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SPECIAL ISSUE ON TWENTY YEARS OF GEOTRACES

NOVEL INSIGHTS INTO OCEAN

TRACE ELEMENT CYCLING

FROM BIOGEOCHEMICAL MODELS

By Alessandro Tagliabue and Thomas Weber (both authors contributed equally)
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Model-simulated aluminum distribution along the GEOTRACES GAO2 section in the West Atlantic Ocean.
The black labeled arrows represent ocean circulation pathways. Modified from Xu and Weber (2021)

ABSTRACT. Ocean biogeochemical models have become critical tools for interpreting trace element and isotope (TEI) distri-
butions observed during the GEOTRACES program and understanding their driving processes. Models stimulate new research
questions that cannot be addressed with observations alone, for instance, concerning processes that occur over vast spatial scales
and linkages between TEIs and other elemental cycles. A spectrum of modeling approaches has been applied to date, including
(1) fully prognostic models that couple TEIs to broader biogeochemical frameworks, (2) simpler element-specific mechanistic
models that allow for assimilation of observations, and (3) machine learning models that have no mechanistic underpinning but
allow for skillful extrapolation of sparse data. Here, we evaluate the strengths and weaknesses of these approaches and review three
sets of novel insights they have facilitated. First, models have advanced our understanding of global-scale micronutrient distribu-
tions, and their deviations from macronutrients, in terms of a “ventilation-regeneration-scavenging” balance. Second, models have
yielded global-scale estimates of TEI inputs to and losses from the ocean, revealing, for instance, a rapid iron (Fe) cycle with an
oceanic residence time on the order of decades. Third, models have identified novel links among various TEI cycling processes and
the global ocean carbon cycle, such as tracing the supply of hydrothermally sourced Fe to iron-starved microbial communities in
the Southern Ocean. We foresee additional important roles for modeling work in the next stages of trace element research, includ-
ing synthesizing understanding from the GEOTRACES program in the form of TEI state estimates, and projecting the responses of
TEI cycles to global climate change.
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BACKGROUND AND
MOTIVATION

The overall mission of the GEOTRACES
program is “to identify processes and
quantify fluxes that control the distri-
butions of key trace elements and iso-
topes (TEIs) in the ocean, and to estab-
lish the sensitivity of these distributions
to changing environmental conditions”
(GEOTRACES Planning Group, 2006).
Addressing these challenges requires the
community to move beyond direct quan-
tification of concentrations to explore key
fluxes and cycling mechanisms. While
this has proceeded via observational
efforts as part of GEOTRACES section
and process study voyages, numerical
models that resolve critical processes and
properties are also playing a growing role
and are now considered an integral part
of the GEOTRACES toolkit.

A wide range of modeling frame-
works with varying complexity have been
applied to interpret GEOTRACES obser-
vations. Because even the most complex
models remain incomplete, they represent
simplified views of the dominant biogeo-
chemical processes governing TEI cycling
as they are embedded within ocean circu-
lation models that are often too coarse to
accurately capture the scales of TEI fluxes
across ocean boundaries and within the
water column. Numerous papers have
been written enumerating the shortcom-
ings and biases of TEI models and their
inability to reproduce the finer details
of GEOTRACES data (e.g., Tagliabue
et al, 2016; Eisenring et al, 2022).
Nevertheless, the application of these
imperfect models has often advanced
our understanding of TEI distributions
and cycling, yielding myriad new insights
that could never have been gleaned from
observations alone. Specifically, mod-
els have facilitated (1) extrapolation of
sparse TEI observations, (2) testing of
hypotheses regarding controlling mech-
anisms, and (3) upscaling and assess-
ment of TEI impacts on the carbon cycle
and its response to climate change. In
this way, the field of TEI modeling has
closely conformed to British statistician
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George E.P. Box’s classic mantra that “All
models are wrong, but some are useful”

The objective of this manuscript is
not to provide an exhaustive review of
all TEI modeling studies that have lev-
eraged GEOTRACES data. Instead, our
goals are threefold: (1) to provide a con-
cise description of the general categories
of models that are commonly used in this
field and an assessment of their strengths
and weaknesses; (2) to highlight with
examples some key successes, where
models have provided novel insight into
the cycling of TEIs and made critical con-
tributions toward the GEOTRACES mis-
sion; and (3) to outline a set of outstand-
ing challenges to and opportunities for
developing this model-data nexus further
in the coming years.

CATEGORIES OF TEI MODELS

The wide range of modeling approaches
that have contributed to our under-
standing of TEI cycling vary in their
complexity, resolution, predictive capa-
bilities, and how they leverage observa-
tions. Here, we recognize three broad
categories of models: (1) fully prognos-
tic biogeochemical models, (2) element-
specific transport matrix models, and
(3) machine learning and diagnostic
models. The first two categories are both
mechanistic in that they simulate trace
element cycles inside ocean circulation
models using mathematical functions
that represent TEI sources, sinks, and
internal cycling processes. They differ,
however, in scope and how extensively
they incorporate GEOTRACES obser-
vations in order to refine the mechanis-
tic framework. The third category is not
underpinned by a mechanistic under-
standing of TEI cycling but instead lever-
ages observations only in a statistical
sense. The three categories thus define a
spectrum between prognostic and diag-
nostic modeling philosophies, with the
former predicting the state of a system
(here, the distribution of a TEI) based
on mechanistic process information
and the latter inferring process informa-
tion from a known system state. Below,

we review the distinguishing features of
each category and their unique strengths
and weaknesses.

