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Abstract—Participant selection (PS) helps to accelerate fed-
erated learning (FL) convergence, which is essential for the
practical deployment of FL over mobile devices. While most
existing PS approaches focus on improving training accuracy
and efficiency rather than residual energy of mobile devices,
which fundamentally determines whether the selected devices
can participate. Meanwhile, the impacts of mobile devices’
heterogeneous wireless transmission rates on PS and FL training
efficiency are largely ignored. Moreover, PS causes the staleness
issue. Prior research exploits isolated functions to force long-
neglected devices to participate, which is decoupled from original
PS designs.

In this paper, we propose a residual energy and wireless
aware PS design for efficient FL training over mobile devices
(REWAFL). REWAFL introduces a novel PS utility function that
jointly considers global FL training utilities and local energy
utility, which integrates energy consumption and residual battery
energy of candidate mobile devices. Under the proposed PS utility
function framework, REWAFL further presents a residual energy
and wireless aware local computing policy. Besides, REWAFL
buries the staleness solution into its utility function and local
computing policy. The experimental results show that REWAFL
is effective in improving training accuracy and efficiency, while
avoiding “flat battery” of mobile devices.

Index Terms—Federated learning, Mobile devices, Participant
selection, Residual energy awareness.

I. INTRODUCTION

NOWADAYS, federated learning (FL) has been migrating
from cable-powered datacenters to battery-powered mo-

bile devices [1]. With ever advancing hardware development,
mobile devices (e.g., Google Pixel 4a, Galaxy Note20, iPad
Pro, MacBook laptop, UAVs, etc.) have increasing on-device
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computing capability ready for local training. Besides, mobile
devices crowdsense the raw training data and provide the
foundation for FL beyond datacenters [2], [3]. Following FL
principle of training deep neural networks (DNNs) locally
without exposing raw data [4], FL over mobile devices fosters
numerous promising applications in various domains. For
example, Google and Apple have deployed FL for computer
vision and natural language processing tasks across mobile
devices [5], [6]; NVIDIA exploits FL to create medical imag-
ing AI [7]; Generative artificial intelligence models can be
fine-tuned on devices to provide personalized experiences for
users [8]; many other applications [9]–[11] are emerging in
e-Healthcare, intelligent transportation systems [12], hazard
detection in smart home, smart surveillance and monitoring in
industrial Internet of Things (IoT), etc. Most of those appli-
cations require to train FL models across a crowd of clients,
while mobile devices may not all be simultaneously available
or suitable for FL training. Therefore, how to appropriately
select FL participants is the key to their successful deployment
in practice.

The biggest challenges for FL participant selection (PS)
stem from the heterogeneity of mobile devices [13]. To im-
prove the performance of FL over mobile devices, research
efforts in the literature tried to address the data heterogene-
ity [14] and system heterogeneity issues, and developed FL PS
approaches considering statistical utility or/and system utility
as defined in [15]. For example, to address data heterogene-
ity/improve statistical utility, the importance-aware scheduling
policies are proposed to select mobile devices with significant
training improvement. Various importance metrics for mobile
devices are defined based on gradient divergence [16], local
loss values or gradient norm [17], and the differences between
the local and global models [18]. To address system hetero-
geneity/reduce FL training latency, the mobile devices with
the best instantaneous channel conditions at each round are
selected to minimize the communication latency [19], [20].
To improve the efficiency of model aggregation, the central
server evaluates the computing capability at model devices and
select participants with the “fine” models [11]. Pioneeringly,
Oort [15] proposed a utility function that jointly considers
statistical and system heterogeneity to guide PS for efficient
FL training. While most existing PS approaches focus on
improving learning accuracy and reducing training latency
from the perspective of global FL system, there are very
limited discussions about concerns from participating mobile
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devices’ side, i.e., the energy consumption of FL training
and the residual-battery heterogeneity among candidate mobile
devices. It is not trivial since if the selected device cannot
participate in FL training, it will backfire FL performance in
terms of accuracy and convergence latency. Note that only
reducing system-level energy consumption [21]–[23] may not
be enough, since the mobile device with very low residual
battery energy is not feasible for selection, even though its
energy consumption for training is small.

Besides, state-of-the-art (SOTA) designs largely ignore the
impacts of wireless transmission heterogeneity on local com-
puting policy so as to reduce latency/energy consumption, and
its consequent influence on PS in FL training. It is obvious that
given a FL task, fast/slow transmissions will decrease/increase
the communication latency/energy consumption of uploading
local model updates from a mobile device to FL server.
However, it is not clear when a mobile device’s wireless
transmission rate is high/low, how to adjust its own local
computing policy over rounds. Additionally, it is not clear
how these adjustments affect local computing latency/energy
consumption considering device’s residual energy, and further
PS and FL performance.

Moreover, since not every mobile device participates in ev-
ery round of FL training, frequently selecting a fixed subset of
devices to participate may lead to parameter staleness and bi-
ased training, which eventually degrades training performance.
Most prior PS designs enforce those high-staleness mobile
devices to participate and update their model parameters by a
separated function [15], which is decoupled from their original
PS designs. In addition, existing staleness solutions ignore
the selected participating devices’ energy consumption and its
residual battery energy.

Motivated by the challenges above, in this paper, we propose
a residual energy and wireless aware PS design for efficient FL
training over mobile devices (REWAFL). Briefly, REWAFL
introduces a novel PS utility function that jointly consid-
ers global FL training utilities (statistical utility and global
latency utility) and local energy utility, which is aware of
energy consumption and residual battery energy of candidate
participating mobile devices. Under the proposed PS utility
function framework, REWAFL further presents a residual
energy and wireless aware local computing policy, which
includes a wireless aware local stochastic gradient descent
(SGD) computing strategy, and an energy utility aware stop-
ping criterion for increasing local training iterations. Besides,
REWAFL buries the staleness solution into its utility function
and local computing development policy without incurring any
extra or external mechanism.

To demonstrate its effectiveness, we implemented and eval-
uated a prototype of REWAFL system consisting of FL server
(NVIDIA RTX 3090), mobile devices (Android smartphones,
tablet computers, and laptops) with heterogeneous battery
energy and different wireless transmission techniques (Wi-
Fi 5 and 5G) and rates for model updates between them.
We conducted extensive experiments with various FL learning
tasks, training model and datasets. Our experimental results
show that the proposed REWAFL can reduce device dropout
ratio, reach the target accuracy with less overall latency and

energy consumption, and effectively solve the staleness issue
in a self-contained manner compared with SOTA designs.

II. RELATED WORK

Participant Selection in FL. Due to bandwidth constraints,
only a subset of devices can be selected to transmit their
model updates in each training round, which promotes the
participant selection problem in FL. The pioneering work [24]
introduced a stochastic scheduling policy for participant selec-
tion, with empirical evidence supporting its convergence. The
three heuristic scheduling schemes are compared in [25], and
the convergence of these strategies was theoretically proven.
The impact of device selection on training delay is substantial.
Recent research, including works in [26] and [27], has focused
on optimizing scheduling strategies to minimize training time,
primarily by selecting devices with good instantaneous chan-
nel conditions. A significant challenge arises from the non-
independently and identically distributed (non-i.i.d) nature of
local data across devices, which affects the relevance of local
learning updates to model convergence. To address this, au-
thors in [16], [17], proposed data importance-aware scheduling
strategies, enhancing model accuracy by accounting for data
distributions among devices. [28] underscored the importance
of balancing channel conditions with data significance during
device selection. Moreover, [15] investigated a joint approach,
considering both statistical utility (data importance) and sys-
tem utility (training latency) in device selection. Besides, [29]
incorporated wireless-specific factors, like packet errors and
resource availability, into the selection process. A novel long-
term perspective for device selection is proposed by [30],
which suggests selecting fewer devices at the beginning of
the training process to save resources and more devices in
the post-training state to improve model accuracy. Energy
consumption, a crucial factor in mobile device-based FL, was
the focus of [21], which advocated for selecting low-energy
consumption devices to enhance energy efficiency during
model training.

