ELSEVIER

Contents lists available at ScienceDirect

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

Effect of removal of inhibitors on microbial communities and biogas yield of *Jatropha curcas* seeds during continuous anaerobic digestion

Abdul Haq^{a,b,c}, Ayesha Malik^a, Alam Khan^a, Joseph E. Weaver^b, Ling Wang^b, Haji Khan^d, Samiullah Khan^a, Aamer Ali Shah^a, Safia Ahmed^{a,e}, Asif Jamal^a, Francis L. de los Reyes III^b, Malik Badshah^{a,*}

- ^a Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- b Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- ^c Peshawar Laboratories Complex, Pakistan Council of Scientific & Industrial Research, 25120, Pakistan
- ^d Centre for Biotechnology and Microbiology, University of Swat, 19200, Swat, Pakistan
- ^e Saheed Benazir Bhutto Women University, Peshawar, Pakistan

ARTICLE INFO

Handling Editor: Zhen Leng

Keywords: Anaerobic digestion Jatropha curcas Microbial abundance Biogas Amplicon sequencing

ABSTRACT

Jatropha curcas seeds, as an abundant lignocellulosic biomass, offer a highly promising and ideal alternative for producing energy in the form of methane. Use of *J. curcas* seeds has the potential to significantly bolster the biofuel sector, fostering a more sustainable circular economy. In the current study, different fractions of processed *J. curcas* seeds were investigated for biogas production. *J. curcas* seed pressed cake, a by-product of biodiesel production, was subjected to methanolic extraction. The remaining solids, referred to as methanolic residues, yielded more biogas in batch experiments than pressed cake and residues from aqueous and *n*-hexane extractions. The compounds extracted with methanol inhibited hydrolysis and reduced biogas production by 35.5% compared to the same setup without extracts. In continuous reactors fed with methanolic residues, the highest biogas yield occurred at an organic loading rate (OLR) of 1 g VS L⁻¹ day⁻¹ and a hydraulic retention time (HRT) of 20 days. The relative abundance of acetogenic bacteria was higher in reactors fed with methanolic residues than in those fed with seed pressed cake, seed oil, and whole seed. Jatropha seed oil and whole seed did not inhibit methanogens. A higher relative abundance of methanogenic communities was observed in all reactors at HRT of 20 days compared to those at HRTs at 15 and 10 days. These findings can be used to increase biogas production during anaerobic digestion of *J. curcas* seed components and suggests a zero-waste biorefinery production route for value added compounds derived from the removal of biogas-inhibiting components.

1. Introduction

Biogas production through anaerobic digestion of feedstocks is promising due to reduced environmental impacts (Nielsen and Ahring, 2006). Many feedstocks, both edible and non-edible, have been reported as substrates for biogas production. Edible feedstocks lead to food versus fuel competition; non-edible feedstocks do not have this burden and are considered ideal for biogas production (Scarlat et al., 2015). Ideal feedstocks are non-edible crops grown on land not suitable for food production (Kurade et al., 2019). *Jatropha curcas*, an oil-rich, pest- and drought-resistant shrub, is considered a strong candidate for biodiesel production (Haq et al., 2020). The pressed cake, which remains after oil extraction for biodiesel production, can be used for biogas production

without the food-vs-fuel tradeoff because it cannot be used as animal fodder due to considerable toxicity (EFSA Panel on Contaminants in the Food Chain CONTAM, 2015). However, the unprocessed cake inhibits microbial activities due to the presence of compounds such as phorbol esters, curcin, and long chain fatty acids (Haq et al., 2019; Scarlat et al., 2015). Anaerobic digestion efficiency could be increased if the antimicrobial phytochemicals are removed from *J. curcas* pressed cake by extraction with organic solvents such as methanol. The resulting residues of pressed cake (called methanolic residues [MR]), contain fewer inhibitory compounds, preserve the richness of the digester microbial community, and ultimately increase biogas yield. Additionally, the extracted inhibitory compounds are potentially valuable pharmaceuticals (Haq et al., 2019). This extraction approach suggests a sustainable biorefinery production route for valuable products and biofuels.

