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NOVEL INSIGHTS INTO OCEAN 

TRACE ELEMENT CYCLING 
FROM BIOGEOCHEMICAL MODELS

By Alessandro Tagliabue and Thomas Weber (both authors contributed equally)

SPECIAL ISSUE ON TWENTY YEARS OF GEOTRACES

ABSTRACT. Ocean biogeochemical models have become critical tools for interpreting trace element and isotope (TEI) distri-

butions observed during the GEOTRACES program and understanding their driving processes. Models stimulate new research 

questions that cannot be addressed with observations alone, for instance, concerning processes that occur over vast spatial scales 

and linkages between TEIs and other elemental cycles. A spectrum of modeling approaches has been applied to date, including 

(1) fully prognostic models that couple TEIs to broader biogeochemical frameworks, (2) simpler element-speci�c mechanistic 

models that allow for assimilation of observations, and (3) machine learning models that have no mechanistic underpinning but 

allow for skillful extrapolation of sparse data. Here, we evaluate the strengths and weaknesses of these approaches and review three 

sets of novel insights they have facilitated. First, models have advanced our understanding of global-scale micronutrient distribu-

tions, and their deviations from macronutrients, in terms of a “ventilation-regeneration-scavenging” balance. Second, models have 

yielded global-scale estimates of TEI inputs to and losses from the ocean, revealing, for instance, a rapid iron (Fe) cycle with an 

oceanic residence time on the order of decades. �ird, models have identi�ed novel links among various TEI cycling processes and 

the global ocean carbon cycle, such as tracing the supply of hydrothermally sourced Fe to iron-starved microbial communities in 

the Southern Ocean. We foresee additional important roles for modeling work in the next stages of trace element research, includ-

ing synthesizing understanding from the GEOTRACES program in the form of TEI state estimates, and projecting the responses of 

TEI cycles to global climate change. 
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BACKGROUND AND 

MOTIVATION

�e overall mission of the GEOTRACES 

program is “to identify processes and 

quantify �uxes that control the distri-

butions of key trace elements and iso-

topes (TEIs) in the ocean, and to estab-

lish the sensitivity of these distributions 

to changing environmental conditions” 

(GEOTRACES Planning Group, 2006). 

Addressing these challenges requires the 

community to move beyond direct quan-

ti�cation of concentrations to explore key 

�uxes and cycling mechanisms. While 

this has proceeded via observational 

e�orts as part of GEOTRACES section 

and process study voyages, numerical 

models that resolve critical processes and 

properties are also playing a growing role 

and are now considered an integral part 

of the GEOTRACES toolkit. 

A wide range of modeling frame-

works with varying complexity have been 

applied to interpret GEOTRACES obser-

vations. Because even the most complex 

models remain incomplete, they represent 

simpli�ed views of the dominant biogeo-

chemical processes governing TEI cycling 

as they are embedded within ocean circu-

lation models that are o�en too coarse to 

accurately capture the scales of TEI �uxes 

across ocean boundaries and within the 

water column. Numerous papers have 

been written enumerating the shortcom-

ings and biases of TEI models and their 

inability to reproduce the �ner details 

of GEOTRACES data (e.g.,  Tagliabue 

et  al., 2016; Eisenring et  al., 2022). 

Nevertheless, the application of these 

imperfect models has o�en advanced 

our understanding of TEI distributions 

and cycling, yielding myriad new insights 

that could never have been gleaned from 

observations alone. Speci�cally, mod-

els have facilitated (1)  extrapolation of 

sparse TEI observations, (2) testing of 

hypotheses regarding controlling mech-

anisms, and (3) upscaling and assess-

ment of TEI impacts on the carbon cycle 

and its response to climate change. In 

this way, the �eld of TEI modeling has 

closely conformed to British statistician 

George E.P. Box’s classic mantra that “All 

models are wrong, but some are useful.” 

�e objective of this manuscript is 

not to provide an exhaustive review of 

all TEI modeling studies that have lev-

eraged GEOTRACES data. Instead, our 

goals are threefold: (1) to provide a con-

cise description of the general categories 

of models that are commonly used in this 

�eld and an assessment of their strengths 

and weaknesses; (2) to highlight with 

examples some key successes, where 

models have provided novel insight into 

the cycling of TEIs and made critical con-

tributions toward the GEOTRACES mis-

sion; and (3) to outline a set of outstand-

ing challenges to and opportunities for 

developing this model-data nexus further 

in the coming years.

CATEGORIES OF TEI MODELS

�e wide range of modeling approaches 

that have contributed to our under-

standing of TEI cycling vary in their 

complexity, resolution, predictive capa-

bilities, and how they leverage observa-

tions. Here, we recognize three broad 

categories of models: (1) fully prognos-

tic biogeochemical models, (2) element- 

speci�c transport matrix models, and 

(3) machine learning and diagnostic 

models. �e �rst two categories are both 

mechanistic in that they simulate trace 

element cycles inside ocean circulation 

models using mathematical functions 

that represent TEI sources, sinks, and 

internal cycling processes. �ey di�er, 

however, in scope and how extensively 

they incorporate GEOTRACES obser-

vations in order to re�ne the mechanis-

tic framework. �e third category is not 

underpinned by a mechanistic under-

standing of TEI cycling but instead lever-

ages observations only in a statistical 

sense. �e three categories thus de�ne a 

spectrum between prognostic and diag-

nostic modeling philosophies, with the 

former predicting the state of a system 

(here, the distribution of a TEI) based 

on mechanistic process information 

and the latter inferring process informa-

tion from a known system state. Below, 

we review the distinguishing features of 

each category and their unique strengths 

and weaknesses. 

