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As a part of the Scientific Committee on Oceanographic Research (SCOR) Working

Group #160 “Analyzing ocean turbulence observations to quantify mixing”

(ATOMIX), we have developed recommendations on best practices for estimating

the rate of dissipation of kinetic energy, e, from measurements of turbulence shear

using shear probes. The recommendations provided here are platform-independent

and cover the conceivable range of dissipation rates in the ocean, seas, and other

natural waters. They are applicable to commonly deployed platforms that include

vertical profilers, fixed and moored instruments, towed profilers, submarines, self-

propelled ocean gliders, and other autonomous underwater vehicles. The procedure

for preparing the shear data for spectral estimation is discussed in detail, as are the

quality control metrics that should accompany each estimate of e. The methods are

illustrated using a high-quality ‘benchmark’ dataset, while potential pitfalls are

demonstrated with a second dataset containing common faults.
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1 Introduction

Turbulent mixing in the ocean is an important process that influences the modification

of water masses, large-scale ocean currents, and the redistribution of heat, nutrients, and

carbon (Wunsch and Ferrari, 2004; Gregg, 2021). Thus, understanding and accurately

representing turbulent mixing is essential for describing ocean stratification and
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circulation, modeling the ocean, and predicting climate change. The

viscous rate of dissipation of turbulence kinetic energy, e, is a key

parameter that quantifies turbulent mixing, but its observation has

been notoriously difficult, making it one of the least observed of the

important variables for ocean climate science (Waterhouse et al.,

2014). In recent years, there have been significant advances and

diversification in technologies (e.g., autonomous platforms, Fer

et al., 2014; Nagai et al., 2015; Frajka-Williams et al., 2022)

available to measure and estimate e, and consequently, a

proliferation in the observations of oceanic turbulence and in the

number of researchers collecting such data. However, there are

currently no standards for processing and archiving derived

turbulence estimates from these observations.

Before the turn of the century, the measurement of oceanic

turbulence was conducted by a small number of research groups

who each developed their own methods of calculating e. These

research groups have made some intercomparisons, but the

statistical nature of ocean turbulence requires many repeated

measurements to make these difficult comparisons (Moum et al.,

1995). Because the research groups were experts on ocean

turbulence, the comparisons were generally good. More recently,

the number of researchers using shear probes has increased

dramatically, while their level of expertise now has a far more

extensive range than previously. Some researchers would not

consider themselves experts – for them, e provides the

background for the study of biological and chemical processes to

determine the vertical fluxes of heat, nutrients, and other solutes.

Consequently, processing guidelines will improve reproducibility,

facilitate inter-comparisons, and instill confidence.

Because of the recent proliferation of shear-probe users, there is

a pressing need to develop best practices for dissipation estimates.

Such a “standard” method may contain some flaws. However, this

groundwork is still helpful because the best practices can be quickly

and universally rectified when improvements are made as new work

identifies potential issues.

In 2020, the Scientific Committee on Oceanographic Research

(SCOR) approved a Working Group on “Analyzing ocean

turbulence observations to quantify mixing” (ATOMIX). The

group’s primary goal is to consolidate knowledge and methods of

estimating e from turbulence measurements while developing best

practices and quality-assurance metrics for determining e. Another

objective is to establish an open-access database of benchmark

datasets that can be used to assess and validate algorithms for

estimating e irrespective of programming language. More details

can be found in the wiki site of ATOMIX, where some content of

this paper is summarized together with related nomenclature,

required and recommended parameters and metadata, and

dataset formats for publication and archiving (https://

wiki.app.uib.no/atomix/index.php/Main_Page). Three subgroups

deal with the specifics of shear probes, acoustic Doppler current

profilers, and point-velocity measurements. This paper

concentrates on ATOMIX’s subgroup about e estimates made

from shear-probe data. A focus of the shear-probe group of

ATOMIX has been to envelop estimates of dissipation rates and

shear spectra with statistical uncertainty estimates. The statistical

reliability of an estimate of a spectrum of shear and an estimate of

the dissipation rate have been explored by Lueck (2022b) and Lueck

(2022a). Our recommendations are platform-independent to the

extent possible, meaning that the described procedure can be

applied to any device that samples the required set of parameters.

They are hence applicable to commonly deployed platforms that

include vertical profilers, fixed and moored instruments, towed

profilers, submarines, self-propelled ocean gliders, and other

autonomous underwater vehicles.

The methods that we recommend are intended to be used in

turbulence that is generated by geophysical processes such as, for

example, shear instability or boundary layer friction. For such

processes, turbulence is generated by an instability at large scales that

breaks into a continuous cascade of random and isotropic eddy

motions at smaller scales and, at some very small scale, these

motions are ultimately dampened by molecular viscosity. That is,

there is a flow of kinetic energy from large to small scales with a

significant separation between the scales that generate the turbulence

and the scales at which viscosity erases the motions. Our

recommendations do not apply to turbulence that is generated by

esoteric (but interesting) processes such as swimming organisms. For

such turbulence, kinetic energy is created at small scales that are

comparable to the size of the creatures, and these scales are often not

much larger than those at which viscosity dampens the motions. For

biologically generated turbulence, there may not be a long cascade of

motions and the spectra of shear will be quite different from the spectra

of shear generated by geophysical processes. Similarly, the shear within

double-diffusive salt-fingers will have generation scales that are

comparable to dissipation scales and the spectra of shear are likely to

be very different from the models of shear that are summarized here

and are used to aid the estimation of the rate of dissipation.

In Sec. 2, we provide background information about the

technology and theoretical framework for estimating e from

shear-probe data. Sec. 3 describes the data processing steps for

obtaining e, and the confidence intervals for spectral dissipation

estimates. This is followed by a discussion on quality-assurance

metrics. The structure of Sec. 3 is organized in the same fashion as

the recommended structure of data in ATOMIX format, such as the

benchmark dataset presented in section 4, which can be used to

assess algorithms irrespective of their programming language. Our

recommendations are discussed and concluded in Sec. 5 and 6,

respectively. The symbols used here are listed in Table 1.

2 Background

2.1 Shear probes

The shear probe is an airfoil of revolution that was originally

developed by Siddon (1965) for atmospheric and wind-tunnel

measurements of turbulent cross-stream velocity fluctuations. The

probe was subsequently modified for use in water (Siddon, 1971)

and it was first deployed in 1972 on a vertical microstructure

profiler in a fjord on the west coast of Canada (Osborn, 1974).

Osborn and Crawford (1980) describe its theory of operation and

one method of calibration. The sensing element is a two-layer piezo-

ceramic beam that generates an electric charge in response to
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TABLE 1 A list of the symbols used in this contribution.

Symbol Representation units

a, b Coefficients that relate e10 to e. —

c Exponent in the integral of the Panchev-

Kesich spectrum.

—

fs, fN Sampling rate and Nyquist frequency, fN = fs/2. s−1, Hz

fHP Cutoff frequency of a first-order high-pass filter. Hz

fAA, kAA Anti-aliasing frequency and wavenumber. Hz, cpm

fl Lowest frequency resolved in a spectral estimate. Hz

flim, klim User imposed upper limit of spectral integration. Hz, cpm

j Imaginary unit j2 = −1. —

k, ~k Dimensional and non-dimensional wavenumber. cpm, —

kl, ku Lower and upper limits of spectral integration. cpm

~ku Non-dimensional upper limit of

spectral integration.

—

k95 Wavenumber containing 95% of the

shear variance.

cpm

kmin Wavenumber of a spectral minimum. cpm

k0 Wavenumber of the one-half spectral response of

a shear probe.

cpm

kSR Wavenumber at which H equals 0.1. cpm

lfft FFT length expressed as a spatial length. m

le, L̂, Lf Physical and non-dimensional distances spanned

by an e estimate.

m, —

u, v, w Cross-profile fluctuating velocity components. m s−1

A One-dimensional Kolmogorov shear constant for

k in cpm

—

C1 One-dimensional Kolmogorov strain constant

for k in rad m−1.

—

CI95 95% confidence interval for an estimate. —

E General voltage produced by a charge-

transfer amplifier.

V

EP, Erms Instantaneous and rms voltage output of a

charge-transfer amplifier.

V

Edt Raw shear samples. —

F Force on a shear probe. N

FOM Metric of the quality of a spectrum. —

GD Gain of a continuous-domain time differentiator. s

H Wavenumber response of a shear-probe due to

spatial averaging.

—

HHP Frequency response of a first-order high-pass filter. —

IN1
, IN2

Integrals of ~YN1
and ~YN2

. —

IL, IPK Integrals of ~YL, and ~YPK —

LK, Lo Kolmogorov length (n3/e)1/4 and Ozmidov length

(e/N3)1/2.

m, m

MADln Y Mean absolute deviation of the logarithms of a

spectrum from its model.

—

(Continued)

TABLE 1 Continued

Symbol Representation units

N Buoyancy frequency. s−1

Nf Number of FFT segments used for a

spectral estimate.

—

Ns Number of spectral values used for a

dissipation estimate.

—

NV Number of vibration signals used in vibration-

coherent noise removal.

—

Q Binary-weighted quality-assurance flag. —

R Spectral bias factor due to vibration-coherent

noise removal.

—

Ŝ Mechanical-to-electrical charge

conversion factor.

V Pa−1

S Calibrated sensitivity of a shear probe. V s2m−2

TM Upper 95% confidence bound of a MAD

estimate for s = 1.

—

U Total incident velocity. m s−1

Vf Fraction of shear variance resolved by

integration from kl to ku.

—

W Speed of profiling. m s−1

a Angle of attack of fluid flow. °

g Voltage-to-number conversion rate of a sampler. V−1

e Rate of dissipation of turbulence kinetic energy. W kg−1

e10

Dissipation rate estimated by integrating a

spectrum to only 10cpm.

W kg−1

n Kinematic molecular viscosity. m2 s−1

r Fluid density. kg m−3

slnY Standard deviation of the logarithm of a

spectral estimate.

—

sln e Standard deviation of the logarithm of a

dissipation estimate.

—

tfft Length of an FFT segment expressed as

a duration.

s

te Time scale of dissipating eddies s

cij Cross-spectrum of shear-probe and

vibration signals.

s−1 cpm−1

Gij Cross-spectrum of vibration. cpm−1

Y, ~Y Dimensional and non-dimensional spectrum

of shear.

s−2 cpm−1, —

Yisr Spectrum of shear in the inertial subrange. s−2 cpm−1

~YN1
, ~YN2

Spectral models based on Nasmyth (1970). —

~YL , ~YNPK
Spectral models based on Lueck (2022a) and

Panchev and Kesich (1969).

—

Yij, Ŷ ij
Vibration-corrected and original shear-probe

cross-spectrum.

s−2 cpm−1
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bending forces (Figure 1). About one-half of the beam is solidly

anchored into its supporting stainless steel sting, and the other half

is cantilevered out of the sting and will generate a charge when it is

bent. The bending under a load is in the direction normal to the

wide surface of the beam – much like a diving board at the side of a

swimming pool bends in the vertical direction but not in the

horizontal direction. A water-blocking layer is placed over the

surface of the ceramic, and the entire tip is covered with silicon

rubber to form a surface of revolution – much like the shape of a

bullet. A piezo-ceramic responds only to time-varying fluctuations

and produces no mean signal. Its high resistance ensures that the

shear probe responds properly at and above the lowest apparent

frequency of turbulent shear (f ≳ 0.1Hz). There are several versions

of the shear probe. They differ mainly in the length of the tip

measured relative to the point of the cantilever and the diameter at

the point of the cantilever.

Although the shear probe was initially used on vertical profilers, it

can be used to measure the cross-profile fluctuation of velocity along

any direction of profiling. Because there are always two orthogonal

directions, profilers often carry two shear probes, with one rotated

around its longitudinal axis by 90°, to measure both components of

shear. Shear probes have been deployed on both downward and

upward vertical profilers, on gliders that profile ≈30° with respect to

horizontal (Fer et al., 2014; Palmer et al., 2015; St. Laurent, 2017), on

towed and self-propelled vehicles (Fleury and Lueck, 1992; Osborn

et al., 1992; Naveira Garabato et al., 2019), and on moored and fixed

platforms where “profiling” is provided by the ambient current (Fer

and Bakhoday Paskyabi, 2014; McMillan et al., 2016).

