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ABSTRACT

Astrophysical simulations are computation, memory, and thus

energy intensive, thereby requiring new hardware advances for

progress. Stony Brook University recently expanded its comput-

ing cluster “SeaWulf” with an addition of 94 new nodes featuring

Intel Sapphire Rapids Xeon Max series CPUs. We present a per-

formance and power e�ciency study of this hardware performed

with FLASH: a multi-scale, multi-physics, adaptive mesh-based soft-

ware instrument. We extend this study to compare performance to

that of Stony Brook’s Ookami testbed which features ARM-based

A64FX-700 processors, and SeaWulf’s AMD EPYC Milan and Intel

Skylake nodes. Our application is a stellar explosion known as a

thermonuclear (Type Ia) supernova and for this 3D problem, FLASH

includes operators for hydrodynamics, gravity, and nuclear burn-

ing, in addition to routines for the material equation of state. We

perform a strong-scaling study with a 220 GB problem size to ex-

plore both single- and multi-node performance. Our study explores
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the performance of di�erent MPI mappings and the distribution

of processors across nodes. From these tests, we determined the

optimal con�guration to balance runtime and energy consumption

for our application.
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1 INTRODUCTION

Computational science advances in a host of ways, including im-

proved algorithms, techniques for handling burgeoning data, and
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improvements in computational hardware. Newer CPU architec-

tures take advantage of non-uniform memory access (NUMA) pat-

terns, advances in fabrication that allow for a higher per-node core

count and larger caches, and new types of memory such as high-

bandwidth memory (HBM). A signi�cant advantage for application

scientists is the ability to use these new features without substantial

rewriting of code. Two new architectures designed for this purpose

are Intel’s Xeon Max with HBM and Fujitsu’s A64FX. This study

explores the performance on these architectures of FLASH, an es-

tablished community code with a signi�cant and diverse user base

[4].

FLASH is a multi-scale, multi-physics simulation instrument

originally designed to model astrophysical reactive �ows and ex-

tended to study high-energy-density environments [1, 8]. FLASH

was created at the University of Chicago’s Flash Center, as part of

the DOE’s Accelerated Strategic Computing Initiative (ASCI) [17].

The ASCI program and its follow-on, the ASC program, allowed

development for advanced architectures as they came online at the

national laboratories, thereby establishing a long history of use

on state-of-the-art platforms. Accordingly, development has not

been optimized for any one architecture. A highlight from FLASH’s

evolution was achieving 238 GFlops on 6420 processors of ASCI

Red at the Los Alamos National Laboratory while performing adap-

tive mesh re�nement simulations of reactive �ow, which won the

SC2000 Gordon Bell prize [2].

Recently FLASH performed the largest-ever simulation of su-

personic turbulence on the SuperMUC system. The simulation

had an e�ective resolution of 10,0483 cells and ran on 65,536 Intel

Xeon E5-2680 (Sandy Bridge) cores for 50 million CPU hours [5].

FLASHwas also one of the initial applications for the testbed cluster

Ookami [10, 18] that provides open access to a testbed supercom-

puter featuring A64FX-700 Fujitsu compute nodes [3, 6]. Develop-

ment of FLASH for astrophysics continues [16], and a new code

FLASH-X, derived from FLASH with a completely new infrastruc-

ture, is being developed for performance portability across heteroge-

neous (CPU + GPU) architectures [13]. The present FLASH we used

for this study is parallelized primarily through MPI, however, and

is thus largely bound to CPU architectures. These demonstrated ca-

pabilities make FLASH a perfect candidate to investigate the merit

of new CPU architectures for real-world applications.

Our application is a 3D nuclear fusion driven explosion known

as a thermonuclear (Type Ia) supernova. A contemporary intro-

duction to these events and further details of our 2D simulation

can be found in Feldman et al. [7]. We use FLASH version 4.6.2

including the PARAMESH library to manage a block-structured

adaptive mesh [11, 12]. PARAMESH Morton-orders the blocks for

communication e�ciency and load balancing, and the maximum

numbers of blocks per processor, hence the maximum memory

used per processor, is set by the parameter maxblocks. Each 3D

block consists of 163 cells and guard cells, which contain copies

of data from 4 cells deep of the neighboring blocks. Each cell is

described by 29 cell-centered variables such as density, temperature,

and pressure. The data container for these variables is a single array

for the entire block, ordered by cell rather than by variable type.