Fully Prognostic Biogeochemical 

Models

In this type of model, the mechanistic 

representation of trace element cycling 

is coupled to an existing biogeochem-

ical framework that resolves multiple 

nutrient cycles, planktonic ecosystems, 

formation and degradation of particu-

late and dissolved organic matter, oxy-

gen, and inorganic carbon chemistry 

(Figure 1a). �ese marine biogeochemi-

cal models are either run independently 

(at the global scale, or at high resolution 

regional scales) or further coupled with 

atmospheric and terrestrial modeling 

components to comprise an Earth sys-

tem model that can be used for climate 

projection (Seferian et al., 2020). In con-

trast to the other two modeling catego-

ries we de�ne, there is no explicit incor-

poration of GEOTRACES observations 

to constrain the model. Instead, a large-

scale TEI distribution emerges solely as a 

prediction of the source, sink, and cycling 

parameterizations adopted (hence, “fully 

prognostic”), although model-data com-

parison is employed for validation, to 

inform the inclusion of key processes, 

and to guide parameter selection. 

Due to its critical role in limiting pri-

mary production, the iron (Fe) cycle is 

now represented in almost all biogeo-

chemical models incorporated in Earth 

system models, although the level of 

detail and predictive skill of these mod-

els varies widely (Tagliabue et al., 2016). 

Currently, additional micronutrients like 

cobalt (Co), copper (Cu), manganese 

(Mn), and zinc (Zn) are being added to 

prognostic models (Figure 1a), with the 

end goal of resolving their biological roles 

in co-limiting productivity and shap-

ing the microbial ecosystem (Richon and 

Tagliabue, 2019; Tagliabue et  al., 2018; 

Hawco et  al., 2022). E�orts have also 

been made to couple the cycling of non- 

bioactive elements, such as Al, Pa/�, and 

Nd, to fully prognostic biogeochemical 
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models (Arsouze et al., 2009; van Hulten 

et al., 2013, 2014, 2018).

�e primary strengths of prognostic 

biogeochemical models are that they link 

TEIs to the global carbon cycle and climate 

system (see section on Connecting Trace 

Metals to the Global Carbon Cycle) and 

are able to predict TEI cycle responses to 

environmental change, including poten-

tial TEI-climate feedback loops (Moore 

et  al., 2018). �ey also explicitly resolve 

multiple processes spanning phytoplank-

ton uptake, zooplankton recycling, parti-

cle dynamics, and abiotic TEI input and 

removal pathways. �eir primary limita-

tion is their computational cost—because 

each simulation requires days to weeks 

of supercomputer time, these models are 

not e�cient tools for exploratory science 

and extensive hypothesis testing. While 

this limitation also prevents direct incor-

poration of GEOTRACES observations, 

prognostic models have made exten-

sive use of hypotheses emerging from 

GEOTRACES observations and have 

been employed to assess multiple pro-

cesses emerging from the external input 

and internal cycling of TEIs (e.g., Resing 

et al., 2015; Tagliabue et al., 2023a).

Element-Specific Transport 

Matrix Models

�is category comprises mechanis-

tic models that are speci�cally designed 

to explore the cycling of a single TEI, 

uncoupled from a broader biogeochem-

ical framework (Figure 1b). �e TEI of 

interest is o�en coupled to �uxes of one 

or two other nutrient tracers (e.g., phos-

phate, silicic acid) in order to resolve 

net biological cycling, rather than link-

ing to a full planktonic ecosystem (John 

et  al., 2019). Other biogeochemical �ux 

parameterizations are similar (albeit sim-

pler) to those used in fully prognostic 

models, with observed properties o�en 

standing in for model-predicted proper-

ties—for instance, anoxic processes may 

be linked to observed, rather than pre-

dicted, oxygen �elds (e.g.,  Weber et  al., 

2018). �e circulation of TEIs is o�en 

represented using the Transport Matrix 

Method— a highly e�cient method for 

directly predicting steady-state tracer 

distributions (Primeau, 2005; Khatiwala, 

2007). Recently, the Ocean Circulation 

Inverse Model (DeVries and Holzer, 

2019) has been widely adopted for this 

purpose, because it incorporates water 

mass and ventilation tracer data to ensure 

faithful representation of the large-scale 

global circulation in the ocean interior. 

�e strengths and limitations of 

these models are largely opposite to the 

FIGURE 1. Schematic illustrations of three trace element and isotope (TEI) modeling categories. 