Fully Prognostic Biogeochemical
Models

In this type of model, the mechanistic
representation of trace element cycling
is coupled to an existing biogeochem-
ical framework that resolves multiple
nutrient cycles, planktonic ecosystems,
formation and degradation of particu-
late and dissolved organic matter, oxy-
gen, and inorganic carbon chemistry
(Figure 1a). These marine biogeochemi-
cal models are either run independently
(at the global scale, or at high resolution
regional scales) or further coupled with
atmospheric and terrestrial modeling
components to comprise an Earth sys-
tem model that can be used for climate
projection (Seferian et al., 2020). In con-
trast to the other two modeling catego-
ries we define, there is no explicit incor-
poration of GEOTRACES observations
to constrain the model. Instead, a large-
scale TEI distribution emerges solely as a
prediction of the source, sink, and cycling
parameterizations adopted (hence, “fully
prognostic”), although model-data com-
parison is employed for validation, to
inform the inclusion of key processes,
and to guide parameter selection.

Due to its critical role in limiting pri-
mary production, the iron (Fe) cycle is
now represented in almost all biogeo-
chemical models incorporated in Earth
system models, although the level of
detail and predictive skill of these mod-
els varies widely (Tagliabue et al., 2016).
Currently, additional micronutrients like
cobalt (Co), copper (Cu), manganese
(Mn), and zinc (Zn) are being added to
prognostic models (Figure 1a), with the
end goal of resolving their biological roles
in co-limiting productivity and shap-
ing the microbial ecosystem (Richon and
Tagliabue, 2019; Tagliabue et al., 2018;
Hawco et al., 2022). Efforts have also
been made to couple the cycling of non-
bioactive elements, such as Al, Pa/Th, and
Nd, to fully prognostic biogeochemical



models (Arsouze et al., 2009; van Hulten
etal, 2013, 2014, 2018).

The primary strengths of prognostic
biogeochemical models are that they link
TEIsto the global carbon cycleand climate
system (see section on Connecting Trace
Metals to the Global Carbon Cycle) and
are able to predict TEI cycle responses to
environmental change, including poten-
tial TEI-climate feedback loops (Moore
et al,, 2018). They also explicitly resolve
multiple processes spanning phytoplank-
ton uptake, zooplankton recycling, parti-
cle dynamics, and abiotic TEI input and
removal pathways. Their primary limita-
tion is their computational cost—because
each simulation requires days to weeks
of supercomputer time, these models are
not efficient tools for exploratory science
and extensive hypothesis testing. While
this limitation also prevents direct incor-
poration of GEOTRACES observations,
prognostic models have made exten-
sive use of hypotheses emerging from
GEOTRACES observations and have
been employed to assess multiple pro-
cesses emerging from the external input
and internal cycling of TEIs (e.g., Resing
et al,, 2015; Tagliabue et al., 2023a).

Element-Specific Transport
Matrix Models

This
tic models that are specifically designed

category comprises mechanis-
to explore the cycling of a single TEIL,
uncoupled from a broader biogeochem-
ical framework (Figure 1b). The TEI of
interest is often coupled to fluxes of one
or two other nutrient tracers (e.g., phos-
phate, silicic acid) in order to resolve
net biological cycling, rather than link-
ing to a full planktonic ecosystem (John
et al,, 2019). Other biogeochemical flux
parameterizations are similar (albeit sim-
pler) to those used in fully prognostic
models, with observed properties often
standing in for model-predicted proper-
ties—for instance, anoxic processes may
be linked to observed, rather than pre-
dicted, oxygen fields (e.g., Weber et al.,
2018). The circulation of TEIs is often
represented using the Transport Matrix

Method—a highly efficient method for
directly predicting steady-state tracer
distributions (Primeau, 2005; Khatiwala,
2007). Recently, the Ocean Circulation
Inverse Model (DeVries and Holzer,
2019) has been widely adopted for this

purpose, because it incorporates water
mass and ventilation tracer data to ensure
faithful representation of the large-scale
global circulation in the ocean interior.
The of
these models are largely opposite to the

strengths and limitations
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FIGURE 1. Schematic illustrations of three trace

element and isotope (TEl) modeling categories.