2.2 The signal produced by a shear probe

By the theory of potential flow past an axial-symmetric body,

the across-axial force produced on the shear probe by a flow is

F ∝
1

2
rU2sin 2a = r(Ucos a)   (Usin a) = rWu  , (1)

whereU is the total incident velocity (Figure 1), a is the angle of attack,

r is the fluid density, and u is the cross-axial component of the flow

(Allen and Perkins, 1951). All velocities are relative to that of the probe

because the probe senses only relative fluid velocity. The charge

produced by the piezo-ceramic element is proportional to this lift

force and, therefore, proportional to the cross-axis velocity u as well as

to the along-axis velocity, W, i.e., the speed of profiling of the shear

probe. Here we used an example of a vertical profiling instrument,

hence adopting the notationW for the speed of profiling. However, we

will use the symbol W for the speed of profiling regardless of its

direction. The charge produced by the shear probe is converted into a

voltage, E, by its supporting electronics and, thus,

E = Ŝ  rWu,

where the factor Ŝ depends on the efficiency of converting mechanical

energy into electrical energy by the piezo-ceramic, the dimensions and

shape of the probe, and the charge-to-voltage conversion of the

electronics, and is determined through calibration.

One method of calibrating a shear probe is by exposing it to a jet

of water with a velocity U and a time-varying angle of attack, a

(Figure 1). The longitudinal axis of the probe is inclined by an angle

a and it is spun around this axis to generate an angle of attack that

varies sinusoidally with an amplitude a (Osborn and Crawford,

1980). The sensitivity of the shear probe is determined by regressing

the root-mean-square voltage Erms against U
2 sin2a so that

Erms = SU2sin 2a ,

where the sensitivity, S, is the constant of proportionality. (When the

shear probe was developed, it was easier to measure a root-mean-

square voltage than a voltage amplitude.) The instantaneous voltage

produced by the shear probe and its circuitry is then:

FIGURE 1

A sketch of the shear probe showing its main structural features and

the expected incidental flow. The speed of profiling and the along-

axis velocity is W, the cross-axis velocity is u, the angle of attack is

a, and the total velocity is U. The force F of Equation 1 is directed

along u. The typical outer diameter at the fulcrum of the beam is

5mm and the distance from the tip to the fulcrum is 9.5 mm.

Lueck et al. 10.3389/fmars.2024.1334327
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EP =
ffiffiffi

2
p

SU2sin 2a = 2
ffiffiffi

2
p

  S(Ucos a)   (Usin a)

= 2
ffiffiffi

2
p

  SWu, (2)

where the factor of
ffiffiffi

2
p

  comes from converting an rms voltage into

a peak voltage. A typical value for S is 0.1 V m−2 s2. It is common to

use the same charge-to-voltage converter during a calibration as the

ones used in actual measurements.

2.3 Theories to estimate dissipation from
shear spectra

In isotropic turbulence, the rate of dissipation, e, is related to the

variance of shear by

e =
15

2
n

∂ u

∂ z

� �2

=
15

2
 n

Z

∞

0
Y(k) dk ≈

15

2
 n

Z ku

kl

Y(k) dk; (3)

where the overline implies an average over a suitably chosen interval, n

is the temperature-dependent molecular kinematic viscosity of water

(which ranges from 0.75 × 10−6 to 1.9 × 10−6m2 s−1),Y is the spectrum

of shear, k is the wavenumber, and kl and ku are the lower and upper

wavenumbers of spectral integration (Taylor, 1935). Isotropic

turbulence describes a state whereby the velocity components and

their derivatives are independent of direction, i.e., they do not have a

preferred orientation and appear similar from all points of view. The

largest scale eddies of a turbulent flow contain the bulk of the

turbulence kinetic energy of the flow and are usually not isotropic,

while the smaller scales (the inertial and viscous subranges) are usually

isotropic. The isotropic Equation 3 is valid for all six components of the

shear. A typical shear spectrum (Figure 2) rises with wavenumber, k, in

proportion to k1/3 in the inertial subrange (isr), and then diminishes

rapidly with increasing k due to viscosity in the viscous subrange (vsr).

In the inertial subrange, viscosity is not important, and its spectral form

was first derived with a dimensional argument by Kolmogorov (1941).

There is no first-principle-based theoretical prediction for the form of

the shear spectrum in the viscous subrange – only empirical models

and approximations.

Spectral models of shear are usually provided in a non-

dimensional (often called universal) form, ~Y(~k), and can be

dimensionalized by using

Y(k) =
e3

n

� �1=4

 ~Y(~k)  ,

k = ~k L−1K  ,

LK = (n3=e)1=4  ,

(4)

where ~k   is the non-dimensional wavenumber and k is in units of

cpm and dimensionalized using the Kolmogorov length LK

(Figure 3). Note that the cyclic wavenumber k is different from

the angular wavenumber which has units of rad m−1 and equals 2pk.

The peak of the dimensional spectrum rises in proportion to e3/4 (by

virtue of the first line in Equation 4) and shifts to higher

wavenumbers in proportion to e1/4 (because of the second line in

Equation 4), and this is required to make the area under the

spectrum proportional to e. As a result, the spectra of shear for

high dissipation rates are not only higher, but they also span a

broader range of wavenumbers. About 25% of the shear variance

resides at wavenumbers smaller than the peak (Figure 3 diamond),

and 95% of the shear variance resides at wavenumbers smaller than

where the spectrum has dropped by a factor of 10 below its peak

(Figure 3 right edge of shading).

Four of the analytic approximations (or models) of the spectrum of

shear are summarized here. The first is based on the values of the shear

spectrum tabulated by Oakey (1982) that were derived from the along-

profile velocity spectrum reported by Nasmyth (1970), and was

originally approximated by Wolk et al. (2002) using:

~YN1
(~k) =

8:05 ~k1=3

1 + (20:6~k)3:715
 , (5)

who deemed the 8-th spectral value (counting from the lowest

wavenumber and near ~k   = 1:6� 10−2) to be erroneous because it is

above the k1/3 tendency of the inertial subrange (Figure 3, red). The

second is the approximation by Lueck (2022a) of the values tabulated

by Oakey (1982) that includes the 8-th spectral value, namely:

~YN2
(~k) =

7:89 ~k1=3

1 + 21:2 ~k
� �3  

1

1 + (6 ~k)5=2

� �

 

1 +
0:11 y

(y − 1)2 + y=2

� �

 , y =
~k

0:019

 !2

(6)

(Figure 3, black). For this approximation, the values reported by

Oakey (1982) were increased by 2% so that the integral of this

spectrum equals 2/15 – a requirement for a spectral model of shear

(Equation 3). The third is the spectrum proposed by Lueck (2022a)

which is based on more than 14000 spectra of shear collected with

shear probes, and is given by:

~YL(~k) =
8:048 ~k1=3

1 + (21:7 ~k)3
 

1

1 + (6:6 ~k)5=2

� �

 

1 +
0:36 y

(y − 1)2 + 2 y

� �

 , y =
~k

0:015

 !2

(7)

FIGURE 2

A typical spectrum of shear, Ψsh1
, that has been corrected for spatial

averaging and high-pass filtering, rises as k1/3 in the inertial subrange

(isr), peaks, and diminishes in the viscous subrange (vsr). This

spectrum rises past 100cpm (down arrow) due to electronic noise.

YL is the approximation of Equation 7 for the indicated e and n.
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(Figure 3, maroon). The fourth spectrum is based on the three-

dimensional velocity spectrum proposed by Panchev and Kesich

(1969) which was converted into a one-dimensional shear spectrum

by Roget et al. (2006) and reads:

~YPK(~k) = 11:9 ~k0:372 exp  −90:9 ~k1:495
� �

(8)

(Figure 3, green). Note that ~YPK rises more steeply than k1/3 at low

wavenumbers. Because these approximations differ by only ∼15%,

and because the statistical uncertainty of spectral estimates is

usually larger by several factors of ten, any of these models can be

used as a reference for comparison against a measured spectrum.

It is usually not possible to use the shear variance directly (in the

time-domain) to estimate e because of practical limitations such as

electronic noise at high wavenumbers and vibrational contamination of

the shear-probe measurements. Instead, e is estimated by integrating

the shear spectrum over a finite range of wavenumbers, i.e., by using the

approximation in Equation 3). The lowest wavenumber is either kl = 0

cpm, or the lowest non-zero wavenumber, kl = (Wtfft)
−1, where tfft is the

length in seconds of an FFT segment used for a spectral estimate. The

upper limit ku is detailed in Sec. 3.4.1. Limiting the bandwidth of the

estimate allows for the exclusion of noise due to the electronics,

vibrations, and other sources of contamination of the measurement

of shear (see the high wavenumber end of Figure 2). However, limiting

the bandwidth of an estimate of e also excludes real shear variance and,

therefore, an empirical model of turbulence shear is used to estimate the

fraction of the variance that might be excluded. The approximations of

the integral of the shear spectra of Equations 5 to 8 are

IN1
(~k) = 15

2

Z ~k

0

~YN1
(x)d x = tanh  48:0 ~k4=3

� �

− 2:9 ~k4=3exp  −22:3 ~k4=3
� �

,

IN2
(~k) = 15

2

Z ~k

0

~YN2
(x)d x = tanh  61:5 ~k4=3

� �

− 8:1 ~k4=3exp  −52:5 ~k4=3
� �

,

IL(~k) =
15
2

Z ~k

0

~YL(x)d x = tanh  65:5 ~k4=3
� �

− 9:0 ~k4=3exp  −54:5 ~k4=3
� �

,

IPK(~k) =
15
2

Z ~k

0

~YPK(x)d x = tanh  103 ~kc
� �

− 67 ~kcexp  −94 ~kc
� �

,

(9)

where c = 1.372 (Figure 3, dash-dot colored lines). The

approximations of Equation 9 will be used in Sec. 3.4.1 to

estimate the variance of shear that may be missing because of

integration to a finite wavenumber, ku. Because of the similarity of

the spectral approximations, any one of the integral models can be

used for this purpose. In highly energetic environments (e ≳ 10−5W

kg−1), such as in tidal channel flows, the upper ocean during storms,

or vigorously turbulent overflows, the shear probe does not resolve

the (high wavenumber) viscous subrange of the shear spectrum,

because of the physical size of the probe. We thus recommended to

fit the larger scales (lower wavenumbers) of the shear spectrum,

which are within the inertial subrange, using a model spectrum that

is based on the three-dimensional velocity spectrum proposed by

Kolmogorov (1941) for the inertial subrange. This inertial-subrange

shear spectrum is

Yisr(k) = (2p)4=3 
4

3
 C1 e

2=3k1=3 = A e2=3 k1=3  ,  ½s−2 cpm−1�; (10)

where the coefficient C1 is the one-dimensional Kolmogorov constant

for velocity fluctuations in the along profile direction (the strain

component) and has an average value of C1 = 0.53 with a standard

deviation of 0.055 (Sreenivasan, 1995). The Kolmogorov constant for

the shear component is 4
3 C1 (Pope, 2009) and the factor of (2p)4/3 is

required when working in units of cpm rather than rad m−1. The

recommendation of Sreenivasan (1995) gives a value of A = 8.19,

while the models and approximations of Equation 5 and Equation 7

give A = 8.05 and Equation 6 gives A = 7.89. These values span a

range of ±2% and, therefore, all are suitable for estimating dissipation

rates. However, in the inertial subrange, the model of Panchev and

Kesich (1969) is not recommended because it does not rise as k1/3,

which is inconsistent with the velocity spectrum proposed by

Kolmogorov (1941) and the dimensional analysis of an isotropic

spectrum in the inertial subrange.

