

Development of Multiple Heartcutting Two-Dimensional Liquid Chromatography with Ion-Pairing Reversed-Phase Separations in Both Dimensions for Analysis of Impurities in Therapeutic Oligonucleotides

4

5 Dwight Stoll^{1*}, Maria Sylvester¹, Daniel Meston¹, Matt Sorensen², Todd D. Maloney²

6

7

8 (*) corresponding author

⁹ ¹Department of Chemistry, Gustavus Adolphus College, Saint Peter, Minnesota 56082, United States

²Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA

11 E-mail: dstoll@gustavus.edu. Tel: 507-933-0699.

12

13

14

15

16

17

18

10

22

22 **Highlights**

23 • 2D-LC separation of oligonucleotides using IPRP separations in both dimensions

24 • Elution conditions are systematically discovered through iterative retention modeling

25 • 2D-LC separations provide both the selectivity and sensitivity needed for impurity profiling

26 • Application to therapeutic siRNA single strands from solid phase oligonucleotide synthesis

27

28 **Abstract**

29 Oligonucleotides constitute an emerging and highly complex bioanalytical challenge and it is becoming
30 increasingly clear that ¹D methodologies are unable to fully resolve all possible impurities present in these
31 samples. 2D-LC therefore constitutes a perfect solution wherein, critical pairs can be sampled from a
32 steep gradient ¹D and separated in a shallower gradient ²D. Herein, we provide a facile 2D-LC method
33 development approach to quickly generate high selectivity gradients utilizing ion pairing reverse phase
34 (IPRP-IPRP). In particular we demonstrate how to iteratively generate a 12% gradient from two training
35 runs and then to utilize that data to predict retentions of analytes with a 2% gradient with retention
36 prediction errors as low as 3 and 11% respectively. This iterative method development workflow was
37 applied to impurity profiling down to 1:1000 for the full-length product and phosphorothioate modified
38 impurities. Additionally, we demonstrated the elucidation of critical pairs in complex crude
39 pharmaceutical oligonucleotide samples by applying tailored high selectivity gradients in the ²D. It was
40 found that the iterative retention modeling approach allows fast and facile 2D-LC method development
41 for complex oligonucleotide separations.

42 *Keywords: Method Development, Two-dimensional liquid chromatography, Ion pairing reverse phase,*
43 *oligonucleotides, impurity profiling*

44

45

46

47 **1. Introduction**

48 Therapeutic oligonucleotides (ONs) are emerging as a promising modality to treat a wide range of diseases
49 in a precise manner by targeting specific genes of interest. Small interfering RNA (siRNA) is a subset of
50 ON therapeutics composed of a double stranded RNA duplex with each strand typically 20 – 30 nucleotides
51 long. Measuring quality attributes of siRNA such as purity, potency, and sequence is challenging due to the
52 relatively large size, polyanionic nature, and large number of synthetic modifications [1]. Continuous
53 improvements in analytical capabilities used to characterize ONs will help support the growing therapeutic
54 market and ensure safe and efficacious medicine is delivered to patients.

55 Although formal regulatory guidelines are currently not defined for impurity reporting thresholds for
56 synthetic ONs, many investigators follow the levels (0.1-0.3%) proposed by Capaldi, et al. or the European
57 Pharmacopoeia (Ph. Eur.) substances for pharmaceutical use (2034) recommendation for synthetic peptides
58 [2]. Ion pairing-reversed phase (IP-RP) high performance liquid chromatography coupled with mass
59 spectrometry (HPLC-MS) is a powerful technique capable of determining many impurities with the
60 required sensitivity [3,4]. Although other techniques such as anion exchange [5] and hydrophilic interaction
61 liquid chromatography [6] have been reported and may be beneficial in certain areas, IP-RP is the most
62 common and arguably the highest resolving mode of LC for ONs [7]. IP-RP HPLC can often separate
63 common impurities such as deletion and truncation products (e.g., n-1, n-2), additions (e.g., n+1), minor
64 structural changes such as de-fluorination and oxidation (e.g., of phosphorothioate (PS) group to a
65 phosphodiester (PO) group), as well as major structural changes such as loss of GalNAc or lipid moieties.
66 Moreover, efficient online coupling with MS allows identification and sequencing of impurities and the full
67 length product [8,9].

68 A wide array of literature is available focused on the effects of different types of IP reagents [10,11], acid
69 modifiers [12,13], and column stationary phases [14–16] on ON separations and MS response. The method
70 of choice depends on the type of ON and desired application. For example, impurity profiling while
71 suppressing diastereomer separations due to phosphorothioate (PS) groups is possible using very
72 hydrophobic IP reagents for fully thiolated ONs or mildly hydrophobic IP reagents for partially thiolated
73 ONs such as siRNAs. Small IP reagents are used when diastereomer separation is desired or with non-
74 thiolated ONs where diastereomers are not present. When using mass spectrometric (MS) detection, use of
75 fluorinated alcohols greatly improves MS response without sacrificing chromatographic resolution.