(a) In the fully prognostic PISCES model (Tagliabue et al., 2023a), TEIs are linked to a broader bio-

geochemical framework. (b) In a transport matrix inverse model, parameters are optimized using 

GEOTRACES data to constrain the oceanic Zn cycle (Weber et al., 2018). Orange and green boxes in 

(a) and (b) represent inorganic and organic tracers predicted by the models that can be compared 

to observations. (c) In an artificial neural network model, a TEI is predicted statistically as a function 

of hydrographic and biogeochemical predictor variables. 
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previous category. �ey are highly com-

putationally e�cient (each simulation 

takes seconds to minutes), facilitating 

broad exploration, hypothesis testing, 

and assimilation of GEOTRACES data 

to “optimize” the model structure and 

parameters (i.e., seeking the formulations 

and parameter values that bring the pre-

dicted TEI distribution into best agree-

ment with observations in an objective 

manner; Figure 1b). In this way, they 

are o�en used as “inverse models” that 

extract estimates of TEI sources, sinks, 

and internal cycling processes that are 

consistent with observed distributions. 

Inverse models can therefore be thought 

of as an intermediate on the spectrum 

between prognostic and diagnostic mod-

eling philosophies, combining the mech-

anistic underpinning of the former with 

the observational underpinning of the lat-

ter. As for their limitations, these mod-

els lack temporal resolution (generally 

only predicting steady-state annual-mean 

TEI distributions), neglect complex bio-

logical processes (e.g.,  those associated 

with phytoplankton uptake or zooplank-

ton recycling), cannot be used for future 

predictions, and do not resolve com-

plex interactions between TEIs and other 

elemental cycles. Over the last decade, 

transport matrix models have been suc-

cessfully applied to understand the large-

scale distributions and oceanic budgets 

of a suite of TEIs (see later section on 

Understanding Fundamental Controls on 

Large-Scale Trace Element Distributions), 

including zinc (Vance et al., 2017; Weber 

et al., 2018), nickel (John et al., 2022), cop-

per (Liang et al., 2023), iron (Pasquier and 

Holzer, 2018; Roshan et  al., 2020), and 

aluminum (Xu and Weber, 2021).

Machine Learning and 

Diagnostic Models

Machine learning has been widely 

adopted in ocean biogeochemistry as a 

gap-�lling tool to generate continuous 

spatial distribution estimates (“clima-

tologies”) from sparse datasets, includ-

ing those for greenhouse gases (Weber 

et  al., 2019; Yang et  al., 2020), organic 

matter (Roshan and DeVries, 2017), and 

more recently also TEIs (Roshan et  al., 

2018; Huang et al., 2022). Many of these 

applications have relied on arti�cial neu-

ral network (ANN) models, which can 

be thought of as sophisticated statisti-

cal models that are trained to predict a 

“target” variable (e.g.,  a TEI) through 

its relationship to a set of “predictor” 

variables— hydrographic and biogeo-

chemical properties such as temperature, 

salinity, nutrients, oxygen, and net pri-

mary production (Figure 1c). �e statis-

tical model is then applied to continuous 

gridded distributions of those predictors 

to generate a gridded estimate of the TEI 

distribution. Compared to more famil-

iar statistical models (e.g., multiple linear 

regression), ANNs are structurally com-

plex, comprising “hidden layers” of neu-

rons in which each neuron is a nonlinear 

function of one or more inputs (pre-

dictor variables or the output of previ-

ous neurons), and neuron outputs even-

tually combine into a prediction of the 

TEI (Figure 1c). �ey are therefore o�en 

described as “black boxes,” in which the 

contribution of each input variable to the 

prediction is di�cult to discern.

�e primary strength of machine 

learning models is that, of all catego-

ries reviewed here, they make the most 

direct use of GEOTRACES observations 

in their TEI distribution predictions, and 

(by design) they reproduce those obser-

vations more accurately than the mecha-

nistic models covered in the previous sec-

tions. However, their lack of mechanistic 

basis is the main weakness of machine 

learning models—they predict TEI distri-

butions without providing any informa-

tion about the processes underlying that 

distribution. To partially o�set this weak-

ness, a diagnostic modeling approach has 

been adopted, in which the TEI distri-

butions predicted by machine learning 

models are combined with ocean circula-

tion models to infer the patterns and rates 

of biogeochemical �uxes that are required 

to balance physical transport and mixing 

(e.g., Roshan et al., 2018). However, this 

method only provides a crude estimate of 

the net sources-minus-sinks, which can-

not be separated into individual process 

rates or linked to environmental drivers.

KEY MODELING INSIGHTS

Understanding Fundamental 

Controls on Large-Scale Trace 

Element Distributions

Since before the GEOTRACES era, ocean 

TEI distributions have been interpreted 

using the “preformed versus remineral-

ized” component framework �rst devel-

oped to understand macronutrient dis-

tributions (Broecker et  al., 1985). Here, 

observed subsurface tracer concentra-

tions are de�ned as the sum of a pre-

formed component carried by water 

masses from the ocean surface and a 

remineralized component that accu-

mulates from organic matter decompo-

sition (Ito and Follows, 2005). A clas-

sic application of this framework sought 

to explain the “kinked” (i.e.,  nonlinear) 

global cadmium (Cd) versus phosphate 

(PO4) relationship in terms of preformed 

Cd depletion in intermediate waters 

and deep accumulation of remineral-

ized Cd (de Baar et  al., 1994). Over the 

last 15 years, ocean biogeochemical mod-

els have proved to be invaluable tools 

for interpreting the TEI distributions 

revealed by the GEOTRACES sections. 