The samples of a shear-probe signal are usually a time series and they

are used to produce a frequency spectrum. A frequency spectrum is

converted into a wavenumber spectrum by dividing the frequency by the

speed of profiling, k = f/W, and bymultiplying the frequency spectrum by

W. However, this conversion is only valid if (i) the speed of profiling is

reasonably steady over the time interval of a spectral estimate and (ii) the

turbulence has not evolved during the time that it took to profile over the

interval of an estimate. The second condition is often called the Taylor

A

B

FIGURE 3

The non-dimensional shear spectral models and their

approximations in logarithmic (A) and in linear form (B). The solid

lines are the spectra ~ΨN1
(red, Equation 5), ~ΨN2

(black, Equation 6),

~ΨL (maroon, Equation 7), ~ΨPK (green, Equation 8). The dash-dot lines

are the corresponding spectral integrals (Equation 9). The diamond

marks the integral up to the peak of the spectra and equals ≈0.25.

Wavenumbers smaller than the left edge of the gray shading contain

5% of the shear variance while those smaller than the right edge

contain 95%. The dimensional wavenumber, k, is in units of cpm.
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frozen field assumption. The time scale of dissipating eddies is te∼ (n/e)1/2

and is of order 1s for a dissipation rate of 10−6 W kg−1. These two

conditions place constraints on the interpretation of spectral estimates.

3 Recommended dissipation
estimate procedure

The method described here is platform (or vehicle) independent

and is summarized in the flow chart shown in Figure 4. The

recommended procedure is presented in terms of levels, ranging

from Level 1 to Level 4, where Level 1 is the data converted into

physical units of shear, Level 2 is the selection, cleaning, and

preparation of the shear data, Level 3 is its spectral estimation,

and Level 4 is the estimation of the rate of dissipation, e, from the

spectra of shear and the quality control metrics that should

accompany the estimates. These levels are abbreviated L1, L2, L3,

and L4, respectively. The following subsections detail the

recommendations for each step.

3.1 L1: Obtain shear data in physical units

Data collected with a shear probe is always in the form of

integers (whole numbers), produced by a sampler, that spans a

range of values related to the voltage produced by the continuous-

domain (analog) electronics that support the probe. The speed of

profiling, W, is used to convert every whole-number sample into a

value of shear. The speed may be available from one or more signals

recorded by the instrument, or it may have to be determined from

simultaneous measurements from another instrument. For

example, when analyzing data collected from gliders, the flow

past the shear probe and the angle of attack can be obtained from

a hydrodynamic flight model of the glider, while for a vertical

profiler, the rate-of-change of pressure may be used to deduce the

speed of profiling. We emphasize that the rate-of-change of

pressure only approximates the speed past the sensor when this

speed is substantially larger than the background vertical velocity.

This is typically valid for profilers ballasted for target speeds greater

than ∼0.3m s−1, but can be invalid in regions where the magnitude

offluid vertical velocities are not small compared toW, for example,

in tidal channels with energetic bottom-generated turbulence, in

solitons, and within strong surface-wave orbital motions.

The cross-profile velocity signal produced by the shear probe

(Equation 2) must be converted into a shear signal. In some

instruments, this is done in the continuous domain by passing

the signal through a time-differentiator electronic circuit, which is

then sampled to produce

Edt = g  GD 
d

dt
 EP = 2

ffiffiffi

2
p

  g  SW GD

du

dt
 ,

where GD is the gain of the differentiator in units of s, and g is the

voltage-to-number conversion rate of the sampler, and Edt are the

shear samples. Finally, the discrete-domain signal of shear is derived

using

∂ u

∂ z
=

1

W
 
du

dt
=

Edt

2
ffiffiffi

2
p

 g  GD S W
2
  : (11)

The manufacturers of the electronics and the probes must

provide the values of the differentiator gain, GD, the sensitivity, S,

and the conversion rate of the sampler, g. An estimate of the speed

of profiling, W, is then used to complete the conversion of the

dimensionless samples into a shear signal with physical units of s−1.

Note that, for a given environmental shear, ∂u/∂z, the magnitude of

the signal produced by a shear probe, Edt, is proportional toW
2 and

its variance, hence the dissipation rate, is proportional to W4. A

consequence of this sensitivity to W is that a percent error in the

profiling speed is amplified by a factor of four in the corresponding

dissipation estimate. Furthermore, a higher than anticipated

profiling speed, or exceeding the design speed of a profiler, can

lead to signal overload and unreliable data.

It is also prudent to impose a minimum value on W in order to

avoid infinities in (Equation 11). There is currently no consensus on

a minimum value for W that still allows good measurements. The

smallest value reported is W = 0.05m s−1 (Lueck et al., 1997).

Experience indicates that data collected at speeds slower than

0.1m s−1 should be treated with suspicion.

For an instrument that does not electronically differentiate the

continuous-domain shear-probe signal before sampling, the

shear-probe data (i.e., the velocity, u), must be converted to

shear in the discrete- or digital-domain using software

numerical processing. This is achieved by one of two means.

The first method involves taking the Fourier transform of the

velocity samples, multiplying this transform by 2pjf where f is the

frequency of the transformed samples, j2 = −1, and converting the

multiplied transform back into the time domain using the inverse

Fourier transform. This provides the rate of change of the velocity

samples and is similar to that obtained by a continuous-domain

differentiator. This signal can be converted into a shear signal by

dividing it by the profiling speed. The second method of obtaining

the rate-of-change of the sampled velocity signal involves using a

first-difference operation, such as,

du(n)

dt
= fs½u(n) − u(n − 1)�; (12)

where fs is the sampling rate and n is the sample index. This is,

however, only an approximation of a derivative that is

asymptotically correct only in the limit of zero signal frequency

and underestimates the derivative at higher frequencies. Spectra of

shear derived from this approximation have to be recolored

(adjusted with respect to frequency) by multiplying them by the

factor

p

2
 
f

fN

� �2

  sin 
p

2

f

fN

� �� �

−2

;

where fN = 1
2 fs is the Nyquist frequency, to account for the

difference between the approximation of Equation 12 and a

continuous-domain time derivative (Antoniou, 1979). This

correction factor rises from unity at zero frequency to p2/4 ≈ 2.47

at the Nyquist frequency. In the method of processing discussed

below, we assume that the samples represent a true time derivative
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and leave it to the user to make the spectral correction if they use a

first-difference approximation to create a time derivative.

In addition, it may be necessary to make other spectral

corrections if the manufacturer of the instrument modifies the

frequency content of measurements in the band of interest for

dissipation estimation.

3.2 L2: Prepare time series sections
for analysis

3.2.1 Section selection
We must select segments within our data file (sections) that are

suitable for analysis. A section is a continuous part of a time series

that has been selected for dissipation estimates. For example, if the

data come from an ascending profiler, only the data collected on the

upcast are good for turbulence analysis. If the data were collected

continuously while this instrument descended and ascended

successively five times, the file could contain five data sections

that correspond to the upward profiles. If an instrument mounted

on a glider collected data continuously, the data from near to the

turning points should be excluded from analysis. These times mark

the boundaries of a section. During the turning of a glider, from

ascent to descent and visa versa, the rate-of-change of pressure is

small which makes it difficult to determine the speed of profiling. In

addition, this is also a time of severe shaking of the glider by its

buoyancy engines, which usually renders the shear-probe data

unusable. If the profiling speed slows below the level of reliable

probe operation (∼0.1m s−1) or the usable speed of a vehicle that

carries the shear probe, new sections must be selected. This can

happen, for example, when a glider stalls in response to strong

current shear, during periods of weak currents or reversals in a

moored system, and when the free-fall or free-rise of a vertically

profiling instrument is interrupted by an operator or by strong

updrafts in the water column. Thus, the shear time series in L2 can

contain as little as a single section that lasts for only a few seconds,

to as much as multiple sections that last for hours.

Ameasurement platformmust satisfy certain threshold criteria for

the measurements of shear to be valid for the estimation of the rate of

dissipation. These criteria include a minimum speed of profiling, a

maximum pitch and roll magnitude, a maximum acceleration

magnitude, and a minimum depth. For a glider, there should also

FIGURE 4

A schematic representation of the recommended processing of shear-probe data from L1 to L4. Details are provided in the sections shown on the

right side.
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be a minimum pitch magnitude. These criteria must be satisfied for

some minimum duration so that the section can produce at least one

estimate of the rate of dissipation, e. The response of the shear probe is

fairly linear for angles of attack smaller than ∼20° (Osborn and

Crawford, 1980). Pitching and rolling motions beyond this level will

likely lead to non-linearity and other spurious effects and should be

excluded from further analysis. As an example, when a vertical profiler

is suspended near the surface over the vessel’s side, it will have a

vertical velocity that oscillates around zero. Data collected at this time

fails the speed and pitching criteria and so are unsuitable for analysis.

After a profiling instrument is released, it will accelerate and reach

≈90% of its terminal fall rate in about one body length – a

characteristic that may be slightly instrument dependent. Data

collected during this period should also be excluded from analysis

as it will fail the speed and acceleration criteria. The conversion of a

frequency spectrum into a wavenumber spectrum becomes

ambiguous if there are significant variations in speed during the

interval used for a spectral estimate. Data collected during

acceleration can be excluded by setting a minimum speed (80 to

90% of the known fall rate of an instrument) and a minimum depth

that is more than two times the length of the profiler. Another suitable

minimum depth must be deeper than the vessel’s draft used to deploy

a profiler. This is because the vessel hull will likely disturb the water

column. In quiescent conditions or using larger vessels, this minimum

depth may be 1.5× the ship’s draft. If the measurement platform slows

down below the minimum speed of the profiling threshold during

data collection, a new section begins when the instrument reaches its

terminal speed again for a minimum required duration. These

conditions must be satisfied for a duration that equals the length of

data we plan to use for each dissipation estimate divided by the speed

of the profiler. The length of data record that should be used for an

estimate of e depends on a number of factors, including statistical

uncertainty of an estimate (Sec. 3.3.5), and is often determined

interactively as discussed below.

3.2.2 Cleaning shear-probe data

Collisions of the shear probe with plankton and other matter do

occur and can greatly bias the variance of shear reported by a probe.

Such encounters usually result in a “data spike” - a rapid rise (or fall),

followed by a reversal, and a ringing with decaying amplitude, for a

duration of ≈50 ms (Figure 5). Collisions with larger entities such as

jellyfish and seaweed cause longer-lasting anomalies. Anomalous

shear due to collisions must be removed from the shear-probe

signals before spectral estimation. While different methodologies

for de-spiking shear-probe signals are possible, we recommend the

following algorithm to remove spikes effectively, using data from the

whole L1 section (i.e., after removing unused data).

• Data are high-pass filtered, forwards and backwards, with a

first-order Butterworth filter with a cutoff frequency of ≈0.1

Hz to remove offsets and very low-frequency signals

without shifting the data in time.

• The data are rectified by taking their absolute value.

• A copy of the rectified data is smoothed by filtering it forwards

and backwards, with a first-order low-pass filter with a cutoff

frequency that is usually in the range of 0.25 to 2 Hz.

• Samples for which the absolute to the smoothed absolute

shear ratio exceeds a threshold (typically 8), are identified

as spikes.

• A number,N, of samples after a spike andN/2 before a spike

are replaced by a constant value equal to the mean shear of

an approximately one-half second interval before and after

the range of replacement.

These steps are repeated until there are no samples that exceed

the threshold. The recommended algorithm and the choice of

threshold values are based on experience. The purpose of the low-

pass filter is to establish the typical magnitude of shear in a

neighborhood that has a duration of approximately the inverse of

its low-pass filter cutoff frequency. Forwards and backwards

filtering imparts zero phase and no time-shift to the data. A shear

sample is anomalous if its magnitude exceeds the typical magnitude

by more than a factor of the threshold. Thus, if the variance of shear

is small, a small anomaly is detected, while the same anomaly

remains undetected if the variance of shear is large. That is, only

anomalies that have the potential to bias the variance are removed.