76 Despite these improvements, co-elution of structurally related impurities is still challenging. Interest in two-
77 dimensional HPLC (2D-LC) has grown due to the potential for improved resolving power of closely related
78 ON impurities, and for coupling separations involving non-volatile buffers with MS detection [17]. Recent
79 applications include HILIC x IPRP [18], SAX x HILIC, IP-RP x HILIC [19], SEC x IP-RP[20], IP-RP x
80 SAX [21], as well as IPRP x IPRP with different IPs [22] and unique stationary phases such as terephthalate
81 [23] and carbamate-based stationary phases [24]. Studies of the complementarity of different separation
82 modes for oligonucleotides have also been published recently which could aid in further 2D-LC
83 implementations [21,23,25]. However, the use of 2D-LC as means to sample and transfer co-eluting
84 analytes into a separation that uses more selective/shallower gradient is also a promising tool to enhance
85 selectivity without impacting the ¹D separation.

86 As such, the goal of this work was to develop an IP-RP x IP-RP 2D-LC-MS workflow for impurity profiling
87 of ONs. We have chosen IP-RP in both dimensions as the technique offers the highest resolving power for
88 most ON impurities and is MS compatible. Although counterintuitive based on traditional principles of
89 complementarity in 2D-LC separations [17], we took advantage of the high sensitivity of ONs to mobile
90 phase composition [26] to implement unique gradient conditions in each dimension of the 2D system.
91 Separation of a wide range of impurities was obtained using a broad gradient range (e.g., 1-20 %B) in the
92 first dimension, followed by implementation of a very narrow gradient in the second dimension with
93 selective comprehensive sampling to separate closely related impurities that co-elute in the first dimension.
94 The work expands on our previous workflow recently implemented for therapeutic peptides [27], where ²D
95 gradient elution conditions are developed iteratively, ultimately enabling highly selective, shallow gradient
96 slopes to separate the impurities of interest. The model is first developed with impurity standards
97 representative of typical ONs, and then further demonstrated using therapeutic siRNA ONs made using
98 solid-phase oligonucleotide synthesis.

99

100 2. Materials and methods

101 2.1 Chemicals and reagents

102 Oligonucleotide standards (LR sequences) were purchased from Biosynthesis Inc. (Lewisville, TX). Crude
103 single stranded oligonucleotides used in Figs. 5 and 6 were synthesized by Eli Lilly and Company using
104 solid-phase oligonucleotide synthesis (Indianapolis, IN, USA). Ultra-pure water (18.2 MΩ) was prepared
105 in-house using a Milli-Q Advantage A10 water purification system (Z00Q0V0T0) purchased from
106 Millipore (Burlington, MA). Dibutylamine (DBA, >99%) and dimethylbutylamine (DMBA) were
107 purchased from TCI (Portland, OR, USA). Acetonitrile (ACN, HPLC-grade), diisopropylethylamine

108 (DIPEA), and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, $\geq 99\%$) were purchased from Sigma-Aldrich (St.
109 Louis, MO, USA).

110

111 *2.2 Sample preparation*

112 Table 1 lists all ONs and their respective sequences and modifications. All samples were prepared by
113 reconstituting lyophilized material to 1 mg/mL in MilliQ water and stored at -20 °C until use. Analytical
114 samples were prepared by dilution to desired concentrations using MilliQ water.

115

116 *2.3 Mobile Phase Preparation*

117 For the work shown in Figs. 1, 3, and 4, solvent A was prepared by dissolving 0.65g of DBA and 2.61 mL
118 of HFIP in 1 L of Milli-Q water (MQ), which produced a solution with formal concentrations of 10 mM
119 and 50 mM for DBA and HFIP, respectively. For the work shown in Fig. 5, solvent A containing 10 mM
120 DIPEA and 100 mM HFIP was prepared by dissolving 435 μ L of DIPEA and 2.63 mL of HFIP in 250 mL
121 of MQ water. For the work shown in Fig. 6, solvent A containing 5 mM DMBA and 50 mM HFIP was
122 prepared by dissolving 169 μ L of DMBA and 1.31 mL of HFIP in 250 mL of MQ water.

123 Solvent B consisted of 30/70 (v/v) ACN/Water (Figs 1, 3, 4) or pure ACN (Figs 5 and 6).

124 *2.4 Instrumentation and columns*

125 Separations were carried out using two different 2D-LC systems, both from Agilent Technologies.

126 *System A (Figs. 1, 3, and 4)*

127 All separations were performed on an Agilent Technologies 1290 Infinity UHPLC system (Waldbronn,
128 Germany). The first dimension consisted of an autosampler with a flow through needle configuration
129 (G4226A), a binary pump with a 35 μ L Jet Weaver mixer (G4220A), a thermostated column compartment
130 (G1316C), and a DAD detector (G7117B) with a 10 mm Max-Light flow cell. The second dimension
131 included a binary pump with a 35 μ L Jet Weaver mixer, a thermostated column compartment, and a DAD
132 UV absorbance detector (G4212A) with a 10 mm Max-Light flow cell. A multiple heartcutting interface
133 (ASM valve + 2 x Deck valves) (5067-6585) was used to collect fractions of ^1D effluent and transfer them
134 to the second dimension for further separation. The interface was equipped with 80 μ L loops (5067-5426)
135 and an 85 mm ASM bypass capillary (1 μ L; ASM factor - 5). A pressure relief kit (G4212-68001) was used
136 between the outlet of the ^1D detector and the interface. Instrument control and data acquisition was

137 performed using MassHunter (Agilent Technologies, Version 11.0, Build 11.0.203) or ChemStation
138 Method and Run Control software (Agilent Technologies, Rev.C.01.10[201]). Agilent Qualitative Analysis
139 (Version 10.0, Build 10.0.10305.0) and ChemStation Data Analysis software (Agilent Technologies,
140 Rev.C.01.10[201]) software were used for data analysis.