Numerical models resolve preformed 

TEI distributions more realistically than 

traditional end- member- mixing calcula-

tions and can be used to test hypothesized 

biogeochemical mechanisms that mod-

ify TEI distributions in the ocean inte-

rior. For particle-reactive TEIs, the com-

ponent framework has been expanded to 

consider a “ventilation- remineralization- 

scavenging” balance (Tagliabue et  al., 

2014, 2017; Weber et al., 2018), and mod-

els have elucidated the role of scavenging 

in stripping preformed and remineralized 

TEIs from subsurface waters or redistrib-

uting them over depth.

�e most recent update to our under-

standing of the global Cd/PO4 relationship 

has emerged from a machine- learning and 

diagnostic- modeling approach (Roshan 

and DeVries, 2021), which demonstrated 
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that di�erences between the global Cd and PO4 distributions can 

almost exclusively be traced to their preformed components. �is 

is driven by extreme plasticity in Cd uptake during organic mat-

ter formation, with Cd:P uptake ratios reaching a global maximum 

in the Southern Ocean. Cd therefore becomes depleted in Antarctic 

Intermediate Water (AAIW), which propagates through the low lati-

tudes at 1,000–2,000 m depth, and enriched in the ocean’s deep over-

turning cell. �ere is evidence for additional decoupling between 

Cd and PO4 due to slightly deeper remineralization of the former, 

although this appears to work counter to the preformed decoupling 

by adding Cd back to Cd-de�cient intermediate waters, slightly 

“unkinking” the global relationship (Roshan and DeVries, 2021).

A recent series of modeling studies, constrained by GEOTRACES 

section data, have demysti�ed the paradoxical oceanic distribution 

of the important algal micronutrient zinc (Zn). Zn exhibits a much 

deeper concentration maximum than macronutrients and closely 

correlates with Si (Bruland et al., 1978), even though very little cel-

lular Zn is incorporated alongside Si into diatom frustules (Ellwood 

and Hunter, 2000) and the vast majority is co-located with N and P 

in so� tissue (Twining and Baines, 2013). Biogeochemical models 

have revealed that the Si-like Zn distribution is largely controlled by 

e�cient biological drawdown in the Southern Ocean surface, which 

strips Zn from AAIW and traps it in Antarctic Bottom Water (Vance 

et al., 2017; Weber et al., 2018), much like Si (Holzer et al., 2014). �e 

stoichiometric signature of Southern Ocean water masses therefore 

imprints a Zn de�cit (relative to PO4) throughout the global upper 

ocean and a Zn excess throughout the deep ocean (Figure 2a,b). 

However, models in which vertical biogeochemical cycling of Zn 

mirrors PO4 tend to underpredict Zn in the deep North Paci�c and 

overpredict Zn in intermediate waters (Weber et al., 2018). �ese 

discrepancies can be resolved by weak reversible scavenging of Zn 

onto sinking particles, in which <1% of the oceanic Zn inventory 

exists in an adsorbed phase (Weber et al., 2018)—a conclusion that 

is also supported by a machine learning and diagnostic modeling 

approach (Roshan et al., 2018). Reversible scavenging strengthens 

the Zn de�cit in the upper ocean (Figure 2c) by transferring Zn 

from intermediate to deep water masses (Figure 2d). Scavenging 

removal and subsequent redistribution of Zn also provides a mech-

anism for explaining the isotopic depletion of Zn in the upper ocean 

by removing isotopically heavy Zn and depositing it at mid-depths 

a�er the carrier particles remineralize (Sieber et al., 2023).

Unlike Zn and Cd, the micronutrient nickel (Ni) is found in excess 

relative to macronutrients throughout the surface ocean. According 

to recent modeling work (John et  al., 2022), this is explained by 

slow Ni uptake in productive upwelling regions and restriction of 

Ni uptake by macronutrient limitation in subtropical gyres (i.e., low 

stoichiometric plasticity). While this surface distribution allows 

unutilized Ni to subduct in intermediate waters and would pro-

duce a similar preformed distribution to PO4 and NO3, observed 

Ni actually reaches a deeper maximum. Transport matrix model-

ing again demonstrates that this phenomenon is well explained by 

weak scavenging and desorption of Ni, which redistributes it over 

FIGURE 2. Model-based interpretation of global Zn distribution. 

(a) Predicted dissolved Zn distribution along 150°W in the Pacific 

Ocean, which compares well with observations from the GP15 cruise 

(Sieber et al., 2023). (b) Component of the Zn distribution that is trans-

ported from the Southern Ocean in Antarctic Intermediate Water 

(AAIW) and Antarctic Bottom Water (AABW) masses. (c) Component 

of Zn distribution that accumulates along transport pathways after 

water masses leave the Southern Ocean, due to vertical biogeo-

chemical cycling. In (a)–(c), the white contours illustrate the Zn defi-

cit or excess relative to PO4 defined as [Zn] – RZn:P[PO4], where 

RZn:P is the mean ocean Zn/PO4 ratio of 2.5 mmol mol–1. Together, 

(a)–(c) illustrate that the global Zn deficit in intermediate waters and 

excess in deep waters (a) is partially transported from the Southern 

Ocean (b), and partially generated by vertical cycling processes out-

side the Southern Ocean (c). (d) The impact of scavenging on Zn dis-

tribution is quantified here as the di�erence between models with 

and without scavenging enabled. Figures adapted from Weber et al. 

