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ABSTRACT

Astrophysical simulations are computation, memory, and thus
energy intensive, thereby requiring new hardware advances for
progress. Stony Brook University recently expanded its comput-
ing cluster “SeaWulf” with an addition of 94 new nodes featuring
Intel Sapphire Rapids Xeon Max series CPUs. We present a per-
formance and power efficiency study of this hardware performed
with FLASH: a multi-scale, multi-physics, adaptive mesh-based soft-
ware instrument. We extend this study to compare performance to
that of Stony Brook’s Ookami testbed which features ARM-based
A64FX-700 processors, and SeaWulf’s AMD EPYC Milan and Intel
Skylake nodes. Our application is a stellar explosion known as a
thermonuclear (Type Ia) supernova and for this 3D problem, FLASH
includes operators for hydrodynamics, gravity, and nuclear burn-
ing, in addition to routines for the material equation of state. We
perform a strong-scaling study with a 220 GB problem size to ex-
plore both single- and multi-node performance. Our study explores

“Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International
4.0 License.

PEARC °24, July 21-25, 2024, Providence, RI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0419-2/24/07
https://doi.org/10.1145/3626203.3670536

the performance of different MPI mappings and the distribution
of processors across nodes. From these tests, we determined the
optimal configuration to balance runtime and energy consumption
for our application.
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1 INTRODUCTION

Computational science advances in a host of ways, including im-
proved algorithms, techniques for handling burgeoning data, and
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improvements in computational hardware. Newer CPU architec-
tures take advantage of non-uniform memory access (NUMA) pat-
terns, advances in fabrication that allow for a higher per-node core
count and larger caches, and new types of memory such as high-
bandwidth memory (HBM). A significant advantage for application
scientists is the ability to use these new features without substantial
rewriting of code. Two new architectures designed for this purpose
are Intel’s Xeon Max with HBM and Fujitsu’s A64FX. This study
explores the performance on these architectures of FLASH, an es-
tablished community code with a significant and diverse user base
[4].

FLASH is a multi-scale, multi-physics simulation instrument
originally designed to model astrophysical reactive flows and ex-
tended to study high-energy-density environments [1, 8]. FLASH
was created at the University of Chicago’s Flash Center, as part of
the DOE’s Accelerated Strategic Computing Initiative (ASCI) [17].
The ASCI program and its follow-on, the ASC program, allowed
development for advanced architectures as they came online at the
national laboratories, thereby establishing a long history of use
on state-of-the-art platforms. Accordingly, development has not
been optimized for any one architecture. A highlight from FLASH’s
evolution was achieving 238 GFlops on 6420 processors of ASCI
Red at the Los Alamos National Laboratory while performing adap-
tive mesh refinement simulations of reactive flow, which won the
SC2000 Gordon Bell prize [2].

Recently FLASH performed the largest-ever simulation of su-
personic turbulence on the SuperMUC system. The simulation
had an effective resolution of 10,0483 cells and ran on 65,536 Intel
Xeon E5-2680 (Sandy Bridge) cores for 50 million CPU hours [5].
FLASH was also one of the initial applications for the testbed cluster
Ookami [10, 18] that provides open access to a testbed supercom-
puter featuring A64FX-700 Fujitsu compute nodes [3, 6]. Develop-
ment of FLASH for astrophysics continues [16], and a new code
FLASH-X, derived from FLASH with a completely new infrastruc-
ture, is being developed for performance portability across heteroge-
neous (CPU + GPU) architectures [13]. The present FLASH we used
for this study is parallelized primarily through MPI, however, and
is thus largely bound to CPU architectures. These demonstrated ca-
pabilities make FLASH a perfect candidate to investigate the merit
of new CPU architectures for real-world applications.