(a) In the fully prognostic PISCES model (Tagliabue et al., 2023a), TEls are linked to a broader bio-
geochemical framework. (b) In a transport matrix inverse model, parameters are optimized using

GEOTRACES data to constrain the oceanic Zn cyc
(a) and (b) represent inorganic and organic tracer:
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previous category. They are highly com-
putationally efficient (each simulation
takes seconds to minutes), facilitating
broad exploration, hypothesis testing,
and assimilation of GEOTRACES data
to “optimize” the model structure and
parameters (i.e., seeking the formulations
and parameter values that bring the pre-
dicted TEI distribution into best agree-
ment with observations in an objective
manner; Figure 1b). In this way, they
are often used as “inverse models” that
extract estimates of TEI sources, sinks,
and internal cycling processes that are
consistent with observed distributions.
Inverse models can therefore be thought
of as an intermediate on the spectrum
between prognostic and diagnostic mod-
eling philosophies, combining the mech-
anistic underpinning of the former with
the observational underpinning of the lat-
ter. As for their limitations, these mod-
els lack temporal resolution (generally
only predicting steady-state annual-mean
TEI distributions), neglect complex bio-
logical processes (e.g., those associated
with phytoplankton uptake or zooplank-
ton recycling), cannot be used for future
predictions, and do not resolve com-
plex interactions between TEIs and other
elemental cycles. Over the last decade,
transport matrix models have been suc-
cessfully applied to understand the large-
scale distributions and oceanic budgets
of a suite of TEIs (see later section on
Understanding Fundamental Controls on
Large-Scale Trace Element Distributions),
including zinc (Vance et al., 2017; Weber
etal., 2018), nickel (John et al., 2022), cop-
per (Liang et al., 2023), iron (Pasquier and
Holzer, 2018; Roshan et al.,, 2020), and
aluminum (Xu and Weber, 2021).

Machine Learning and

Diagnostic Models

Machine learning has been widely
adopted in ocean biogeochemistry as a
gap-filling tool to generate continuous
spatial distribution estimates (“clima-
tologies”) from sparse datasets, includ-
ing those for greenhouse gases (Weber
et al,, 2019; Yang et al,, 2020), organic
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matter (Roshan and DeVries, 2017), and
more recently also TEIs (Roshan et al.,
2018; Huang et al., 2022). Many of these
applications have relied on artificial neu-
ral network (ANN) models, which can
be thought of as sophisticated statisti-
cal models that are trained to predict a
“target” variable (e.g., a TEI) through
its relationship to a set of “predictor”
variables—hydrographic and biogeo-
chemical properties such as temperature,
salinity, nutrients, oxygen, and net pri-
mary production (Figure 1c). The statis-
tical model is then applied to continuous
gridded distributions of those predictors
to generate a gridded estimate of the TEI
distribution. Compared to more famil-
iar statistical models (e.g., multiple linear
regression), ANNs are structurally com-
plex, comprising “hidden layers” of neu-
rons in which each neuron is a nonlinear
function of one or more inputs (pre-
dictor variables or the output of previ-
ous neurons), and neuron outputs even-
tually combine into a prediction of the
TEI (Figure 1c). They are therefore often
described as “black boxes,” in which the
contribution of each input variable to the
prediction is difficult to discern.

The primary strength of machine
learning models is that, of all catego-
ries reviewed here, they make the most
direct use of GEOTRACES observations
in their TEI distribution predictions, and
(by design) they reproduce those obser-
vations more accurately than the mecha-
nistic models covered in the previous sec-
tions. However, their lack of mechanistic
basis is the main weakness of machine
learning models—they predict TEI distri-
butions without providing any informa-
tion about the processes underlying that
distribution. To partially offset this weak-
ness, a diagnostic modeling approach has
been adopted, in which the TEI distri-
butions predicted by machine learning
models are combined with ocean circula-
tion models to infer the patterns and rates
of biogeochemical fluxes that are required
to balance physical transport and mixing
(e.g., Roshan et al., 2018). However, this
method only provides a crude estimate of

the net sources-minus-sinks, which can-
not be separated into individual process
rates or linked to environmental drivers.

KEY MODELING INSIGHTS
Understanding Fundamental
Controls on Large-Scale Trace
Element Distributions

Since before the GEOTRACES era, ocean
TEI distributions have been interpreted
using the “preformed versus remineral-
ized” component framework first devel-
oped to understand macronutrient dis-
tributions (Broecker et al., 1985). Here,
observed subsurface tracer concentra-
tions are defined as the sum of a pre-
formed component carried by water
masses from the ocean surface and a
remineralized component that accu-
mulates from organic matter decompo-
sition (Ito and Follows, 2005). A clas-
sic application of this framework sought
to explain the “kinked” (i.e., nonlinear)
global cadmium (Cd) versus phosphate
(PO,) relationship in terms of preformed
Cd depletion in intermediate waters
and deep accumulation of remineral-
ized Cd (de Baar et al., 1994). Over the
last 15 years, ocean biogeochemical mod-
els have proved to be invaluable tools
for interpreting the TEI distributions
revealed by the GEOTRACES sections.
Numerical models resolve preformed
TEI distributions more realistically than
traditional end-member-mixing calcula-
tions and can be used to test hypothesized
biogeochemical mechanisms that mod-
ify TEI distributions in the ocean inte-
rior. For particle-reactive TEIs, the com-
ponent framework has been expanded to
consider a “ventilation-remineralization-
scavenging” balance (Tagliabue et al,
2014, 2017; Weber et al., 2018), and mod-
els have elucidated the role of scavenging
in stripping preformed and remineralized
TEIs from subsurface waters or redistrib-
uting them over depth.