(2018) and Sieber et al. (2023) 
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depth and drives a large-scale decoupling 

of its distribution from PO4 and NO3 

(John et al., 2022).

�e modeling studies outlined above 

reveal a dominant role for ventila-

tion (i.e.,  the preformed component) in 

explaining the oceanic distributions of 

TEIs with long residence times. In con-

trast, elements with short residence times 

(like Fe) are removed too quickly to prop-

agate with water masses far into the ocean 

interior. In this case, a balance between 

remineralization, scavenging, and bound-

ary inputs governs TEI distribution, and 

the relative rates of those processes can be 

gleaned with models from GEOTRACES 

section data. Unlike macronutrients, 

dissolved Fe (DFe) does not increase sys-

tematically in the deep ocean with water 

mass age, re�ecting a close compensa-

tion between scavenging and reminer-

alization (Tagliabue et  al., 2014, 2019), 

and instead o�en exhibits a mid-depth 

maximum between 200 m and 1,000 m 

(e.g., Figure 3a). Biogeochemical model-

ing attributes many of these features to the 

uptake and scavenging of dust-sourced 

Fe in the surface, followed by Fe remin-

eralization and the release of scavenged 

Fe in the shallow subsurface (Pham and 

Ito, 2018). Beneath the mid-depth maxi-

mum, Fe remineralization is too slow, rel-

ative to scavenging, to allow signi�cant 

remineralized Fe accumulation (Pham 

and Ito, 2018). In fact, model trajectory 

calculations indicate that the majority 

of remineralized Fe will be scavenged 

before re-emerging at the ocean’s sur-

face and that most Fe supplied in upwell-

ing water to the ocean surface is not the 

product of organic matter remineraliza-

tion (Pasquier and Holzer, 2018).

Probing Trace Element 

Inputs and Losses

Distributions of TEIs close to, and down-

stream of, boundary exchange regions 

(continental margins, the air-sea inter-

face, mid-ocean ridges) provide clues 

about the magnitude of TEI �uxes across 

those boundaries that can be lever-

aged by models to construct budget esti-

mates. Models that accurately reproduce 

observed TEI distributions are generally 

assumed to do so because they contain 

sources and sinks of realistic magnitude. 

A caveat is that, to some degree, unrealis-

tic model sources and sinks can compen-

sate one another—for instance, a source 

overestimate can be balanced by unrealis-

tically rapid scavenging losses. 

�e �rst Fe model intercomparison 

project (FeMIP; Tagliabue et  al., 2016) 

showed that 13 di�erent models could 

all broadly reproduce the average con-

centrations observed from GEOTRACES 

data, while not reaching a consensus on 

the magnitude of external sources and 

scavenging losses. Models ranged from 

those with total sources on the order 

1 Gmol yr–1 and Fe residence times of 

hundreds of years to those with sources 

of >100 Gmol  yr–1 and residence times 

of 10 years or less. �is has led to the 

impression that the observed DFe distri-

bution does not place a strong constraint 

on the magnitude of Fe �uxes. However, 

a deeper comparison of model- predicted 

DFe �elds to observations (beyond just 

comparing mean concentrations) reveals 

signi�cant di�erences between mod-

els with “slow” and “fast” Fe cycles. �e 

former (small sources, slow scavenging) 

predict unrealistically smooth Fe �elds 

with coherent water mass structures that 

are not observed in the GEOTRACES 

FIGURE 3. Comparison of model-predicted DFe distributions. (a) Observed DFe dis-

tribution along the GA02 section (Rijkenberg et al., 2012). (b,c) Predictions from two 

models included in the FeMIP intercomparison project (Tagliabue et al., 2016) include 

one with a long Fe residence time (τres) in which DFe exhibits clear water mass struc-

ture (b), and one with a short τres that captures sharp DFe source features. (d) A pre-

diction from a newly configured state of the art model (Tagliabue et al., 2023a) accu-

rately captures the observed distribution, with a relatively short τres.
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transects (Figure 3b), whereas the latter 

(large sources, fast scavenging) bet-

ter resolve observed source features and 

the sharp Fe gradients around them 

(Figure 3c). Recent modeling stud-

ies that have most successfully repro-

duced observed DFe features tend to con-

verge upon global Fe source estimates 

around 50–70 Gmol yr–1 and residence 

times of 10–20 years (Figure 3d)—a 

much closer consensus than suggested by 

the FeMIP compilation (Pham and Ito, 

2018; Tagliabue et al., 2023a). �ese mod-

els further agree that continental mar-

gin sediments are the dominant global 

Fe source to the ocean, while dust depo-

sition and hydrothermal vents are sec-

ondary sources, albeit with signi�cant 

regional imprints.

Complementary TEI tracers that share 

sources and sinks with Fe are increasingly 

being incorporated into prognostic mod-

els and studied with stand-alone trans-

port matrix models to place additional 

constraints on Fe �uxes. For instance, Al 

has long been recognized as a powerful 

tracer of dust deposition from the atmo-

sphere and has been the focus of both 

prognostic and inverse modeling studies 

(Van Hulten et al., 2014; Xu and Weber, 

2021). �e latter approach demonstrated 

that a source of 30–40 Gmol yr–1 of soluble 

Al from dust was required to best match 

observed Al along a set of GEOTRACES 

sections, corresponding to a soluble Fe 

source of 5–10 Gmol yr–1. 

