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ABSTRACT

Decarbonization of transportation requires new deep learning mod-

els to enable improved engine control. Research and development

must also be done in a computationally e�cient manner, so of

interest is to understand the applicability of high performance com-

puting resources to be used for training machine learning models

and to compare both the power consumption and temporal per-

formance of new A64FX architectures to x86 architectures. This

work details the development of a Multilayer Perceptron (MLP)

model using the Fujitsu A64FX processor for predicting in-cylinder

pressure of internal combustion engines, a critical performance

parameter to develop pathways to decarbonized engine controls. A

scaling analysis of up to 160 compute nodes demonstrates contin-

uously improving performance with increasing number of nodes.

A comparison of performance and power consumption between

A64FX and Intel’s x86 Sapphire Rapids (SPR) is also included and

shows that up to 30 parallel nodes the power e�ciency of A64FX

is lower, but that its energy consumption is constant as opposed to

SPR which increases linearly as node count increases.
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1 INTRODUCTION

The transportation sector is responsible for approximately 22.7%

of the global carbon dioxide (ÿċ2) emissions [8], largely stemming

from fossil fuel use in internal combustion engines (ICEs). Alterna-

tive fuels and advanced combustion modes can reduce greenhouse

gas (GHG) emissions by improve e�ciency and reducing harmful

emissions, but are hampered by implementation challenges due

to increased system control volatility with existing engine control

strategies.

Therefore, new strategies need to be explored, including ones

based on Reinforcement Learning, which can greatly bene�t from a

pre-training process using a model of the engine. There are two ap-

proaches for modeling engines: physics-based models [1, 6, 11, 15]

which rely on numerical representations of physical processes such

that model �delity ranges and directly increased computational

cost; or data-driven models which can be trained using data col-

lected from a physical engine [13]. Speci�cally, this work will focus

on machine learning (ML) data-driven engine models. The bene�ts

include (1) that the same model can be applied to any engine for

which data is available, thus greatly reducing the model tuning time

and eliminating the requirement of knowledge of the system, and

(2) predictions are very quick to make once the model is trained,

meaning it can generate data at a very fast rate. In addition, if the

model is properly tuned and the quality of the data is good, the

accuracy of predictions can be very high as demonstrated in [13].

In this manuscript is a simpleMultilayer Perceptron (MLP) model

is developed that takes as input a tuple, of length four, with crank-

angle resolved values of (1) crank position and fuel injection event

(2) pressure (ČąĊ Ć ), (3) duration (ă ), and (4) timing (ĐąĊ Ć ), as well as

outputs a single pressure value. Model predictions are performed

for each of the 720 crank angle degrees (CAD) of rotation in a

four-stroke engine cycle. This pressure time-history referred to the

engine cycle pressure trace is the basis to calculate many cyclic

performance indicators. These derived performance indicators can

then be used as inputs to control systems in real time to adjust a set

of operating conditions for the subsequent cycle, and thus control

engine operation on a cycle-to-cycle basis.

Research and development of such new pathways to decarbonize

ICEs must also be done in an energy e�cient manner. As such,

we will focus on the computational energy consumption in the

development of the deep learning model presented and computed
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on the Ookami cluster [2, 3] located at Stony Brook University

(SBU) which contains A64FX processors developed by Fujitsu for

high performance and low power consumption [12]. Thus, this

manuscript will focus on understanding the inter-node scalability

in this chip architecture as well as power consumption compared

to x86 chips for advanced ICE control application.

2 SET-UP/METHODS

2.1 Engine and Dataset Description

Experimental validation data was collected on a single-cylinder

compression ignition research engine at the Advanced Combustion

and Energy Systems (ACES) laboratory of SBU. The engine was

operated with a single fuel injection event per cycle using research

grade No.2 diesel fuel in conventional compression ignition com-

bustion. More details are provided on the experimental set-up and

testing methodology are disclosed by Ristow Hadlich et al. [14].

The experimental matrix varied operating conditions correspond-

ing to ČąĊ Ć , ă , and ĐąĊ Ć . ČąĊ Ć was varied between 450 and 850 bar

in 100 bar increments, ă was varied to reach fuel-air equivalence

ratios (č) between 0.2 and 0.4 in steps of 0.05 and ĐąĊ Ć was varied

between the knock limit and mis�re limit, as permitted given the

values of the other variables. Knock phenomenon was de�ned as

pressure rise rates higher than 10 bar/CAD, and mis�re was de�ned

by a coe�cient of variation (COV), standard deviation divided by

the mean, of the net indicated mean e�ective pressure (ąĉāČĤ)

exceeding 5%. ąĉāČĤ and č were determined using the standard

method disclosed in [7]. For each set of operating conditions de-

scribed above, 300 consecutive cycles were recorded. In total, the

dataset contains 28800 data points corresponding to 96 di�erent

operating conditions. The data was further divided into train, valida-

tion, and test subsets containing 23100, 2700, and 3000 data points,

respectively. It is important to point out that all data points corre-

sponding to a set of operating conditions were grouped together

when dividing into the subsets, meaning that all the data corre-

sponding to a given combination of operating conditions belongs

exclusively to one of the data subsets.