The most recent update to our under-
standing of the global Cd/PO, relationship
has emerged from a machine-learning and
diagnostic-modeling approach (Roshan
and DeVries, 2021), which demonstrated



that differences between the global Cd and PO, distributions can
almost exclusively be traced to their preformed components. This
is driven by extreme plasticity in Cd uptake during organic mat-
ter formation, with Cd:P uptake ratios reaching a global maximum
in the Southern Ocean. Cd therefore becomes depleted in Antarctic
Intermediate Water (AAIW), which propagates through the low lati-
tudes at 1,000-2,000 m depth, and enriched in the ocean’s deep over-
turning cell. There is evidence for additional decoupling between
Cd and PO, due to slightly deeper remineralization of the former,
although this appears to work counter to the preformed decoupling
by adding Cd back to Cd-deficient intermediate waters, slightly
“unkinking” the global relationship (Roshan and DeVries, 2021).

A recent series of modeling studies, constrained by GEOTRACES
section data, have demystified the paradoxical oceanic distribution
of the important algal micronutrient zinc (Zn). Zn exhibits a much
deeper concentration maximum than macronutrients and closely
correlates with Si (Bruland et al., 1978), even though very little cel-
lular Zn is incorporated alongside Si into diatom frustules (Ellwood
and Hunter, 2000) and the vast majority is co-located with N and P
in soft tissue (Twining and Baines, 2013). Biogeochemical models
have revealed that the Si-like Zn distribution is largely controlled by
efficient biological drawdown in the Southern Ocean surface, which
strips Zn from AAIW and traps it in Antarctic Bottom Water (Vance
etal., 2017; Weber et al., 2018), much like Si (Holzer et al., 2014). The
stoichiometric signature of Southern Ocean water masses therefore
imprints a Zn deficit (relative to PO,) throughout the global upper
ocean and a Zn excess throughout the deep ocean (Figure 2a,b).
However, models in which vertical biogeochemical cycling of Zn
mirrors PO, tend to underpredict Zn in the deep North Pacific and
overpredict Zn in intermediate waters (Weber et al., 2018). These
discrepancies can be resolved by weak reversible scavenging of Zn
onto sinking particles, in which <1% of the oceanic Zn inventory
exists in an adsorbed phase (Weber et al., 2018)—a conclusion that
is also supported by a machine learning and diagnostic modeling
approach (Roshan et al., 2018). Reversible scavenging strengthens
the Zn deficit in the upper ocean (Figure 2c) by transferring Zn
from intermediate to deep water masses (Figure 2d). Scavenging
removal and subsequent redistribution of Zn also provides a mech-
anism for explaining the isotopic depletion of Zn in the upper ocean
by removing isotopically heavy Zn and depositing it at mid-depths
after the carrier particles remineralize (Sieber et al., 2023).

Unlike Zn and Cd, the micronutrient nickel (Ni) is found in excess
relative to macronutrients throughout the surface ocean. According
to recent modeling work (John et al., 2022), this is explained by
slow Ni uptake in productive upwelling regions and restriction of
Ni uptake by macronutrient limitation in subtropical gyres (i.e., low
stoichiometric plasticity). While this surface distribution allows
unutilized Ni to subduct in intermediate waters and would pro-
duce a similar preformed distribution to PO, and NO,, observed
Ni actually reaches a deeper maximum. Transport matrix model-
ing again demonstrates that this phenomenon is well explained by
weak scavenging and desorption of Ni, which redistributes it over
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FIGURE 2. Model-based interpretation of global Zn distribution.
(a) Predicted dissolved Zn distribution along 150°W in the Pacific
Ocean, which compares well with observations from the GP15 cruise
(Sieber etal., 2023). (b) Component of the Zn distribution that is trans-
ported from the Southern Ocean in Antarctic Intermediate Water
(AAIW) and Antarctic Bottom Water (AABW) masses. () Component
of Zn distribution that accumulates along transport pathways after
water masses leave the Southern Ocean, due to vertical biogeo-
chemical cycling. In (a)—(c), the white contours illustrate the Zn defi-
cit or excess relative to PO, defined as [Zn] — R, .z[PO,], where
Ry.p is the mean ocean Zn/PO, ratio of 2.5 mmol mol™. Together,
(a@)—(c) illustrate that the global Zn deficit in intermediate waters and
excess in deep waters (a) is partially transported from the Southern
Ocean (b), and partially generated by vertical cycling processes out-
side the Southern Ocean (c). (d) The impact of scavenging on Zn dis-
tribution is quantified here as the difference between models with
and without scavenging enabled. Figures adapted from Weber et al.
(2018) and Sieber et al. (2023)
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depth and drives a large-scale decoupling
of its distribution from PO, and NO,
(John et al., 2022).