141 *System B (Figs. 5 and 6)*

142 All separations were performed on an Agilent Technologies 1290 Infinity II UHPLC system. The first
143 dimension consisted of an autosampler with a flow through needle configuration (G7129B), a flexible pump
144 (G7104A), a thermostated column compartment (G7116B), and a VWD UV absorbance detector (G7114B)
145 with a 2 μ L microflow cell (G1314-60187). A multiple heartcutting interface (ASM valve + 2 x Deck
146 valves) (5067-6585) was used for modulation between dimensions. The interface was equipped with 40 μ L
147 loops (G4242-64000) and a 340 mm ASM bypass capillary (PN 5500-1302; 3.8 μ L; ASM factor – 2). A
148 pressure relief kit (G4212-68001) was used between the outlet of the 1 D detector and the modulation
149 interface. The second dimension consisted of a 1290 high speed pump (G7120A) with a 35 μ L Jet Weaver
150 mixer, a thermostated column compartment, and a DAD UV absorbance detector (G7117A) with a 10 mm,
151 0.6 μ L flow cell. A pressure release kit was used between the outlet of the 2 D DAD detector and the inlet
152 of the mass spectrometer. The mass spectrometer was a 6545XT AdvanceBio quadrupole time-of-flight
153 system (Agilent Technologies, Santa Clara, CA, USA). Instrument control and data acquisition was
154 performed using MassHunter 11.0 (Agilent Technologies). Data analysis was performed using MassHunter
155 qualitative analysis 10.0 (Agilent Technologies)

156

157 *Columns*

158 The separations shown in Figs. 1, 3, and 4 used InfinityLab Poroshell HPH-C18 columns in both
159 dimensions. The 1 D column was 50 mm x 2.1 mm i.d. (2.7 μ m), and the 2 D column was 150 mm x 2.1 mm
160 i.d. (2.7 μ m).

161 The separations shown in Figs. 5 and 6 used Acquity BEH C18 (Waters Corporation, Milford, MA, USA)
162 columns in both dimensions. The 1 D column was a 50 x 2.1 mm i.d. (1.7 μ m) and the 2 D column was a 100
163 x 2.1 mm i.d. (1.7 μ m).

164

165 *2.5 Chromatographic Conditions*

166 The 2D-LC instrument control software was configured with a 10 μ L loop, even though 80 μ L physical
167 loops were installed. This enabled the use of very narrow cuts in multiple heartcutting mode, when desired
168 for development purposes. The ASM valve was plumbed in the First-In / Last-Out (FILO) configuration.

169 General method parameters are summarized in table 2, specific gradient conditions are included in the
170 respective figure captions.

171 *2.6 Mass spectrometric conditions*

172 Online mass spectrometry measurements were performed using a 6545XT AdvanceBio quadrupole time-
173 of-flight mass spectrometer (Agilent Technologies) operated in negative ionization mode. The capillary
174 voltage was 4 kV, nozzle voltage was 1 kV, gas and sheath gas temperatures were 325 C, drying gas was
175 10 L/min, nebulizer was 28 psi, sheath gas flow of 10 L/min, fragmentor was 110 V, skimmer was 65 V,
176 and mass range was 500-3000 m/z collected at 2 Hz.

177

178 **3. Results and Discussion**

179 *3.1 1D separations are inadequate for the complete resolution of some oligonucleotide samples*

180 When working with ON mixtures containing truncated or elongated (i.e., shortmers or longmers) sequences
181 that are variants of the full-length product (FLP), gradient elution methods are necessary to ensure both
182 adequate retention of all possible truncations and elution of longer variants within a reasonable analysis
183 time [28]. Figure 1 shows the separation of a mixture of the FLP LR1 (23-mer) and several shortmers.
184 Additionally, several variants with different degrees of phosphorothioation (PS) (0, 1 and 2; LR8, LR10
185 and LR3, respectively) are included. These impurities were selected as they are common impurities
186 generated during solid phase oligonucleotide synthesis. When considering the separation of a mixture of
187 these impurities, a relatively steep gradient (23.5-98.5 %B) was employed to ensure a short analysis time
188 while maintaining resolution of the shortmers; however, the PS variants co-elute with the main FLP peak
189 under these conditions. If a substantially shallower gradient were used to provide better resolution of the
190 PS variants, either the shortmers would not be sufficiently retained due to a gradient that starts too high in
191 ACN, or the analysis time would be unreasonably long due to the high retention of the FLP in a mobile
192 phase that is sufficiently weak to retain the shortmers. Herein lies the challenge of separating complex ON
193 mixtures with a single chromatographic method - we must prioritize either resolution or analysis time. With
194 current technology it is impossible to both accommodate a heterogenous mix of ONs in terms of length,
195 and resolve closely related species, with a single method in a reasonable analysis time. In this paper we
196 demonstrate that heartcutting 2D-LC provides a practical and approachable solution to this problem. A first-

197 dimension separation with a relatively steep gradient is used to provide a coarse separation of the sample,
198 while the second dimension is used to provide the additional separation needed to resolve closely-related
199 critical pairs that co-elute in the first dimension.