In addition to quantifying the mag-

nitude of TEI sources and sinks, mod-

els have provided insights into the mech-

anisms and environmental controls on 

these processes. O�en, the same conclu-

sions have been reached independently 

from modeling of large-scale TEI distribu-

tions and from small-scale observational 

studies, building con�dence that robust 

“general rules” have been discovered. For 

instance: (1) inverse modeling found that 

large-scale variability in dust solubility 

was required to match the global Al dis-

tribution with much higher solubility in 

remote regions with low atmospheric dust 

loading (Xu and Weber, 2021), consistent 

with acid- leach experiments (Jickells 

et al., 2016); (2) two global Fe model stud-

ies demonstrated a better match to global 

GEOTRACES observations when benthic 

Fe sources were strongly ampli�ed under 

low O2 bottom-water conditions (Dale 

et al., 2015; Pham and Ito, 2018), consis-

tent with �ux chamber measurements on 

the Oregon shelf (Severmann et al., 2010); 

and (3) incorporation of Fe isotopes 

into a prognostic model demonstrated 

that distinct isotopic signatures must be 

resolved for Fe sourced from reductive 

and non-reductive sediments to match 

observed sections (König et  al., 2021), 

consistent with pore-water measurements 

(Homoky et al., 2013).

Models have also been used to explore 

TEI removal processes, especially those 

associated with scavenging and the role of 

ligands. �e earliest Fe models assumed 

a constant bu�ering of deep ocean DFe 

to 0.6 nM, presumed to represent a static 

oceanic ligand reservoir (Archer and 

Johnson, 2000); this was re�ned by later 

models to explicitly resolve the ligand 

complexation of Fe using equilibrium 

assumptions (Parekh et al., 2005). Present-

day Earth system models still employ these 

parameterizations, and their assumptions 

about ligand concentrations can have 

important implications for atmospheric 

CO2 (Tagliabue et  al., 2014). Growing 

datasets for ligand concentrations and 

the recognition of greater variation in 

DFe concentrations led to the develop-

ment of alternative approaches to mod-

eling ligands, including empirical rela-

tionships that varied in response to DOC 

or O2 (e.g., Pham and Ito, 2018) or even 

fully prognostic representations of ligand 

sources and sinks (Volker and Tagliabue, 

2015). Comparing sophisticated Fe spe-

ciation models with time-series obser-

vations following dust deposition in the 

Mediterranean allowed the important 

roles of scavenging removal and competi-

tion with biological uptake to be revealed 

(Ye et  al., 2011). Most recently, a com-

prehensive model-data synthesis exer-

cise over the annual cycle at the Bermuda 

Atlantic Time-series Study site, spanning 

dissolved, ligand, and particulate Fe data-

sets, led to a revised model of the ocean 

iron cycle that placed less emphasis on 

stabilization of DFe by ligands and more 

on colloidal Fe aggregation with organic 

matter as a critical iron removal pathway 

(Tagliabue et al., 2023a). 

Connecting Trace Metals to 

the Global Carbon Cycle

A key driver of research on micronutri-

ents is their potential role in regulating 

the ocean carbon cycle via their impact on 

phytoplankton productivity. Insight into 

how micronutrients such as Fe can modu-

late the carbon cycle can be gleaned from 

observations, especially process studies 

(e.g. Boyd et al., 2007, 2012; Twining et al., 

2021), but obtaining a large-scale holis-

tic picture requires the use of prognos-

tic global ocean biogeochemical models. 

Such tools can test hypothesized impacts 

of changes in micronutrient sources and 

internal cycling on carbon and macro-

nutrients, oxygen, and primary produc-

tion, as all components are interconnected 

in these models. A notable example here 

is the exploration of hydrothermal vent 

inputs of Fe and their impact on the global 

ocean carbon cycle. 

At the launch of the GEOTRACES 

program, mid-ocean ridges were 

acknowledged as a potential exter-

nal TEI source but were not considered 

to play a major role in driving the dis-

tribution of micronutrient trace metals 

and their impacts on the carbon cycle. 

However, new observations from the 

Southern Ocean emerging from the 

International Polar Year in 2008 indicated 

unexpected elevations in dissolved Fe in 

the vicinity of the Antarctic ridge crest 

(e.g., Klunder et al., 2011). Models were 

quickly adapted to explore the implica-

tions of this unforeseen Fe source, draw-

ing on the link between hydrothermal Fe 

and mantle helium (Boyle and Jenkins, 

2008; Fitzsimmons et al., 2014) to param-

eterize vent Fe inputs based on helium 

(He) input �elds �rst developed for the 

Ocean Carbon Model Intercomparison 

Project (Dutay et  al., 2004). Early work 
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indicated that a signi�cant enhance-

ment in Fe was expected in the 2–3 km 

depth strata due to hydrothermal venting 

(Figure 4a) into the surface waters of the 

Southern Ocean (Figure 4b; Tagliabue 

et  al., 2010). Furthermore, models with 

hydrothermal Fe were able to better 

reproduce GEOTRACES observations 

from the abyssal ocean. Follow-up studies 

in the South Atlantic demonstrated vari-

ation in the Fe:He ratios typical of slower 

spreading ridge systems (Saito et  al., 

2013), and the large-scale plume dispers-

ing thousands of kilometers from the 

fast- spreading East Paci�c Rise captured 

by the GP16 voyage was not expected 

(Resing et  al., 2015). Combined model-

ing and observational e�orts that traced 

this plume across the Paci�c explored the 

roles of external supply rates and inter-

nal processes that stabilize Fe against 

scavenging in explaining plume disper-

sal (Resing et al., 2015). �is work, com-

bined with inverse modeling exercises, 

estimated that hydrothermal Fe fuels up 

to 30% of Southern Ocean export pro-

duction (Figure 4c; Resing et  al., 2015; 