This means that accessing the same variable over di�erent cells

introduces a memory stride of 29 �oating point numbers.

At each timestep, FLASH �rst calls the selected physics solvers,

which for our problem are a compute-heavy, local communica-

tion hydrodynamics solver; a global communication, multipole ex-

pansion approximate Poisson solver for gravity; and other related

solvers. FLASH then determines if the mesh needs to be re�ned

and, if so, adjusts the number of blocks, interpolates or copies the

cell data, and redistributes the blocks amongst the processors. Each

solver may perform di�erently on di�erent systems.

2 HARDWARE AND SOFTWARE SETUP

2.1 Hardware

We have access to two compute clusters: "SeaWulf", a CPU-based

cluster with nodes of di�erent architectures that has recently ex-

panded to include Intel’s Sapphire Rapids with HBM nodes (SPR),

and "Ookami", an A64FX testbed. The goal of this expansion and

testbed is to enable increased performance for codes with a tradi-

tional programmingmodel for CPUs. The features of nodes explored

in this study is shown in Table 1. Hyperthreading, where available,

is disabled.

For the SPR nodes, SeaWulf uses the HBM Flat Mode con�gura-

tion with sub-NUMA clustering SNC4. This means that the HBM

is used as additional RAM to the DDR5. The SPR nodes’ BIOS set-

ting have been customized to optimize energy e�ency: the CPU

frequency is continuously updated by the Dynamic Power Savings

Power Regulator with a Balanced Performance Energy/Performance

Bias and Energy E�cient Turbo enabled, and the Minimum Proces-

sor Idle Power Core C-state is set to C6.

2.2 Software

The software, compiler �ags, andMPI options used for each architec-

ture are shown below in Table 2. Unfortunately, Ookami no longer

has a license for the Fujitsu compiler and therefore it could not be

used; however, the Fujitsu compiler has been shown to provide supe-

rior performance for FLASH [6]. FLASH requires double-precision

reals and doubles, and single-precision integers — additional com-

piler �ags selecting those options were included. We use the HDF5

1.12.1 library for parallel I/O. Using the HBM on the SPR nodes

requires loading the numactl 2.0.16 module and adding numactl

–preferred-many=8-15 to the mpiexec command at runtime.

We selected a problem size for our supernova application that �t

within the DDR5 of an SPR node – ∼220 GB when using 96 nodes

on SPR+GCC – to be able to test single-node as well as multi-node

performance. We explored strong scaling of our application on all

systems (Section 2.3.2), and additional tests were then performed

based on their results including better understanding the SPR HBM

(Section 4) and spreading the problem across nodes (Section 5),

2.3 Data Collection

2.3.1 Runtime. Unless otherwise speci�ed, we run each simulation

7 times on the same (group of) nodes, and report the average and

standard deviation of the evolution runtime. The evolution runtime

excludes the initialization and �nalization of reading and writing

large checkpoint �les, so the architectures can be better compared

on the application performance rather than I/O. FLASH also collects

runtime data separately for each solver (e.g. hydro, gravity, nuclear

burning, grid re�nement). FLASH provides information about the
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Table 1: Features of the di�erent types of nodes used in this study. Information was gathered from lscpu and cpupower

frequency-info.

CPU Architecture
Launch

Date
Sockets

NUMA

Regions
Cores Freq. (GHz) RAM (GB) LLC (MB) In�niBand

Intel Xeon Max 9468

"Sapphire Rapids w/ HBM"
2023 2 8 96 0.80 - 3.5

256 DDR5

128 HBM

L3, 105

(48 cores)
NDR (400 Gb/s)

Intel Xeon Gold 6148

"Skylake"
2017 2 N/A 40 2.4 192 DDR4 L3, 27.5 FDR (56 Gb/s)

AMD EPYC 7643

"Milan"
2021 2 8 96 1.5, 1.9, 2.3 256 DDR4

L3, 32

(6 cores)
HDR (100 Gb/s)