It is important to use a first-order filter because it does not cause

over- and under-shoots, nor ringing, that could generate negative

signals. We recommend that the parameters used for de-spiking be

tested on actual data. The results are most sensitive to the choice

of threshold.

What is a suitable neighborhood and low-pass cutoff frequency?

Turbulent patches in the ocean are seldom thinner than about 0.5m

in the vertical direction. This can serve as a lower limit to the

definition of a neighborhood and an upper limit to the cutoff

frequency. Thus, if a vertical profiler is moving at a speed of W,

then the low-pass cutoff frequency should be no larger than ≈W/0.5.

Gliders that profile at an angle of ≈30° should use a cutoff frequency

based on their vertical velocity rather than their profiling speed.

Horizontal profilers should also use a value of ≈ W/0.5 because

internal waves (and incomplete depth control) will likely cause it to

undulate in and out of turbulent layers.

The response of the probe to a collision is a temporal one. A certain

duration of shear data should be modified to remove the anomaly.

Typically, the data are replaced 20 ms (i.e. around 10 samples for a

sampling rate of 512 Hz) before a spike for the initial run-up to the first

extrema and 40 ms (i.e. around 20 samples) after the last extrema for

the decaying oscillation. The de-spiking should be applied iteratively to

remove anomalies that last longer than 60 ms. The fraction of the data

FIGURE 5

An example of a collision of the shear probe with zooplankton from

a moored instrument.
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altered by a de-spiking routine must be noted for each data segment

used to estimate a spectrum of shear because this is a quality-assurance

metric. There is currently no standard for what is an acceptable fraction

of modified (de-spiked) data.

Usually, for a good dissipation rate estimate, the fraction of data

altered by de-spiking is smaller than ≈2%. However, there are

circumstances when the fraction may exceed this value. Examples

include (i) when profiling during a spring bloom when the density

of zooplankton and other small creatures may be very high and (ii)

when the shear probes are mounted on instruments (such as gliders

and other autonomous vehicles) which use actuators that impart

strong mechanical impulses. For such cases, an upper limit of 5%

may be more appropriate for quality control.

The number of passes or attempts made to clean the shear-

probe data is also a quality-assurance metric. Note that the cleaning

of the shear probe data is exercised only in the selected section

satisfying the profiling criteria of Sec. 3.2.1 and, hence, it excludes

times of excessive platform motion, vibration, acceleration, tilt, or

slow relative speed past the probes. If many attempts are required to

clean the data, then the anomalies are extremely long and may be

caused by collisions with objects larger than the typical size of

zooplankton such as, for example, jellyfish. While there is no

objective criterion for the maximum number of passes that

should be tolerated, experience indicates that data requiring more

than 8 passes are very unusual and should not be used for the

estimation of the rate of dissipation.

3.2.3 High-pass filter time series

Although the shear probe inherently senses only zero-mean

fluctuations, its electronics may impart a non-zero mean that

should be removed by digital high-pass filtering. Once the data

have been cleaned by removing shear anomalies, it can be filtered.

The cutoff frequency for digital high-pass filtering must be decided

at this stage. The recommended high-pass filter is a first-order

Butterworth filter, applied forwards and backwards, with a cutoff

frequency of approximately one-half of the lowest frequency

resolved by the spectra for dissipation estimates. The lowest

frequency resolved is fl = t−1f f t , where tfft is the length of the FFT

segments (in s) (see Sec. 3.3.1). Thus, the recommended choice for

high-pass filtering of the shear data is

fHP = t−1f f t=2: (13)

The choice of other spectral parameters is described in the

next section.

3.3 L3: Produce wavenumber spectra of
shear and related sensors

The shear variance is obtained from a wavenumber spectrum of

a shear time series that is cleaned (de-spiked) and high-pass filtered

as described earlier. Here we describe (i) how the wavenumber

spectrum should be calculated, (ii) its correction for the high-pass

filter, and (iii) the removal of vibration-coherent contamination.

3.3.1 Spectral calculations
The estimation of spectra and dissipation rates requires setting a

number of parameters that determine both the spatial resolution of

the dissipation estimates and the statistical reliability of the

estimates of the shear spectrum. A duration of data, te, will be

used to estimate e. This duration is divided into a number of shorter

FFT segments of duration tfft. By the periodogram method of

spectral estimation, the magnitude squared of the Fourier

transform of the FFT sections is averaged into a single

magnitude-squared transform, at each frequency between zero

and the Nyquist frequency. This averaged transform is divided by

both the number of points within a single FFT segment and by the

Nyquist frequency to make it equal to a spectrum – its integral

equals the variance of the shear signal. The spatial resolution of the

dissipation estimates is l
ϵ
= teW and is a choice driven by scientific

objectives, such as the spatial resolution required to reach your

objectives. The resolution (and the lowest non-zero wavenumber)

of a spectrum is kl = fl/W = (tfftW)−1 and must be chosen carefully

by considering the constraints below.

Spectra must resolve the peak of the spectrum and a portion of

the inertial subrange in order to confirm that they represent shear,

and this sets a dissipation rate dependent requirement on the

minimum length of an FFT segment. Spectra for dissipation rates

that are low (e ≲ 10−9 W kg−1), moderate (e ≲ 10−7 W kg−1), and

high (e ≳ 10−7Wkg−1), are well resolved by kl equal to ≈0.5, ≈1, and

≈2 cpm, respectively. For an instrument with a slow profiling speed

of W = 0.3m s−1, an FFT length of tfft = 7s is needed to resolve kl =

0.5 cpm, whereas a profiling speed of 1m s−1 requires an FFT length

of only 2s.

An FFT length converted to a spatial length, lfft = tfftW, should

not exceed the length of a free profiler because the profiler will be

advected by eddies comparable to and larger than the profiler,

which diminishes the large-scale shear measured by the shear probe.

For example, an FFT duration of tfft = 2 s and a profiling speed ofW

= 0.5m s−1 gives a spatial length of 1m, and this value should be

comparable to or shorter than the length of a free profiler.

The FFT segments should be individually detrended by either a

zero-order or a first-order polynomial to minimize the zero-

frequency spectral value (which is assumed to be zero) and to

reduce the leakage of low-frequency content into the first non-zero

frequency spectral estimate. Higher-order detrending removes low-

frequency variance and is not recommended.

Because turbulence shear is a broad-banded signal (one with a

spectrum that does not change rapidly with respect to wave-

number), the detrended FFT segments should be windowed and

overlapped to increase the statistical reliability of the spectrum.

Here, windowing means multiplying the time series record in the

FFT segment by a window shape that varies smoothly from zero at

the start of a segment, reaches a peak, and decreases symmetrically

to zero at the end of the segment. It is important to do both. Neither

windowing without overlap nor overlapping without a window

increases the statistical reliability of a spectrum (Nuttall, 1971). The

actual window used is not critical but it must be scaled to have a

mean-square equal to 1, so that it does not change the variance of

the signal. We recommend a cosine window with 50% overlap
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between adjacent segments. Thus, a data length that is twice as long

as the FFT length uses three FFT segments (Nf = 3) for the spectral

estimate and this ratio should be considered a minimum, unless

there is a pressing need for very high spatial resolution of the e

estimates. The statistical reliability of a spectrum can be increased

by increasing the length of data, le, used for a dissipation estimate

because that increases Nf for a fixed length of an FFT segment

(Equation 17). However, an increase in l
ϵ
must be tempered by the

assumption of stationarity over the length of an estimate. Large

values of Nf can invalidate the stationarity assumption, particularly

in boundary layers where dissipation rates can change rapidly with

depth, or in parts of the time series with substantial acceleration or

deceleration of profiling speed.

Finally, if a high spatial resolution of dissipation estimates is

important to reveal variations, then it is also possible to overlap

successive estimates of e. This makes successive estimates

statistically interdependent but it may be useful for revealing

patterns of dissipation rates.

3.3.2 Correction for the spatial response

The shear probe has a frequency response determined by the

probe tip’s mechanical stiffness and mass. Vibration tests indicate

that the frequency response is several kilo-hertz and, therefore, not

an issue at the usual speeds of profiling. However, its finite size does

induce spatial averaging which limits the wavenumber response of

the shear probe. Macoun and Lueck (2004) indicate that the

response of their probes has the form of a first-order low-pass

filter with a half-power wavenumber of k0 = 50 cpm. That is, the

measured spectrum is reduced by the factor

H(k) =
1

1 + (k=k0)
2  , (14)

where k is the wavenumber in units of cpm. This response was

determined for a probe with a length of 9.5 mm from tip to fulcrum

and diameter of 5 mm at its fulcrum. The response scales with the

size of the probe and may be different for other probes. Spectra of

shear must be multiplied by the inverse of Equation 14 to correct

them for the spatial averaging by the shear probe. Note that this

correction amplifies the spectrum by a factor of 10 at a wavenumber

of 150 cpm, and it is not recommended to use the spectrum at

wavenumbers where the correction exceeds a factor of ≈10 because

k0 has some uncertainty and excessive boosting amplifies this

uncertainty and transfer it into the spectrum and the estimate of e.

3.3.3 Correction for high-pass filter

Digital filters are not perfect as they attenuate the spectra at

frequencies smaller and larger than the cutoff frequency. The

spectra should be corrected for the first-order, high-pass filter

applied both forwards and backwards at L2. The spectral

correction is the inverse of the magnitude-squared response of

such a filter which is:

jHHP(f )j−2 =   1 +  
fHP

f

� �2� �2

;

where fHP is the high-pass cut-off frequency (Antoniou, 1979). For the

recommended high-pass cut-off frequency of Equation 13, namely

fHP = t−1fft =2, the correction at the lowest (non-zero) frequency of the

spectrum, namely f = t−1fft , is only a factor of (5/4)2, and this factor

diminishes rapidly to unity with increasing frequency.

3.3.4 Vibration-coherent noise removal

If there are concurrent measurements of the acceleration, or the

vibration, of the platform that carries the shear probes, then these

measurements should be used to remove those parts of the shear

signals that are coherent with the vibrations. (A vibration sensor

measures only the time-varying part of an acceleration.) We

recommend that the accelerometer and shear-probe signals are

sampled at the same rate. If the signals are not sampled at the same

rate, and if the lower of the two Nyquist frequencies covers the band

of interest for the shear spectrum, then interpolation may be used

before the coherency calculation. For the vibration-coherent noise

removal, we recommend the method of Goodman et al. (2006),

which removes multi-variate coherent vibrations from a multi-

variate shear spectrum using

Yij =   Ŷ ij −  cik  G
−1
kl   c

*
lj ; (15)

whereYij and Ŷ ij are the corrected (de-contaminated) and original

cross-spectrum of the i-th and the j-th shear-probe signals, cij is the

cross-spectrum of the shear-probe and vibration signals, Gij is the

crossspectrum of the vibration (and possibly other) signals that are

contaminating the shear-probe measurements, the superscript ∗

indicates a complex conjugate, and summation over repeated

indices is implied. All of these quantities are functions of

frequency (or wavenumber).

The term ‘cross-spectrum’ needs some clarification. The

cross-spectrum of the i-th and the j-th shear-probe signals is a

three-dimensional and complex matrix that has dimensions of P

× P × N where P is the number of shear signals, and N is the

number of frequency indices in the cross-spectrum. The auto-

spectra of the shear signals are on the diagonal of this three-

dimensional cross-spectrum. For example, Y22(f) is the auto-

spectrum of the signal from shear probe 2. It is real. The off-

diagonal elements are the cross-spectra between pairs of shear

probes. For example, Y12(f ) = Y
∗
21(f ) is the cross-spectrum of

probes 1 and 2. It is complex. The cross-spectrum of vibrations,

Gij, has dimensions M × M × N where M is the number of

vibration signals that are used to remove coherent noise from the

shear-probe signals. The cross-spectrum of the i-th shear-probe

and the j-th vibration signals, cij, has dimensions P ×M × N, and

is entirely complex.