The modeling studies outlined above
reveal a dominant role for ventila-
tion (i.e., the preformed component) in
explaining the oceanic distributions of
TEIs with long residence times. In con-
trast, elements with short residence times
(like Fe) are removed too quickly to prop-
agate with water masses far into the ocean
interior. In this case, a balance between
remineralization, scavenging, and bound-
ary inputs governs TEI distribution, and
the relative rates of those processes can be
gleaned with models from GEOTRACES
section data.

Unlike macronutrients,

1000

dissolved Fe (DFe) does not increase sys-
tematically in the deep ocean with water
mass age, reflecting a close compensa-
tion between scavenging and reminer-
alization (Tagliabue et al., 2014, 2019),
and instead often exhibits a mid-depth
maximum between 200 m and 1,000 m
(e.g., Figure 3a). Biogeochemical model-
ing attributes many of these features to the
uptake and scavenging of dust-sourced
Fe in the surface, followed by Fe remin-
eralization and the release of scavenged
Fe in the shallow subsurface (Pham and
Ito, 2018). Beneath the mid-depth maxi-
mum, Fe remineralization is too slow, rel-
ative to scavenging, to allow significant
remineralized Fe accumulation (Pham
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FIGURE 3. Comparison of model-predicted DFe distributions. (a) Observed DFe dis-
tribution along the GAO2 section (Rijkenberg et al., 2012). (b,c) Predictions from two
models included in the FeMIP intercomparison project (Tagliabue et al., 2016) include

one with a long Fe residence time (t
ture (b), and one with a short t

rcs)

res

in which DFe exhibits clear water mass struc-
that captures sharp DFe source features. (d) A pre-

diction from a newly configured state of the art model (Tagliabue et al., 2023a) accu-
rately captures the observed distribution, with a relatively short ...
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and Ito, 2018). In fact, model trajectory
calculations indicate that the majority
of remineralized Fe will be scavenged
before re-emerging at the ocean’s sur-
face and that most Fe supplied in upwell-
ing water to the ocean surface is not the
product of organic matter remineraliza-
tion (Pasquier and Holzer, 2018).

Probing Trace Element

Inputs and Losses

Distributions of TEIs close to, and down-
stream of, boundary exchange regions
(continental margins, the air-sea inter-
face, mid-ocean ridges) provide clues
about the magnitude of TEI fluxes across
those boundaries that can be lever-
aged by models to construct budget esti-
mates. Models that accurately reproduce
observed TEI distributions are generally
assumed to do so because they contain
sources and sinks of realistic magnitude.
A caveat is that, to some degree, unrealis-
tic model sources and sinks can compen-
sate one another—for instance, a source
overestimate can be balanced by unrealis-
tically rapid scavenging losses.

The first Fe model intercomparison
project (FeMIP; Tagliabue et al., 2016)
showed that 13 different models could
all broadly reproduce the average con-
centrations observed from GEOTRACES
data, while not reaching a consensus on
the magnitude of external sources and
scavenging losses. Models ranged from
those with total sources on the order
1 Gmol yr' and Fe residence times of
hundreds of years to those with sources
of >100 Gmol yr' and residence times
of 10 years or less. This has led to the
impression that the observed DFe distri-
bution does not place a strong constraint
on the magnitude of Fe fluxes. However,
a deeper comparison of model-predicted
DFe fields to observations (beyond just
comparing mean concentrations) reveals
significant differences between mod-
> and “fast” Fe cycles. The
former (small sources, slow scavenging)

>

els with “slow

predict unrealistically smooth Fe fields
with coherent water mass structures that
are not observed in the GEOTRACES



transects (Figure 3b), whereas the latter
(large sources, fast scavenging) bet-
ter resolve observed source features and
the sharp Fe gradients around them
(Figure 3c). Recent modeling stud-
ies that have most successfully repro-
duced observed DFe features tend to con-
verge upon global Fe source estimates
around 50-70 Gmol yr™' and residence
times of 10-20 years (Figure 3d)—a
much closer consensus than suggested by
the FeMIP compilation (Pham and Ito,
2018; Tagliabue et al., 2023a). These mod-
els further agree that continental mar-
gin sediments are the dominant global
Fe source to the ocean, while dust depo-
sition and hydrothermal vents are sec-
ondary sources, albeit with significant
regional imprints.

Complementary TEI tracers that share
sources and sinks with Fe are increasingly
being incorporated into prognostic mod-
els and studied with stand-alone trans-
port matrix models to place additional
constraints on Fe fluxes. For instance, Al
has long been recognized as a powerful
tracer of dust deposition from the atmo-
sphere and has been the focus of both
prognostic and inverse modeling studies
(Van Hulten et al., 2014; Xu and Weber,
2021). The latter approach demonstrated
thata source of 30-40 Gmol yr™' of soluble
Al from dust was required to best match
observed Al along a set of GEOTRACES
sections, corresponding to a soluble Fe
source of 5-10 Gmol yr".