200

201 **3.2 Iterative retention modeling for discovery of 2 D elution conditions**

202 In previous work we developed a workflow for the systematic discovery of 2 D elution conditions needed to
203 resolve closely-related species in 2D-LC separations of peptides [27]. Neue has shown that ONs are more
204 sensitive to changing solvent composition than peptides and proteins (indicated by large S values) [29].
205 More recently, Guillarme and coworkers have demonstrated the high sensitivity of ONs to increasing
206 solvent strength [26], suggesting that method development based on pure trial and error is particularly
207 unforgiving. The work shown in the current paper builds upon this previously established foundation. The
208 workflow is summarized schematically in Figure 2. It is an iterative approach that relies on the well-
209 established linear solvent strength (LSS) theory of gradient elution [30,31] to predict elution conditions for
210 shallow gradients that both provide the best possible change of resolving closely-related species, and have
211 the right compositions needed to place the peaks of interest roughly in the middle of the 2 D separation
212 window. Readers interested in a complete description of the development of the workflow and its
213 limitations are again referred to our prior work [27]; here only the critical aspects relevant to the current
214 work are repeated.

215 Ultimately, we want to know what starting (ϕ_i) and ending (ϕ_f) compositions are needed in a shallow (e.g.,
216 1-2% B change during the gradient) 2 D gradient. Our approach is to begin with two generic model training
217 methods that cover the full range of mobile phase composition (5-95% B in this case) but use different
218 gradient times to produce different gradient steepness parameters. Using the observed retention times (t_r)
219 under these conditions, we calculate effective gradient elution retention factors (k_{eff}) as shown in Eq. 1,
220 where t_m and t_{ex} are the column dead time and the extra-column time, respectively.

$$221 \quad k_{eff} = \frac{t_r - t_m}{t_m - t_{ex}} \quad (1)$$

222 LSS theory asserts that the relationship between the logarithm of retention factor and mobile phase
223 composition is linear, and that they are linked between the analyte/condition-specific factors k_w and S , as
224 shown in Eq. 2, where k_w is the hypothetical retention factor in 100% weak solvent (solvent A in this case)
225 and S is related to the dependence of the analyte on organic concentration in the mobile phase (calculated
226 by measuring the $\ln(k)$ under increasing organic fraction).

227 $\ln(k) = \ln(k_w) - S \cdot \phi$ (2)

228 With two k_{eff} values in hand following the first two training methods, we can solve for the analyte-specific
 229 k_w and S values using the gradient LSS equation shown in Eq. 3, where t_d is the gradient delay time, k_i is
 230 the retention factor of the analyte in the initial mobile phase composition used in the gradient (ϕ_i).

231
$$k_{eff} = \frac{t_d}{t_m} + \frac{1}{b} \ln \left(\frac{b \cdot k_i \left(t_m - \frac{t_d}{k_i} \right)}{t_m} + 1 \right)$$
 (3)

232 The gradient slope b is given by Eq. 4, where t_g is the gradient time and $\Delta\phi$ is the change in mobile phase
 233 composition during the gradient (0-1 scale).

234
$$b = \frac{S \cdot \Delta\phi \cdot t_m}{t_g}$$
 (4)

235

236 The gradients used in our application of the workflow for LR1 and related impurities, along with the
 237 corresponding chromatograms that resulted from their use, are shown in Fig. 3, and the quantitative results
 238 are shown in Table 3. The ²D gradients used in the first iteration of the workflow are shown in panels A
 239 and B. The resulting retention times for LR1, and the k_w and S values determined using Eqs. 1-4 are shown
 240 in rows 1-3 of Table 2. Using these k_w and S values, elution conditions were then predicted that would place
 241 the LR1 peak at a retention time of 9 min. relative to the start of the ²D separation. Using the k_w and S values
 242 from the training runs, the first iteration yielded gradient parameters with a starting %B of 65.4% for a
 243 gradient with a change in composition of 12% B. This gradient is shown in Fig. 3C (blue trace), along with
 244 the ²D chromatogram where we see that the LR1 peak is quite close to the target retention time (3%
 245 prediction error). Under these conditions, the LR3 variant is quite nicely resolved from the FLP (LR1).

246 If additional ²D resolution is desired, one can further decrease the gradient slope. In a second iteration of
 247 the workflow, the k_w and S values for LR1 were refined by fitting the retention data from the gradients
 248 shown in Figs. 3B/C instead of 3A/B. These refined k_w and S values were then used to predict the elution
 249 conditions needed to again place the LR1 peak at 9 min. relative to the start of the ²D separation, but with
 250 a much shallower gradient with a change in composition of just 2% B. The resulting gradient, starting at
 251 68.3% B, and the corresponding chromatogram are shown in Fig. 3D. Here again we see that the LR1 peak
 252 appears quite close to the target (11% prediction error), and the resolution of LR3 from LR1 is improved

253 relative to the result in Fig. 3C. There is an additional peak that appears between LR1 and LR3; this is a
254 different impurity that is present in the LR1 sample. In cases where more accurate retention prediction is
255 necessary, additional iterations can be performed to refine the retention model.

256

257 **3.3 Iterative method development for phosphorothioate pharmaceuticals allows for high sensitivity**
258 **impurity profiling**

259 In the context of impurity profiling, it is important not only to be able to resolve impurities from the main
260 product, but also to be able to detect and report impurity species at levels around 0.1% relative to the main
261 component. To evaluate the sensitivity of the method developed using our workflow as discussed above, a
262 series of samples was analyzed with LR3 spiked into LR1 at different levels. Here the concentration of LR1
263 was always 1 mg/mL, and LR3 was spiked in at concentrations corresponding to 0.1, 0.3, 1.0, 3.0, and 10%
264 (w/w) of LR1. The resulting chromatograms are shown in Fig. 4, with results in panel A shown for samples
265 containing only LR3 at different levels, and results in panel B for samples with LR3 spiked into LR1. These
266 results show that sufficient signal is obtained for concentration levels down to ~ 0.1 – 0.3% relative to the
267 main peak. This detection sensitivity is suitable for current recommendations from the industry which
268 suggests reporting and identification thresholds of 0.1% and 0.5%.