Fujitsu A64FX-700 2019 1 4 48 1.8 32 HBM
L2, 8

(48 cores)
HDR (100 Gb/s)

Table 2: Compiler, MPI versions, and compiler �ags used for each architecture

Architecture Compiler MPI Additional Compiler Flags

SPR GCC 12.1 OpenMPI 4.1.5 -Ofast

-march=sapphirerapids -mtune=sapphirerapids

SPR Intel 2023.1 Intel MPI 2021.9.0 -Ofast -xsapphirerapids

Milan GCC 12.1 OpenMPI 4.1.4 -Ofast -march=native

Milan AOCC 4.0 OpenMPI 4.1.5 -Ofast -march=native

Skylake GCC 12.1 OpenMPI 4.1.4 -Ofast -march=skylake -mtune=skylake

Skylake Intel 2023.1 Intel MPI 2021.9.0 -Ofast -march=skylake -mtune=skylake

A64FX GCC 12.1 OpenMPI 4.1.4 -Ofast -mcpu=a64fx

maximum,minimum, and average runtime over all of the processors

running the application. Some processors take longer than others

to �nish due to MPI collectives, communication, or the complexity

of the calculations for a certain block (ie the Riemann solve might

take more iterations to converge for one block than for another).

Unless otherwise speci�ed, we report the maximum runtime along

with its standard deviation.

2.3.2 Power and Energy. On SeaWulf, power is sampled once per

minute by ipmitool. To obtain power and energy use measure-

ments, we calculated the average power for each of the 7 runs, and

multiplied by the corresponding runtime. When calculating the

average power, the �rst and last data points are excluded to remove

any warm-up/cool-down that the processor undergoes at the be-

ginning/end of each run. Including these skews the average power

values to be slightly lower. The average and standard deviation of

these 7 energy measurements are reported. On Ookami, power and

energy data is accessed through Open XDMoD [14]. The average

single-node power is reported in XDMoD for each job (in this case,

the average over 7 runs). As the CPU frequency is constant on

A64FX, the power draw is very stable, and doesn’t change much

between runs. To calculate the energy for a single run, we multiply

the average power for each job by the number of nodes used and

the runtime. As with SeaWulf, the average and standard deviation

of these 7 energy measurements are reported.

3 SCALING STUDY

This 3D problem contains 33,016 16 × 16 × 16 blocks, and is run

for 20 timesteps including 10 grid re�nements. At the end of the

run, the number of blocks has only modestly increased to 33,864,

allowing the memory use to remain nearly constant over the course

of the simulation. To keep the memory use consistent as the number

of processors changes, we allocate a total of 37,000 blocks, adjusting

maxblocks accordingly for all architectures but A64FX-700, which

required a maxblocks of 50. The number of timesteps was selected

so that a 96-core SPR run would take roughly 20 minutes, which

should provide enough data for a power measurement.

3.1 SeaWulf Cluster

Before revealing the strong-scaling abilities of all con�gurations, it

is worth noting a few caveats in our results. First, we were unable

to run our application on just 1 or 2 cores, so our strong-scaling

study starts at 4 cores. There are missing runs in both the Intel-SPR

runs as well as the Skylake runs due to miscellaneous errors such

as segmentation faults and issues computing our equation of state.

It should also be noted that Skylake nodes only contain 40-cores

unlike Milan and SPR’s 96-core nodes. This meant that our largest

Skylake run of 320 cores spanned 8 Skylake nodes.

Available in Figure 1 is the full strong-scaling study spanning

from 4 to 384 cores. We chose to extend this study to multiple

nodes to assess cross-node communication e�ciency. An immediate

takeaway from this study are that switching from GCC to the

native compiler for a given node did not always result in a speedup.

While Intel did show this speedup when switching to its native

compiler, AMD did not as evidenced by its native AOCC falling

well short of the times posted by running Milan with GCC. It is

also clear that scaling begins to considerably slow past the 192-core

mark for all con�gurations. Past this 192-core mark, the di�erence
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in scaling ability between SPR nodes and our older architectures

becomes most apparent as the older architectures demonstrate a

larger stagnation in decline.