Tagliabue and Resing, 2016; Pasquier 

and Holzer, 2017). A set of more detailed 

model experiments focusing on the roles 

of di�erent ridge systems led to the pin-

pointing of the ridges circling Antarctica 

as playing a key role in driving the impact 

on the carbon cycle (Figure 4a; Tagliabue 

and Resing, 2016). 

Recent e�orts to better quantify how 

the hydrothermal Fe supply regulates the 

ocean carbon cycle have focused on re�n-

ing model parameterization of inputs and 

internal cycling processes. Due its role as 

a �ngerprint for hydrothermally sourced 

waters, re�ning estimates of the mantle 

He source has been a particular focus area. 

�e �rst helium input estimates linked 

the 400–1,000 mol He yr–1 global source 

to ridge spreading rates (Dutay et  al., 

2004; Bianchi et  al., 2010) and accord-

ingly assumed greater hydrothermal sup-

ply along faster spreading ridges. More 

recently, an inverse modeling approach 

that leverages the Ocean Circulation 

Inverse Model physics and all available 

He measurements found that the total He 

supply likely lies at the low end of previ-

ous estimates, with inputs from Antarctic 

ridges reduced threefold (DeVries and 

Holzer, 2019). Assuming close coupling 

between the supplies of He and Fe implies 

that perhaps the role of Southern Ocean 

ridge systems, and hence the postulated 

impact of hydrothermal Fe on the carbon 

cycle, had been overestimated. Roshan 

et  al. (2020) linked the new estimate of 

He inputs with a size-resolved model 

of hydrothermal Fe and optimized key 

parameters using the GP16 Paci�c Ocean 

GEOTRACES transect. �is model pre-

dicts that global hydrothermal Fe inputs 

largely originate on the East Paci�c Rise 

and that there is very little hydrother-

mal Fe in the Southern Ocean, thanks to 

a combination of scavenging and weak Fe 

inputs from Antarctic ridges. Follow-up 

work with a full iron cycle model showed 

that, while low input rates along Antarctic 

ridges would indeed reduce the leverage 

of hydrothermal Fe on carbon export, 

they are not consistent with new observa-

tions of dissolved Fe from these systems 

(Tagliabue et  al., 2022). �ese observa-

tions suggest that some Antarctic ridges 

could be a stronger source of Fe than 

FIGURE 4. Impact of hydrothermal Fe on the ocean carbon cycle. (a) An exam-

ple is shown here of the predicted distribution of hydrothermally sourced DFe 

in the Southern Ocean (nM, along 150°W), quantified as the di�erence between 

simulations with and without the vent source enabled, using the model of 

Tagliabue et al. (2023a). (b) An anomaly in integrated upper 500 m DFe due to 

hydrothermalism (10–6 mol Fe m–2) indicates the emergence of the hydrother-

mal DFe anomaly into the upper ocean at the Antarctic Divergence (upwelling 

center). (c) The net primary production (mmol m–2 yr–1, depth integrated, solid 

line) and carbon export (mmol m–2 yr–1, sinking flux across 100 m, dashed line) 

production plotted here is fueled specifically by hydrothermal Fe, again quan-

tified as the di�erence between simulations with and without the vent source. 
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would be expected from their He input, 

meaning that model source schemes for 

hydrothermal Fe may ultimately need to 

look beyond a simple link to He. 

In addition to hydrothermal vents, 

modeling e�orts have explored other 

aspects of how iron regulates the car-

bon cycle. For example, long-term Earth 

system model simulations run to the 

year 2300 under high emissions scenar-

ios demonstrate a role for climate per-

turbation of the Fe budget in driving 

Southern Ocean nutrient depletion and 

low latitude declines in net primary pro-

duction (Moore et  al., 2018). Similarly, 

a range of model experiments show that 

climate-forced alterations to dust depo-

sition have wide-reaching impacts on 

the biogeochemistry and carbon cycle 

of the Indian and Paci�c Oceans (Pham 

and Ito, 2021; König et al., 2022). Models 

have long been used to assess the limited 

carbon sequestration potential and unin-

tended biogeochemical consequences of 

purposeful ocean iron fertilization e�orts 

(Oschlies et  al., 2010; Tagliabue et  al., 

2023b). In this context, prognostic bio-

geochemical models will continue to be 

critical tools for quantifying the impacts 

of ocean iron fertilization proposals, 

especially regarding marine ecosystems. 