E-mail address: malikbadshah@qau.edu.pk (M. Badshah).

^{*} Corresponding author.

Abbreviations

HRT Hydraulic retention time OLR Organic loading rate MR Methanolic residues n-hexane residues NR AR Aqueous residues Jatropha pressed cake JPC. JWS Jatropha whole seed JO Jatropha oil

JO Jatropha oil
VFAs Volatile fatty acids
VS Volatile solids
TS Total solids

FTIR Fourier transform infrared

GC-MS Gas chromatography coupled with mass spectrometry

OTUs Operational taxonomic units CCA Canonical correspondence analysis

ANOVA Analysis of variance LCFAs Long chain fatty acids

Even with an acceptable substrate, biogas yield is highly affected by operational parameters. For example, higher organic loading rates (OLRs) are associated with increased volatile fatty acids accumulation leading to microbial inhibition (Ferguson et al., 2016). Further, if the hydraulic retention time (HRT) is too short there may be a washout of important slow-growing species, leading to poor biogas yields. Furthermore, single-stage anaerobic digestion is challenged at higher OLRs and shorter HRTs. In a single-stage setup, the higher OLRs and shorter HRTs favor acid forming bacteria, resulting in the accumulation of volatile fatty acids (VFAs) and inhibition of biogas production (Alavi-Borazjani et al., 2020). In contrast, two-stage anaerobic digestion can be sustained for longer durations even under high OLRs and short HRTs (Aslanzadeh et al., 2014), and even for highly degradable substrates (Alavi-Borazjani et al., 2020). To date, several studies have been conducted on the biogas potential of J. curcas seed (Sinbuathong et al., 2010, 2012; Steinbrenner et al., 2020) but none have evaluated the effect of seed toxicity and solvent extraction on microbial communities and biogas production during anaerobic digestion.

The goals of this study were to (1) assess the inhibitory effects of *Jatropha curcas* methanolic extracts on different steps of anaerobic digestion, (2) associate changes in the microbial community with different operating parameters, processing fractions, and biogas yields, (3) evaluate the biogas potential of processed *Jatropha curcas* seeds, and (4) identify operational parameters associated with increased biogas yields.

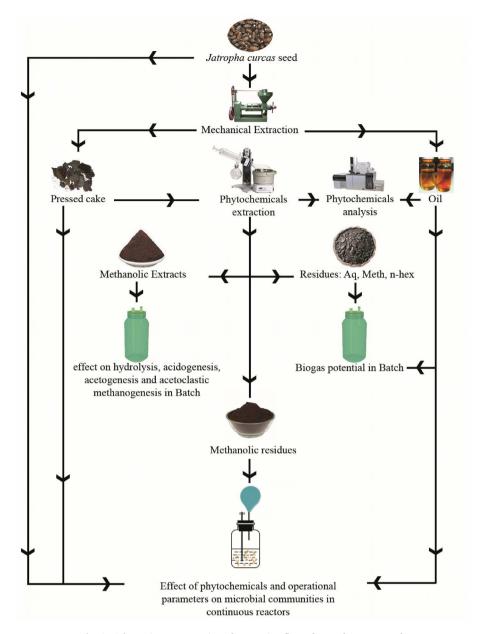
2. Materials and methods

2.1. Inocula and substrate preparation and characterization

Inocula used in batch and continuous reactor experiments were collected from a bioreactor fed with fruit and vegetable wastes and cattle manure at the Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad and were incubated at 37 °C for 2–3 weeks to allow for degassing. Specific methanogenic activities of inocula were determined as described previously (Astals et al., 2020). Specific methanogenic activities of inocula showed that the microbial communities were active (Fig. S1). Inocula were collected for four different experiments: for all batch methane potentials, for studying the effects of methanolic extracts on anaerobic digestion steps, for continuous reactors treating methanolic residues, and for continuous reactors studying whole seed, oil, and pressed cakes

(Table S1).