Our application is a 3D nuclear fusion driven explosion known
as a thermonuclear (Type Ia) supernova. A contemporary intro-
duction to these events and further details of our 2D simulation
can be found in Feldman et al. [7]. We use FLASH version 4.6.2
including the PARAMESH library to manage a block-structured
adaptive mesh [11, 12]. PARAMESH Morton-orders the blocks for
communication efficiency and load balancing, and the maximum
numbers of blocks per processor, hence the maximum memory
used per processor, is set by the parameter maxblocks. Each 3D
block consists of 16 cells and guard cells, which contain copies
of data from 4 cells deep of the neighboring blocks. Each cell is
described by 29 cell-centered variables such as density, temperature,
and pressure. The data container for these variables is a single array
for the entire block, ordered by cell rather than by variable type.
This means that accessing the same variable over different cells
introduces a memory stride of 29 floating point numbers.
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At each timestep, FLASH first calls the selected physics solvers,
which for our problem are a compute-heavy, local communica-
tion hydrodynamics solver; a global communication, multipole ex-
pansion approximate Poisson solver for gravity; and other related
solvers. FLASH then determines if the mesh needs to be refined
and, if so, adjusts the number of blocks, interpolates or copies the
cell data, and redistributes the blocks amongst the processors. Each
solver may perform differently on different systems.

2 HARDWARE AND SOFTWARE SETUP
2.1 Hardware

We have access to two compute clusters: "SeaWulf", a CPU-based
cluster with nodes of different architectures that has recently ex-
panded to include Intel’s Sapphire Rapids with HBM nodes (SPR),
and "Ookami", an A64FX testbed. The goal of this expansion and
testbed is to enable increased performance for codes with a tradi-
tional programming model for CPUs. The features of nodes explored
in this study is shown in Table 1. Hyperthreading, where available,
is disabled.

For the SPR nodes, SeaWulf uses the HBM Flat Mode configura-
tion with sub-NUMA clustering SNC4. This means that the HBM
is used as additional RAM to the DDR5. The SPR nodes’ BIOS set-
ting have been customized to optimize energy effiency: the CPU
frequency is continuously updated by the Dynamic Power Savings
Power Regulator with a Balanced Performance Energy/Performance
Bias and Energy Efficient Turbo enabled, and the Minimum Proces-
sor Idle Power Core C-state is set to C6.

2.2 Software

The software, compiler flags, and MPI options used for each architec-
ture are shown below in Table 2. Unfortunately, Ookami no longer
has a license for the Fujitsu compiler and therefore it could not be
used; however, the Fujitsu compiler has been shown to provide supe-
rior performance for FLASH [6]. FLASH requires double-precision
reals and doubles, and single-precision integers — additional com-
piler flags selecting those options were included. We use the HDF5
1.12.1 library for parallel I/O. Using the HBM on the SPR nodes
requires loading the numactl 2.0.16 module and adding numactl
—-preferred-many=8-15 to the mpiexec command at runtime.

We selected a problem size for our supernova application that fit
within the DDRS5 of an SPR node — ~220 GB when using 96 nodes
on SPR+GCC - to be able to test single-node as well as multi-node
performance. We explored strong scaling of our application on all
systems (Section 2.3.2), and additional tests were then performed
based on their results including better understanding the SPR HBM
(Section 4) and spreading the problem across nodes (Section 5),

2.3 Data Collection

2.3.1 Runtime. Unless otherwise specified, we run each simulation
7 times on the same (group of) nodes, and report the average and
standard deviation of the evolution runtime. The evolution runtime
excludes the initialization and finalization of reading and writing
large checkpoint files, so the architectures can be better compared
on the application performance rather than I/O. FLASH also collects
runtime data separately for each solver (e.g. hydro, gravity, nuclear
burning, grid refinement). FLASH provides information about the
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Table 1: Features of the different types of nodes used in this study. Information was gathered from lscpu and cpupower

frequency-info.

L h MA
CPU Architecture AUNCR g ckets NU. Cores Freq.(GHz) RAM (GB) LLC (MB) InfiniBand
Date Regions
Intel Xeon Max 9468 256 DDR5 L3, 105
"Sapphire Rapids w/ HBM" 2023 2 8 % 080 -3.5 128 HBM (48 cores) NDR (400 Gb/s)
Intel Xeon Gold 6148 2017 2 N/A 40 2.4 192DDR4 13,275  FDR (56 Gb/s)
Skylake
éMD [j‘:PYC 7643 2021 2 8 96 1.5,1.9,23 256 DDR4 L3, 32 HDR (100 Gb/s)
Milan (6 cores)
Fujitsu A64FX-700 2019 1 4 48 1.8 32 HBM L2, 8 HDR (100 Gb/s)
(48 cores)

