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ABSTRACT

Decarbonization of transportation requires new deep learning mod-
els to enable improved engine control. Research and development
must also be done in a computationally efficient manner, so of
interest is to understand the applicability of high performance com-
puting resources to be used for training machine learning models
and to compare both the power consumption and temporal per-
formance of new A64FX architectures to x86 architectures. This
work details the development of a Multilayer Perceptron (MLP)
model using the Fujitsu A64FX processor for predicting in-cylinder
pressure of internal combustion engines, a critical performance
parameter to develop pathways to decarbonized engine controls. A
scaling analysis of up to 160 compute nodes demonstrates contin-
uously improving performance with increasing number of nodes.
A comparison of performance and power consumption between
A64FX and Intel’s x86 Sapphire Rapids (SPR) is also included and
shows that up to 30 parallel nodes the power efficiency of A64FX
is lower, but that its energy consumption is constant as opposed to
SPR which increases linearly as node count increases.
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1 INTRODUCTION

The transportation sector is responsible for approximately 22.7%
of the global carbon dioxide (CO;) emissions [8], largely stemming
from fossil fuel use in internal combustion engines (ICEs). Alterna-
tive fuels and advanced combustion modes can reduce greenhouse
gas (GHG) emissions by improve efficiency and reducing harmful
emissions, but are hampered by implementation challenges due
to increased system control volatility with existing engine control
strategies.

Therefore, new strategies need to be explored, including ones
based on Reinforcement Learning, which can greatly benefit from a
pre-training process using a model of the engine. There are two ap-
proaches for modeling engines: physics-based models [1, 6, 11, 15]
which rely on numerical representations of physical processes such
that model fidelity ranges and directly increased computational
cost; or data-driven models which can be trained using data col-
lected from a physical engine [13]. Specifically, this work will focus
on machine learning (ML) data-driven engine models. The benefits
include (1) that the same model can be applied to any engine for
which data is available, thus greatly reducing the model tuning time
and eliminating the requirement of knowledge of the system, and
(2) predictions are very quick to make once the model is trained,
meaning it can generate data at a very fast rate. In addition, if the
model is properly tuned and the quality of the data is good, the
accuracy of predictions can be very high as demonstrated in [13].

In this manuscript is a simple Multilayer Perceptron (MLP) model
is developed that takes as input a tuple, of length four, with crank-
angle resolved values of (1) crank position and fuel injection event
(2) pressure (Prny), (3) duration (r), and (4) timing (Tyny), as well as
outputs a single pressure value. Model predictions are performed
for each of the 720 crank angle degrees (CAD) of rotation in a
four-stroke engine cycle. This pressure time-history referred to the
engine cycle pressure trace is the basis to calculate many cyclic
performance indicators. These derived performance indicators can
then be used as inputs to control systems in real time to adjust a set
of operating conditions for the subsequent cycle, and thus control
engine operation on a cycle-to-cycle basis.

Research and development of such new pathways to decarbonize
ICEs must also be done in an energy efficient manner. As such,
we will focus on the computational energy consumption in the
development of the deep learning model presented and computed



PEARC ’24, July 21-25, 2024, Providence, RI, USA

on the Ookami cluster [2, 3] located at Stony Brook University
(SBU) which contains A64FX processors developed by Fujitsu for
high performance and low power consumption [12]. Thus, this
manuscript will focus on understanding the inter-node scalability
in this chip architecture as well as power consumption compared
to x86 chips for advanced ICE control application.

2 SET-UP/METHODS

2.1 Engine and Dataset Description

Experimental validation data was collected on a single-cylinder
compression ignition research engine at the Advanced Combustion
and Energy Systems (ACES) laboratory of SBU. The engine was
operated with a single fuel injection event per cycle using research
grade No.2 diesel fuel in conventional compression ignition com-
bustion. More details are provided on the experimental set-up and
testing methodology are disclosed by Ristow Hadlich et al. [14].

The experimental matrix varied operating conditions correspond-
ing to Pyny, 7, and Tjn ;. Prnj was varied between 450 and 850 bar
in 100 bar increments, 7 was varied to reach fuel-air equivalence
ratios (¢) between 0.2 and 0.4 in steps of 0.05 and Tjn; was varied
between the knock limit and misfire limit, as permitted given the
values of the other variables. Knock phenomenon was defined as
pressure rise rates higher than 10 bar/CAD, and misfire was defined
by a coefficient of variation (COV), standard deviation divided by
the mean, of the net indicated mean effective pressure (IMEP;,)
exceeding 5%. IMEP,, and ¢ were determined using the standard
method disclosed in [7]. For each set of operating conditions de-
scribed above, 300 consecutive cycles were recorded. In total, the
dataset contains 28800 data points corresponding to 96 different
operating conditions. The data was further divided into train, valida-
tion, and test subsets containing 23100, 2700, and 3000 data points,
respectively. It is important to point out that all data points corre-
sponding to a set of operating conditions were grouped together
when dividing into the subsets, meaning that all the data corre-
sponding to a given combination of operating conditions belongs
exclusively to one of the data subsets.