The J. curcas seeds were obtained from a local dealer in Lahore, identified at the National Herbarium of Pakistan, Quaid-i-Azam University, and processed according to the flow schematic shown in Fig. 1. Oil was extracted from J. curcas whole seeds (JWS) using a mechanical oil expeller. After oil extraction, the remaining de-oiled Jatropha pressed cake (JPC) was further ground to a powder form and preserved in sterile zip-lock bags at -20 °C until further use. Measurement of total solids (TS), volatile solids (VS) and pH of substrates and inocula were performed according to Standard Methods (Federation and Association, 2005). The aqueous, methanolic, and n-hexane extracts of de-oiled Jatropha pressed cake were prepared as described previously (Haq et al., 2019). Fine powdered J. curcas de-oiled pressed cake (100 g) was dissolved in 500 mL of the individual solvents and incubated at 30 $^{\circ}\text{C}$ for 48 h. The extracts were filtered and the solvents evaporated using a rotary evaporator (Rotary Evaporator RE300 Stuart®) at reduced pressure. The resulting crude extract was allowed to dry at room temperature to a constant weight. The residues obtained from aqueous (AR). *n*-hexane (NR), and methanolic (MR) extraction were stored at 4 °C

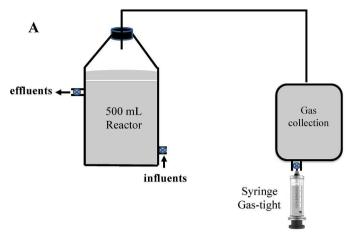

Preliminary qualitative tests of J. curcas seed oil (JO) and de-oiled pressed cake extracts detected the presence of balsams, flavonoids, saponins, glycosides, steroids, phenol, and tannins (Haq et al., 2019). The phytochemicals were removed from Jatropha pressed cake using aqueous, methanolic, and n-hexane extraction. Fourier transform infrared (FTIR) spectroscopic analyses of J. curcas seed oil and JPC extracts were performed using standard procedures (Haq et al., 2019). The chemical composition of J. curcas seed oil and JPC extracts was determined using gas chromatography coupled with mass spectrometry (GC-MS) technique (GC-MS – QP5050A, Shimadzu, Europe) according to previously described methods (Basri and Fan, 2005; Mu'azu et al., 2013), with the following modifications. A 2 μ L aliquot of each sample was injected separately into the column using an automated injector split ratio 1/48 (for extracts) and 1/25 (for seed oil). The column (DB-5) had a length 30 m, internal diameter 0.25 mm, and thickness 0.25 μm with flow rates of 1 and 1.8 mL min⁻¹ for extracts and seed oil, respectively. The analytes were detected using a thermal conductivity detector (TCD). The National Institute of Standards and Technology library (NIST 27 and NIST 147) was used for peak identification based on mass spectra.

2.2. Anaerobic digestion

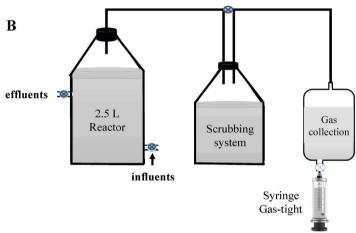
The biogas potential of *J. curcas* seeds and the effect of methanolic extracts of JPC on several substrates representing different degradation steps in anaerobic digestion (i.e., hydrolysis, acidogenesis, and acetoclastic methanogenesis) were evaluated in batch mode. The effect of methanolic extraction from JPC on microbial communities during anaerobic digestion was evaluated in the continuous process.