Previous studies in FL often operated under the assumption
that mobile devices possess sufficient battery life to participate
in FL training. However, this assumption is not always valid,
especially in real-world scenarios involving battery-powered
devices. The intensive computational demands placed on these
devices during prolonged FL training can lead to rapid battery
depletion, making them unavailable for further participation.
Therefore, the residual energy of mobile devices becomes a
critical factor in determining their suitability for inclusion
in FL training. This aspect of device selection, crucial for
ensuring sustained device participation and overall training
effectiveness, must not be overlooked in participant selection
strategies.

Communication efficient FL. Recent advancements in FL
have seen a surge of studies aimed at reducing communication
costs. Key efforts in the wireless community, as documented
in [31], have focused on radio resource allocation within FL
convergence constraints. In [32], the authors allocated more
bandwidth to participants with limited computational resources
to decrease training latency. The study in [33] explored an
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edge association strategy in a multi-base station, multi-user
FL setting, focusing on optimizing bandwidth and computa-
tion frequency for edge server devices. The authors in [34]
optimized local training data size and wireless resource to
reduce FL convergence time. Similarly, [35] jointly optimized
transmission power and computing resources of devices to
enhance FL training efficiency and accuracy. However, these
studies have not fully accounted for factors that minimize
communication costs associated with the DL algorithm itself.
By contrast, the authors in [36]–[38] accelerated the training
process by jointly optimizing the number of local itera-
tions and communication frequency. Further, [39] achieved a
balance between computation, communication, and accuracy
through the joint optimization of gradient quantization and
local iterations, within a specified training duration.

Previous studies have identified communication cost as a
critical bottleneck in training overhead for FL and have sought
to mitigate this through strategic allocation of communication
resources. Nevertheless, these optimization strategies may not
seamlessly translate to real-world FL applications on mobile
devices. The advent of 5G and subsequent network technolo-
gies has significantly increased transmission rates, rendering
the time required for local gradient computation and model
uploading nearly equivalent, as discussed in [40]. Moreover,
existing literature often overlooks the diversity in wireless
transmission rates of mobile devices, a factor that substantially
influences local computing policies and, consequently, the
overall training latency and energy consumption. In light of
these considerations, it’s evident that jointly optimization of
both computation and communication aspects in FL is crucial.
This strategy must also account for the inherent hardware
limitations of mobile devices to effectively minimize latency
and conserve energy. Addressing these challenges is not just
beneficial; it’s imperative for the practical, efficient deploy-
ment of FL in real-world mobile environments.

III. PRELIMINARIES AND MOTIVATION
A. Federated Learning over Mobile Devices

We consider a wireless FL system consisting of an edge
server (e.g., base station or gNodeB) as the FL aggregator
and a set of S mobile devices as FL clients. Each mobile
device i maintains a private dataset Bi with Bi = |Bi| training
data samples. All mobile devices collaboratively train a general
model under the coordination of an edge server in a distributed
manner. We assume that the computing resources (e.g., GPU
and CPU frequencies), wireless transmission rates (i.e., s), data
distribution and residual battery energy (i.e., E) among mobile
devices are heterogeneous. The goal of FL over mobile devices
is to find the model parameter !, so as to minimize a loss
function on the whole dataset as follows:

min
{!}
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9
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where fi(!) is the local loss function of device i, and |S| is the
number of mobile devices. The edge server and mobile devices
jointly execute FL training, which consists of the following
three steps.

1) In the r-th training round, the edge server first selects K

mobile devices to participate in this training round, and
the set of participating mobile devices is denoted by P .
Then the edge server broadcasts the current global model
!r to participating mobile devices.

2) After receiving the global model, each selected mobile
device i utilizes local computing resources to train its
local models by performing H(i, r) local iterations based
on its local data of size B

r
i . The local gradient at mobile

device i can be obtained based on global model !r:
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where xi(j) is the j-th training data sample and yi(j)
is the corresponding label. When the local training is
complete, mobile devices upload local gradient gr

i to the
edge server using available wireless accessing technolo-
gies, i.e., Wi-Fi 5, 5G, etc.

3) After that, the edge server aggregates the local gradient
to update the global model:

!r+1 = !r
�

⌘

K

KX

i=1

gr
i , (3)

where ⌘ is the learning rate. Then edge server selects
the participants for the next round based on the defined
PS utility function. The procedure above repeats until
FL converges, where PS plays an essential role for FL’s
learning performance and efficiency.

B. Revisiting SOTA PS Designs

Some pioneering FL PS designs in the literature consid-
ered not only FL learning performance, but also FL training
efficiency in terms of global system latency or local participat-
ing mobile devices’ energy consumption. For example, Oort
in [15] proposed the PS design to associate the statistical
utility (i.e., contributions to FL learning performance) and
system efficiency (i.e., system latency, which is the sum of
local computing latency and communication latency). In Oort,
mobile device i’s utility function for PS is formulated as
follows.

Util(i) = Bi

s
1

Bi

X

k2Bi

Loss(k)2 ⇥ (
T

t(i)
)I(T<t(i))⇥↵

, (4)

where Bi denotes the local training samples of mobile device
i, Loss(k) denotes the training loss of the k-th sample,
t(i) denotes the system latency of mobile device i, T is
the developer-preferred duration of each round and ↵ is the
penalty factor. Besides, I(x) is an indicator function, where
I(x) = 1 if x is true, and 0 otherwise.

Another example is AutoFL in [21], which proposed a
PS design to improve learning performance while reducing
total energy consumption. Briefly, AutoFL introduced a re-
ward function to associate learning accuracy and the energy
consumption of mobile devices, and exploited reinforcement
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TABLE I
The Dropout Ratio of SOTA PS Designs

Local Model Target
Acc. (%)

Dropout Ratio (%)
Oort AutoFL

CNN@HAR 89.3 85.0 55.0
CNN@CIFAR10 72.2 46.0 25.0
LSTM@Shakespeare 50.3 66.0 53.0

learning to select participants with high contributions to FL
training and low energy consumption.

Although Oort/AutoFL exhibits good learning performance
and global latency/local energy consumption efficiency, SOTA
PS approaches ignored the battery energy constraints and var-
ious transmission conditions confronted by candidate mobile
devices in FL training, i.e., (i) the battery-powered mobile
devices may have heterogeneous levels of residual energy,
and (ii) mobile devices have to face heterogeneous wireless
transmission environments. Such ignorance may downgrade
the training performance/efficiency of FL over mobile devices,
or even make the selected mobile devices unable to participate
in FL training.

C. Unawareness of Heterogeneous Residual Battery Energy

Mobile devices are powered by the battery, which has a
limited energy capacity. If the FL PS design is unaware of
mobile devices’ residual energy heterogeneity, it may quickly
deplete the energy of frequently selected mobile devices. Since
a mobile device has to reserve certain amount of energy for
its mandatory/regular operations (e.g., display, voice calls, data
services, location services, etc.), such designs may drain out
the energy of frequently selected devices and disable them
from participation afterwards in FL training. That will have
detrimental effects on FL learning performance and efficiency,
especially when there is a heterogeneous data distribution
among candidate devices.