In addition to quantifying the mag-
nitude of TEI sources and sinks, mod-
els have provided insights into the mech-
anisms and environmental controls on
these processes. Often, the same conclu-
sions have been reached independently
from modeling of large-scale TEI distribu-
tions and from small-scale observational
studies, building confidence that robust
“general rules” have been discovered. For
instance: (1) inverse modeling found that
large-scale variability in dust solubility
was required to match the global Al dis-
tribution with much higher solubility in
remote regions with low atmospheric dust
loading (Xu and Weber, 2021), consistent

with acid-leach experiments (Jickells
etal., 2016); (2) two global Fe model stud-
ies demonstrated a better match to global
GEOTRACES observations when benthic
Fe sources were strongly amplified under
low O, bottom-water conditions (Dale
et al.,, 2015; Pham and Ito, 2018), consis-
tent with flux chamber measurements on
the Oregon shelf (Severmann et al., 2010);
and (3) incorporation of Fe isotopes
into a prognostic model demonstrated
that distinct isotopic signatures must be
resolved for Fe sourced from reductive
and non-reductive sediments to match
observed sections (Konig et al, 2021),
consistent with pore-water measurements
(Homoky et al., 2013).

Models have also been used to explore
TEI removal processes, especially those
associated with scavenging and the role of
ligands. The earliest Fe models assumed
a constant buffering of deep ocean DFe
to 0.6 nM, presumed to represent a static
oceanic ligand reservoir (Archer and
Johnson, 2000); this was refined by later
models to explicitly resolve the ligand
complexation of Fe using equilibrium
assumptions (Parekh et al., 2005). Present-
day Earth system models still employ these
parameterizations, and their assumptions
about ligand concentrations can have
important implications for atmospheric
CO, (Tagliabue et al., 2014). Growing
datasets for ligand concentrations and
the recognition of greater variation in
DFe concentrations led to the develop-
ment of alternative approaches to mod-
eling ligands, including empirical rela-
tionships that varied in response to DOC
or O, (e.g., Pham and Ito, 2018) or even
fully prognostic representations of ligand
sources and sinks (Volker and Tagliabue,
2015). Comparing sophisticated Fe spe-
ciation models with time-series obser-
vations following dust deposition in the
Mediterranean allowed the important
roles of scavenging removal and competi-
tion with biological uptake to be revealed
(Ye et al, 2011). Most recently, a com-
prehensive model-data synthesis exer-
cise over the annual cycle at the Bermuda
Atlantic Time-series Study site, spanning

dissolved, ligand, and particulate Fe data-
sets, led to a revised model of the ocean
iron cycle that placed less emphasis on
stabilization of DFe by ligands and more
on colloidal Fe aggregation with organic
matter as a critical iron removal pathway
(Tagliabue et al., 2023a).

Connecting Trace Metals to
the Global Carbon Cycle
A key driver of research on micronutri-
ents is their potential role in regulating
the ocean carbon cycle via their impact on
phytoplankton productivity. Insight into
how micronutrients such as Fe can modu-
late the carbon cycle can be gleaned from
observations, especially process studies
(e.g. Boyd etal., 2007, 2012; Twining et al.,
2021), but obtaining a large-scale holis-
tic picture requires the use of prognos-
tic global ocean biogeochemical models.
Such tools can test hypothesized impacts
of changes in micronutrient sources and
internal cycling on carbon and macro-
nutrients, oxygen, and primary produc-
tion, as all components are interconnected
in these models. A notable example here
is the exploration of hydrothermal vent
inputs of Fe and their impact on the global
ocean carbon cycle.

At the launch of the GEOTRACES
mid-ocean

program, ridges

acknowledged as a potential exter-

were

nal TEI source but were not considered
to play a major role in driving the dis-
tribution of micronutrient trace metals
and their impacts on the carbon cycle.
However, new observations from the
Southern Ocean emerging from the
International Polar Year in 2008 indicated
unexpected elevations in dissolved Fe in
the vicinity of the Antarctic ridge crest
(e.g., Klunder et al., 2011). Models were
quickly adapted to explore the implica-
tions of this unforeseen Fe source, draw-
ing on the link between hydrothermal Fe
and mantle helium (Boyle and Jenkins,
2008; Fitzsimmons et al., 2014) to param-
eterize vent Fe inputs based on helium
(He) input fields first developed for the
Ocean Carbon Model Intercomparison
Project (Dutay et al.,, 2004). Early work
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indicated that a significant enhance-
ment in Fe was expected in the 2-3 km
depth strata due to hydrothermal venting
(Figure 4a) into the surface waters of the
Southern Ocean (Figure 4b; Tagliabue
et al., 2010). Furthermore, models with
hydrothermal Fe were able to better
reproduce  GEOTRACES observations
from the abyssal ocean. Follow-up studies
in the South Atlantic demonstrated vari-
ation in the Fe:He ratios typical of slower
spreading ridge systems (Saito et al,
2013), and the large-scale plume dispers-
ing thousands of kilometers from the
fast-spreading East Pacific Rise captured