Figure 1: Top panel: Strong-scaling studies on all con�gura-

tions available on SeaWulf from 4 to 96 cores (single node).

Missing data points are explained above. Bottom panel: The

same strong-scaling study but expanded out to 384 cores and

expressed as a log plot.

Figure 2 further showcases the di�erence in scaling ability be-

tween SPR and older architectures. In Figure 2, we look at how

long it takes for a single section of our simulation, called a cell, to

be fully computed. Speci�cally, we view the maximum cell CPU

time per timestep (MCCTT) as the simulation will not advance in

timestep until all cells are computed. Therefore, our slowest cell

computation on each timestep is most relevant to scaling ability.

The MCCTT is calculated by dividing the maximum evolution CPU

time by the number of timesteps and the average number of cells

(average number of blocks × 163 cells per block).

In perfect strong-scaling, the number of CPU hours, and there-

fore the MCCTT, remains constant over core number. The speedup

Figure 2: Per-cell per-timestep CPU time on all con�gura-

tions available on SeaWulf from 4 to 384 cores. Missing data

points are explained above.

in our strong-scaling purely derives from more of the cells being

simultaneously computed due to increased total core count. It then

follows that the MCCTT will only increase as the number of cores

are increased due to increased communication time. This is because

the core responsible for a given cell’s computation will need to

receive information from a greater number of cores (which will

begin to be further away in physical space) responsible for nearby

(in simulation space) cells. In expanding our computation to multi-

node, these communications also begin to face the issue of limited

inter-node communication bandwidth.

In the multi-node portion of Figure 2, it is clear that SPR faces

a much more benign slowdown in MCCTT than the older con-

�gurations. This is can be immediately traced back to the node-

interconnect "In�niBand" bandwidths being much larger on SPR.

Whereas SeaWulf’s Milan nodes possess a node-interconnect band-

width of 100 GB/s, the corresponding bandwidth on SPR is 400

GB/s.

However, in the single-node portion of Figure 2, we notice a

peculiar increase in theMCCTT of all con�gurations.We discovered

that, as we begin to utilize more cores on a given node, the CPU

frequency of that core decreases. This explains why the SPR plots

are only �at past the single-node mark. This issue is discussed more

at length in Section 5.

Another point of discussion is the HBM results. Barring Ookami

(discussed in Section 3.2), it was unsurprising that SPR, our newest,

most advanced architecture, using its native compiler with HBM

enabled recorded the fastest runtimes. Following close behind to

these runtimes are the higher core runs of SPR with GCC and HBM

enabled. However, the sub-single-node runs of this con�guration

posted unusually slow runtimes. We further explore this anomaly

in Section 4, which appears to be related to MPI process mapping.

With all con�gurations seeing a signi�cant decrease in scaling

ability past the 192-core mark, it is natural to ask what the bottle-

neck of our simulation is. Activating the HBM does not provide

the substantial speedup expected for memory-bound applications.

Additionally, Siegmann et al. [15] demonstrated that an SPR node’s
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DDR5 memory will become saturated when using only 24 cores.

Good scaling of our application continues past 24 cores per node,

meaning the saturation of DDR5 does not negatively impact run-

time and our application is not memory-bound. Investigating the

runtime breakdown of our application shows that FLASH spends

over 50% of the time within the compute-heavy hydro solver. How-

ever, looking closer, the majority of time in the hydro solver is spent

on local communication routines for �lling guardcells and ensur-

ing �ux conservation. Similarly, the solvers for nuclear burning,

�ame, and turbulence spend the vast majority of time also �lling

guardcells. This indicates that our application spends most of its

time in local MPI communication.

As expected in this strong-scaling study, we reach a point where

the decrease in runtime is no longer associated with a decrease

in energy consumption. As shown in Figure 3, this minimum in

energy consumption is reached for all con�gurations at 96 cores

or 192 cores. In utilizing multiple nodes, the additional energy cost

begins to outweigh the runtime improvement.

Figure 3: Energy consumption for strong-scaling study on

all con�gurations available on SeaWulf from 4 to 384 cores.

Missing data points are explained above.