The technique of Goodman et al. (2006) relies on estimating the

(squared-) coherency between the vibration and shear-probe

signals. The second term on the right-hand side of Equation 15 is

the coherency times the cross-spectrum of shear. Coherency is a

positive definite quantity and is always finite, even for completely

unrelated signals, when the number of FFT segments used to make

its estimate is finite. That is, it underestimates the corrected

spectrum Yij(f), at all frequencies, by a factor of
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R = 1 −   1:02
NV

Nf

; (16)

whereNV < Nf is the number of vibration (and other) signals used to

remove vibration-coherent noise from the shear-probe spectra, and

Nf is the number of FFT segments used to make the estimate

(Ferron et al., 2023). The spectrum of shear is corrected by dividing

it by R. The factor of 1.02 in Equation 16 was determined

empirically for a cosine window with 50% overlap. However, it is

nearly identical for other windows and for all overlaps that are

smaller than ≈ 2/3. For the example (Sec. 4.1) Nf = 7 and using three

vibration sensors NV = 3, we obtain R = 0.563. The technique of

Goodman et al. (2006) will not work unless Nf > NV and, preferably,

larger by more than 3 for reasons of statistical reliability (Sec. 3.3.5).

3.3.5 Uncertainty of a shear spectrum
The statistical reliability of an estimate of a spectrum of shear

has a probability density function (pdf) that is log-normal, and has

been explored by Lueck (2022a). The statistical uncertainty of an

estimate of the natural logarithm of the spectrum of shear has a

variance of:

s 2
lnY =  

5

4
 ðNf − NV )

−7=9: (17)

Thus, using coherent-noise removal to clean a shear spectrum not

only biases the spectrum low (Equation 16), but it also reduces its

statistical reliability. In Lueck (2022a) the term NV was zero because

coherent-vibration removal was not necessary. A re-examination of

the data (by the first author) indicates that the statistical uncertainty

of the spectrum is degraded by the noise-removal technique and that

the correct variance is that of Equation 17. The reduction of reliability

comes from using the information inNV reference signals to estimate

the coherency and to remove coherent variance from the measured

spectra. The 95% confidence interval of a shear spectrum is

Y(k) exp( ± 1:96slnY) : (18)

The values of slnY, Nf and NV, should appear in L3 of the processed

data file and they will be used for quality control in L4.

3.4 L4: Dissipation estimates from spectra

3.4.1 Estimating e by spectral integration
A common method of estimating e is by integrating the shear

spectrum between a low and high wavenumber limit. Particularly,

the choice of the upper wavenumber limit of spectral integration

must be made after careful considerations described below.

Estimating the variance of shear, and hence e must be done

iteratively because the bandwidth required for an estimate, i.e.,

wavenumber limits of integration, is a priori unknown because it

depends on the value of e itself. Very small dissipation rates ≲ 10−10

Wkg−1 are well resolved by a bandwidth of ≈10 cpm. Often

vibrations and other sources of signal contamination are small for

wavenumbers smaller than ≈10 cpm. Thus, integrating a spectrum

to 10cpm can provide an initial estimate of e if the spectrum

conforms reasonably closely to a model spectrum such as that by

Nasmyth (Figure 3, black line). The limit of 10cpm was also

suggested by Wesson and Gregg (1994) as a means to make an

initial estimate of e. The ratio of the actual dissipation rate, e, to that

estimated by integrating a spectral model (such as Equation 6) to

only 10 cpm, e10, is well approximated by:

e
e10

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + ae10
p

+ exp ( − be10) − 1

a = 1:25  �10−9v−3

a = 5:5  �10−8v−5=2

(19)

(Figure 6). The likely underestimated rate of dissipation, which is

derived by integrating a measured (and cleaned) spectrum to 10 cpm,

can then be boosted by Equation 19 to make an improved estimate of

the rate of dissipation, denoted e1. According to most models, 95% of

the variance of shear is resolved at a non-dimensional wavenumber of
~k95   = 0:12 (Figure 3). Thus, k95 = 0.12(e1/n

3)1/4, in units of cpm, is a

suitable upper limit for the integration of a shear spectrum. There is

little point in integrating beyond this wavenumber because the

correction for the missing variance is only 5%. If integrating to

10cpm is not convenient, then a boosting relationship such as

Equation 19 should be developed for other spectral limits to derive

an initial estimate of e1.

Electronic noise sets another upper limit for spectral integration.

Because of the differentiator operator in obtaining shear, either done

electronically in the signal chain or applied during post-processing of

the velocity time series, the noise in the spectrum of shear tends to rise

with increasing wavenumber (Figure 2, down arrow). The wavenumber

at which this spectral minimum occurs depends on e. For very low

dissipation rates, the minimum occurs at low wavenumbers because

the level of the spectrum rises in proportion to e3/4, while the spectrum

of electronic noise is constant at a given speed. For very high rates of

dissipation, the spectral minimum may not even appear because the

electronic noise may be smaller than the shear signal at all

wavenumbers. The spectrum of shear should not be integrated

beyond the spectral minimum so that the estimate of the variance of

shear is not biased high by electronic noise. The spectral minimum can

be found by fitting a polynomial to the spectrum in log-log space. A fit

of order 3 is often sufficient to find the spectral minimum but odd

orders up to 7 also give satisfactory results. In most cases, the fit should

be of an odd-numbered order because the typical shape of a spectrum,

with respect to increasing wavenumber, is a rise from the lowest

wavenumber to a peak, a subsequent decrease due to viscosity, and a

final rise due to noise. The spectral minimum is between the fall due to

viscosity and rise due to electronic noise – for example, the down arrow

in Figure 2. This sort of shape is emulated by an odd-order polynomial.

To avoid the detection of false minima, the minimum determined from

a polynomial fit should not be smaller than 10cpm because at this

wavenumber a spectrum is about 95% resolved when the rate of

dissipation is very low, ∼10−10 W kg−1. We denote the wavenumber of

the spectral minimum by kmin.

Another limit is due to the shear probe’s limited wavenumber

response (Equation 14). We do not recommend integrating the

spectrum beyond the wavenumber at which the spectral correction

(for spatial averaging by the shear probe) exceeds a factor of 10. This

is not a hard limit but spectra corrected by a factor much larger than

10 are unreliable because the correction itself has some uncertainty.
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We denote this limit due to spatial resolution by kSR. It equals

150 cpm for the probes used by Macoun and Lueck (2004) and

should be determined for other probes if they differ substantially

from their probes.

Most data acquisition systems apply a low-pass filter to the

continuous-domain shear signal before sampling to suppress

aliasing. This is done in the continuous domain with a filter that

has a cutoff frequency of fAA. The spectrum is unresolved beyond

this frequency. Therefore, another upper limit to spectral

integration is kAA= 0.9 fAA/W where the factor of 0.9 is used to

avoid the transition from the pass band to the attenuation band of

the anti-aliasing filter. This factor is suitable for an 8-th order

Butterworth filter. Sharper filters can have a factor closer to unity,

while filters of a lower order, or ones of a wider transition range,

should use a factor that is smaller than 0.9.

Finally, there may be some corruption of the shear spectrum

that is not removable but, if it is included in the spectral integration,

it will bias high the estimate of the shear variance. This sort of

spectral contamination is an instrument or an operational problem

that should be corrected. If present, the contamination usually

occurs at a (nearly) fixed frequency and, thus, this limit is usually

specified in terms of frequency rather than wavenumber. If the

spectrum is good for frequencies lower than flim, then another limit

of spectral integration, is klim = flim/W. For good data, flim should be

set to infinity so that it is irrelevant.

In summary, the various upper wavenumber limits of spectral

integration are:

• k95 = 0.12(e1/n
3)1/4 – the wavenumber of 95% resolution,

• kmin – the wavenumber of the spectral minimum,

• kSR – the wavenumber (typically 150cpm) of the factor of 10

correction for spatial resolution,

• kAA– the wavenumber corresponding to the cutoff

frequency of the anti-aliasing filter, and

• klim – the wavenumber of irremovable spectral corruption.

The spectrum of shear can now be integrated to estimate the

variance of shear and to derive the second estimate of the rate of

dissipation, e2. For this estimate, the spectrum should be integrated to

an upper limit equal to the smallest of the five cited upper limits. That is

ku = min(k95, kmin, kSR, kAA, klim). The upper limit ku will usually be

larger than 10cpm and, therefore, the estimate e2 derived by integration

to ku will be statistically more reliable than the initial estimate, e1.

However, the spectrum is not fully resolved at ku and e2 will be an

underestimate because some shear variance will be excluded.

The estimated e2 is then used to estimate the non-dimensional

value of the upper wavenumber of spectral integration, namely

~ku = ku   (v
3=e2)

1=4:

This value is used with one of the models of the integral of a

spectrum (Equation 9) to estimate the fraction of the shear variance

that is resolved by integrating the spectrum to ku. For example, the

resolved fraction is IL(~ku), and an improved estimate is

e3   = e2=IL(ku½n3=e2�1=4);

and this should be followed by

e4   = e3=IL(ku½n3=e3�1=4);

and repeated until the increases of e become smaller than 1%.

We recommend using zero as the lower limit of spectral

integration, kl = 0 cpm, and setting its spectral value to zero,

because that is the expectation of the spectrum – which rises as

k1/3 at low wavenumbers. Algorithms that estimate the variance of

FIGURE 6

The rate of dissipation, e, according to the Nasmyth model spectrum of Equation 6, relative to an estimate based on integrating this spectrum to

10 cpm, e10, as a function of e10 for a range of viscosity, n (colored disks) and an analytic approximation (black line).
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shear by integrating the spectrum from a non-zero lower

wavenumber, kl > 0 cpm, have to correct their estimate for the

exclusion of variance below their lower limit of spectral integration

and this can be done with any of the models in Equation 9. In

stratified turbulence, eddies with a size comparable to and larger

than the Ozmidov scale, LO = (e/N3)1/2 where N is the buoyancy

frequency, are damped by stratification. One could choose a lower

wavenumber of spectral integration equal to L−1O . However,

choosing such a lower limit has only minor consequences because

there is little variance below L−1O because of the damping by

buoyancy. Using the Ozmidov length for a lower limit must be

made iteratively because it depends on e.

The integration of the spectrum is usually done by the

trapezoidal approximation of an integral. This introduces a slight

error in the low wavenumber range. The spectrum is expected to

rise as k1/3 from a wavenumber of zero to at least the first non-zero

wavenumber, k1. This makes the integral equal to 3k1 Y(k1)/4.

However, the trapezoidal approximation gives k1 Y(k1)/2 which is

smaller than a true integral. An amount equal to k1 Y(k1)/4 should

be added to the estimated variance to correct this shortfall when

using kl = 0.

The spectra used for estimating e by spectral integration must

be corrected for the wavenumber response of the shear probe, the

high-pass filter that is applied to remove spurious low-wavenumber

variance, any other wavenumber dependencies that may be inherent

in the measurement system, and for the bias induced by vibration-

coherent noise removal.

With the method of spectral integration, we are estimating the

variance of shear and using it to derive e because they are related by

first principles (Taylor, 1935). For typical dissipation rates (e ⪅ 10−5

W kg−1), we do not recommend fitting the measured spectrum to a

model spectrum to derive a dissipation estimate because there are

no spectral models that are based on first principles. Model spectra

are only used to estimate the fraction of the variance that is excluded

by a finite upper wavenumber limit of spectral integration, and

possibly a lower limit if integration does not start at 0cpm.

However, if measured spectra are close to model spectra, then

spectral fitting and variance estimation give similar results. The

computational burden of spectral fitting is, however, much higher.

3.4.2 Estimating e by fitting to the
inertial subrange

When dissipation rates are very high, e ≳ 10−5Wkg−1, the shear

probe cannot resolve the spectrum of shear and even the

wavenumber correction proposed by Macoun and Lueck (2004)

does not produce spectra that agree closely with spectral models.

However, the shear probe always resolves the inertial subrange, for

oceanic conditions, which has wavenumbers smaller than k< 0.01

(e/n3)1/4 in units of cpm, and this range can be estimated with the

value of e1 derived from the spectral integration to 10cpm. Fitting

the spectrum in the inertial subrange provides an alternative

method to spectral integration. The model spectrum in the

inertial subrange is given by Equation 10.