In order to understand the impact of residual battery energy
heterogeneity on training efficiency, we conducted empirical
experiments to validate our projection. Here, we follow SOTA
designs, i.e., Oort in [15] and AutoFL in [21], to select
participants in each training round. The training performances
are acquired on mobile devices, i.e., Android smartphones,
tablet and laptop. We set NVIDIA RTX 3090 as the FL server.
We consider a hybrid communication scenario with 5G and
Wi-Fi 5. More details of the experimental setup can be found
in Section V.

First, we define the dropout ratio as the ratio of the number
of mobile devices that cannot participate in FL training due
to depleted battery energy and the total number of candidate
mobile devices. From the results in Table I, we observe
that both Oort and AutoFL have very high dropout ratio
to reach the target accuracy under different learning tasks.
The potential reason is that the SOTA PS designs are not
aware of candidate mobile devices’ residual energy, and thus
may drain out the batteries of frequently selected devices.
Then, for CNN@MNIST, we take the high-end mobile devices
(Xiaomi 12S smartphone with Adreno 730 GPU) with high
transmission rates (i.e., 79.60Mbps for 5G) and the low-end

Fig. 1: Energy consumption and residual energy of devices
with different initial energy (CNN@MNIST).

devices (Honor Play 6T smartphone with Mali-G57 MC2
GPU) with low transmission rates (i.e., 0.64Mbps for 5G)
as examples to present how much energy is left for mobile
devices with different initial battery energy levels after FL
training. From the results in Fig. 1, we find that high-end
mobile devices use a lot or even use up its battery energy, while
low-end devices don’t use much. It indicates that high-end
devices are much more frequently selected for training than
low-end ones, in order to reduce global latency [15] or energy
consumption [21]. Again, such designs may deplete the energy
of frequently selected devices with low initial battery energy
at early rounds, and exclude them from participation at later
training rounds, which may backfire FL learning performance
and latency/energy efficiency.

D. Unawareness of Heterogeneous Wireless Transmission
Rates

Mobile devices confront various wireless transmission en-
vironments, and thus have heterogeneous transmission rates.
During each FL training round, mobile device i’ wireless
transmission rate s(i) explicitly affects its energy consump-
tion, training latency and residual energy, all of which are
important metrics for FL PS. As we know, the energy con-
sumption/latency of mobile device i per FL training round con-
sists of two parts: on-device local computing energy consump-
tion/latency, and communication energy consumption/latency
for uploading local model updates. Obviously, for a given FL
task, the high/low transmission rate s(i) reduces/increases both
the energy consumption and latency of mobile device i for
uploading the model updates to FL server.

However, it is not clear what the corresponding local
computing policy should be, when the wireless transmission
rate is high/low. Questions to answer include: (i) How to adjust
local computing to be aware of the candidate mobile device’s
transmission rate? (ii) How to adjust local computing to be
aware of the candidate device’s residual energy? (iii) How does
the local computing policy affect PS and FL performance?
In order to achieve good learning performance and training
efficiency, a fine-grained local computing policy under the FL
PS framework is in need.

E. Limitations of Oort’s Staleness Solution
Frequently selecting a fixed subset of mobile devices to

participate may result in the staleness issue in FL training.
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Oort in [15] provided a solution by introducing an extra
“temporal uncertainty” mechanism, i.e., if mobile device i has
not been selected for a long time, its statistical utility will
be forced to increase by adding an independent component
characterized by the round counter and mobile device i’s last
involved round. Such a staleness solution is isolated from
the PS utility function. Besides, it ignores their participating
devices’ energy consumption and its residual battery energy.
It would be desirable if (i) the staleness solution can be
aware of participating devices’ energy consumption, wireless
transmission rate, residual energy levels, etc., and (ii) the
staleness issue can inherently be addressed by the PS design
in FL training.

IV. ALGORITHM DESIGN

Aiming to address the concerns of both global FL system
utility and local mobile devices’ energy constraints, we pro-
pose a REWAFL scheme that includes: (i) a residual energy
aware (REA) PS utility function design, (ii) a fine-grained
REWA local computing policy under the proposed PS utility
function framework, and (iii) a self-contained REWA staleness
solution. The sketch of the REWAFL design is shown in Fig. 2.

A. REAFL: REA PS Utility Function Design

As illustrated in Sec. III-C, for FL over mobile devices, it
may not be adequate for PS utility function to just consider
the learning performance while reducing energy consumption
or/and latency of FL, which may drain out the battery of
frequently selected mobile devices. The PS utility function
design has to be aware of the residual energy of candidate
mobile devices.

Our intuitive idea behind the residual energy aware PS util-
ity function design is to trade-off and jointly improve statistical
utility, global system/latency efficiency and energy efficiency
in FL training, while satisfying the residual energy constraints
of mobile devices. We refer to the Oort’s utility function [15]
in Eqn. (4), which takes into account the statistical utility
and system efficiency. Specifically, we leverage importance
sampling [15] to characterize the statistical utility, which
considers the number of data samples and data distribution,
i.e., Br

i

q
1
Br

i

P
k2Br

i
||rf(k)||2, where ||rf(k)|| is the L2-

norm of the data sample k’s gradient rf(k). However, the
gradient is computed at a huge cost. Given that the gradient
is the derivative of the training loss concerning the current
model weights, a larger gradient norm on the device implies
that it exhibits a higher value in terms of the loss function.
Consequently, we opt to substitute the gradient norm with an
easily accessible training loss. Therefore, we define the statis-
tical utility of mobile devices i as B

r
i

q
1
Br

i

P
k2Br

i
Loss(k)2.

Furthermore, we assume that FL needs to complete the r-
th round of training within T

r. For this initial intention, the
global latency utility of those mobile devices whose training
latency exceeds the time threshold T

r at r-th round will be
penalized by a developer-specified factor ↵, but we do not
reward devices that complete training within the time thresh-
old. Therefore, we define the global latency utility of mobile
devices i as ( T

t(i) )
I(T<t(i)), where I(x) is an indicator function.

Specifically, I(x) = 1, if x is true, and 0 otherwise. Rooting

from Oort’s utility function [15] in Eqn. (4), we propose the
residual-energy aware PS utility function as follows1.

Util(i, r) =

Global FL training utility
z }| {

Br
i

vuut
1
Br

i

X

k2Br
i

Loss(k)2

| {z }
Statistical utility

⇥
� T r

t(i, r)

�I(Tr<t(i,r))⇥↵

| {z }
Global latency utility

⇥
�Er

i � E0

e(i, r)

�U(e(i,r)<Er
i �E0)⇥�

| {z }
Local mobile device’s energy utility

,

(5)

where B
r
i is the number of training data samples of mobile

device i at the r-th round, which is related to the batch size and
the number of local iterations, i.e., Br

i = Batch size ⇥H
r
i .

t(i, r) is the training latency of mobile device i, e(i, r) is the
energy consumption of mobile device i at the r-th round, Er

i is
residual battery energy of mobile device i at the r-th round, E0

is the threshold energy reserved for its mandatory/regular op-
erations, and thus Er

i �E0 is the available energy to consume.
Moreover, U(x) is also an indicator function that takes value
1 if x is true, and 1 otherwise. Here, ↵ and � are scaling
coefficients to balance/associate different metrics/utilities in
terms of the model accuracy, latency and energy efficiency.