Overall, this strong-scaling study outlines the ability for FLASH

to scale on a diverse set of con�gurations and outlines a clear region

of minimal energy consumption from the 1-2 node mark. Upon

reaching 3-4 nodes, it is clear that work-starvation is beginning to

take e�ect, showcasing a need for optimization in our supernova

problem and the FLASH code.

3.2 Ookami

The relatively small memory per node of A64FX meant that it took

some adjusting to �t our problem into memory. The con�guration

that workedwas to set maxblocks to 50 and run on 36 out of 48 cores

per node. This achieved a balance of keeping within the available

memory per node while keeping maxblocks large enough to have

room for grid re�nement. Our application required a minimum of

21 A64FX-700 nodes (756 cores), and we scaled this across most of

Ookami to 128 nodes (4608 cores).

Figure 4 shows the strong scaling of our application on A64FX-

700. A64FX-700 still shows good strong scaling after two doublings.

The performance results for SPR with the GCC rather than Intel

compiler are compared, in order to provide a more on par compar-

ison to A64FX-700 with the GCC compiler. A64FX-700 performs

almost as well as the 192 core (2 node) SPR+GCC with HBM run-

time when using 1152 cores (32 nodes). However, A64FX-700 does

10 times worse than any other architecture in the MCCTT metric.

This is because 10 times as many cores are needed on A64FX to

achieve the same performance as on other architectures.

Figure 4: Top panel: Strong-scaling study on A64FX-700. Re-

ported is the max evolution runtime. The two horizontal

gray lines show the runtime for SPR+GCC with HBM for

192 (top, dashed line) and 384 (bottom, dotted line) cores, the

points for which would be o� this scale. Bottom panel: The

maximum evolution per-cell per-timestep CPU time.

One potential reason for the increasingly worse MCCTT is as the

number of cores increases, more and more time is spent completing

the global communication patterns of the gravity solver, rather than

the compute-heavy and local communication patterns of the hydro

solver. This indicates that tapering of scaling on Ookami is indeed

driven by the increasing communication overhead.
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Figure 5 shows the energy consumption on Ookami. The power

e�ciency of A64FX-700 – only∼ 120W per node vs the∼ 950W per

node of a full-subscription SPR node – is overwhelmed by the sheer

number of nodes needed to �t our problem in memory. Looking

at points with comparable runtimes (192 cores of SPR and 1152

cores of A64FX-700, 384 cores of SPR and 2304 cores of A64FX-700),

Ookami’s A64FX-700 use 1.5×more energy than SeaWulf’s SPR for

our test application.

Figure 5: Energy consumption on A64FX-700 The two hori-

zontal gray lines show the energy consumption for SPR+GCC

with HBM for 192 (bottom, dashed line) and 384 (top, dotted

line) cores, the points for which would be o� this scale.

4 HBM VS DDR5

To better understand any bene�ts provided by HBM, we investi-

gated our test problem on two architectures with this feature: SPR

and A64FX. As discussed in Section 2.3.2, using HBM with the SPR

nodes produced some interesting behavior with the GCC compiler.

As shown in Figure 6, enabling HBM does not provide a signi�cant

speedup for our application, which agrees with our assessment

that FLASH is compute-heavy. When scaling out to multiple nodes,

which allows the whole problem to �t within the HBM, the run-

time di�erence between using only DDR5 and using HBM actually

narrows.

Enabling the –map-by numaMPI directive appears to have the

strongest e�ect on the e�ectiveness of HBM, when using fewer

than all available cores per node. On SPR with GCC+OpenMPI,

we see strange behavior without the directive when running on

less than 96 cores (per node), and not much change in runtime

when using full subscription. On A64FX, where HBM is the only

memory type, the standard deviation of the runtime, and therefore

the energy consumption, is much higher without the directive, as

shown in Figure 7. As we only run with 36 of the 48 cores on A64FX,

we also see a signi�cant decrease in runtime, and therefore energy

consumption, when using the directive. This indicates that there

is a substantial di�erence between the default mapping on these

systems and the NUMA mapping. At �rst, we thought this might

Figure 6: Top panel: Strong-scaling studies on SPR from 4

to 96 cores (single node). Missing data points are explained

above. Bottom panel: The same strong-scaling study but ex-

panded out to 384 cores and expressed as a log plot.

have to do with memory locale, as MPI collectives appear to take

longer without –map-by numa. However, the output of numactl

-s is identical in both cases, indicating that the MPI rank mappings

and the preferred memory are the same, which left us ba�ed. The

e�ects of –map-by numa with OpenMPI are still being investigated.