Table 2: Compiler, MPI versions, and compiler flags used for each architecture

Architecture Compiler MPI Additional Compiler Flags

SPR GCC12.1 OpenMPI 4.1.5 -Ofast
-march=sapphirerapids -mtune=sapphirerapids

SPR Intel 2023.1  Intel MPI 2021.9.0 -0fast -xsapphirerapids

Milan GCC12.1 OpenMPI 4.1.4 -Ofast -march=native

Milan AOCC 4.0 OpenMPI 4.1.5 -Ofast -march=native

Skylake GCC 121 OpenMPI 4.1.4 -0Ofast -march=skylake -mtune=skylake

Skylake Intel 2023.1  Intel MPI 2021.9.0 -Ofast -march=skylake -mtune=skylake

A64FX GCC 12.1 OpenMPI 4.1.4 -0Ofast -mcpu=a64fx

maximum, minimum, and average runtime over all of the processors
running the application. Some processors take longer than others
to finish due to MPI collectives, communication, or the complexity
of the calculations for a certain block (ie the Riemann solve might
take more iterations to converge for one block than for another).
Unless otherwise specified, we report the maximum runtime along
with its standard deviation.

2.3.2  Power and Energy. On SeaWulf, power is sampled once per
minute by ipmitool. To obtain power and energy use measure-
ments, we calculated the average power for each of the 7 runs, and
multiplied by the corresponding runtime. When calculating the
average power, the first and last data points are excluded to remove
any warm-up/cool-down that the processor undergoes at the be-
ginning/end of each run. Including these skews the average power
values to be slightly lower. The average and standard deviation of
these 7 energy measurements are reported. On Ookami, power and
energy data is accessed through Open XDMoD [14]. The average
single-node power is reported in XDMoD for each job (in this case,
the average over 7 runs). As the CPU frequency is constant on
A64FX, the power draw is very stable, and doesn’t change much
between runs. To calculate the energy for a single run, we multiply
the average power for each job by the number of nodes used and
the runtime. As with SeaWulf, the average and standard deviation
of these 7 energy measurements are reported.

3 SCALING STUDY

This 3D problem contains 33,016 16 X 16 X 16 blocks, and is run
for 20 timesteps including 10 grid refinements. At the end of the

run, the number of blocks has only modestly increased to 33,864,
allowing the memory use to remain nearly constant over the course
of the simulation. To keep the memory use consistent as the number
of processors changes, we allocate a total of 37,000 blocks, adjusting
maxblocks accordingly for all architectures but A64FX-700, which
required a maxblocks of 50. The number of timesteps was selected
so that a 96-core SPR run would take roughly 20 minutes, which
should provide enough data for a power measurement.

3.1 SeaWulf Cluster

Before revealing the strong-scaling abilities of all configurations, it
is worth noting a few caveats in our results. First, we were unable
to run our application on just 1 or 2 cores, so our strong-scaling
study starts at 4 cores. There are missing runs in both the Intel-SPR
runs as well as the Skylake runs due to miscellaneous errors such
as segmentation faults and issues computing our equation of state.
It should also be noted that Skylake nodes only contain 40-cores
unlike Milan and SPR’s 96-core nodes. This meant that our largest
Skylake run of 320 cores spanned 8 Skylake nodes.

Available in Figure 1 is the full strong-scaling study spanning
from 4 to 384 cores. We chose to extend this study to multiple
nodes to assess cross-node communication efficiency. An immediate
takeaway from this study are that switching from GCC to the
native compiler for a given node did not always result in a speedup.
While Intel did show this speedup when switching to its native
compiler, AMD did not as evidenced by its native AOCC falling
well short of the times posted by running Milan with GCC. It is
also clear that scaling begins to considerably slow past the 192-core
mark for all configurations. Past this 192-core mark, the difference
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in scaling ability between SPR nodes and our older architectures
becomes most apparent as the older architectures demonstrate a
larger stagnation in decline.
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Figure 1: Top panel: Strong-scaling studies on all configura-
tions available on SeaWulf from 4 to 96 cores (single node).
Missing data points are explained above. Bottom panel: The
same strong-scaling study but expanded out to 384 cores and
expressed as a log plot.