Different from the existing PS utility function designs (e.g.,
Oort [15] or AutoFL [21]), the proposed utility function
considers not only the global FL training utility including
statistical utility and global latency utility (similar to those
in Oort [15]), but also the local mobile device’s energy utility,
which is aware of heterogeneous residual battery energy of
candidate mobile devices. Here is a simple interpretation of
the energy utility. During the r-th round, if the energy con-
sumption of mobile device i is less than its residual available
battery energy, i.e., e(i, r) < E

r
i � E0, the energy utility of

mobile device i is proportional to the residual available battery
energy and inversely proportional to the energy consumption.
That makes mobile devices with more residual energy and less
energy consumption easier to be selected for participation.
Otherwise, if the energy consumption of mobile device i is
greater than or equal to its residual available energy, i.e.,
e(i, r) � E

r
i �E0, the value of the energy utility sharply drops

to zero and mobile device i will not be able to join model
training in the r-th round. Therefore, the energy efficiency of
the proposed energy utility component has two-fold meanings,
i.e., low energy consumption and residual energy awareness.

Following the proposed utility function in Eqn. (5), the
edge server collects the reported information (i.e., Loss,
t(i, r), and device i’s energy utility)2 from mobile devices

1Note that the global latency utility in Eqn. (5) is the same as the global
system utility defined in [15]. We rename them to (i) explicitly distinguish
global FL training utility from local mobile device’s energy utility, and (ii)
jointly consider statistical, global latency and device’s energy utilities.

2As for the privacy preservation of Loss and t(i, r), we follow the same
analysis in Oort [15]. For the privacy of e(i, r) and Er

i , (i) e(i, r) and Er
i

are not that related to the training data, which is sensitive and worth privacy
protection, (ii) the client can self-calculate its local energy utility and report it
without disclosing e(i, r) and Er

i , and (iii) the client can report the estimated
energy utility, or even dishonestly report its energy utility, while the benefits
of such dishonest reporting and the consequent games between the client and
the server or among clients are out of the scope of this paper.
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Fig. 2: The design sketch of residual energy and wireless aware federated learning (REWAFL).

and calculate their utilities to select the participants for this
round. Similar to that in Oort [15], we exploit mobile devices’
most recent aggregate training losses to estimate their current
ones. Besides, mobile device i needs to estimate its t(i, r)
and local energy utility, where t(i, r)/e(i, r) consists of local
computing latency/energy consumption and communication
latency/energy consumption. Given a FL learning task, as-
suming device i’s transmission power is fixed, the size of
device i’s local model update transmitted to FL server does
not change over global training rounds. Thus, the communi-
cation latency/energy consumption of mobile devices can be
calculated given a known transmission rate s(i, r). Moreover,
since device i’s computing capability is fixed, the computing
latency/energy consumption can be approximately estimated
by the product3 of the latency/energy consumption of each
iteration and the number of local iterations H(i, r) at the r-
th round. Thus, the estimation of t(i, r) and device i’s energy
utility relies on H(i, r). Under the proposed PS utility function
framework, in the following subsection, we further illustrate
the wireless aware local computing policy (i.e., how to adjust
H(i, r)) to further improve the energy/latency efficiency for
FL training over mobile devices. Note that at the beginning of
each FL training round, each mobile device first determines
its number of local iterations H(i, r), and calculates/estimates
and uploads utility parameters (i.e., Br

i , Loss, t(i, r), e(i, r)
and E

r
i ). Upon receiving these parameters from the devices,

the edge base station calculates the utility of each device to
select the participants.

B. REWA Local Computing Policy
The proposed REWA local computing policy for PS in-

cludes two parts: (i) a wireless aware local stochastic gradient
descent (SGD) computing strategy, and (ii) an energy utility
aware stopping criterion for H(i).

1) A wireless aware local SGD computing strategy: Let
us start with existing adaptive local SGD computing strategy,
AdaH in [41], which gradually increases the number of local

iterations over rounds, i.e., H(i, r) =

⇠
H(0) +

rP
l=1

 �H

⇡
.

Here, H(i, r) is the number of local training iterations for
mobile device i at the r-th round, H(0) is the initial value of
the number of local iterations,  is the growth-rate coefficient,
and �H is a non-negative increment unit. The rationale behind

3We neglect the non-linear impacts [22] brought by advanced hardware
latency/energy saving techniques (e.g., DVFS) for local on-device training.

it is as follows. At the beginning of the training process, the
learning performance is less sensitive to the number of local
iterations. Even if the local model is updated with fewer local
iterations in the early rounds, learning performance is barely
affected. However, as FL training proceeds, it is more sensitive
to local model quality, and thus requires more local training
iterations for better learning accuracy. By using such an AdaH
strategy, the statistical utility in Eqn. (5) can be effectively
improved.

To tailor the AdaH strategy [41] for FL PS, we introduce
a binary variable V(i, r) to represent the selection status of
mobile device i at the r-th round. If mobile device i is
selected, V(i, r) = 1, and 0 otherwise. Considering partic-
ipant selection, we can update the local AdaH in [41] to

H(i, r) =

⇠
H(i, 0) +

r�1P
l=1

V(i, l) ·  �H +  �H

⇡
. Thus, the

relationship between the local iteration number of the r-th
round and that of the last participation round can be character-
ized as follows. If the mobile device i is selected to participate
in training at the current r-th round, H(i, r) will increase
based on H(i, r � u

r
i � 1) at device i’s latest participating

round, i.e., H(i, r) = dH(i, r � u
r
i � 1) +  �He, where u

r
i

is the number of non-participating rounds between the current
r-th round and mobile device i’s latest participating round.
Otherwise, H(i, r) = H(i, r � u

r
i � 1).

Furthermore, to make the local SGD computing strategy
aware of wireless communications, we refine it as follows.

H(i, r) = dH(i, r � u
r
i � 1) +  (s(i, r))�He

=

&
H(i, 0) +

r�1X

l=1

V(i, l) ·  (s(i, l))�H +  (s(i, r))�H

'
,

(6)

where s(i, r) is the averaged wireless transmission rate from
device i to the edge server at the r-th round, and  (·) is a non-
negative function that decreases with the wireless transmission
rate. For the r-th round, if transmission rate s(i, r) is high,
the increment of H(i, r) will be small; otherwise, if s(i, r)
is low, the increment of H(i, r) will be large. The number
of local iterations H(i, r) is determined based on the device
selection decisions from the previous round and the communi-
cation transmission rates of the current round. This approach
assumes that mobile device i is participating in the r-th round.
Consequently, the determination of H(i, r) is independent of
the actual device selection in the current round r.
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The rationale behind the strategy in Eqn. (6) is threefold.
First, since it inherits “increasing H over rounds” strategy
from AdaH [41] and is tailored for PS, it helps to increase
the learning accuracy and statistical utility. Second, such a
wireless aware local SGD computing strategy makes device i

with higher transmission rate at the r-th round have smaller
increase of local iterations, i.e., less computing workload
added. Thus, for a given local learning task, it helps to
reduce device i’s local computing latency in the r-th round
of FL training. Since the communication latency has already
been reduced due to the fast transmission rate, the wireless
aware local computing strategy helps to increase the global
latency utility for mobile device i. Third, once H(i, r) is
determined, device i’s local computing energy consumption
can be estimated for the r-th round. Similar to computing
latency, small increase of local iterations leads to small in-
crease of local computing energy consumption for device i

with high transmission rate. Meanwhile, assuming device i’s
wireless transmission power is fixed, the energy consumption
of local gradient updates transmissions will be reduced for
device i, if its transmission rate is high. Therefore, the wireless
aware local computing strategy in Eqn. (6) helps to reduce the
energy consumption of device i with fast transmission and may
increase its energy utility, which is jointly determined by both
the energy consumption and the residual energy of device i.
With such a wireless aware local computing strategy, mobile
devices with high transmission rate may have good utility as
defined in Eqn. (5), so that they may have good chances to be
selected for participation.