5 CORE-SPREAD ANALYSIS

Our �nding that decreasing the number of cores running on a

node decreased the MCCTT suggested conducting a study in which

we kept the same number of total cores constant but began to

spread them across multiple nodes. We dubbed this study the "Core-

spread Analysis" and �rst conducted this study on the SPR-GCC

con�guration because, at the time, this was our fastest con�guration

that worked reliably. This study was conducted with 192 cores

because that is where SPR-GCC most e�ciently runs our 220GB

problem. We then extended this study to SPR-GCC with HBM as
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Figure 7: Max evolution runtime (top panel) and energy

consumption (bottom panel) on A64FX-700 with and without

–map-by numa. The two dotted grey lines show the runtime for

SPR+GCC with HBM and the same directive for 192 (dashed

line) and 384 (dotted line) cores, the points for which would

be o� this scale.

well as adding a NUMA-mapping to the SPR-GCC run which we

have found to be the most e�cient MPI mapping.

Figure 8 presents our core-spread analysis leading to a few key

insights. First, it is important to note that choosing tomap byNUMA

region vs. using the default mapping causes a horizontal shift in

where the minimum occurs. With default mapping, the minimum

runtime occurs at 12 nodes. However, this minimum is shifted to

6 nodes when we map by NUMA on SPR+GCC with and without

HBM. This shift in minima is important as the more nodes we use

to spread our cores, the higher the energy consumption. It follows

that mapping by NUMA region not only allows us to achieve lower

runtimes, it also increases energy e�ciency and creates a smaller

node footprint in the optimal run con�guration.

Figure 8: Top panel: Core-spread analysis detailing a con-

stant 192 cores spread across a variable number of nodes.

Bottom panel: Energy consumption for core-spread analysis

at di�erent node counts.

During the core-spread analysis study, we also experimented

with other potential reasoning for why spreading our cores across

multiple nodes can create a decrease in runtime. We selected SPR,

Milan, and A64FX-700 for our tests. For each architecture we used

the GCC compiler, OpenMPI, and the –map-by numaMPI directive,

which as discussed in Section4 a�ects runtime when using not fully-

subscribed nodes. We kept maxblocks consistent because the same

number of total cores are used for each architecture. To measure

the CPU frequency, we polled cpupower frequency-info every

10 seconds for each CPU on a single node, over the course of all 7

runs. The average evolution runtime, average CPU frequency for

one node, average power for one run for one node, and average

total energy for one run are reported below in Table 3.

On SPR, idle cores run at 3.5 GHz, while on Milan, idle cores

decrease in frequency. For a fully-subscribed node, all cores more

or less run at the same frequency, but as the number of cores per
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Table 3: Core-spread analysis for di�erent architectures. Shown are the number of nodes and cores, the evolution runtime, the

measured average core frequency, the measured average power for one node, and the total energy, per run. The average power

for Ookami was collected with XDMoD.

Architecture Total cores Nodes Cores/node Runtime (s) Frequency (Hz) Power (W) Energy (Wh)