2.2 HPC Infrastructure

The two SBU HPC clusters, Ookami & Seawulf, and the PyTorch

environments are discussed. Data parallelism was accomplished

using PyTorch’s Distributed Data Parallel (DDP) andģĦğ backend.

The Ookami cluster contains 174 1.8GHz A64FX-FX700 nodes,

each with 48 cores, 32GB of high bandwidth memory (HBM) and

512GB SSD. The chips (one per node) have four core memory groups

(CMGs) with 8GB HBM each, and thus four non-uniform memory

access (NUMA) regions. The communication between nodes is

accomplished via an HDR 200 Gbit/s In�niband network con�gured

as a full fat tree. Additional details can be found in [3]. The PyTorch

environment (PyTorch v2.1.0) used for the A64FX runs was built

from source to accommodate for theģĦğ backend using the ARM

compiler v22.0, ARMPL v2022.0.1 and Open MPI version 4.1.2. This

choice of ARM compiler suite was chosen based on the results of

PyTorch performance on A64FX using di�erent compilers reported

in [4]. Energy consumption was measured using the ipmi tool[9].

The Seawulf cluster contains approximately 23,000 cores dis-

tributed in over 400 compute nodes, 96 of which are Intel Sapphire

Rapids (SPR). The SPR nodes contain two Intel Xeon Max 9468

CPUs with 48 cores each and operate at a base speed of 2.6 Giga-

hertz and 256 GB of DDR5 RAM + 128 GB of HBM2 RAM on a NDR

In�niBand network. Similarly to the A64FX chips, the SPR chips,

operating in Flat mode with SNC4 clustering, have NUMA regions

with HBM, but each of these Intel chips have 8 NUMA regions

totalling 16 per node. The PyTorch environment (PyTorch v2.2.0)

used for the SPR runs in this paper was also built from source to

enable theģĦğ backend. Open MPI v5.0.2 [5], compiled with GCC

v13.2.0, was chosen as the PyTorch MPI implementation due to ease

of use and broad support. To optimize the PyTorch performance

on x86 architecture [4] and ensure compatibility and consistency

across the environment and dependent libraries, GCC v13.2.0 was

employed for all compilations. This choice also supports the full

implementation of C++17, a prerequisite for building PyTorch from

source. Additionally, the build utilized Intel MKL libraries to opti-

mize performance on the underlying hardware. The energy was

measured the same way as for Ookami using the ipmi tool.

3 RESULTS

Themain focus of this work is to analyze the bene�ts and limitations

of the Ookami cluster A64FX architecture for use with ML models

(model selection introduced �rst) for advanced control strategies

relevant to decarbonizing ICEs. Two separate analyses were per-

formed to understand (1) how temporal performance scales with

increasing parallel computational resources and (2) howA64FX chip

architecture compares to x86 in terms of execution speed versus

power consumption.

3.1 Model Selection

An important step in developing a good model for a given appli-

cation is to �nd the hyperparameters that work best for the given

dataset. While the focus of this paper is not to evaluate how a model

performs in terms of its predictions (the subject of previous work

[13]), it is still of interest to �nd the best model for the application of

interest and to understand the computational intensity of the task

and how it can scale using HPC. Therefore, a hyperparameter opti-

mization (HPO) was performed using a simple random sampling

algorithm developed by the authors. While python libraries are

available that o�er many more capabilities for such purposes, their

integration with PyTorch DDP was found problematic in terms of

guaranteeing reliable model execution. The HPO search was per-

formed using initial bounds based on previous knowledge, with the

bounds expanded after a few hundred iterations once the results

demonstrated the approximate optimal solution was outside cur-

rent bounds. Custom stopping criteria were implemented to stop

training of the model at either the point of model convergence or

divergences.

The hyperparameters that were varied throughout the search

were (1) the number of hidden layers, (2) the number of nodes

per hidden layer, (3) the learning rate of the Adam optimization

algorithm [10], (4) the non-linear activation function (chosen be-

tween ReLU, leaky ReLU and hyperbolic tangent (ĪėĤℎ)), and (5) the

dropout probability to provide a means of mitigating over�tting.