269

270 *3.4 IPRP-IPRP allows for targeted heartcut method development allowing MS identification of ON*
271 *impurities in crude pharmaceutical samples*

272

273 Following synthesis of oligonucleotides, there are many impurities ranging from large structural variants
274 such as truncations and additions - which results in > 300 Da mass differences - to highly chemically similar
275 impurities such as defluorinations, oxidations, or depurinations [2]. This large range in the types of
276 impurities poses a difficult analytical challenge, and often requires implementing multiple separation modes
277 or parameters to adequately characterize. Figure 5A exemplifies the type of sample that can be expected
278 with crude ON synthesis; it is immediately apparent that a broader range of %B (2-13%) allows for the
279 retention of all components in a reasonable amount of time (~10 minutes). However, the main peak has a
280 co-eluting shoulder that cannot be resolved in this case. As such, heartcutting 2D-LC allows for the isolation
281 of this critical pair into the second dimension wherein the method was iteratively modified from 7-12.5 %B
282 (0.55 %B/min) (Figure 5B) to 9.6-10.1 %B (0.05 %B/min) to improve selectivity (Fig. 5C). The two

283 components are now well-separated and the impurity was identified *via* mass spectrometry as a -16 Da
284 species, indicative of an oxidation of a phosphorothioate group (PS->PO).

285

286 In a second example (Fig. 6), a crude sample of a 36-mer therapeutic oligonucleotide produced by solid
287 phase synthesis was analyzed. It is again apparent that there are a number of shortmer impurities that are
288 easily separated but require a broad gradient range to accommodate the large chemical and size differences
289 of these impurities. Moreover, as the oligonucleotide length increases, the difficulty in separating n-1 or
290 n+1 impurities also increases [32]. A 36-mer oligonucleotide is on the upper size range for siRNA, which
291 are typically ~20 nucleotides long for each strand. The ¹D chromatogram becomes quite crowded around
292 the main peak at 16.5 min (Fig. 6A). Selective comprehensive sampling of the ¹D separation provides a
293 means to characterize all of the co-eluting impurities by splitting the peak into fractions—in this way we
294 can vastly improve the relative concentrations of the FLP and the impurities present in some of the fractions.
295 Goyon and Zhang have employed similar methodologies to elucidate the antisense ONs which co-elute near
296 the main peak [19], however, the authors utilized HILIC in the second dimension as a desalting step to
297 improve MS detection. Focusing on cuts 1, 2, and 3, we see a number of species now resolved or partially
298 resolved (Fig. 6B) that were previously co-eluting in the first dimension. Extracted ion chromatograms
299 (EICs) were generated from cut 2 and are plotted in Fig. 6C. These EICs illustrate the benefit of second
300 dimension separations in combination with mass spectrometry for in-depth impurity characterization of
301 chemically-similar species, including a PS->PO oxidation, defluorination, and n-1 and n-2 truncations. The
302 defluorination impurity in particular benefits from chromatographic resolution due to the large isotopic
303 overlap of a Δ 2 Da mass difference relative to the FLP when working with large molecules (~13 kDa for
304 the 36-mer in this case), which is apparent in the EIC.

305

306 4. Concluding remarks

307 With the increasing popularity of ONs in the developmental pipeline of most major pharmaceutical
308 companies it is becoming obvious that the separation of ON mixtures containing both very different
309 sequence variants (e.g., shortmers/longmers) and very similar variants (e.g., phosphorothioate variants) using
310 a single LC method is challenging. As such, 2D-LC provides an effective solution to preserve both
311 separation performance and experimental throughput, as the co-eluting species in the ¹D are selectively
312 taken for further separation in the ²D. That said, method development in 2D-LC is still somewhat of an art.
313 Herein, we have applied a workflow for the systematic determination of ²D elution conditions that provide
314 the best chance of resolving closely-related variants that coelute in the first dimension (i.e., shallow

315 gradients, or isocratic conditions). As a starting point we use IPRP conditions and the same stationary phase
316 in both dimensions. In this case, the additional resolution realized in the second dimension is simply due to
317 the use of shallower gradients. We find that a LSS model built from two or three training experiments for
318 the second dimension is sufficiently accurate to guide choice of ²D elution conditions. The resulting 2D
319 methods not only provide good resolution of closely-related species, but are also quite sensitive; using UV
320 detection, low concentration impurities can be detected down to 0.1% of the FLP (where the FLP is in the
321 linear range of a UV detector). Utility of IPRP-IPRP methods have been demonstrated for several
322 therapeutic ON materials. Crude single stranded siRNA ONs from solid phase synthesis were characterized
323 using the IPRP-IPRP 2D-LC-MS iterative modeling approach. Several new impurities were resolved and
324 identified that co-eluted in the first dimension. Reduction in co-elution allows for better implementation of
325 MS detection as complex ON samples tend to contain many structurally related impurities with minimal
326 mass differences leading to difficulties in the interpretation of MS spectra as well as considerable ion
327 suppression effects from charge competition. As such, with the implementation of easily approachable
328 method development tools for 2D-LC it is expected that many labs can take advantage of this methodology
329 to spur the adoption of 2D-LC into the QC and QA lab environments.