Figure 2 further showcases the difference in scaling ability be-
tween SPR and older architectures. In Figure 2, we look at how
long it takes for a single section of our simulation, called a cell, to
be fully computed. Specifically, we view the maximum cell CPU
time per timestep (MCCTT) as the simulation will not advance in
timestep until all cells are computed. Therefore, our slowest cell
computation on each timestep is most relevant to scaling ability.
The MCCTT is calculated by dividing the maximum evolution CPU
time by the number of timesteps and the average number of cells
(average number of blocks x 167 cells per block).

In perfect strong-scaling, the number of CPU hours, and there-
fore the MCCTT, remains constant over core number. The speedup
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Figure 2: Per-cell per-timestep CPU time on all configura-

tions available on SeaWulf from 4 to 384 cores. Missing data

points are explained above.

in our strong-scaling purely derives from more of the cells being
simultaneously computed due to increased total core count. It then
follows that the MCCTT will only increase as the number of cores
are increased due to increased communication time. This is because
the core responsible for a given cell’s computation will need to
receive information from a greater number of cores (which will
begin to be further away in physical space) responsible for nearby
(in simulation space) cells. In expanding our computation to multi-
node, these communications also begin to face the issue of limited
inter-node communication bandwidth.

In the multi-node portion of Figure 2, it is clear that SPR faces
a much more benign slowdown in MCCTT than the older con-
figurations. This is can be immediately traced back to the node-
interconnect "InfiniBand" bandwidths being much larger on SPR.
Whereas SeaWulf’s Milan nodes possess a node-interconnect band-
width of 100 GB/s, the corresponding bandwidth on SPR is 400
GB/s.

However, in the single-node portion of Figure 2, we notice a
peculiar increase in the MCCTT of all configurations. We discovered
that, as we begin to utilize more cores on a given node, the CPU
frequency of that core decreases. This explains why the SPR plots
are only flat past the single-node mark. This issue is discussed more
at length in Section 5.

Another point of discussion is the HBM results. Barring Ookami
(discussed in Section 3.2), it was unsurprising that SPR, our newest,
most advanced architecture, using its native compiler with HBM
enabled recorded the fastest runtimes. Following close behind to
these runtimes are the higher core runs of SPR with GCC and HBM
enabled. However, the sub-single-node runs of this configuration
posted unusually slow runtimes. We further explore this anomaly
in Section 4, which appears to be related to MPI process mapping.

With all configurations seeing a significant decrease in scaling
ability past the 192-core mark, it is natural to ask what the bottle-
neck of our simulation is. Activating the HBM does not provide
the substantial speedup expected for memory-bound applications.
Additionally, Siegmann et al. [15] demonstrated that an SPR node’s
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DDR5 memory will become saturated when using only 24 cores.
Good scaling of our application continues past 24 cores per node,
meaning the saturation of DDR5 does not negatively impact run-
time and our application is not memory-bound. Investigating the
runtime breakdown of our application shows that FLASH spends
over 50% of the time within the compute-heavy hydro solver. How-
ever, looking closer, the majority of time in the hydro solver is spent
on local communication routines for filling guardcells and ensur-
ing flux conservation. Similarly, the solvers for nuclear burning,
flame, and turbulence spend the vast majority of time also filling
guardcells. This indicates that our application spends most of its
time in local MPI communication.

As expected in this strong-scaling study, we reach a point where
the decrease in runtime is no longer associated with a decrease
in energy consumption. As shown in Figure 3, this minimum in
energy consumption is reached for all configurations at 96 cores
or 192 cores. In utilizing multiple nodes, the additional energy cost
begins to outweigh the runtime improvement.
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Figure 3: Energy consumption for strong-scaling study on
all configurations available on SeaWulf from 4 to 384 cores.
Missing data points are explained above.

Overall, this strong-scaling study outlines the ability for FLASH
to scale on a diverse set of configurations and outlines a clear region
of minimal energy consumption from the 1-2 node mark. Upon
reaching 3-4 nodes, it is clear that work-starvation is beginning to
take effect, showcasing a need for optimization in our supernova
problem and the FLASH code.