2.2 HPC Infrastructure

The two SBU HPC clusters, Ookami & Seawulf, and the PyTorch
environments are discussed. Data parallelism was accomplished
using PyTorch’s Distributed Data Parallel (DDP) and mpi backend.
The Ookami cluster contains 174 1.8GHz A64FX-FX700 nodes,
each with 48 cores, 32GB of high bandwidth memory (HBM) and
512GB SSD. The chips (one per node) have four core memory groups
(CMGs) with 8GB HBM each, and thus four non-uniform memory
access (NUMA) regions. The communication between nodes is
accomplished via an HDR 200 Gbit/s Infiniband network configured
as a full fat tree. Additional details can be found in [3]. The PyTorch
environment (PyTorch v2.1.0) used for the A64FX runs was built
from source to accommodate for the mpi backend using the ARM
compiler v22.0, ARMPL v2022.0.1 and Open MPI version 4.1.2. This
choice of ARM compiler suite was chosen based on the results of
PyTorch performance on A64FX using different compilers reported
in [4]. Energy consumption was measured using the ipmi tool[9].
The Seawulf cluster contains approximately 23,000 cores dis-
tributed in over 400 compute nodes, 96 of which are Intel Sapphire
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Rapids (SPR). The SPR nodes contain two Intel Xeon Max 9468
CPUs with 48 cores each and operate at a base speed of 2.6 Giga-
hertz and 256 GB of DDR5 RAM + 128 GB of HBM2 RAM on a NDR
InfiniBand network. Similarly to the A64FX chips, the SPR chips,
operating in Flat mode with SNC4 clustering, have NUMA regions
with HBM, but each of these Intel chips have 8 NUMA regions
totalling 16 per node. The PyTorch environment (PyTorch v2.2.0)
used for the SPR runs in this paper was also built from source to
enable the mpi backend. Open MPI v5.0.2 [5], compiled with GCC
v13.2.0, was chosen as the PyTorch MPI implementation due to ease
of use and broad support. To optimize the PyTorch performance
on x86 architecture [4] and ensure compatibility and consistency
across the environment and dependent libraries, GCC v13.2.0 was
employed for all compilations. This choice also supports the full
implementation of C++17, a prerequisite for building PyTorch from
source. Additionally, the build utilized Intel MKL libraries to opti-
mize performance on the underlying hardware. The energy was
measured the same way as for Ookami using the ipmi tool.

3 RESULTS

The main focus of this work is to analyze the benefits and limitations
of the Ookami cluster A64FX architecture for use with ML models
(model selection introduced first) for advanced control strategies
relevant to decarbonizing ICEs. Two separate analyses were per-
formed to understand (1) how temporal performance scales with
increasing parallel computational resources and (2) how A64FX chip
architecture compares to x86 in terms of execution speed versus
power consumption.

3.1 Model Selection

An important step in developing a good model for a given appli-
cation is to find the hyperparameters that work best for the given
dataset. While the focus of this paper is not to evaluate how a model
performs in terms of its predictions (the subject of previous work
[13]), it is still of interest to find the best model for the application of
interest and to understand the computational intensity of the task
and how it can scale using HPC. Therefore, a hyperparameter opti-
mization (HPO) was performed using a simple random sampling
algorithm developed by the authors. While python libraries are
available that offer many more capabilities for such purposes, their
integration with PyTorch DDP was found problematic in terms of
guaranteeing reliable model execution. The HPO search was per-
formed using initial bounds based on previous knowledge, with the
bounds expanded after a few hundred iterations once the results
demonstrated the approximate optimal solution was outside cur-
rent bounds. Custom stopping criteria were implemented to stop
training of the model at either the point of model convergence or
divergences.

The hyperparameters that were varied throughout the search
were (1) the number of hidden layers, (2) the number of nodes
per hidden layer, (3) the learning rate of the Adam optimization
algorithm [10], (4) the non-linear activation function (chosen be-
tween ReLU, leaky ReLU and hyperbolic tangent (tanh)), and (5) the
dropout probability to provide a means of mitigating overfitting.
During the training of each model, the mean squared error (MSE)
was selected as the loss function chosen for the update to the model
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Table 1: Hyperparameter Optimization Summary

Parameter Name

Search Bounds

Optimal Combination

Number of hidden layers [1:8] 6
Nodes per hidden layer 24:10] 27
Learning rate [1077:107] (log scale) 0.000026
Activation function (ReLU, Leaky ReLU, tanh) tanh
Dropout probability int([0:5])*0.1 0

Table 2: Summary of models for scalability test

Model Number of Nodes per Number of
Labels Hidden Layers Hidden Layer Trainable Parameters
Small 2 16 336
Optimal 6 128 82,560
Large 8 1024 7,345,152
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Figure 1: Computational speedup as function of number of nodes for small, optimal, and large models.

weights. To evaluate the performance of the trained models and
rank between them, the mean absolute error (MAE) of the models,
based on the validation dataset, was used. The best model featured
an MAE of 0.105 bar (within 0.2%). Table 1 summarizes the bounds of
the search and the optimal combination of hyperparameter values.

