylorii, allowed an estimation of the toxin content per P. reticulatum cell.
Strains of this species from Puyuhuapi Fjord have a cellular YTX content
(up to 50 pg per cell) comparable to that of highly toxic strains from
Japan. The DVM of P. reticulatum was shown to be modulated by positive
phototaxis rather than by the tidal signal, although it was significantly
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restricted by the strong physical barrier produced by the intense halo-
cline (up to 25.6 g kg™* between the surface and 10 m depth). Surface
aggregations of P. reticulatum cells were recorded between the hours of
08:00 and 16:00, with a maximum at 12:00. In NW Patagonia, a future
climate scenario characterized by a reduction in freshwater supplies and
an increase in temperature could favor both DVM and surface aggregate
formation. These events and their impacts should be the focus of in-
depth studies, as both human health and shellfish production could be
affected by the associated increases in YTX toxin levels.
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