3.2 Ookami

The relatively small memory per node of A64FX meant that it took
some adjusting to fit our problem into memory. The configuration
that worked was to set maxblocks to 50 and run on 36 out of 48 cores
per node. This achieved a balance of keeping within the available
memory per node while keeping maxblocks large enough to have
room for grid refinement. Our application required a minimum of
21 A64FX-700 nodes (756 cores), and we scaled this across most of
Ookami to 128 nodes (4608 cores).
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Figure 4 shows the strong scaling of our application on A64FX-
700. A64FX-700 still shows good strong scaling after two doublings.
The performance results for SPR with the GCC rather than Intel
compiler are compared, in order to provide a more on par compar-
ison to A64FX-700 with the GCC compiler. A64FX-700 performs
almost as well as the 192 core (2 node) SPR+GCC with HBM run-
time when using 1152 cores (32 nodes). However, A64FX-700 does
10 times worse than any other architecture in the MCCTT metric.
This is because 10 times as many cores are needed on A64FX to
achieve the same performance as on other architectures.
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Figure 4: Top panel: Strong-scaling study on A64FX-700. Re-
ported is the max evolution runtime. The two horizontal
gray lines show the runtime for SPR+GCC with HBM for
192 (top, dashed line) and 384 (bottom, dotted line) cores, the
points for which would be off this scale. Bottom panel: The
maximum evolution per-cell per-timestep CPU time.

One potential reason for the increasingly worse MCCTT is as the
number of cores increases, more and more time is spent completing
the global communication patterns of the gravity solver, rather than
the compute-heavy and local communication patterns of the hydro
solver. This indicates that tapering of scaling on Ookami is indeed
driven by the increasing communication overhead.
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Figure 5 shows the energy consumption on Ookami. The power
efficiency of A64FX-700 — only ~ 120 W per node vs the ~ 950 W per
node of a full-subscription SPR node - is overwhelmed by the sheer
number of nodes needed to fit our problem in memory. Looking
at points with comparable runtimes (192 cores of SPR and 1152
cores of A64FX-700, 384 cores of SPR and 2304 cores of A64FX-700),
Ookami’s A64FX-700 use 1.5X more energy than SeaWulf’s SPR for
our test application.
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Figure 5: Energy consumption on A64FX-700 The two hori-
zontal gray lines show the energy consumption for SPR+GCC
with HBM for 192 (bottom, dashed line) and 384 (top, dotted
line) cores, the points for which would be off this scale.

4 HBM VS DDR5

To better understand any benefits provided by HBM, we investi-
gated our test problem on two architectures with this feature: SPR
and A64FX. As discussed in Section 2.3.2, using HBM with the SPR
nodes produced some interesting behavior with the GCC compiler.
As shown in Figure 6, enabling HBM does not provide a significant
speedup for our application, which agrees with our assessment
that FLASH is compute-heavy. When scaling out to multiple nodes,
which allows the whole problem to fit within the HBM, the run-
time difference between using only DDR5 and using HBM actually
narrows.
Enabling the -map-by numa MPI directive appears to have the
strongest effect on the effectiveness of HBM, when using fewer
than all available cores per node. On SPR with GCC+OpenMP]I,
we see strange behavior without the directive when running on
less than 96 cores (per node), and not much change in runtime
when using full subscription. On A64FX, where HBM is the only
memory type, the standard deviation of the runtime, and therefore
the energy consumption, is much higher without the directive, as
shown in Figure 7. As we only run with 36 of the 48 cores on A64FX,
we also see a significant decrease in runtime, and therefore energy
consumption, when using the directive. This indicates that there
is a substantial difference between the default mapping on these
systems and the NUMA mapping. At first, we thought this might
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Figure 6: Top panel: Strong-scaling studies on SPR from 4
to 96 cores (single node). Missing data points are explained
above. Bottom panel: The same strong-scaling study but ex-
panded out to 384 cores and expressed as a log plot.

have to do with memory locale, as MPI collectives appear to take
longer without -map-by numa. However, the output of numactl
-s is identical in both cases, indicating that the MPI rank mappings
and the preferred memory are the same, which left us baffled. The
effects of -map-by numa with OpenMPI are still being investigated.