330

331 **Acknowledgments**

332 Data shown in Figures 1, 3, 4, and S1 were collected using instrumentation and columns provided by
333 Agilent Technologies. D.S. was supported by a grant from the United States National Science Foundation
334 (CHE2003734).

335

336 **Conflict of interest**

337 The authors declare no competing interests

338 **Author contributions**

339 **Daniel Meston:** Draft manuscript preparation, analysis and interpretation of results, review & editing;

340 **Maria Sylvester:** Data collection, draft manuscript preparation, analysis and interpretation of results;

341 **Matt Sorensen:** Sample production, draft manuscript preparation, analysis and interpretation of results;

342 **Todd Maloney:** Sample production, draft manuscript preparation, analysis and interpretation of results;

343 **Dwight Stoll:** funding acquisition, draft manuscript preparation, analysis and interpretation of results,

344 review & editing.

346 **References**

[1] S.W. Baertschi, K.M. Alsante, R.A. Reed, eds., *Pharmaceutical Stress Testing: Predicting Drug Degradation*, Second Edition, 0 ed., CRC Press, 2016. <https://doi.org/10.3109/9781439801802>.

[2] D. Capaldi, A. Teasdale, S. Henry, N. Akhtar, C. den Besten, S. Gao-Sheridan, M. Kretschmer, N. Sharpe, B. Andrews, B. Burn, J. Foy, *Impurities in Oligonucleotide Drug Substances and Drug Products*, *Nucleic Acid Therapeutics*. 27 (2017) 309–322. <https://doi.org/10.1089/nat.2017.0691>.

[3] A. Goyon, Y. Fan, K. Zhang, *Analysis of oligonucleotides by liquid chromatography*, in: *Liquid Chromatography*, Elsevier, 2023: pp. 357–380. <https://doi.org/10.1016/B978-0-323-99969-4.00027-9>.

[4] N.M. El Zahar, N. Magdy, A.M. El-Kosasy, M.G. Bartlett, *Chromatographic approaches for the characterization and quality control of therapeutic oligonucleotide impurities*, *Biomedical Chromatography*. 32 (2018) e4088. <https://doi.org/10.1002/bmc.4088>.

[5] K. Cook, J. Thayer, *Advantages of ion-exchange chromatography for oligonucleotide analysis*, *Bioanalysis*. 3 (2011) 1109–1120. <https://doi.org/10.4155/bio.11.66>.

[6] P.A. Lobue, M. Jora, B. Addepalli, P.A. Limbach, *Oligonucleotide analysis by hydrophilic interaction liquid chromatography-mass spectrometry in the absence of ion-pair reagents*, *Journal of Chromatography A*. 1595 (2019) 39–48. <https://doi.org/10.1016/j.chroma.2019.02.016>.

[7] T. Fornstedt, M. Enmark, *Separation of therapeutic oligonucleotides using ion-pair reversed-phase chromatography based on fundamental separation science*, *Journal of Chromatography Open*. 3 (2023) 100079. <https://doi.org/10.1016/j.jcoa.2023.100079>.

[8] J.M. Sutton, G.J. Guimaraes, V. Annavarapu, W.D. Van Dongen, M.G. Bartlett, *Current State of Oligonucleotide Characterization Using Liquid Chromatography–Mass Spectrometry: Insight into Critical Issues*, *J. Am. Soc. Mass Spectrom.* 31 (2020) 1775–1782. <https://doi.org/10.1021/jasms.0c00179>.

[9] T. Kenderdine, D. Fabris, *The multifaceted roles of mass spectrometric analysis in nucleic acids drug discovery and development*, *Mass Spectrometry Reviews*. 42 (2023) 1332–1357. <https://doi.org/10.1002/mas.21766>.

[10] Z. Kadlecová, K. Kalíková, E. Tesařová, M. Gilar, *Phosphorothioate oligonucleotides separation in ion-pairing reversed-phase liquid chromatography: Effect of ion-pairing system*, *Journal of Chromatography A*. 1676 (2022) 463201. <https://doi.org/10.1016/j.chroma.2022.463201>.

[11] A.C. McGinnis, E.C. Grubb, M.G. Bartlett, *Systematic optimization of ion-pairing agents and hexafluoroisopropanol for enhanced electrospray ionization mass spectrometry of oligonucleotides: Effect of ion-pairing agents on ESI of oligonucleotides*, *Rapid Commun. Mass Spectrom.* 27 (2013) 2655–2664. <https://doi.org/10.1002/rcm.6733>.

[12] B. Basiri, H. Van Hattum, W.D. Van Dongen, M.M. Murph, M.G. Bartlett, *The Role of Fluorinated Alcohols as Mobile Phase Modifiers for LC-MS Analysis of Oligonucleotides*, *J. Am. Soc. Mass Spectrom.* 28 (2017) 190–199. <https://doi.org/10.1007/s13361-016-1500-3>.

[13] R. Liu, Y. Ruan, Z. Liu, L. Gong, *The role of fluoroalcohols as counter anions for ion-pairing reversed-phase liquid chromatography/high-resolution electrospray ionization mass spectrometry analysis of oligonucleotides*, *Rapid Commun. Mass Spectrom.* 33 (2019) 697–709. <https://doi.org/10.1002/rcm.8386>.