The actual fitting method is not crucial. One method that gives

satisfactory results is to use e1 (derived from a spectral integration to

10 cpm) to delineate the inertial subrange. The ratio of the observed

and model spectral values is then computed and averaged over the

subrange. The rate of dissipation of the model spectrum (Equation

10) is adjusted until the average ratio equals unity (to within, say,

1%). This method is the same as log-transforming the inertial

subrange model and solving this relation

ln Y(k) − ln  A −
1

3
ln   k = lne2=3 (20)

over the inertial subrange, where Y(k) is the observed spectrum.

The minimum number of spectral values that must be used for a

fitting is not well established. Equation 20 is equivalent to the ‘null

model’ examined by Jenkins and Quintana-Ascencio (2020) who

recommend a minimum of 5 points.

Because the inertial subrange is only a small part of the entire

spectrum of shear, the number of spectral values used for a

dissipation estimate by a fit to the inertial subrange is almost

always smaller than the number of values used in spectral

integration. Consequently, the statistical reliability of such an

estimate is inferior to that obtained by integration. However, when

dissipation rates are high, e ≳ 10−5 W kg−1, spectral integration is not

an option because the shear probe cannot resolve the spectrum, and

integration provides an underestimate of e.

The spectra used for estimating e by fitting in the inertial

subrange must also be corrected for the high-pass filter that is

applied to remove spurious low-wavenumber variance, for the bias

induced by vibration-coherent noise removal, and for the

wavenumber response of the shear probe, although this correction

will usually be minor.

3.4.3 Uncertainty of an e estimate by
spectral integration

The statistical uncertainty that we present here is that of a

measurement uncertainty that is due to the limited sampling of a

statistical process (the turbulence shear) to estimate its variance and

spectrum. The underlying statistical uncertainty of a dissipation

estimate is presented in Lueck (2022b), and the uncertainty of a

spectral estimate is in Lueck (2022a). The measurement uncertainty

is distinct from the uncertainty of how a particular estimate relates

to the longer-term average of e at a particular site. The uncertainty

of an e estimate is different for methods of spectral integration and

fitting in the inertial subrange and must be carefully calculated.

When the rate of dissipation is estimated by spectral integration, the

statistical uncertainty of the logarithm of such an estimate has a

variance of:

s 2
lne =  

5:5

1 + L̂ f =4
	 
7=9

,   L̂ f = L̂V
3=4
f =

le
LK

V
3=4
f ,

where le = teW is the length (in units of m) of data used for the

dissipation estimate, LK is the Kolmogorov length, and Vf is the

fraction of the shear variance resolved by ending the spectral

integration at a finite wavenumber of ku (Lueck, 2022b). The

non-dimensional data length, L̂ f , is reduced by a factor of 4

because samples of shear are independent only if they are

separated by more than four Kolmogorov lengths, where the
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lagged auto-correlation of shear drops to one-half (Lueck, 2022b).

The factor of Vf accounts for the underusage of information

because of limiting the spectral integration to k ≤ ku. Thus, the

95% confidence interval for a dissipation estimate derived by

spectral integration is:

e   exp( ± 1:96slne ) :

In L4, every estimate of e should be accompanied by its value slne, le,

LK, and Vf, if the estimate was made by spectral integration, as

explained in Sec. 3.4.1.

3.4.4 Uncertainty of an e estimate by fitting in the
inertial subrange

The method of fitting a spectrum in the inertial subrange to a

model spectrum is equivalent to finding the average of Equation 20

for the spectral values in the inertial subrange. The logarithm of

each spectral value has a variance of Equation 17. If there are Ns

spectral values in the inertial subrange used for a spectral fit, the

variance of the average logarithmic differences is smaller by a factor

of Ns. Thus, the 95% confidence interval of ln e2=3
	 


is:

ln   e2=3
� �

± 1:96
slnY
ffiffiffiffiffi

Ns

p ;

and the same confidence interval for e itself is

e   exp ±1:96
3

2

slnY
ffiffiffiffiffi

Ns

p
� �

: (21)

In L4, every estimate of e derived by fitting in the inertial subrange

should be accompanied by its value of Ns, so that one can place a

confidence interval on this estimate using Equation 21 and the value

of slnY that is located in L3 (Sec. 3.3.5). The value of Ns is also

pertinent to quantifying the quality of a spectrum (Sec. 3.4.5).

3.4.5 Quality-assurance metrics
The quality of a dissipation estimate, and the spectrum from

which it is derived, must be quantified and must accompany each

estimate. This is a requirement imposed by data archives. We

propose five quality-assurance metrics and a single flag value, Q,

that can be used to identify a failure of any combination of these

metrics. The quality-assurance metrics are combined into a single Q

flag value by combining bit-wise values, of 0 or 1 corresponding to

base-2 numerals of 1, 2, 4, 8, and so on, into a single multi-bit

number. For example, a value of Q = 0 means that the estimate

passed all metrics, while a value of Q = 5 uniquely identifies that the

estimate failed both metric numbers 1 and 4. Failures increase the

value of Q by the amounts described below. The quality-assurance

values are summarized in Table 2. When dissipation estimates are

made using more than a single probe, the final estimate should be

the average of those estimates that have Q = 0.

3.4.5.1 Poor figure of merit (Q = 1)

Figure of merit (FOM) is a measure of the quality of a spectrum,

over the range of wavenumbers that is used for the estimation of e.

The FOM provides a measure of how closely a spectrum agrees with

a model spectrum and, therefore, it is appropriate only for cases

where the assumptions that underpin the model spectra are valid.

The assumptions of the model spectra are (i) that the turbulence is

isotropic, (ii) that there is a flow of energy from large to small scales,

and (ii) that the generating scales are very much larger than the

dissipating scales. The standard deviation of a spectrum, Equation

17, has only been tested for buoyancy Reynolds number:

RB =
e

vN2 ≳ 600;

and may not apply to regions with weaker turbulence or stronger

stratification. In addition, shear fluctuations that are generated by

fauna or other biological activity, salt fingers, or are extremely close to

boundaries may not have spectra that are similar to the model spectra.

To derive the FOM statistic, we start by assembling the difference

between the natural logarithm of the measured spectrum, lnY, and the

natural logarithm of a model spectrum, ln YM, that has been

dimensionalized using the estimated e and the known kinematic

molecular viscosity, n. We then calculate the mean absolute

difference (or deviation) using only the spectral values in the range

of wavenumber that were used to estimate e. That is, we calculate:

MADln Y ¼ 1

Ns
o
Ns

i=1

lnY(ki) − lnYM(ki)j j;

where i are the indices to the Ns spectral values that were used for a

dissipation estimate. This excludes the index to k = 0 cpm because

that spectral value is prescribed to be zero. This sampleMADmust be

compared to the mean absolute deviation that is expected from the

known standard deviation of the spectrum, sln Y (Equation 17). If a

zero-mean normal population has a standard deviation of s, then its

expectedMAD is 0.8s. However, a sample MAD based onNs samples

will have a range of values around this expectation of 0.8s and this

range has an upper 95% confidence interval of:

slnYTM;

where

TM = 0:8 +
1:25
ffiffiffiffiffi

Ns

p ;

TABLE 2 Summary of the values of the Q flags associated with the

quality-assurance metrics, and the recommended values for conditions

for their failure.

Q Meaning Recommendation

0 no failure

1 figure-of-merit failure > 1.4

2 De-spike fraction failure > 0.05

4 e ratio failure ratio > exp(2.77sln e)

8 De-spike iteration failure iterations > 8

16 Variance resolution failure variance resolved < 0.6

32 User defined or future use

Q is the sum of the value associated with each failure.
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was determined by calculating the 95% confidence range of a large

number of MAD estimates using samples drawn from a normal

population with a standard deviation of 1 (Figure 7). Thus, we

expect that for 97.5% of spectra the figure of merit:

FOM =
MADlnY

slnY

1

TM

; (22)

to be smaller than 1 if the model spectrum, YM, is an appropriate

expectation for the measured turbulence. Perfect agreement

between a measured and a model spectrum has FOM = 0, and

2.5% of spectra have FOM > 1. However, there is an approximately

15% difference among the four spectral models and, so, the

threshold should be increased from 1 to at least 1.15 to

acknowledge this level of ambiguity among the spectral models.

In addition, there is uncertainty in the value of e that is used to

dimensionalize the model spectrum, and this suggests a further

increase in the threshold of FOM. It is difficult to make a robust

recommendation, but an examination of the two thousand spectra

indicates that a threshold of 1.4 might be a good limit. However, a

more precise value needs further study. This limit should be

increased further, or possibly ignored altogether, in regions where

the spectral models are not appropriate. Dissipation estimates that

have FOM > 1.4, and if they come from a region where the

conditions for a model spectrum are appropriate, should be

treated with suspicion and, in most cases, rejected.

In L4, every estimate of e should be accompanied by its value of

FOM, MADlnY and Ns. The flag value, Q, of estimates with poor

FOM must be increased by 1.

3.4.5.2 Large fraction of data with spikes (Q = 2)

The fraction of the data that was modified for extrema removal

(Sec. 3.2.2), for each section of data used for a dissipation estimate,

should be noted. There are currently no standards for an acceptable

fraction. Nonetheless, estimates that are based on data that has

more than a few percent of modification should be treated with

caution. We recommend that a fraction larger than 5% be flagged

and that Q be increased by a value of 2.

3.4.5.3 Large disagreement between dissipation estimates

from probes (Q = 4)

Simultaneous dissipation estimates from two or more probes

will never agree exactly, and the statistical uncertainty of an e

estimate can be used to flag, and possibly reject, one of the

estimates. Signal contamination will bias an estimate high by

adding variance. Thus, it is the larger of a pair of estimates that

should be rejected, if their ratio is excessive. The geometric mean of

a pair of dissipation estimates derived by spectral integration has a

95% confidence interval of

ffiffiffiffiffiffiffiffi

e1e2
p

 exp  ±1:96sln e

ffiffiffiffiffiffiffi

1=2
p

� �

;

where the factor of
ffiffiffiffiffiffiffi

1=2
p

accounts for the one degree of freedom

consumed in calculating the geometric mean. Thus, there is only a

5% chance that the ratio of two estimates falls outside of the

interval:

exp ±1:96sln e

ffiffiffi

2
p� �

; (23)

when they are derived by spectral integration, and that their ratio

falls outside of the interval

exp ±1:96
3

2

ffiffiffi

2
p sln Y

ffiffiffiffiffi

Ns

p
� �

;

if they are derived from fitting in the inertial subrange.

In the case of spectral integration, the magnitude of the difference

of the natural logarithm of two dissipation estimates, |ln e1 − ln e2|,

should be smaller than 1.96
ffiffiffi

2
p

sln e , which equals 2.77sln e. For a pair

of dissipation estimates, the average value of sln e obtained from both

probes can be used. If the dissipation estimates are obtained by fitting

to the inertial subrange, |ln e1 − ln e2| should be smaller than 1:96 3
2

FIGURE 7

The 95% confidence interval of the mean absolute deviation (MAD) of Ns samples drawn from a normal population with a standard deviation of s =

1. The analytical model approximation is from (Lueck, 2022a).
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ffiffiffi

2
p

slnY=
ffiffiffiffiffi

Ns

p
, which equals 4:2slnY=

ffiffiffiffiffi

Ns

p
. Quality assurance

requires that the values of sln e, slnY, and Ns be provided with

every estimate of the rate of dissipation. Dissipation estimates that are

larger than the other simultaneous estimates must be flagged and its

Q flag must be increased by a value of 4.

Implicit in this metric is that the spectra of both probes have a

satisfactory FOM. If a probe has a poor FOM it may be damaged

(broken) and give an artificially small estimate of e. This results in

the rejection of the larger dissipation estimate even if it is a good

estimate. Therefore, estimates with a poor FOM should be excluded

from a dissipation ratio test.