By coupling a global ocean biogeochem-

ical model with an ecosystem model, 

recent work showed that ocean iron fer-

tilization led to a very small increase in 

ocean carbon storage but ampli�ed the 

negative impacts of climate change on 

ecosystems by a third (Tagliabue et  al., 

2023b). Recently, there has also been 

growing interest in the possible impact of 

other micronutrients beyond iron on the 

carbon cycle via potential regulation of 

phytoplankton growth rates and net pri-

mary production. To date, only Mn has 

been included as a directly limiting nutri-

ent in ocean models, and its inclusion 

has been shown to lessen the response 

of the Southern Ocean biological car-

bon pump to the changes in Fe supply 

typical of the Last Glacial Maximum 

(Hawco et  al., 2022). Coupled model-

ing of Fe and Mn limitations reveals 

how these micronutrients may inter-

act via region-speci�c adjustments to 

phytoplankton physiology and a�ect the 

regional carbon cycle (Anugerahanti and 

Tagliabue, 2023). In the future, address-

ing the large-scale carbon cycle impacts 

of other potentially growth-limiting 

micronutrients, such as Zn, Co, and vita-

min B12, will require use of more com-

plex ocean models.

OUTLOOK AND CHALLENGES

Modeling will remain an important tool 

in future trace element research, espe-

cially as the community’s focus increas-

ingly shi�s toward synthesis, process 

understanding, and linking TEIs to 

microbial ecology. Here, we discuss just 

two of many pressing future directions. 

Toward TEI State Estimates: A “state 

estimate” represents our best understand-

ing of the current state of a dynamic sys-

tem given available observations and 

models. In marine biogeochemistry, a 

state estimate usually takes the form of a 

global, three-dimensional tracer distri-

bution (e.g.,  a monthly climatology). As 

the observational phase of GEOTRACES 

enters its �nal stages, there is a growing 

need to synthesize the understanding of 

TEI distributions (and their uncertain-

ties) that have emerged from the program 

as a set of state estimates. �ese would 

�nd broad applications in marine chemis-

try, but also beyond, including (1) guiding 

future observational e�orts by identify-

ing key regions of uncertainty; (2) add-

ing trace element context to other datasets 

where TEIs cannot be measured directly, 

for example, comparison of biological 

rate measurements and genomic indi-

cators to estimated micronutrient levels; 

(3) providing initialization �elds and �ll-

ing in “unresolved tracers” in ocean mod-

els, because not every model can explic-

itly resolve all micronutrient cycles, but 

accounting for their impacts on biolog-

ical processes is desirable; and (4) pro-

viding information to policymakers, for 

instance, on the spread of anthropogenic 

trace element contaminants through the 

ocean. Given the sparseness of TEI mea-

surements, GEOTRACES state estimates 

cannot simply be generated using the 

standard interpolation and objective map-

ping approach used for familiar data-rich 

state estimates like the World Ocean Atlas 

(hydrography, nutrients, oxygen) and the 

Global Ocean Data Analysis Project (car-

bon chemistry). Instead, they must ulti-

mately rely on the three categories of mod-

els outlined in the section on Categories 

of TEI Models. Because machine learning 

models make the most direct use of obser-

vations, they are likely to be the most 

promising choice for state estimate gen-

eration. However, their ability to skillfully 

predict TEI distributions in regions with 

very few training data is not well under-

stood, especially for short residence time 

elements that can have very patchy distri-

butions. In these cases, mechanistic mod-

els that explicitly resolve the underlying 

processes may be considered more skill-

ful gap-�lling tools. A major intercompar-

ison e�ort is needed to converge on the 

“best practices” for TEI state estimates. 

Environmental Change: A key compo-

nent of the GEOTRACES mission con-

cerns the sensitivity of TEI cycles to 

environmental change (GEOTRACES 

Planning Group, 2006). While this can 

be documented and alluded to from �eld 

measurements, a global-scale assessment 

of how climate change may a�ect TEI 

cycling requires modeling e�orts. �e 

roles of changes in ocean circulation, envi-

ronmental conditions, and external TEI 

inputs under di�erent climate change sce-

narios can only be addressed using prog-

nostic biogeochemical models that are 

forced by climate change scenarios. For 

longer residence time TEIs, such as Cd 

and Zn, we might expect more predict-

able changes that can be largely accounted 

for via the distribution of water masses. 

�at said, in the upper ocean, where bio- 

limiting roles will be felt, even long resi-

dence time elements such as these can 

display rapid changes in cycling, espe-

cially those mediated by phytoplankton 

uptake and zooplankton recycling, which 
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may generate biogeochemical feedbacks 

(Richon and Tagliabue, 2019). TEIs with 

shorter residence times, such as Fe, will 

exhibit not only changes due to ocean cir-

culation but also alterations due to their 

sources and elemental cycling through-

out the ocean. �ese may include redis-

tribution due to changes in mixing and 

nutrient limitation patterns at low lat-

itudes (Misumi et  al., 2014), as well as 

changes in Fe speciation due to tempera-

ture, pH, or oxygen perturbations that 

may a�ect removal processes, includ-

ing the newly identi�ed “colloidal shunt” 

(Tagliabue et al., 2023a). A critical area of 

focus will be the impacts of Fe on ocean 

biology, speci�cally potential adjust-

ments in patterns of Fe limitation asso-

ciated with climate variations (Browning 

et al., 2023). �is will require re�nement 

of the way in which phytoplankton Fe 

requirements, uptake, and limitation, as 

well as interactions with grazers and bac-

teria in the dynamic upper ocean, are 

included in models.
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