2.2.1. Biogas potential and inhibitory effects of methanolic extracts of pressed cake on different stages of anaerobic digestion

Batch anaerobic digestion was carried out in triplicate in 500 mL reactors with working volumes of 400 mL at 37 °C. The pH of all reactors was adjusted to neutral using 1 M solutions of HCl and NaOH. Before incubation, the reactors were flushed with nitrogen gas and sealed with butyl rubber corks. The biogas was collected in airtight bags (UNO-GUARD, China) made of a flexible, gas-tight high-density polyethylene (HDPE) material that can withstand the pressure of the generated biogas. The bags were attached to each reactor and biogas production was measured daily using a gas-tight syringe (Fig. 2). The airtight seal of the bag prevented the escape of the gas. Fig. 2 shows the schematic diagram of the test reactors and biogas collection system. The biogas volumes were collected at 37 °C and later normalized to standard temperature and pressure (273.15 K and 101325 Pa). The background biogas production was estimated using negative controls containing only inocula and was subtracted from the biogas yield of each substrate.



 $\textbf{Fig. 1.} \ \ \textbf{Schematic representation of processing flow of } \textit{Jatropha curcas seed.}$


The biomethane potentials of the substrates were evaluated by loading digesters at a ratio of 4 g VS of inocula to 1 g VS of substrate. The amounts of substrates added to their respective reactors were as follows; Jatropha whole seed (JWS, 2.22 g), Jatropha oil (JO, 1.89 g), Jatropha pressed cake (JPC, 2.5 g), methanolic residues (MR, 2.76 g), n-hexane residues (2.68 g), and aqueous residues (7.05 g). The positive controls, reactors with cooking oil (1.76 g) and cellulose (1.9 g) as substrates, were run in parallel with test reactors (Astals et al., 2014).

To evaluate the inhibitory effect of methanolic extracts on different steps in anaerobic digestion, cellulose (2.45 g, to investigate hydrolysis), glucose (2.9 g, to investigate acidogenesis), and sodium acetate (10.3 g, to investigate acetoclastic methanogenesis) were added to separate reactors with methanolic extract (2 mg mL $^{-1}$) and compared with the reactors without methanolic extracts. Methanolic extract with inoculum was used as negative control and the biogas produced was subtracted from the biogas produced by the test reactor. A reactor without methanolic extract was used as negative control in batch experiments.

2.2.2. Effect of operational parameters on biogas yield in continuous mode In continuous mode, the anaerobic digestion of JWS, JO, JPC and MR was carried out at different organic loading rates (OLRs) and hydraulic retention times (HRTs) in 2.5 L reactors with working volumes of 2 L at 37 $^{\circ}\text{C}$ in an incubator. Substrate was fed every 24 h. The reactor treating MR was operated at OLRs of 1–7 g VS $\rm L^{-1}$ day $^{-1}$. The MR reactor was initially operated at OLRs of 1–3 g VS $\rm L^{-1}$ day $^{-1}$ and a HRT of 20 days in single reactor with a an influent/effluent flow of 100 mL day⁻¹, but at OLR 3 g VS ${\rm L}^{-1}$ day $^{-1}$, a sudden decrease in the biogas production occurred due to rapid biodegradability of MR. Thereafter, the digestion of MR was further tested in two stage anaerobic digestion to address rapid biodegradability. In two stage anaerobic digestion, the MR treating reactors were operated at OLRs of 3, 4, 5, 6 and 7 g VSL^{-1} day⁻¹. To maintain equal volume as in one stage anaerobic digestion of MR, the reactors R₁ and R₂ were operated each at an HRT of 10 days with a flow rate of 200 mL day⁻¹ for each reactor. In the two stage setup, both reactors in combination had the same total volume as in single stage digestion. The JPC treating reactor was operated at OLRs starting from 1 to 6 g VS L^{-1} day⁻¹; the reactor treating JWS was operated at 1, 1.5, 2,