3.4.5.4 Too many iterations of de-spiking

routine (Q = 8)

While the fraction of the data altered by a de-spiking routine

must be examined for each data segment used to estimate a

spectrum of shear (Q = 2), the number of iterations made to

clean the shear-probe data of L2 is a quality-assurance metric that

applies to the entire section. We recommend that the entire section

of dissipation estimates requiring more than 8 passes of the de-

spiking routine must be flagged and Qmust be increased by a value

of 8. It is important to apply the de-spiking routine to the selected

section as described in Section 3.2.1.

3.4.5.5 Insufficient variance resolved (Q = 16)

When estimating e by spectral integration one implicitly assumes

that the spectrum is one of shear and, therefore, the spectrum should

clearly demonstrate a peak and a roll-off at higher wavenumber. The

spectral peak is well resolved at ~k = 0:04, and the fraction of the

variance that is resolved (according to the variance spectral models of

Equation 9) is 0.6 at this wavenumber (Figure 3). Thus, we

recommend that an estimate of e that is derived by spectral

integration should resolve at least a fraction of the variance equal

to 0.6, and that the actual fraction that is resolved should be provided

for every estimate of e. Estimates failing this criterion must be flagged

and Q must be increased by a value of 16. Estimates obtained by

spectral fitting to the inertial subrange should not set this flag because

they will always use a wavenumber range that resolves less than ≈0.25

of the shear variance (Figure 3 black diamond).

Flag values of 32, 64, and 128, etc., are reserved for future use

and for additional user-defined flags.

4 Benchmark data

4.1 Example of good data

In ATOMIX, we have identified and tested a collection of five

benchmark shear-probe datasets from different platforms. These

benchmarks, described in Fer et al., submitted1 demonstrate a

variety of aspects of the estimation of dissipation rates. The

datasets are presented in a well-defined and homogeneous format

that encompasses all levels from L1 to L4. These datasets provide a

resource for users to evaluate their routines and allow for platform-

independent analysis of shear probe data once the L1 data is

provided. Users can then analyze data from their desired level,

such as starting with L1, selecting sections of cleaned time series

from L2, or utilizing corrected shear spectra from L3. Here, we

present an example of our best practices recommendations using

one benchmark dataset and direct readers to Fer et al., submitted1

for a comprehensive overview. The example profile including all

four levels, can be obtained from Fer (2023).

The example dissipation profile is from the Faroe Bank Channel

overflow (Figures 8–10). The bottom attached overflow plume of

dense, cold water exhibits energetic turbulence and is described in

detail in Fer et al. (2010); Fer et al. (2014). The profile was collected

using the tethered free-fall vertical microstructure profiler (VMP,

model VMP2000, SN 009, Rockland Scientific, Canada) on 10 June

2012 from the Research Vessel Haakon Mosby. The water depth is

about 860m. The dissipation rate was measured using two

orthogonal shear probes. Other sensors on the instrument were a

fast-response FP07 thermistor, a Sea-Bird Electronics (SBE)

microconduct iv i ty sensor , a 3-ax is acce lerometer , a

magnetometer, and a pumped SBE conductivity-temperature

package. The turbulence sensors were protected by a probe guard.

The VMP sampled the signals plus their temporal derivatives from

the thermistor, microconductivity, and pressure sensors, and the

temporal derivative for the shear probes. The turbulence and

acceleration channels were sampled at a rate of 512 Hz, while the

other channels were sampled at 64 Hz. Data were transmitted to a

shipboard data acquisition system. The instrument was deployed

from the side of the vessel (drifting away from the profiler) using a

hydraulic winch with a line-puller system, allowing it to fall freely at

a nominal fall rate of about 0.6m s−1.

When preparing the L2 time series, the shear probe and

accelerometer time series are high-pass filtered using a cutoff

frequency of 0.25 Hz, which corresponds to one-half of the

inverse of the FFT length (Equation 13) that is used for the

analysis in L3. The shear data are cleaned, following the method

of Sec. 3.2.2, using a first-order, low-pass, Butterworth filter with a

cutoff frequency of 0.5 Hz and a threshold of 8. The fall rate, W is

calculated from the rate of change of pressure and smoothed with a

low-pass filter with a cut-off frequency of 0.5 Hz that was applied

both forwards and backwards. A section is extracted from the

record when W was larger than 0.4m s−1 (80% of estimated

minimum fall rate) and when the depth exceeded 10m to avoid

ship effects. At the typical fall rate, high-pass filtering applied in L2

will suppress the signals at vertical scales larger than the profiler

length of about 2 m. Shear spectra are estimated using record

lengths of 8 s and FFT lengths of 2 s that are cosine windowed

and overlapped by 50%, resulting in Nf = 7. Vibration-coherent

noise is removed using the records from all three accelerometers

(NV = 3) with the method of Goodman et al. (2006), as described in

Sec. 3.3.4. The frequency spectra are converted to wavenumber

spectra using the average fall rate for each spectrum. The rate of

dissipation is estimated by spectral integration (Sec. 3.4.1).

Fer, I., Dengler, M., Holtermann, P., Le Boyer, A., and Lueck, R. (2024). ATOMIX

benchmark datasets for dissipation rate measurements using shear probes.

Sci. Data. Submitted.
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Successive dissipation estimates are overlapped by 50% (i.e., about

2.4m vertical resolution using 8 s record length at 0.6m s−1).

Time series of selected parameters are shown in Figure 8 for the

entire record. Early in the record, the profiler accelerates to its free

fall velocity, which is approximately 0.6m s−1, and stops falling after

about 1400 s when the cable is taut (Figure 8A, red). The section

chosen for analysis is approximately between 10 s and 1400 s,

marked by arrows. Note that only the extracted section is de-

spiked and prepared for spectral analysis. Near about 600 dbar (t ≈

875 s), a strong overturning eddy above the turbulent dense bottom

current slows the profiler. This is followed by a downdraft that

accelerates the profiler. Shear probe (Figures 8B, C) and horizontal

acceleration (Figures 8D, E) records from L1 are shown in blue and

the corresponding records of L2 that are high-pass filtered and de-

spiked in red, with offset. We see that short, spiky segments of shear

(Figures 8B, C, blue) are successfully removed in L2 (red). The shear

axes are restricted and some outliers reach much larger values.

Relatively low-frequency signals in the accelerometer records of L1

(Figures 8D, E, blue) are at vertical scales comparable to and larger

than the instrument length and are filtered out in L2 (red).

Dissipation estimates from both probes agree within their

expected statistical uncertainty (Equation 23), and their values

span a range of 4 factors of 10 (Figure 9B). All estimates are

smaller than 1 × 10−5 W kg−1 and, therefore, they were obtained

using the spectral integration method. Most estimates are of high

quality and pass the quality control (QC) tests (Figure 9C). Those

that fail do so because they exceed the FOM criterion (the threshold

was set to 1.15 in Equation 22). The final dissipation estimate is

typically the average of the estimates from both probes. When the

estimate from one of the probes fails the QC tests, the final estimate

A

B

D

E

C

FIGURE 8

Time series of (A) pressure P (blue) and profiling speed W (red). (B) Original ∂u/∂z (blue) and high-pass filtered and de-spiked (red). (C) Same for ∂v/

∂z. (D) Original acceleration Ax (blue) and high-pass filtered (red). (E) Same for Ay. Az is not shown. De-spiked and filtered records are offset by 2s−1

for shear and by 0.5m s−2 for accelerations. Arrows in panels (A, E) mark the start and end of the selected section.
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comes from the other probe. When both probes fail the QC test,

which occurred twice, once near 100 and also near 600 dbar, no

value is reported for that depth (time) range.

We select example spectra, that have been corrected for spatial

probe response (Sec. 3.3.2) and high-pass filtering (Sec. 3.3.3), from

three segments with low, moderate, and high dissipation rates

(Figures 10A–C, respectively), all of which pass the QC (Sec.

3.4.5), and another segment when both probes fail (Figure 10D).

The three sets of spectra that pass the QC show a well-defined

minimum at wavenumbers ranging from 30 to 60 cpm for low and

high dissipation rates, respectively. At higher wavenumbers the

spectra rise because they are dominated by electronic noise. The

average pressure, estimated dissipation rates and FOM for the

spectra are listed in Table 3.

For a demonstration, we also estimated the rate of dissipation

using a fitting of the spectra in the inertial subrange (Sec.3.4.2),

even though this is not recommended because all rates are smaller

than 10−5 W kg−1. Resulting estimates are listed in Table 3

together with the estimates from the integration method in the

viscous subrange. For the quiescent spectrum (e ≈ 1 × 10−9 W

kg−1, Figure 10A), only 3 spectral points are within the inertial

subrange of k ≤ 0.01(e/n3)1/4 (actually only 2, because our

software forces inertial subrange estimates to use at least 3

points) . Comparing the three marked spectra points

(Figure 10A) against the reference spectrum (grey) shows that

an estimate using the inertial subrange would produce a large

underestimate for probe 1 (thick blue) but provide a reasonable

estimate for probe 2 (thick red). For such low rates of dissipation,

the estimates using the inertial subrange are unreliable because

they use very little spectral information. For energetic spectra, the

inertial subrange contains many points, and an estimate of e by

fitting in this range produces more reliable estimates compared to

estimates for low dissipation rates. For example, ten spectral

points fall within the inertial subrange in (Figure 10C) (e = 1.5 ×

10−7 W kg−1). Comparing the level of these points to the reference

spectrum (gray) indicates that the inertial subrange estimates

from both probes will agree closely with the estimates obtained by

spectral integration. Thus, we recommend using the inertial

subrange method only when dissipation rates are high, e ≳ 10−5

W kg−1, because for lower rates spectral integration will always

use more bandwidth and provide better statistical reliability.

4.2 Example of poor data

Many things can go wrong while collecting turbulence data with

shear probes. The nonuniform speed of profiling is a common

occurrence that can severely compromise the quality of the data

reported by the shear probe. Tethered instruments must be attached

to a line that is paid out rapidly enough to continuously maintain slack

so that the profiler is decoupled from the motions of the deployment

platform and descends smoothly throughout its profile. Sometimes, the

loose tether snags, and the smooth profiling is interrupted.

The profile shown in Figure 11 was collected with a VMP-250

(manufactured by Rockland Scientific) that was deployed from a

small dive-boat in the Agulhas Current about 1 km offshore from

Sodwana Bay, South Africa, where the current speed exceeded

1m s−1. The target speed of the profiler was nearly double its

customary value to reduce the drift of the instrument away from

the boat, and to reduce the angle of attack on the shear probes due

A B C

FIGURE 9

Dissipation estimates from the section of the time series shown in Figure 8. (A) profiling speed,W, (B) dissipation estimates from probe 1 (blue circles)

and 2 (red triangles), and the average of the estimates that passed QC (black squares). (C) Scatter plot of e1 against e2 for estimates that passed QC

(red) and those that failed (blue). Gray band is the statistical uncertainty bounded by a factor of exp(2.77 × sln e). The uncertainty of each e estimate is

determined by its actual sln e value, which ranges from 0.14 to 0.33 and averages to 0.23.
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to the anticipated large rates of dissipation. Pairs of profiles were

collected at each station. The fall rate of the instrument was nominal

during its first profile (Figure 11A, blue), but the tether snagged on

dive gear during the second profile (red). The profiler slowed its

descent near 55, 193, 229, and 248 dbar. The middle two of these

four interruptions jerked the profiler significantly (Figure 11C, red),

which also induced a large anomaly in the shear-probe signals

(Figure 11D, red). In fact, the jerk was so large that it drove the

sampler of the vibration sensor into negative saturation (−215). (The

vibration sensors are not calibrated and their signals are not

converted into physical units because this is not necessary). Thus,

even if problems with the deployment of the tether do not cause a

profiler to stop descending, there can still be considerable

contamination of the shear-probe signals.