2000

5000 — T

100, -
80. —f
60. |

40. — /

(a) Hydrothermal DFe anomaly (nM)

by the GP16 voyage was not expected
(Resing et al., 2015). Combined model-
ing and observational efforts that traced
this plume across the Pacific explored the
roles of external supply rates and inter-
nal processes that stabilize Fe against
scavenging in explaining plume disper-
sal (Resing et al., 2015). This work, com-
bined with inverse modeling exercises,
estimated that hydrothermal Fe fuels up
to 30% of Southern Ocean export pro-
duction (Figure 4c; Resing et al.,, 2015;
Tagliabue and Resing, 2016; Pasquier
and Holzer, 2017). A set of more detailed
model experiments focusing on the roles

(b) DFe anomaly (upper 500 m, 10 mol m-?)
L 1 1 1

(c) Net Primary (NPP) and export (EP) Production (mmol C m=2 y1)
T 1 1 1

1000, [
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FIGURE 4. Impact of hydrothermal Fe on the ocean carbon cycle. (a) An exam-
ple is shown here of the predicted distribution of hydrothermally sourced DFe
in the Southern Ocean (nM, along 150°W), quantified as the difference between
simulations with and without the vent source enabled, using the model of
Tagliabue et al. (2023a). (b) An anomaly in integrated upper 500 m DFe due to
hydrothermalism (107® mol Fe m~?) indicates the emergence of the hydrother-
mal DFe anomaly into the upper ocean at the Antarctic Divergence (upwelling
center). (c) The net primary production (mmol m=2 yr~, depth integrated, solid
line) and carbon export (mmol m™2 yr™, sinking flux across 100 m, dashed line)
production plotted here is fueled specifically by hydrothermal Fe, again quan-
tified as the difference between simulations with and without the vent source.
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of different ridge systems led to the pin-
pointing of the ridges circling Antarctica
as playing a key role in driving the impact
on the carbon cycle (Figure 4a; Tagliabue
and Resing, 2016).

Recent efforts to better quantify how
the hydrothermal Fe supply regulates the
ocean carbon cycle have focused on refin-
ing model parameterization of inputs and
internal cycling processes. Due its role as
a fingerprint for hydrothermally sourced
waters, refining estimates of the mantle
He source has been a particular focus area.
The first helium input estimates linked
the 400-1,000 mol He yr‘1 global source
to ridge spreading rates (Dutay et al,
2004; Bianchi et al., 2010) and accord-
ingly assumed greater hydrothermal sup-
ply along faster spreading ridges. More
recently, an inverse modeling approach
that leverages the Ocean Circulation
Inverse Model physics and all available
He measurements found that the total He
supply likely lies at the low end of previ-
ous estimates, with inputs from Antarctic
ridges reduced threefold (DeVries and
Holzer, 2019). Assuming close coupling
between the supplies of He and Fe implies
that perhaps the role of Southern Ocean
ridge systems, and hence the postulated
impact of hydrothermal Fe on the carbon
cycle, had been overestimated. Roshan
et al. (2020) linked the new estimate of
He inputs with a size-resolved model
of hydrothermal Fe and optimized key
parameters using the GP16 Pacific Ocean
GEOTRACES transect. This model pre-
dicts that global hydrothermal Fe inputs
largely originate on the East Pacific Rise
and that there is very little hydrother-
mal Fe in the Southern Ocean, thanks to
a combination of scavenging and weak Fe
inputs from Antarctic ridges. Follow-up
work with a full iron cycle model showed
that, while low input rates along Antarctic
ridges would indeed reduce the leverage
of hydrothermal Fe on carbon export,
they are not consistent with new observa-
tions of dissolved Fe from these systems
(Tagliabue et al., 2022). These observa-
tions suggest that some Antarctic ridges
could be a stronger source of Fe than



would be expected from their He input,
meaning that model source schemes for
hydrothermal Fe may ultimately need to
look beyond a simple link to He.

In addition to hydrothermal vents,
modeling efforts have explored other
aspects of how iron regulates the car-
bon cycle. For example, long-term Earth
system model simulations run to the
year 2300 under high emissions scenar-
ios demonstrate a role for climate per-
turbation of the Fe budget in driving
Southern Ocean nutrient depletion and
low latitude declines in net primary pro-
duction (Moore et al., 2018). Similarly,
a range of model experiments show that
climate-forced alterations to dust depo-
sition have wide-reaching impacts on
the biogeochemistry and carbon cycle
of the Indian and Pacific Oceans (Pham
and Ito, 2021; Konig et al., 2022). Models
have long been used to assess the limited
carbon sequestration potential and unin-
tended biogeochemical consequences of
purposeful ocean iron fertilization efforts
(Oschlies et al., 2010; Tagliabue et al.,
2023b). In this context, prognostic bio-
geochemical models will continue to be
critical tools for quantifying the impacts
of ocean iron fertilization proposals,
especially regarding marine ecosystems.
By coupling a global ocean biogeochem-
ical model with an ecosystem model,
recent work showed that ocean iron fer-
tilization led to a very small increase in
ocean carbon storage but amplified the
negative impacts of climate change on
ecosystems by a third (Tagliabue et al,
2023b). Recently, there has also been
growing interest in the possible impact of
other micronutrients beyond iron on the
carbon cycle via potential regulation of
phytoplankton growth rates and net pri-
mary production. To date, only Mn has
been included as a directly limiting nutri-
ent in ocean models, and its inclusion
has been shown to lessen the response
of the Southern Ocean biological car-
bon pump to the changes in Fe supply
typical of the Last Glacial Maximum
(Hawco et al., 2022). Coupled model-
ing of Fe and Mn limitations reveals