Batch anaerobic digestion setup

Single-stage continuous anaerobic digestion setup

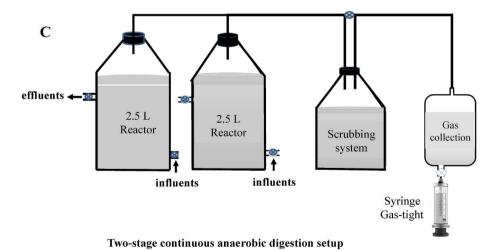


Fig. 2. Schematic representation of the test reactors and biogas collection system, (A) schematic representation of anaerobic digestion batch setup, (B) schematic representation of single-stage anaerobic digestion continuous setup. Scrubbing system contains a solution of 3M NaOH, and is connected to reactors through pipes to absorb the CO₂ leaving only methane to be collected in gas collection bag.

and 3 g VS $\rm L^{-1}$ day $^{-1}$ and the reactor treating JO was operated at an OLR of 1 g VS $\rm L^{-1}$ day $^{-1}$, and HRT of 20 days with influent/effluent flow of 100 mL day $^{-1}$.

To determine the effect of HRT, the reactors were operated at HRTs of $10,\,15$ and 20 days with a daily flow rate of 200 mL, 130 mL and 100

mL, respectively, and the reactors were fed at the respective best performing OLRs determined in the previous experiment. During the startup phase, 1.5 L of temperature-acclimatized inocula was added to each reactor, flushed with nitrogen gas and plugged with butyl rubber cork attached to pipes for biogas collection, substrate feeding and

effluent removal. Each reactor was fed with their respective substrates at the specific HRT without taking any effluent until it reached its working volume (2 L). The biogas was collected in airtight bags (UNOGUARD, China) attached to reactors and was measured using a syringe. When the reactor reached a pseudo-steady state (defined as less than 5% variation in consecutive biogas volume production), the biomethane produced was measured at the end of each pseudo-steady state for 3–7 days by passing the biogas produced through a scrubbing solution (3M NaOH solution). The volume of biogas and biomethane were normalized at standard temperature and pressure (273.15 K and 101325 Pa). The effluent pH was measured on daily basis. The volatile fatty acids (VFAs) and alkalinity were measured at specific intervals using standard titrimetric procedures (Clesceri et al., 1998).

2.3. Microbial community analysis using high throughput sequencing

Samples (50 mL) for microbial DNA analyses were collected in sterile bottles at different intervals from each reactor operating at the best performing OLR and different HRTs (20, 15 and 10 days). The samples were frozen at $-20\,^{\circ}\text{C}$ until further use.

$2.3.1.\,\,$ DNA extraction, 16S rRNA gene amplification, sequencing, and data processing

Microbial DNA was extracted from pelleted biomass from the thawed samples using the DNeasy Powerlyzer Powersoil microbial DNA extraction kit (Qiagen, Hilden, Germany) according to manufacturer instructions. The quantity and purity of extracted DNA were assessed using a NanoDrop™ 1000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, USA). DNA fragments of approximately 460 bp length flanking the V3 and V4 regions of the 16S ribosomal RNA (rRNA) gene of bacteria and archaea were amplified using forward and reverse primer pairs, modified 341F and modified 806R, respectively (Sundberg et al., 2013; Yu et al., 2005). Library preparation, quantification, normalization, and pooling were conducted following the Illumina 16S metagenomics protocol (Amplicon et al., 2013). Library quantity and quality were assessed using a D1000 ScreenTape® Tapestation (Agilent technologies, Santa Clara, CA). Prepared libraries were pooled and run on an Illumina MiSeq platform for 300 bp paired-end read sequencing at the Genomic Sciences Laboratory, North Carolina State University, NC. Raw sequences were deposited to the National Centre for Biotechnology Information Sequence Read Archive (BioProject ID PRJNA557512).