[14] J. Bagge, M. Enmark, M. Leško, F. Limé, T. Fornstedt, J. Samuelsson, *Impact of stationary-phase pore size on chromatographic performance using oligonucleotide separation as a model*, *Journal of Chromatography A*. 1634 (2020) 461653. <https://doi.org/10.1016/j.chroma.2020.461653>.

[15] S. Studzińska, K. Krzemińska, M. Szumski, B. Buszewski, *Application of a cholesterol stationary phase in the analysis of phosphorothioate oligonucleotides by means of ion pair chromatography*

392 coupled with tandem mass spectrometry, *Talanta*. 154 (2016) 270–277.
393 <https://doi.org/10.1016/j.talanta.2016.03.082>.

394 [16] S. Studzińska, L. Pietrzak, B. Buszewski, The Effects of Stationary Phases on Retention and
395 Selectivity of Oligonucleotides in IP-RP-HPLC, *Chromatographia*. 77 (2014) 1589–1596.
396 <https://doi.org/10.1007/s10337-014-2766-x>.

397 [17] D.R. Stoll, P.W. Carr, eds., *Multi-dimensional liquid chromatography: principles, practice, and*
398 *applications*, CRC PRESS, Boca Raton, FL, 2023.

399 [18] Q. Li, F. Luyen, J. Wang, H. Li, G. Xu, P. Sandra, Comprehensive hydrophilic interaction and ion-
400 pair reversed-phase liquid chromatography for analysis of di- to deca-oligonucleotides, *Journal of*
401 *Chromatography A*. 1255 (2012) 237–243. <https://doi.org/10.1016/j.chroma.2011.11.062>.

402 [19] A. Goyon, K. Zhang, Characterization of Antisense Oligonucleotide Impurities by Ion-Pairing
403 Reversed-Phase and Anion Exchange Chromatography Coupled to Hydrophilic Interaction Liquid
404 Chromatography/Mass Spectrometry Using a Versatile Two-Dimensional Liquid Chromatography
405 Setup, *Analytical Chemistry*. 92 (2020) 5944–5951. <https://doi.org/10.1021/acs.analchem.0c00114>.

406 [20] S.G. Roussis, I. Cedillo, C. Rentel, Two-dimensional liquid chromatography-mass spectrometry for
407 the characterization of modified oligonucleotide impurities, *Analytical Biochemistry*. 556 (2018)
408 45–52. <https://doi.org/10.1016/j.ab.2018.06.019>.

409 [21] C. Vanhinsbergh, E.C. Hook, N. Oxby, M.J. Dickman, Optimization of orthogonal separations for
410 the analysis of oligonucleotides using 2D-LC, *Journal of Chromatography B*. (2023) 123812.
411 <https://doi.org/10.1016/j.jchromb.2023.123812>.

412 [22] B. Koshel, R. Birdsall, W. Chen, Two-dimensional liquid chromatography coupled to mass
413 spectrometry for impurity analysis of dye-conjugated oligonucleotides, *Journal of Chromatography*
414 *B: Analytical Technologies in the Biomedical and Life Sciences*. 1137 (2020).
415 <https://doi.org/10.1016/j.jchromb.2019.121906>.

416 [23] F. Li, S. Chen, S. Studzińska, M. Lämmerhofer, Polybutylene terephthalate-based stationary phase
417 for ion-pair-free reversed-phase liquid chromatography of small interfering RNA. Part 2: Use for
418 selective comprehensive two-dimensional liquid chromatography, *Journal of Chromatography A*.
419 1701 (2023) 464069. <https://doi.org/10.1016/j.chroma.2023.464069>.

420 [24] F. Li, M. Lämmerhofer, Impurity profiling of siRNA by two-dimensional liquid chromatography-
421 mass spectrometry with quinine carbamate anion-exchanger and ion-pair reversed-phase
422 chromatography, *Journal of Chromatography A*. 1643 (2021) 462065.
423 <https://doi.org/10.1016/j.chroma.2021.462065>.

424 [25] M.J. Sorensen, M.J. Paulines, T.D. Maloney, Evaluating orthogonality between ion-pair reversed
425 phase, anion exchange, and hydrophilic interaction liquid chromatography for the separation of
426 synthetic oligonucleotides, *Journal of Chromatography A*. 1705 (2023) 464184.
427 <https://doi.org/10.1016/j.chroma.2023.464184>.

428 [26] H. Lardeux, S. Fekete, M. Lauber, V. D'Atri, D. Guillarme, High-Throughput Chromatographic
429 Separation of Oligonucleotides: A Proof of Concept Using Ultra-Short Columns, *Anal. Chem.*
430 (2023) acs.analchem.3c01934. <https://doi.org/10.1021/acs.analchem.3c01934>.

431 [27] D.R. Stoll, M. Sylvester, M.R. Euerby, S.M.C. Buckenmaier, P. Petersson, A Strategy for assessing
432 peak purity of pharmaceutical peptides in reversed-phase chromatography methods using two-
433 dimensional liquid chromatography coupled to mass spectrometry. Part II: Development of second-
434 dimension gradient conditions, *Journal of Chromatography A*. 1693 (2023) 463873.
435 <https://doi.org/10.1016/j.chroma.2023.463873>.