how these micronutrients may inter-
act via region-specific adjustments to
phytoplankton physiology and affect the
regional carbon cycle (Anugerahanti and
Tagliabue, 2023). In the future, address-
ing the large-scale carbon cycle impacts
of other
micronutrients, such as Zn, Co, and vita-

potentially growth-limiting

min B12, will require use of more com-
plex ocean models.

OUTLOOK AND CHALLENGES
Modeling will remain an important tool
in future trace element research, espe-
cially as the community’s focus increas-
ingly shifts toward synthesis, process
understanding, and linking TEIs to
microbial ecology. Here, we discuss just
two of many pressing future directions.

Toward TEI State Estimates: A “state
estimate” represents our best understand-
ing of the current state of a dynamic sys-
tem given available observations and
models. In marine biogeochemistry, a
state estimate usually takes the form of a
global, three-dimensional tracer distri-
bution (e.g., a monthly climatology). As
the observational phase of GEOTRACES
enters its final stages, there is a growing
need to synthesize the understanding of
TEI distributions (and their uncertain-
ties) that have emerged from the program
as a set of state estimates. These would
find broad applications in marine chemis-
try, but also beyond, including (1) guiding
future observational efforts by identify-
ing key regions of uncertainty; (2) add-
ing trace element context to other datasets
where TEIs cannot be measured directly,
for example, comparison of biological
rate measurements and genomic indi-
cators to estimated micronutrient levels;
(3) providing initialization fields and fill-
ing in “unresolved tracers” in ocean mod-
els, because not every model can explic-
itly resolve all micronutrient cycles, but
accounting for their impacts on biolog-
ical processes is desirable; and (4) pro-
viding information to policymakers, for
instance, on the spread of anthropogenic
trace element contaminants through the

ocean. Given the sparseness of TEI mea-
surements, GEOTRACES state estimates
cannot simply be generated using the
standard interpolation and objective map-
ping approach used for familiar data-rich
state estimates like the World Ocean Atlas
(hydrography, nutrients, oxygen) and the
Global Ocean Data Analysis Project (car-
bon chemistry). Instead, they must ulti-
mately rely on the three categories of mod-
els outlined in the section on Categories
of TEI Models. Because machine learning
models make the most direct use of obser-
vations, they are likely to be the most
promising choice for state estimate gen-
eration. However, their ability to skillfully
predict TEI distributions in regions with
very few training data is not well under-
stood, especially for short residence time
elements that can have very patchy distri-
butions. In these cases, mechanistic mod-
els that explicitly resolve the underlying
processes may be considered more skill-
ful gap-filling tools. A major intercompar-
ison effort is needed to converge on the
“best practices” for TEI state estimates.

Environmental Change: A key compo-
nent of the GEOTRACES mission con-
cerns the sensitivity of TEI cycles to
environmental change (GEOTRACES
Planning Group, 2006). While this can
be documented and alluded to from field
measurements, a global-scale assessment
of how climate change may affect TEI
cycling requires modeling efforts. The
roles of changes in ocean circulation, envi-
ronmental conditions, and external TEI
inputs under different climate change sce-
narios can only be addressed using prog-
nostic biogeochemical models that are
forced by climate change scenarios. For
longer residence time TEIs, such as Cd
and Zn, we might expect more predict-
able changes that can be largely accounted
for via the distribution of water masses.
That said, in the upper ocean, where bio-
limiting roles will be felt, even long resi-
dence time elements such as these can
display rapid changes in cycling, espe-
cially those mediated by phytoplankton
uptake and zooplankton recycling, which
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may generate biogeochemical feedbacks
(Richon and Tagliabue, 2019). TEIs with
shorter residence times, such as Fe, will
exhibit not only changes due to ocean cir-
culation but also alterations due to their
sources and elemental cycling through-
out the ocean. These may include redis-
tribution due to changes in mixing and
nutrient limitation patterns at low lat-
itudes (Misumi et al., 2014), as well as
changes in Fe speciation due to tempera-
ture, pH, or oxygen perturbations that
may affect removal processes, includ-
ing the newly identified “colloidal shunt”
(Tagliabue et al., 2023a). A critical area of
focus will be the impacts of Fe on ocean
biology,
ments in patterns of Fe limitation asso-

specifically potential adjust-

ciated with climate variations (Browning
et al., 2023). This will require refinement
of the way in which phytoplankton Fe
requirements, uptake, and limitation, as
well as interactions with grazers and bac-
teria in the dynamic upper ocean, are
included in models.
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