Although the proposed wireless aware local computing
strategy seems to favor the devices with fast transmissions, it
actually also creates participation opportunities for the devices
with slow transmissions, and addresses the staleness issue in an
inherent manner. The details of staleness analysis and solution
will be provided in Sec. IV-D.

2) An energy utility aware stopping criterion for H(i, r):
As H(i, r) keeps increasing over rounds, the computing
energy consumption of device i per round will increase in
parallel. An unstoppable increase of H(i, r) may ultimately
drain out mobile device’s battery energy. That prompts us to
develop a stopping criterion for H(i, r)’s increase, which is
aware of device i’s energy utility (i.e., energy consumption and
residual energy). Our idea for the energy utility aware stopping
criterion for increasing H(i) is simple. When increase H(i, r)
fails to notably reduce the value of the loss function but
consumes a lot of computing energy instead, the increasing
of H(i, r) should be stopped. The difference between the
local model gradient and the global model gradient (i.e.,
|g

r�ur
i�1

i � gr�1
|) is commonly used to gauge a device’s

contribution to the global model [17]. Similarly, to avoid the
extra cost of computing the gradient, we use training loss (i.e.,
|Loss(✓

r�ur
i�1

i )�Loss(✓r�1)|) to approximate it. Besides, if
the residual battery energy of mobile device i is low, we should
avoid further increase of H(i, r), allowing the mobile device to
retain enough energy for its regular operations. Following this
idea, we propose the energy utility aware stopping criterion

for increasing H(i, r) as follows.

"
r
i =

|Loss(✓
r�ur

i�1
i )� Loss(✓r�1)| · (E

r�ur
i�1

i � E0)

ecp(i, r � u
r
i � 1)

,

(7)

where ✓
r�ur

i�1
i denotes the local model parameters at the

last participating round, i.e., the (r � u
r
i � 1)-th round, ✓r�1

denotes the global model parameters at the (r � 1)-th round,
and ecp(i, r � u

r
i � 1) is the computing energy consumption

of mobile device i at the (r� u
r
i � 1)-th round. Here, if "ri is

large, we will continue increasing H(i, r) following Eqn. (6);
otherwise, if "ri is smaller than a predefined threshold "rth, we
will stop increasing H(i, r), and let H(i, r) = H(i, r�ur

i�1).

C. REWA Participant Selection Procedure
Given the residual energy aware PS utility function and the

corresponding REWA local computing policy, we summarize
the REWAFL PS procedure in Algorithm 1. Specifically, at
the beginning of each FL training round, each mobile device
determines H(i, r) according to Eqn. (6) (Line 8). Given
H(i, r) of each mobile device, |Br

i |, Loss, t(i, r), e(i, r) and
E

r
i can be calculated/estimated (Line 9). Next, the mobile

devices send those values to the edge server with negligible
communication cost (Line 10). When the edge server receives
those values from mobile devices at the r-th round (Line
13), it calculates Util(i, r) according to Eqn. 5 (Line 14).
Then, the edge server sorts Util(i, r) in the descending order,
and selects the top K devices for participation (Line 15).
After that, the edge server broadcasts the PS decision to
mobile devices (Line 16). After receiving the decision, if
mobile device i is selected to participate in the r-th round
training, it will update its residual energy (Line 20, i.e.,
E

r
i  E

r�1
i �e(i, r)), the number of non-participating rounds

(Line 21, ur
i  0), and the number of local iterations (Line 22,

H(i, r)  dH(i, r � u
r
i � 1) +  (s(i, r))�He). By contrast,

if mobile device i is not selected for participation in the r-th
round, Er

i and H(i, r) remain unchanged, while u
r
i increases

by 1 (Line 24-26).

D. Self-Contained Staleness Solution
Since not every mobile device participates in every round

of FL training, PS may lead to parameter staleness and biased
training, and eventually degrade FL convergence or model
accuracy. Most prior PS designs exploit a separated function
to enforce those high-staleness mobile devices to participate
and update their model parameters. For example, Oort [15]
forcibly increases the utility of long-neglected devices and
makes them participate by using a “temporal uncertainty”
mechanism, which is decoupled from Oort’s original utility
function design.

Different from existing PS designs, the proposed REWAFL
addresses the staleness issue in a self-contained manner and
buries the solution into the REWAFL’s utility function and
its local computing policy. Specifically, mobile devices with
larger utility are more likely to be selected for training, where
the utility of a mobile device is jointly determined by statistical
utility, latency utility, and energy utility. As illustrated in
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Algorithm 1 REWAFL: Residual Energy and Wireless Aware
Paticipant Selection.

1: Input: Mobile device set S , participant size K, weighting
parameter ↵ and �, threshold energy reserve E0, stop
threshold "rth.

2: Output: Participants P , Local iterations H.
/* Initialize global variables. */

3: At the edge server, initialize participants P  ;, training
round r  0, and utility value of each mobile device
Util ;.

4: At the mobile device, initialize the resdual energy E
r
 

E
0, and the number of non-participating rounds u

r
 0.

5: For the r-th round FL training, where r 2 {1, ..., R},
6: On Mobile Devices:
7: for i 2 S do

/*Calculate the number of local iterations. */
8: Calculate H(i, r) according to Eqn. (6)

/*Calculate/estimate the utility parameters. */
9: Calculate/estimate |B

r
i |, Loss, t(i, r), e(i, r) and E

r
i

based on H(i, r)
10: Send |B

r
i |, Loss, t(i, r), e(i, r) and E

r
i to FL server

11: end for
12: On Edge Server:
13: Receive the utility parameters from mobile devices

/*Calculate mobile device utility. */
14: Calculate Util(i, r) according to Eqn. (5)

/*Sort mobile device utility and select participants.*/
15: P = RankingDevice(Util(i, r), K)
16: Broadcast the device selection decision V(i, r)
17: On Mobile Devices:
18: for i 2 S do
19: if V(i, r) = 1 then

/*Update residual energy*/
20: E

r
i  E

r�1
i � e(i, r)

/*Update number of non-participating rounds*/
21: u

r
i  0

/*Update number of local iterations*/
22: H(i, r) dH(i, r � u

r
i � 1) +  (s(i, r))�He

23: else
24: E

r
i  E

r�1
i . Residual energy

25: u
r
i  u

r�1
i + 1 . Non-participating rounds

26: H(i, r) H(i, r � u
r
i � 1) . Local iteration

27: end if
28: end for

Sec. IV-B, given the training dataset, learning task and residual
energy, a mobile device’s statistical utility, latency utility and
energy utility are all related to its local computing policy.
Following the wireless aware local SGD computing strategy in
Eqn. (6), if mobile device i is frequently selected to participate
over rounds, its H(i) continues increasing. Generally speak-
ing, with H(i)’s increase over rounds, device i’s local training
energy consumption increases and residual energy decreases,
which leads to a decrease of its energy utility; its training
latency increases, which leads to a decrease of its latency
utility; its marginal contributions to FL’s global model training

(a) (b)

Fig. 3: REWAFL testbed in the lab: (a) FL testbed configu-
ration; (b) Xiaomi 12S’ energy consumption measured by the
Monsoon Power Monitor [42].

are diminishing, which leads to a decrease in its statistical
utility. The utility Util(i) of frequently selected device i keeps
decreasing until it is less than that Util(j) of a long-neglected
device j, whose H(j) has a small value, and then mobile
device j will be selected to participate in this training round.
In this way, staleness issue can be addressed by REWAFL’s
inherent local SGD computing strategy (i.e., the wireless aware
adaptive increasing of H(·)) in a self-contained manner.