3.2 Scalability Testing on Ookami

The process and results of the scalability testing performed on the
Ookami cluster are detailed below. Based on the determined HPO
bounds and results, three distinct models were used throughout
the scalability investigation. The smallest and largest models devel-
oped during the HPO, in terms of number of trainable parameters,
were selected as the representative edge case models requiring the
least and the most computational resources, respectively. The third
model selected is the optimal model found in the HPO, which lies
somewhere between the other two models based on number of train-
able parameters. Details on the number of layers, nodes per hidden
layer, and amount of trainable parameters are presented in Table
2. The learning rate, activation function, batch size, and dropout
probability for all models are 107°, tanh, 4, and 0, respectively.

To ensure run consistency, a singular python script was devel-
oped to handle all model testing. For each evaluation considered,
the same initial random state for both model and optimizer were

prescribed and an average was determined of the 30 model training
trials that each elapsed for a fixed 20 epochs. The only exceptions
to this are the runs of 1 through 90 nodes of the large model, for
which only featured 5 trials of 20 epochs due to the very extensive
training time required in lower node counts. The error bars pre-
sented in Figure 1 are determined from the COV at each point as a
percentage of the value. The same intra-node mapping was used
in all the runs, with 16 processes per node divided evenly between
the four NUMA regions of each node and two OpenMP threads
per process. The reasoning behind this distribution was to use as
many processes per node as possible, while ensuring that no issues
were encountered in the DDP data loader. The issue would arise
from having more processes spawned than there are examples in
the validation dataset, which contained 2700 examples. Using 16
processes per core allowed scaling up to 160 nodes without running
into this issue (2560 processes).

Figure 1 shows the results from the scalability test. The speedup
as a function of n nodes is the ratio of training time using a single
node to that of using n nodes. For each model, three curves are
shown: (1) the theoretical speedup (N resources = 1/N time), (2) the
actual measured speedup to train the model, and (3) the calculated
normalized speedup. This normalization was necessary because as
the number of total processes in a run was varied, the distributed
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Figure 2: Comparison of performance and energy consumption between A64FX and SPR.

data sampler in DDP would prune the training dataset to distribute
training examples equally among the processes (this also explains
why the actual speedup is larger than the theoretical limit at times).
The normalization factor used is simply a ratio of the number of
examples seen in the given run compared to that of a single node
(ratio is less than or equal to one).

In figure 1, it can be seen that for all models, increasing the
number of nodes improves performance in the entire range of
nodes explored which highlights how A64FX parallel computing is
beneficial. Critically, a more nuanced observation can be made that
larger models benefit more from the increased number of nodes.
For the small model, as the number of nodes increased the gap
between theoretical and normalized speedups grew which indicates
a decrease in computational efficiency. As the model size increased,
the gap became smaller with the large model showing the closest
performance to the theoretical limit in the highest node count.

3.3 Comparison of A64FX and Sapphire Rapids

This subsection provides a comparison in the power consumption
between A64FX and SPR nodes. The intra-node mapping was of
11 processes per NUMA with one thread each on A64FX (total of
44 processes per node) and 3 processes per NUMA with a single
thread each on SPR (total of 48 processes per node). These were
found to be the optimal mappings for each architecture. Figure 2
shows, for both A64FX and SPR nodes, the energy consumption as
a function of the number of cores (left) and the relative increase
in energy consumption as a function of computational speedup
(right), both the increase in energy and speedup calculated relative
to the values from a single A64FX node. The model used for this
analysis was the optimal model trained for 20 epochs, the values
reported being an average runtime and total energy consumption
of 30 runs. It shows the energy consumption of A64FX remains
constant with increasing number of nodes, while the consumption
of the SPR nodes increases linearly as node count increases.

4 CONCLUSIONS

The findings of this work can be summarized by the following
statements. (1) The training of models in this application greatly
benefit from parallelizing the workload between multiple nodes,
and using the hardware from the Ookami cluster the inter-node
communication was not a limiting factor in scaling up the number
of nodes up to 160. (2) The energy efficiency (run-time vs energy

consumption) of the SPR nodes is higher in the range presented
here, but worth noting energy consumption of A64FX remains
constant while SPR increases linearly with increasing node count.
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