During the training of each model, the mean squared error (MSE)

was selected as the loss function chosen for the update to the model
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Table 1: Hyperparameter Optimization Summary

Parameter Name Search Bounds Optimal Combination

Number of hidden layers [1:8] 6

Nodes per hidden layer 2
[4:10]

2
7

Learning rate [10−7:10−4] (log scale) 0.000026

Activation function (ReLU, Leaky ReLU, ĪėĤℎ) ĪėĤℎ

Dropout probability int([0:5])*0.1 0

Table 2: Summary of models for scalability test

Model Number of Nodes per Number of

Labels Hidden Layers Hidden Layer Trainable Parameters

Small 2 16 336

Optimal 6 128 82,560

Large 8 1024 7,345,152

Figure 1: Computational speedup as function of number of nodes for small, optimal, and large models.

weights. To evaluate the performance of the trained models and

rank between them, the mean absolute error (MAE) of the models,

based on the validation dataset, was used. The best model featured

anMAE of 0.105 bar (within 0.2%). Table 1 summarizes the bounds of

the search and the optimal combination of hyperparameter values.

3.2 Scalability Testing on Ookami

The process and results of the scalability testing performed on the

Ookami cluster are detailed below. Based on the determined HPO

bounds and results, three distinct models were used throughout

the scalability investigation. The smallest and largest models devel-

oped during the HPO, in terms of number of trainable parameters,

were selected as the representative edge case models requiring the

least and the most computational resources, respectively. The third

model selected is the optimal model found in the HPO, which lies

somewhere between the other twomodels based on number of train-

able parameters. Details on the number of layers, nodes per hidden

layer, and amount of trainable parameters are presented in Table

2. The learning rate, activation function, batch size, and dropout

probability for all models are 10−6, ĪėĤℎ, 4, and 0, respectively.

To ensure run consistency, a singular python script was devel-

oped to handle all model testing. For each evaluation considered,

the same initial random state for both model and optimizer were

prescribed and an average was determined of the 30 model training

trials that each elapsed for a �xed 20 epochs. The only exceptions

to this are the runs of 1 through 90 nodes of the large model, for

which only featured 5 trials of 20 epochs due to the very extensive

training time required in lower node counts. The error bars pre-

sented in Figure 1 are determined from the COV at each point as a

percentage of the value. The same intra-node mapping was used

in all the runs, with 16 processes per node divided evenly between

the four NUMA regions of each node and two OpenMP threads

per process. The reasoning behind this distribution was to use as

many processes per node as possible, while ensuring that no issues

were encountered in the DDP data loader. The issue would arise

from having more processes spawned than there are examples in

the validation dataset, which contained 2700 examples. Using 16

processes per core allowed scaling up to 160 nodes without running

into this issue (2560 processes).

Figure 1 shows the results from the scalability test. The speedup

as a function of Ĥ nodes is the ratio of training time using a single

node to that of using Ĥ nodes. For each model, three curves are

shown: (1) the theoretical speedup (Ċ resources = 1/Ċ time), (2) the

actual measured speedup to train the model, and (3) the calculated

normalized speedup. This normalization was necessary because as

the number of total processes in a run was varied, the distributed
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Figure 2: Comparison of performance and energy consumption between A64FX and SPR.

data sampler in DDP would prune the training dataset to distribute

training examples equally among the processes (this also explains

why the actual speedup is larger than the theoretical limit at times).

The normalization factor used is simply a ratio of the number of

examples seen in the given run compared to that of a single node

(ratio is less than or equal to one).

In �gure 1, it can be seen that for all models, increasing the

number of nodes improves performance in the entire range of

nodes explored which highlights how A64FX parallel computing is

bene�cial. Critically, a more nuanced observation can be made that

larger models bene�t more from the increased number of nodes.

For the small model, as the number of nodes increased the gap

between theoretical and normalized speedups grew which indicates

a decrease in computational e�ciency. As the model size increased,

the gap became smaller with the large model showing the closest

performance to the theoretical limit in the highest node count.

3.3 Comparison of A64FX and Sapphire Rapids

This subsection provides a comparison in the power consumption

between A64FX and SPR nodes. The intra-node mapping was of

11 processes per NUMA with one thread each on A64FX (total of

44 processes per node) and 3 processes per NUMA with a single

thread each on SPR (total of 48 processes per node). These were

found to be the optimal mappings for each architecture. Figure 2

shows, for both A64FX and SPR nodes, the energy consumption as

a function of the number of cores (left) and the relative increase

in energy consumption as a function of computational speedup

(right), both the increase in energy and speedup calculated relative

to the values from a single A64FX node. The model used for this

analysis was the optimal model trained for 20 epochs, the values

reported being an average runtime and total energy consumption

of 30 runs. It shows the energy consumption of A64FX remains

constant with increasing number of nodes, while the consumption

of the SPR nodes increases linearly as node count increases.

4 CONCLUSIONS

The �ndings of this work can be summarized by the following

statements. (1) The training of models in this application greatly

bene�t from parallelizing the workload between multiple nodes,

and using the hardware from the Ookami cluster the inter-node

communication was not a limiting factor in scaling up the number

of nodes up to 160. (2) The energy e�ciency (run-time vs energy

consumption) of the SPR nodes is higher in the range presented

here, but worth noting energy consumption of A64FX remains

constant while SPR increases linearly with increasing node count.
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