To further illustrate REWA’s self-contained staleness solu-
tion, we take two mobile devices i and j with the same data
distribution, computing capabilities and initial battery energy
but different wireless transmission rates, say s(i) > s(j), as
a simple example. At the beginning of FL training, since
s(i) > s(j), we have H(i) < H(j) following Eqn. (6),
so that e(i) < e(j) and t(i) < t(j). Given the fact that
the local model updates of two mobile devices have similar
contributions to learning at the beginning of FL training,
we have Util(i) > Util(j), and device i will be selected
for participation. As FL training proceeds, H(i) continuously
increases over rounds following Eqn. (6), while H(j) remains
unchanged. Until the r-th round, when H(i, r) is larger than
a certain value that triggers Util(i, r) < Util(j, r), the staled
mobile device j will be selected to participate in this round of
FL training. Similar analysis can be applied to mobile devices
with data or/and device heterogeneity, where H(·) inherently
serves as a tuning knob to tackle staleness in REWAFL.

V. IMPLEMENTATION & EXPERIMENTAL SETUP

A. REWAFL Implementation

We present the setup of testbed in Fig. 3. Our REWAFL
testbed consists of one model aggregation server and different
types of mobile devices. On FL aggregator side, we use a
NVIDIA RTX 3090. On FL client side, we consider five
types of mobile devices: (1) Xiaomi 12S smartphone with
Qualcomm Snapdragon 8+ Gen 1 CPU, Adreno 730 GPU,
8GB RAM, and a battery capacity of 4500mAh; (2) Honor
70 smartphone with Qualcomm Snapdragon 778G Plus CPU,
Qualcomm Adreno 642L GPU, 12GB RAM, and a battery
capacity of 5000mAh; (3) Honor Play 6T smartphone with
MediaTek Dimensity 700 CPU, Mali-G57 MC2 GPU, 8GB
RAM, and a battery capacity of 5000mAh; (4) Teclast M40
tablet with Unisoc Tiger T618 CPU, 6GB RAM, and a battery
capacity of 7000mAh; (5) MacBook Pro 2018 laptop with
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Intel Core i5-8259U CPU, Intel Iris Plus Graphics 655 GPU,
8GB RAM, and a battery capacity of 58Wh. For each mobile
device, its initial battery energy follows a normal distribution
within the range of its battery’s maximum capacity. We set
up a REWAFL system consisting of 100 mobile devices, with
20 devices for each type of mobile devices mentioned above.
We select 20 mobile devices for participation in every training
round.

For communication between FL clients and FL aggregator,
we employ a complex wireless transmission scenario, which
consists of a mixture of Wi-Fi 5 and 5G networks. Specifically,
the Teclast M40 tablet and MacBook Pro 2018 laptop are
connected to FL aggregator via Wi-Fi 5, which uses the
WebSocket communication protocol [43]. The Xiaomi 12S
smartphone, Honor 70 smartphone, and Honor Play 6T smart-
phone are connected to FL aggregator via 5G networks, which
follows the 5G NR standard. We further consider two types
of transmission rates (high and low), and each device can be
configured to one of these types. As for a Wi-Fi transmission
environment, the command line tools nmcli and wondershaper
are used for reporting network status and controlling different
wireless transmission rates. As for 5G transmission environ-
ments, we consider two transmission environments, i.e., indoor
and outdoor, which represent different 5G transmission rates.

REWAFL is implemented by building on top of FLOWER
[44]. In total, we added a module to control the number of
local iterations on the client side and a PS module on the server
side, based on the original FLOWER code. In order to realize
REWAFL, we need to know the relevant parameters, such as
transmission rate, training latency and energy consumption.
To estimate on-device transmission rates, we use the Network
Monitor toollbox in the Android kernal on the smartphone.
To measure the latency, the time of model training and
transmission are recorded on mobile devices. To obtain the
energy consumption, the Monsoon Power Monitor [42] is
employed to measure the power consumption of smartphones
and tablet. As for laptop, HWiNFO is used to monitor the
real-time power consumption.

B. Models, Datasets and Parameters

We evaluate REWAFL’ performance for three different FL
tasks: image classification, next word prediction, and human
activity recognition. We consider two DNN models: 2-layer
CNN [24] and LSTM [45].

As for the image classification task, we use two datasets.
One is a MNIST dataset [46] consisting of 10 categories
ranging from digit “0” to “9”, which includes 60,000 training
images and 10,000 validation images. The other is CIFAR10
dataset [47] consisting of 10 categories, which includes 50000
training images and 10,000 validation images. As for data
distribution among mobile devices, we denote � as the non-
i.i.d. levels, where � = 0 indicates that the data among mobile
devices is i.i.d., � = 0.8 indicates that 80% of the data belong
to one label and the remaining 20% data belong to other labels,
and � = 1 indicates that each mobile device owns a disjoint
subset of data with one label. We train the image classification
data samples with 2-layer CNN.

As for next word prediction task, we use Shakespeare
dataset [48] that consists of 1,129 roles and each of which
is viewed as a device. Since the number of lines and speaking
habits of each role vary greatly, the dataset is non-i.i.d.
and unbalanced. We train the Shakespeare data samples with
LSTM.

As for task of human activity recognition, we focus on
a publicly accessible dataset generated by having volunteers
wear Samsung Galaxy S2 smartphones equipped with ac-
celerometer and gyroscope sensors [49]. The dataset includes
six categories of activities, i.e., walking, walking upstairs,
walking downstairs, sitting, standing and laying. The dataset
is non-i.i.d. due to the different behavioral habits of the
volunteers. It contains 10,299 data samples. We employ a 2-
layer CNN to train it.

The default parameter settings are given as follows unless
specified otherwise. For the MNIST and CIFAR10 datasets, the
non-i.i.d. level of data distribution among mobile devices is set
as � = 0.8. Besides, the scaling coefficients in the proposed
REA PS utility function are set as ↵ = 1 and � = 1. We set the
threshold energy reserved for its mandatory/regular operations
as 10% of device’s total battery capacity. The threshold
energy varies across devices, reflecting their individual power
requirements.

C. Baselines for Comparison
We compared REWAFL with the following peer FL designs

under different learning tasks, DNN models and datasets.
Random [50]: The FL server selects participants randomly,

and the selected mobile devices utilize a fixed local computing
policy.

Oort [15]: The FL server selects mobile devices based on
global FL training utility function as defined in Eqn. (4). The
selected mobile devices utilize a fixed local computing policy.

AutoFL [21]: The FL server selects mobile devices based on
mobile devices’ energy consumption, and the selected mobile
devices utilize a fixed local computing policy.

REAFL: The FL server selects mobile devices based on
REA PS utility function as defined in Eqn. (5), and the selected
mobile devices utilize a fixed local computing policy.

REAFL+LUPA: The FL server selects mobile devices based
on REA PS utility function as defined in Eqn. (5), and the
selected mobile devices utilize the AdaH strategy during FL

training [41], i.e., H(i, r) =

⇠
H(0) +

rP
l=1

 �H

⇡
.

VI. EVALUATION RESULTS AND ANALYSIS

A. Advantages of REA PS Utility Function

1) Awareness of devices’ heterogeneous residual energy:
As shown in Table II, given a targeted testing accuracy4, the
dropout ratio of REAFL is much lower than that of Random,
Oort, or AutoFL for all learning tasks. REAFL employs the
proposed residual energy aware PS utility function and avoids
frequently selecting mobile devices with low residual energy,

4We set the target accuracy as the highest achievable accuracy by all
strategies. Otherwise, some may never reach that target.
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TABLE II
Performance Comparison: Dropout Ratio (DR), Overall Latency (OL) and Overall Energy Consumption (OEC) of FL

Training with Non-i.i.d. Data to Reach the Target Testing Accuracy.