436 [28] M. Enmark, J. Samuelsson, T. Fornstedt, Development of a unified gradient theory for ion-pair
437 chromatography using oligonucleotide separations as a model case, *Journal of Chromatography A*.
438 1691 (2023) 463823. <https://doi.org/10.1016/j.chroma.2023.463823>.

439 [29] M. Gilar, U.D. Neue, Peak capacity in gradient reversed-phase liquid chromatography of
440 biopolymers, *Journal of Chromatography A*. 1169 (2007) 139–150.
441 <https://doi.org/10.1016/j.chroma.2007.09.005>.

442 [30] L.R. Snyder, J.W. Dolan, High-Performance Gradient Elution, 1st ed., John Wiley & Sons, Ltd,
443 Hoboken, 2007. <https://doi.org/10.1002/0470055529>.

444 [31] A. Vaast, E. Tyteca, G. Desmet, P.J. Schoenmakers, S. Eeltink, Gradient-elution parameters in
445 capillary liquid chromatography for high-speed separations of peptides and intact proteins, *Journal*
446 of *Chromatography A*. 1355 (2014) 149–157. <https://doi.org/10.1016/j.chroma.2014.06.010>.

447 [32] M. Donegan, J.M. Nguyen, M. Gilar, Effect of ion-pairing reagent hydrophobicity on liquid
448 chromatography and mass spectrometry analysis of oligonucleotides, *Journal of Chromatography A*.
449 1666 (2022) 462860. <https://doi.org/10.1016/j.chroma.2022.462860>.

450

451

452 **Figure Captions**

453 **Figure 1.** 1D IPRP separation of FLP LR1 and several shortmers and PS variants (LRs 3, 8, 10, 12, 13,
454 14) in water. The concentrations of LR1 and each of the variants were 1 and 0.1 μ g/mL, respectively.
455 Solvent gradient elution conditions were 23.5-98.5-100-100-23.5-23.5 %B from 0.0 - 6.0 - 6.01 - 6.5 – 7.0
456 – 8.0 min.

457 **Figure 2.** General workflow for iterative ²D gradient method development. Reprinted with permission from
458 [27].

459 **Figure 3.** Iterative modeling approach. The concentrations of LR1 and LR3 were 1 and 0.1 mg/mL,
460 respectively. First dimension solvent gradient elution conditions were 23.5 - 98.5 – 100 – 100 - 23.5 - 23.5
461 %B from 0 - 6 - 6.01 - 6.5 - 6.51 - 8 min. Second dimension solvent gradient conditions were 5 - 95 – 100
462 – 100 - 5 - 5 %B from 0.0 - 10.0 - 10.01 - 11 – 12.0 – 15.0 min for training run A and the same gradient
463 composition from 0.0 - 15.0 - 15.01 - 16 – 17.0 – 20.0 min for training run B. Subsequent shallower gradient
464 conditions are outlined in Table 2.

465 **Figure 4.** Detection of a low-level impurity (LR3) in the presence of FLP at 1 mg/mL. A) Concentration
466 series for LR3 only ranging from 1:1000 (LR3:LR1) (dark blue) to 1:10 (black); other concentrations are
467 1:300 (green), 1:100 (red), and 1:30 (blue). B) LR3 spiked into LR1 (1 mg/mL) at the same concentrations
468 as in A. First dimension solvent gradient elution conditions were 23.5 - 98.5 – 100 – 100 - 23.5 - 23.5 %B
469 from 0 - 6 - 6.01 - 6.5 - 6.51 - 8 min. Second dimension solvent gradient elution conditions were 5 - 68.3 -
470 70.3 – 100 – 100 - 5 - 5 %B from 0 - 0.25 - 10.25 - 10.26 - 11.25 - 11.5 - 13.5 min.

471 **Figure 5:** Crude oligonucleotide critical pair elucidation via heart cut 2D-LC. Full retention of all
472 components was achieved with an 11% gradient, critical pair of co-eluted peaks sampled via UV-based
473 heartcutting. First dimension gradient elution conditions were 2-13-2-2 %B from 0-7-7.01-10 min. (A).
474 First iteration of second dimension separation conditions using 7-12.5% B over 6 min which partially

475 resolved co-eluting species (B). Final iteration of second dimension separation using 9.6-10.1% B over 10
476 min providing good resolution of co-eluting impurity with identification by high resolution mass
477 spectrometry (C). Second dimension gradient elution conditions were 1-7-12.5-1-1% B from 0-0.5-6.5-
478 6.51-7 min for the first iteration and 1-9.6-10.1-1-1 from 0-0.5-10.5-10.51-11 min for the final iteration.

479 **Figure 6:** Crude oligonucleotide impurity profiling via multiple heart cutting 2D-LC-MS. Full retention of
480 all components possible with a 12% gradient, with selective comprehensive sampling of 5 cuts across the
481 main peak (A). Second dimension UV chromatograms of cuts 1, 2, and 3 illustrating resolution
482 improvements implementing a gradient span of 11.5 – 13.5% B following iterative modeling. (B). Extracted
483 ion chromatograms from cut 2 allowing identification of impurities. The defluorination impurity is a 2 Da
484 difference leading to overlap of the isotopic distribution with the main peak, thus the main peak is observed
485 in the EIC (C). First dimension gradient elution conditions were 3-15-3-3% B from 0-18-18.01-20 min.
486 Second dimension gradient elution conditions were 1-11.5-13.5-11.5-11.5% B from 0-0.5-10.5-10.51-11
487 min.