SPR HBM 192 2 96 563.6 2.601 ± 0.005 916.9 314.1 ± 3.7

192 3 64 486.8 3.079 ± 0.242 876.9 383.2 ± 5.6

192 6 32 442.2 3.498 ± 0.007 699.4 570.6 ± 5.4

Milan 192 2 96 866.0 2.839 ± 0.063 642.2 354.3 ± 2.7

192 3 64 614.3 2.877 ± 0.313 577.4 308.8 ± 1.6

192 6 32 600.2 2.850 ± 0.433 405.9 442.4 ± 7.6

A64FX-700 756 21 36 762.5 1.8 125.4 ± 4.4 609.9 ± 2.3

756 27 28 737.9 1.8 119.5 ± 6.6 723.8 ± 2.0

756 63 12 682.6 1.8 130.0 ± 9.8 1705.1 ± 7.0

node decreases, there is more of a spread in CPU frequencies. This

is shown by an increase in standard deviation. We discovered that

when we spread the same number of cores across multiple nodes,

we raise the clock speed on each CPU and this provides further

speedup in runtime. The speedup is mostly due to this change in

clock speed; however it is not enough to account for the full runtime

di�erence. This can be explicitly seen on A64FX, which has a sta-

ble clock speed but still shows some runtime improvements when

spreading across nodes. This smaller speedup can be attributed to

the increase in bandwidth provided by adding another node, among

other factors. It is interesting that despite the communication bottle-

neck, spreading across nodes and therefore increasing the amount

of inter-node communication produces a speedup. However, given

a certain number of nodes, it is always faster to use all available

cores. Therefore, while spreading our application across nodes is

interesting and provides insight, it is not the most practical way of

running our application.

6 CONCLUSIONS AND FUTUREWORK

Our application quickly becomes communication-bound evenwithin

a single node, and spends most of its time �lling the guard cells

of each block rather than performing computation. Enabling HBM

does not give us much of a speedup, indicating that our application

is not memory-bound.

SPR gives the fastest time to solution by expending the least

energy. Milan is not far o�, but exhibits worse scaling behavior

with increasing numbers of cores. A64FX-700 can match the per-

formance of other architectures, but requires the use of 10 times as

many nodes, which overwhelms its power e�ciency advantages.

The native Intel compiler is faster for the Intel architectures, but

interestingly this is not the case for the AOCC compiler on Milan.

The increase in MCCTT when scaling within a node, shown in

Figure 2, can be partially attributed to the decrease in processor

speed as more and more cores are used on the node. This reaches

an equilibrium when the node is full and all the cores are running

at the same lower frequency. However, the decrease in processor

speed alone isn’t enough to account for the single-node increase in

MCCTT shown in Figure 2. As our application is communication-

bound, the addition of more cores increases the communication

overhead and therefore the MCCTT. Interestingly, enabling HBM

seems to ameliorate the slope of increase.

For a given number of processors, spreading them across nodes

can produce a faster runtime than using the minimum required

number of nodes. This is interesting but may not be practical, as

the fastest time to solution on a given number of nodes comes from

�lling the node.

Pro�ling reports on our supernova problem reveal a signi�cant

need for better vectorization and parallelization of the underlying

code.Making these optimizationswill allow for better overall perfor-

mance. Currently, FLASH is not well vectorized because of both the

way block data is structured and due to the fact that iterative solvers,

such as the hydro solver, will not take the same amount of time or

perform the same number of iterations to converge. Vectorization of

FLASH is di�cult, and this massive undertaking is currently under-

way by the FLASH-X team in their goal of performance portability.

This e�ort will also be helpful in improving FLASH’s threading

capcbilities. Currently, only a few solvers in FLASH are threaded

(< 10% of our application), and initial investigation indicates that

enabling threading gives much less of a performance improvement

than simply using the cores as additional MPI ranks.

However, as we are communication-bound these improvements

will not address the main bottleneck. One avenue we could explore

is communication bu�er packing to minimize latency and improve

communication e�ciency, but a study with a similar AMR scheme

did not see a bene�t to this on CPUs [9]. Certainly a more detailed

study of FLASH’s communication patterns is required to improve

the performance.

Fugaku may o�er a solution, with an improved hardware and

interconnect than that of Ookami. Fugaku’s A64FX-1000 has a 2.0

GHz clock speed with a 2.2 GHz boost mode, 20% faster than that

of Ookami. There are also 4 extra “assistant” cores per node to help

with I/O. The custom Tofu-D interconnect may also be bene�cial

for our application’s communication bottleneck. As the 32 GB of

memory is the same, we will still need to use a large number of

nodes, but the improvements in the hardware and interconnect may

decrease the runtime, and subsequently the energy consumption. If,

through a combination of features, Fugaku can decrease the energy

consumption by 30%, then it will be on par with SPR, while perhaps

providing even better performance.
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