Task Type CV NLP HAR

Local Model CNN@MNIST CNN@CIFAR10 LSTM@Shakespeare CNN@HAR

Target Accuracy 91.0% 72.2% 50.3% 89.3%

Methods DR (%) OL (h) OEC (kJ) DR (%) OL (h) OEC (kJ) DR (%) OL (h) OEC (kJ) DR (%) OL (h) OEC (kJ)

Random 7.0 4.9 1137.5 18.0 22.4 4349.5 38.0 32.8 5031.2 28.0 6.5 1538.4
Oort 46.0 4.1 1230.3 46.0 13.1 4750.5 66.0 19.0 5217.1 85.0 5.6 1561.9

AutoFL 37.0 8.1 1069.5 25.0 28.7 3911.9 53.0 34.1 4835.4 55.0 9.1 1498.6
REAFL 0.0 2.0 562.8 0.0 7.2 3613.6 2.0 11.8 4267.7 0.0 3.0 704.7

(a) (b)

Fig. 4: Performance comparison of different PS utility designs
(CNN@MNIST, Xiaomi 12S smartphone, 5G-79.60Mbps). (a)
the number of selections, and (b) energy consumption and
residual energy.

while other SOTA PS designs are not aware of participating
mobile devices’ residual energy levels at all. That may result in
the depletion of energy for frequently selected high-end mobile
devices (i.e., mobile devices with good learning contribution,
short latency, and/or small energy consumption), especially
for those mobile devices with low initial residual energy.
Specifically, Random emerges as the second-best in terms of
dropout ratio, due to its uniform selection of devices. AotoFL,
while considering devices’ energy consumption during model
training and thereby conserving energy, fails to account for the
residual battery energy, leading to potential device dropouts.
Oort fares the poorest in device dropout ratios, as it neither
considers device energy consumption nor residual battery
energy.

To further verify the above analysis, we have recorded the
number of selections and energy consumption for the high-end
mobile devices (Xiaomi 12S smartphone with the averaged 5G
uplink transmission rate of 79.60Mbps) with heterogeneous
initial residual energy levels (i.e., 6kJ–low, 18kJ–medium, and
30kJ–high) under different PS utility function designs, and
shown the results in Fig. 4. From Fig. 4(a) and Fig. 4(b), we
find that the proposed REA PS utility function represented
by REAFL is aware of heterogeneous residual energy among
mobile devices, so it doesn’t select the high-end mobile device
with low residual energy too often, and keeps the necessary
energy for participating devices’ mandatory operations. By
contrast, other PS utility function designs (i.e., Random, Oort,

or AutoFL) are not aware of mobile devices’ residual energy,
and often select high-end mobile devices to participate in
training even when their residual energy is low, thus may drain
out the battery of such devices.

2) REAFL energy and latency efficiency analysis: Besides
cutting off dropout, REAFL also helps to reduce the overall
energy consumption and latency of FL training to achieve a
target testing accuracy. As shown in Table II, in terms of over-
all latency, REAFL reduces around 51.2%, 45.0%, 37.9% and
46.4% for learning tasks CNN@MNIST, CNN@CIFAR10,
LSTM@Shakespeare, and CNN@HAR, compared with Oort,
respectively, around 75.3%, 74.9%, 65.4% and 67.0% com-
pared with AutoFL, and around 59.2%, 67.9%, 64.0% and
53.8% compared with Random; in terms of overall energy
consumption, REAFL saves around 54.3%, 23.9%, 18.2% and
54.9% for learning tasks CNN@MNIST, CNN@CIFAR10,
LSTM@Shakespeare, and CNN@HAR, compared with Oort,
around 47.4%, 7.6%, 11.7% and 53.0% compared with Aut-
oFL, and around 50.5%, 16.9%, 15.2% and 54.2% compared
with Random. The rationale behind it is that SOTA PS utility
function designs (i.e., Random, Oort, or AutoFL) are not
aware of mobile devices’ residual energy, and thus frequently
select the mobile devices with good learning contributions
and small latency/energy consumption at early training stages,
which may drain up their energy. Thus, at the late stages of
FL training, those depleted mobile devices are not able to
participate. Their absence will slow down FL convergence,
in particular for non-i.i.d. cases, and thus increase overall
latency/energy consumption.

B. Further Performance Improvement by the REWA Local
Computing Policy

Under the proposed REAFL PS utility function framework,
we further evaluate the potential performance improvement
brought by REWA local computing policy in terms of overall
latency and overall energy consumption for FL training.

As shown in Table III, compared with REAFL (i.e., the
best PS design in last subsection), when FL training reaches
the target accuracy, REWAFL reduces around 35.0%, 5.6%,
7.6% and 30.0% latency for learning tasks CNN@MNIST,
CNN@CIFAR10, LSTM@Shakespeare and CNN@HAR, and
36.5%, 11.4%, 12.9% and 19.2% energy consumption. Dif-
ferent from REAFL’s fixed local computing policy, the per-
formance improvement comes from REWAFL’s REWA local
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TABLE III
Summary of REWAFL’ Performance Improvement over REAFL and REAFL + LUPA

Task Type CV NLP HAR

Local Model CNN@MNIST CNN@CIFAR10 LSTM@Shakespeare CNN@HAR

Target Accuracy 91.0% 72.2% 50.3% 89.3%

Methods OL (h) OEC (kJ) OL (h) OEC (kJ) OL (h) OEC (kJ) OL (h) OEC (kJ)

REAFL 2.0 562.8 7.2 3613.6 11.8 4267.7 3.0 704.7
REAFL+LUPA 1.7 473.6 7.0 3503.7 11.4 4004.8 2.3 603.5

REWAFL 1.3 357.6 6.8 3203.2 10.9 3716.1 2.1 569.7

(a) (b)

Fig. 5: REWAFL’s staleness solution. (a) different initial
energy; (b) different tx. rates (CNN@MNIST).

computing policy, which increases global statistically utility,
latency utility, and local device’s energy utility, and helps
to speed up convergence and reduce overall latency/energy
consumption.

Compared with REAFL+LUPA, when FL model reaches
target accuracy, REWAFL reduces around 23.5%, 2.9%,
4.4% and 8.7% latency for learning tasks CNN@MNIST,
CNN@CIFAR10, LSTM@Shakespeare and CNN@HAR, and
24.5%, 8.6%, 7.2% and 5.6% energy consumption. Although
REAFL+LUPA employs the AdaH policy [41], its performance
is not as good as REWAFL because REAFL+LUPA’s local
computing policy fails to consider the impacts of devices’
heterogeneous wireless transmissions, and ignores the trade-
off between learning performance benefits/statistical utility and
the energy cost/energy utility of increasing H . Purely reducing
the number of communication rounds while keeping increasing
H without stopping criteria will inevitably increase the overall
latency/energy consumption. By contrast, REWAFL has aware-
ness of wireless transmission heterogeneity and develops an
energy utility aware stopping criterion for increasing H , and
exploit them to improve the latency/energy efficiency of FL
training over mobile devices.

C. REWAFL’s Staleness Analysis
To analyze REWAFL’s self-contained staleness solution,

we employ two types of mobile devices: Xiaomi 12S and
Honor 70, representing high-end and low-end mobile devices,
respectively. Figure 5 presents the changes of H with high-
end and low-end mobile devices, which shows the growth
frequency, increment of H and the final stopping value.
According to Eqn. (6), H increases only if the device is
selected, and the increment of H is determined by the wireless

aware local computing policy. Besides, the saturated value of
H is determined by Eqn. (7).