Shear spectra were computed for the second profile using data

lengths of 5 s and FFT lengths of 0.5 s, that were cosine tapered and

overlapped by 50%. Both vibration sensors were used to remove

vibration-coherent noise from the shear-probe spectra. From

Equation 17, the standard deviation of the logarithm of the

spectral values is

A B

DC

FIGURE 10

Wavenumber spectra from selected records (see Table 3). Wavenumbers are restricted to 100cpm. Spectra are the measured (thin) and cleaned

(thick) ones of shear probe 1 (blue) and 2 (red), acceleration (green, cyan, and magenta), and the spectrum of Lueck (2022a) (gray). Panels (A–C) are

low, moderate and energetic turbulence, with both probes passing QC. The spectra in panel (D) fail the QC (FOM test) for both probes. Black dots

are the spectral points within the inertial subrange used for alternative estimates using fitting within the inertial subrange.

TABLE 3 Information about the selected spectra shown in Figure 10.

Panel P e1-vsr e1-isr e2-vsr e2-isr FOM1 FOM2

dbar W kg−1 W kg−1 W kg−1 W kg−1

a 151.7 9.55 × 10−10 3.77 × 10−10 9.76 × 10−10 8.62 × 10−10 0.66 0.52

b 385.4 1.06 × 10−8 7.82 × 10−9 1.05 × 10−8 7.36 × 10−9 0.57 0.57

c 680 1.67 × 10−7 1.46 × 10−7 1.55 × 10−7 1.34 × 10−7 0.64 0.64

d 99.9 1.26 × 10−9 4.73 × 10−9 1.68 × 10−9 4.70 × 10−9 2.02 2.20

FOM is for spectral integration. The subscripts refer to probe 1 and 2.

Dissipation estimates are given for both probes and using both methods of integration (vsr) and fit to inertial subrange (isr).
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sln Y =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5

4
ðNf − NV

r

)−7=9 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5

4
(19 − 2

r

)−7=9 = 0:37,

where Nf = 19 is the number of FFT segments used for the estimate

and NV = 2 is the number of vibration signals that were used to

remove vibration-coherent noise. Using Equation 18, the 95%

confidence interval for the spectral values is:

CI95 =  exp( ± 1:95slnY)  =  ½2:07, 0:48� :

Spectra from a depth range free of fall-rate anomalies follow the

model spectrum quite well (Figure 12A). The expected spectrum

(gray) is well centered on the 95% confidence intervals of the spectra

(blue and red shading). However, for both shear probes, their

spectra for the region near to 193 dbar depart far from their

expectation (Figure 12B). Their FOM is much larger than one

and more than 5% of the data for these spectra have been modified

by the de-spiking routine. The estimated dissipation rates must be

rejected both because of the poor quality of the spectra (FOM ≫ 1)

and because of the larger fraction of the data that was modified by

the de-spiking routine (≳ 5%).

A de-spiking routine can often effectively remove shear

anomalies due to collisions with zooplankton. However, a strong

jerking of the profiler by its tether is only partially ameliorated

(Figure 13 blue versus red). Similar results were obtained for the de-

spiking of shear probe 2. The anomalies are reduced but the data are

still not usable.

5 Discussion

The ATOMIX approach described here consolidates knowledge

of methods of estimating e from shear-probe turbulence

measurements while developing best practices and quality-

assurance metrics for determining e. From the outset, the

Working Group sought to produce recommendations that are

applicable to a range of commonly deployed platforms. This was

achieved by gathering researchers from different sub-fields which

brought together different experiences in terms of application

and scale.

As the best practices and quality-assurance metrics were

developed, it became apparent that the scientific questions and

scales for the particular study are key considerations for processing.

Most of the flexibility in processing choices is in L3 of the workflow.

We strongly recommend the L1 and L2 steps described above. Our

recommended procedure for removing spikes from shear-probe

data performs well in typical conditions and is routinely used by

most of the ATOMIX shear-probe group. There are different

methodologies for de-spiking high-frequency resolution data,

such as shear-probe signals, and an experienced user can assess

whether an alternative method (e.g., using de-spiking based on

nonlinear filtering) performs better for a particular dataset. In any

case, we strongly recommend that the effect of de-spiking, such as

the number of de-spiking passes applied, the fraction of the time

series altered, etc., be documented as quality control parameters.

Two of the major choices in the workflow that are directly

connected to particular scientific questions are the choices of data

length for a dissipation estimate, le, and the length of the FFT

segments, lfft for a dissipation estimate. In some applications such as

boundary layer profiling or thermocline studies, there will be a

natural desire to use short data lengths for dissipation estimation in

order to maximize the spatial resolution of the estimates. In these

situations, we advise caution because shortening le reduces the

number of FFT segments in an estimated, Nf, which reduces the

A B DC

FIGURE 11

Two successive vertical profiles where the first (blue) was successful and the second (red) had a tether deployment problem. (A) The fall rate with

four abrupt momentary decreases during the second profile. (B) The tilt of the profiler, (C) its vibrations and (D) the shear were all anomalously large

near to 193 and 229dbar.
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statistical reliability of the spectra and increases the uncertainty of

the dissipation estimates. Researchers will need to evaluate

and justify the trade-offs in each particular situation such as

statistical reliability versus spatial resolution and the number of

FFT segments.

The use of vibration-coherent noise removal is also strongly

advised. Coherent noise removal increases the comparability of

dissipation estimates across different platforms. Additionally, low-

noise instruments may exhibit elevated shear contributions from

platform vibrations in elevated turbulence regimes. An example of

such data is provided in Fer et al., submitted1 (ref: VPM250

TidalChannel 24, also accessible from the ATOMIX wiki site),

where shear signal contributions from platform vibrations lead to

estimates of dissipation rates enhanced by more than a factor 3 in

regions where dissipation rates exceed 10−5 W kg−1. We recommend

the method of Goodman et al. (2006), particularly because the bias

due to the statistical loss of variance inherent to the method, which

may have discouraged researchers from using the method in the past,

can now be corrected – Equation 16 and Ferron et al. (2023).

Clearly, the Best Practices approach can be utilised in a number

of ways. For researchers and students new to the field it offers a

general primer to ocean turbulence measurement using shear

probes. For practitioners, it provides a synthesis of peer-

developed recommendations as a shortcut to evaluate and

improve their data processing. Finally, for turbulence researchers

it provides a baseline from which to identify and improve gaps in

the approaches. By homogenizing the data format and parameter

names as described in the ATOMIX wiki and Fer et al., submitted1

we streamline both the reprocessing of the benchmark data with a

user’s own routines and the inter-comparison and reproduction of

scientific results.

The wider ATOMIX methodology systematically considers

three different approaches to turbulence quantification in parallel

developments - the other two being Acoustic Doppler Current

Profiler and Acoustic Doppler Velocimetry. This consistent parallel

approach provides a bridge for researchers in that they can more

readily shift between techniques that best suit their application.

ATOMIX was motivated to engage with the ocean turbulence

community on a number of levels. Firstly, there is a need to grow

the community so that more researchers have a deeper knowledge

of the measurement possibilities, limitations, and pitfalls.

Secondly, any development will necessarily come from a limited

set of perspectives. The advancement of the field requires a

way to engage with new researchers, techniques, applications,

and platforms.

One of the new applications the turbulence community is

approaching relies on the integration of turbulence sensors onto

autonomous platforms. Such integration already exists for

platforms like ocean gliders and autonomous underwater

vehicles (AUVs), but until recently, the data processing and the

computation of turbulent dissipation rates were done after the

deployment. This requires the platform’s recovery and limits the

length of the deployments. The progress made over the last decade

in microelectronics allows the development of microprocessors

capable of handling the amount of data necessary to process

onboard the turbulent dissipation rates (e.g., Hughes et al.,

2023). The onboard processing dramatically reduces the amount

of data an instrument must store to provide e and offers the

possibility of transferring turbulence data via low-bandwidth

links, such as satellite communications. A platform with

onboard processing and satellite communication capabilities

should be able to sample the ocean over a few months or years,

A B

FIGURE 12

Spectra for the second profile shown in Figure 11 for (A) the depth range without an anomalous fall-rate and (B) for the range of the anomaly near

to 193 dbar. The spectra from probes 1 (∂u/∂z) and 2 (∂v/∂z) are blue and red, respectively, while the model spectrum after Lueck (2022a) is gray. The

figure of merit (FOM), the fraction of data that was altered by the de-spiking routine (Frac), and the two-probe average rate of dissipation, �e, are

indicated within the figures. The wavenumber is restricted to 100cpm. The triangles mark the upper wavenumber limit of spectral integration. The

blue and red shading provide the 95% confidence intervals for Y1 and Y2, respectively.
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provided that the probes’ resilience and the battery capacity

allow it.

The gain in memory space and the data compression associated

with the onboard processing comes with a caveat: The quality of the

data must be assessed during the processing, and quality flags

accepted by the whole community should be published with the

data. The present paper provides an accepted methodology and

quality flags that are based on the statistical nature of turbulence

measurements and are agreed upon by the ATOMIX Working

Group, using three different types of microstructure sensors and

different types of platforms. Such a consensus is one of the necessary

steps toward global, consistent and perennial turbulence

observation programs.

In a changing climate where the oceans are warming, it is vital

that global ocean monitoring continues to evolve. The flagship Argo

program (Roemmich et al., 1999) recently identified the observation

of turbulent mixing as one of its developing branches (Roemmich

et al., 2019). Building on pioneering works already integrating

microstructure temperature on autonomous floats (e.g., Sherman

and Davis, 1995), a handful of successful prototypes of Argo-floats

equipped with microstructure sensors (shear and temperature) have

already been tested, paving the way for longer deployments. A

successful integration of microstructure sensors on these Argo floats

would provide for the first time a systemic approach to turbulence

measurement and is pushing the turbulence community to scale up

the management of the turbulence data as well as the production of

these sensors.

In an effort to coordinate such evolution, and largely based

upon the SCOR Working Group effort presented here, the ocean

mixing community is working with the Global Ocean Observing

System steering committee to get the turbulent diapycnal fluxes

computed from e registered officially has an essential ocean variable

(Sloyan et al., 2019). With the growing need for ocean health

monitoring, the expectation is that this best practices work will be

revisited, updated, and extended relatively soon.

6 Conclusions

There is an increasing availability of vehicles and platforms

that can carry shear probes and a commensurate interest in

exploiting them for the measurement of the rate of dissipation

of turbulence kinetic energy. There is a broad spectrum of

expertise among the users of shear probes that ranges from

vehicle operators to scientists with a strong dedication to

understanding the role of mixing in natural waters. In addition,

an increasing burden is being placed on peer reviewers to judge

the research that is based on shear probes. The community will

benefit from guidelines and best practices for dissipation

estimates, and a relatively streamlined structure of processing

steps and dataset formats. The shear-probes team of the SCOR

Working Group on “Analysing ocean turbulence observations to

quantify mixing” (ATOMIX), aims to take the first step in

consolidating knowledge and offering best practices and quality-

assurance metrics for methods of estimating dissipation rates from

measurements with shear probes. It is crucial to make informed

choices of data processing parameters and be familiar with the

limitations of the platforms, the probes, and the data processing

choices that reflect on the dissipation estimates. In future studies

using dissipation estimates from shear-probe data, we strongly

recommend the researchers test their method and algorithm

against benchmark datasets to gain confidence in their

estimates. The reproducibility of dissipation estimates is only

possible when the archived data have all of the required and

necessary parameters together with a minimum of L1 time series

records with the dissipation estimates. We highly recommend

archiving data with all four levels of processing described here.

Our recommendations are applicable to commonly deployed

platforms and will facilitate the reproducibility of dissipation

estimates and their interpretation. As ocean monitoring

continues to evolve, we expect that this best practices work will

be updated and extended. A desired and necessary extension is the

development of such best practices for the rate of dissipation of

turbulence temperature variance.
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FIGURE 13

A close view of the original signal from shear probe 1 on the second section (profile) near to 193 dbar (blue) and this signal after it was de-spiked

(red). De-spiking does not remove all anomalies and this portion of data is not suited to further processing.
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