5 CORE-SPREAD ANALYSIS

Our finding that decreasing the number of cores running on a
node decreased the MCCTT suggested conducting a study in which
we kept the same number of total cores constant but began to
spread them across multiple nodes. We dubbed this study the "Core-
spread Analysis" and first conducted this study on the SPR-GCC
configuration because, at the time, this was our fastest configuration
that worked reliably. This study was conducted with 192 cores
because that is where SPR-GCC most efficiently runs our 220GB
problem. We then extended this study to SPR-GCC with HBM as



Benchmarking with Supernovae: A Performance Study of the FLASH Code

3001 ——~ ('sapphire’, 'gcchbmnuma') 192 cores
""" ('sapphire', 'gcchbmnuma’) 384 cores
800 4 —— ('ab4fx’, 'gcc')
—¥— ('ab4fx’, 'gccnuma’)
C)
o 700 1
E
=}
=
2 6004
c
=
o
3
S 5001
=
v
>
o
= 400 A
300 4
T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500
Cores
J [ ('sapphire’, 'gcchbmnuma') 192 cores
1600, .- ('sapphire', '‘gcchbmnuma') 384 cores
—— ('ab4fx’, 'gec)
1400 4 —— ('a64fx’, 'gccnuma’)
1200
=
E
~. 1000 -
2
L)
&
“ 800
600 1
400 +

T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500
Cores

Figure 7: Max evolution runtime (top panel) and energy
consumption (bottom panel) on A64FX-700 with and without
-map-by numa. The two dotted grey lines show the runtime for
SPR+GCC with HBM and the same directive for 192 (dashed
line) and 384 (dotted line) cores, the points for which would
be off this scale.

well as adding a NUMA-mapping to the SPR-GCC run which we
have found to be the most efficient MPI mapping.

Figure 8 presents our core-spread analysis leading to a few key
insights. First, it is important to note that choosing to map by NUMA
region vs. using the default mapping causes a horizontal shift in
where the minimum occurs. With default mapping, the minimum
runtime occurs at 12 nodes. However, this minimum is shifted to
6 nodes when we map by NUMA on SPR+GCC with and without
HBM. This shift in minima is important as the more nodes we use
to spread our cores, the higher the energy consumption. It follows
that mapping by NUMA region not only allows us to achieve lower
runtimes, it also increases energy efficiency and creates a smaller
node footprint in the optimal run configuration.
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Figure 8: Top panel: Core-spread analysis detailing a con-
stant 192 cores spread across a variable number of nodes.
Bottom panel: Energy consumption for core-spread analysis
at different node counts.

During the core-spread analysis study, we also experimented
with other potential reasoning for why spreading our cores across
multiple nodes can create a decrease in runtime. We selected SPR,
Milan, and A64FX-700 for our tests. For each architecture we used
the GCC compiler, OpenMPI, and the -map-by numa MPI directive,
which as discussed in Section4 affects runtime when using not fully-
subscribed nodes. We kept maxblocks consistent because the same
number of total cores are used for each architecture. To measure
the CPU frequency, we polled cpupower frequency-info every
10 seconds for each CPU on a single node, over the course of all 7
runs. The average evolution runtime, average CPU frequency for
one node, average power for one run for one node, and average
total energy for one run are reported below in Table 3.

On SPR, idle cores run at 3.5 GHz, while on Milan, idle cores
decrease in frequency. For a fully-subscribed node, all cores more
or less run at the same frequency, but as the number of cores per
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Table 3: Core-spread analysis for different architectures. Shown are the number of nodes and cores, the evolution runtime, the
measured average core frequency, the measured average power for one node, and the total energy, per run. The average power

for Ookami was collected with XDMoD.

Architecture Total cores Nodes

Cores/node Runtime (s) Frequency (Hz) Power (W) Energy (Wh)