Figure 5(a) shows the changes of H for mobile devices
with different initial battery energy levels (i.e., high, medium
and low). Here, we configure the same transmission rate for
the same type of mobile devices, i.e., Xiaomi 12S with the
averaged 5G uplink transmission rate of 79.6 Mbps, and Honor
70 smartphones with the averaged 5G uplink transmission rate
of 45.0 Mbps. As shown in the figure, for the same type of
mobile devices, the H’s saturated values of the mobile devices
with high initial energy are larger than those of devices with
low initial energy. That is consistent with Eqn. (7) and the
energy utility aware stopping criterion analysis in Sec. IV-B2.
Moreover, as for different types of mobile devices with the
same/similar level of initial battery energy, H’ growth fre-
quency is high for high-end mobile devices (i.e., Xiaomi 12S)
at the beginning of the training process. It is because high-
end mobile devices have low energy consumption/latency,
leading to frequent selections of these mobile devices for
participation. However, in the later stages of training, the H

growth frequency of low-end mobile devices (i.e., Honor 70)
is higher than that of high-end mobile devices. Similar to
the analysis in Sec. IV-D, as the high-end mobile device is
consecutively selected, its H increases and PS utility keeps
decreasing until it is less than that of the low-end mobile
device. Then, the low-end mobile device will be selected to
participate in the FL training. The results demonstrate that
the proposed REWAFL addresses the staleness issue in a self-
contained manner.

Figure 5(b) presents the changes of H for mobile devices
with different wireless transmission rates. First, we have
similar observations as those in Fig. 5(a) for high-end and
low-end devices. Besides, for the same type of devices, high
transmission rate leads to a small H increment in each
communication round, and a high growth frequency of H in
the early stages of training. That is because REWAFL employs
a wireless aware local SGD computing strategy, which makes
mobile devices with higher transmission rate have a smaller
increase in H , so that its computing latency and energy
consumption can be reduced. Thus, the mobile devices with
higher transmission rate has a better chance to be selected,
which increases their growth frequency of H at the early
stages of training. However, the utility of devices with higher
transmission rate decreases as H increases. Once it falls below
the utility of mobile devices with lower transmission rate,
the mobile device with low transmission rate is then selected
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TABLE IV
Performance Evaluation under Data Heterogeneity.

Local Model CNN@MNIST

Data Heterog. � = 0 � = 0.8 � = 1

Target Accuracy 97.0% 91.0% 89.9%

Methods OL (h) OEC (kJ) DR (%) OL (h) OEC (kJ) DR (%) OL (h) OEC (kJ) DR (%)

Random 3.1 803.8 9.0 4.9 1137.5 7.0 5.0 1215.6 25.0
Oort 1.3 650.1 24.0 4.1 1230.3 46.0 5.0 1451.8 48.0

AutoFL 1.6 411.2 5.0 8.1 1069.5 37.0 8.7 1118.2 38.0
REWAFL 2.2 624.9 0.0 1.3 357.6 0.0 2.6 650.1 0.0

(a) (b)

Fig. 6: Performance comparison of staleness solutions in
different PS approaches (CNN@MNIST, Honor Play 6T, 5G-
0.64Mbps). (a) the number of selections, and (b) energy
consumption and residual energy.

to participate. Therefore, in the later stages of training, H

of the mobile devices with lower transmission rate grows
due to being selected. This is consistent with our analysis of
REWAFL’s wireless aware local computing policy in Sec. IV-B
and self-contained staleness solution in Sec. IV-D.

Then, we demonstrate the advantages of REWAFL’s stal-
eness solution by comparing the number of selections and
residual energy for the low-end mobile devices (i.e., Honor
Play 6T smartphones) with low transmission rates (i.e., aver-
aged 5G uplink transmission rate of 0.64Mbps) under different
PS designs. The results are shown in Fig. 6. Compared with
Oort and AutoFL, REWAFL selects a greater number of low-
end devices with higher initial energy, deliberately avoiding
devices with low initial energy. This selection strategy en-
hances the likelihood of selecting low-end devices without
exhausting their residual energy. It indicates that REWAFL can
address the staleness issue in a self-contained manner while
outperforming SOTA PS designs and/or their isolated staleness
solutions. Furthermore, this approach preserves the residual
energy of devices with low initial energy for future training
rounds. Such oversight in other strategies can result in the
early dropout of devices.

D. Sensitivity Analysis

To analyze REWAFL’s sensitivity to different parameter
settings, we further evaluate the performance of REWAFL
with different ↵ and � values. Figure 7 shows that REWAFL

outperforms its counterparts across different ↵ and � values.
As shown in Fig. 7(a), a larger ↵ makes the system focus
more on latency utility, which allows the global model to
reach the same learning performance in a smaller latency.
Correspondingly, a larger � makes the system focus more on
improving the energy utility, and allows the global model to
reach the same test accuracy with less energy consumption as
shown in Fig. 7(b). Besides, as shown in Fig. 7(c), a larger �
leaves more residual energy for the frequently selected high-
end devices (i.e., Xiaomi 12S) and less residual energy for the
infrequently selected low-end devices (i.e., Honor Play 6T),
which balances the energy consumption among participating
mobile devices. Figure 7 indicates that ↵ and � can serve as
scaling coefficients to associate/balance different utilities in
terms of accuracy, latency and energy efficiency.

E. Impacts of Data Heterogeneity

We further evaluate the performance of REWAFL with
different non-i.i.d levels of training data samples in
CNN@MNIST case. The results are also applicable to other
models and datasets. As shown in Table IV, REWAFL has
the best performance in terms of dropout ratio. For non-i.i.d.
cases (i.e., � = 0.8 and � = 1), REWAFL has a better
overall latency and overall energy consumption to reach the
target accuracy. For i.i.d. data distribution case (i.e., � = 0),
we find that REWAFL has similar performance to Oort in
terms of overall latency to reach the target accuracy, and
similar performance to AutoFL in terms of overall energy
consumption. The potential reason is that the impact of device
dropouts on convergence rate is not significant due to the
similar contribution of local data from different devices to the
global model. Unsurprisingly, even for i.i.d. case, REWAFL
can still maintain the lowest dropout ratio, which reserves
enough residual energy at mobile devices for their mandatory
operations while enjoying the global learning results. Besides,
we find that the FL system with non-i.i.d. data has a higher
latency, energy consumption and dropout ratio than that with
i.i.d. data to achieve the same accuracy goal.

VII. CONCLUSION

In this paper, we have developed a residual energy and
wireless aware PS design for efficient FL training over
mobile devices (REWAFL). We have observed that most
existing participation selection approaches are (i) unaware
of heterogeneous residual battery energy, and (ii) unaware
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(a) (b) (c)

Fig. 7: REWAFL’s learning performance and efficiency with different ↵ and � values (CNN@HAR, � = 0.8). (a) Test accuracy
v.s. training time, (b) Test accuracy v.s. energy consumption, and (c) Residual energy.

of heterogeneous wireless transmission rates among candi-
date/participating mobile devices. To address these challenges,
REWAFL introduces a novel PS utility function considering
statistical utility, global latency utility and local energy utility.
Under the proposed PS utility function framework, REWAFL
further provides a residual energy and wireless aware local
computing policy to improve FL efficiency. Moreover, RE-
WAFL buries the staleness solution into its utility function
and local computing policy development without incurring any
additional mechanisms. Extensive experimental results have
demonstrated the effectiveness of the proposed REWAFL, and
its efficiency superiority over peer PS designs under various
learning tasks, DNN models, datasets for FL training over
mobile devices.
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