SPR HBM 192 2 96 563.6 2.601 + 0.005 916.9 314.1 £ 3.7
192 3 64 486.8 3.079 £ 0.242 876.9 383.2£5.6
192 6 32 442.2 3.498 + 0.007 699.4 570.6 £5.4
Milan 192 2 96 866.0 2.839 + 0.063 642.2 3543 £ 2.7
192 3 64 614.3 2.877 £ 0.313 577.4 308.8 +£ 1.6
192 6 32 600.2 2.850 + 0.433 405.9 4424+ 7.6
A64FX-700 756 21 36 762.5 1.8 1254+ 44 609.9 + 2.3
756 27 28 737.9 1.8 1195+ 6.6 723.8 £ 2.0
756 63 12 682.6 1.8 130.0 +£9.8 1705.1 £ 7.0

node decreases, there is more of a spread in CPU frequencies. This
is shown by an increase in standard deviation. We discovered that
when we spread the same number of cores across multiple nodes,
we raise the clock speed on each CPU and this provides further
speedup in runtime. The speedup is mostly due to this change in
clock speed; however it is not enough to account for the full runtime
difference. This can be explicitly seen on A64FX, which has a sta-
ble clock speed but still shows some runtime improvements when
spreading across nodes. This smaller speedup can be attributed to
the increase in bandwidth provided by adding another node, among
other factors. It is interesting that despite the communication bottle-
neck, spreading across nodes and therefore increasing the amount
of inter-node communication produces a speedup. However, given
a certain number of nodes, it is always faster to use all available
cores. Therefore, while spreading our application across nodes is
interesting and provides insight, it is not the most practical way of
running our application.

6 CONCLUSIONS AND FUTURE WORK

Our application quickly becomes communication-bound even within
a single node, and spends most of its time filling the guard cells
of each block rather than performing computation. Enabling HBM
does not give us much of a speedup, indicating that our application
is not memory-bound.

SPR gives the fastest time to solution by expending the least
energy. Milan is not far off, but exhibits worse scaling behavior
with increasing numbers of cores. A64FX-700 can match the per-
formance of other architectures, but requires the use of 10 times as
many nodes, which overwhelms its power efficiency advantages.
The native Intel compiler is faster for the Intel architectures, but
interestingly this is not the case for the AOCC compiler on Milan.

The increase in MCCTT when scaling within a node, shown in
Figure 2, can be partially attributed to the decrease in processor
speed as more and more cores are used on the node. This reaches
an equilibrium when the node is full and all the cores are running
at the same lower frequency. However, the decrease in processor
speed alone isn’t enough to account for the single-node increase in
MCCTT shown in Figure 2. As our application is communication-
bound, the addition of more cores increases the communication
overhead and therefore the MCCTT. Interestingly, enabling HBM
seems to ameliorate the slope of increase.

For a given number of processors, spreading them across nodes
can produce a faster runtime than using the minimum required
number of nodes. This is interesting but may not be practical, as
the fastest time to solution on a given number of nodes comes from
filling the node.

Profiling reports on our supernova problem reveal a significant
need for better vectorization and parallelization of the underlying
code. Making these optimizations will allow for better overall perfor-
mance. Currently, FLASH is not well vectorized because of both the
way block data is structured and due to the fact that iterative solvers,
such as the hydro solver, will not take the same amount of time or
perform the same number of iterations to converge. Vectorization of
FLASH is difficult, and this massive undertaking is currently under-
way by the FLASH-X team in their goal of performance portability.
This effort will also be helpful in improving FLASH’s threading
capcbilities. Currently, only a few solvers in FLASH are threaded
(< 10% of our application), and initial investigation indicates that
enabling threading gives much less of a performance improvement
than simply using the cores as additional MPI ranks.

However, as we are communication-bound these improvements
will not address the main bottleneck. One avenue we could explore
is communication buffer packing to minimize latency and improve
communication efficiency, but a study with a similar AMR scheme
did not see a benefit to this on CPUs [9]. Certainly a more detailed
study of FLASH’s communication patterns is required to improve
the performance.

Fugaku may offer a solution, with an improved hardware and
interconnect than that of Ookami. Fugaku’s A64FX-1000 has a 2.0
GHz clock speed with a 2.2 GHz boost mode, 20% faster than that
of Ookami. There are also 4 extra “assistant” cores per node to help
with I/O. The custom Tofu-D interconnect may also be beneficial
for our application’s communication bottleneck. As the 32 GB of
memory is the same, we will still need to use a large number of
nodes, but the improvements in the hardware and interconnect may
decrease the runtime, and subsequently the energy consumption. If,
through a combination of features, Fugaku can decrease the energy
consumption by 30%, then it will be on par with SPR, while perhaps
providing even better performance.
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