2.3.2. Sequence analyses

QIIME version 1.9.1 (Caporaso et al., 2010b) was used for qualitative screening of genomic sequences. Forward and reverse sequences were merged, de-barcoded and trimmed (Bolger et al., 2014). Multiple split libraries fastq.py script was used for demultiplexing and quality Chimeric sequences were identified lel_identify_chimeric_seqs.py script using ChimeraSlayer and filtered using filter_fasta.py script (Haas et al., 2011). The screened sequences were then clustered into operational taxonomic units (OTUs) by pick_open_reference_otus.py script with UCLUST algorithm using 97% similarity index along with Greengenes database version (13_8) (Caporaso et al., 2010b). Taxonomic classification was done based on the latest Greengenes database version (13_8 and RDP classifier 2.2 with a confidence value of 0.8 using UCLUST (Edgar, 2010). Alignment was performed using PyNAST (Caporaso et al., 2010a) followed by generating phylogenetic trees using make_phylogeny.py script. The OTUs having less than 0.05% of the total sequence reads were filtered out for further analysis.

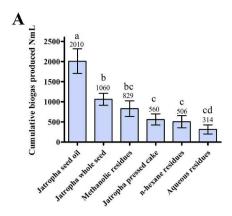
2.4. Statistical analyses

Alpha and beta diversities of microbial communities in reactors treating JWS, JO, JPC and MR were analyzed using R (McMurdie and Holmes, 2013). For alpha diversity, the Chao1 index (richness only) and

Shannon (richness and evenness) indices were calculated. One-way analysis of variance (ANOVA) followed by Tukey's post-hoc test was used for multiple comparisons of Chao1 and Shannon indexes in reactors treating $J.\ curcas$ seed's fractions at HRTs of 10, 15 and 20 days in R-Studio. The level of significance was p<0.05, p<0.01 and p<0.001. Beta diversity was analyzed using Bray-Curtis distances and visualized using two dimensional ordination plots. Canonical correspondence analysis (CCA) was used to estimate correlations between microbial communities and the following parameters: VFA, Alkalinity, VFAs/Alkalinity ratio, pH, and biogas yield. One-way ANOVA followed by Tukey's post-hoc test was used for multiple comparisons of biogas yield in batch and continuous setups using Prism Graphpad. The level of significance was p<0.05. Relative abundances of microbial communities were analyzed using R.

3. Results and discussion

3.1. Phytochemical analyses of seed oil and extracts used in anaerobic digestion


Initially, *J. curcas* seeds were subjected to mechanical oil extraction and yielded 32.5% oil. The TS and VS contents of the substrates are shown in Table S1.

J. curcas seeds have a number of compounds such as phorbol esters, curcin, and long chain fatty acids (LCFAs) that have been reported to have antimicrobial activities (Haq et al., 2019; Mendonça et al., 2019). Preliminary phytochemical analyses of J. curcas seed oil and de-oiled JPC extracts (aqueous, methanolic, and n-hexane) detected flavonoids, steroids, tannins, and phenol. Saponins and glycosides were only detected in the aqueous and methanolic extracts and were absent in seed oil and n-hexane extract. No balsams were found in any extract or seed oil. A broad range of phytochemicals was detected during GC-MS (Supplemental Information, Tables S2–S5) and FTIR analyses of JO and JPC extracts (Supplemental Information, Figs. S3–S6). A number of LCFAs, known to inhibit microbial cells (Ma et al., 2015), were identified in JO and n-hexane extracts (Supplemental Information, Tables S4 and S5).

The methanolic extract is highly rich in medicinally important compounds such as beta-monolaurin, I-(+)-ascorbic acid 2,6-dihexade-canoate, 9-hexadecenal, bis (tridecyl) phthalate, 1-docosanol and diacetone alcohol (Table S3). Beta-monolaurin had been reported as having antimicrobial properties and may damage microbial cell membranes, targeting various proteins and nucleic acids and macromolecular synthesis processes resulting in cell damage (Skřivanová et al., 2006). Similarly, ascorbic acid 2,6-dihexadecanoate had been reported as having antioxidant activities, and 9-hexadecenal and 1-docosanol for antimicrobial activities (Bhardwaj, 2018). Methanolic solvent was a better extraction solvent than aqueous and n-hexane (Haq et al., 2019).

3.2. Biogas potential of J. curcas cake after solvent extraction and inhibitory effect of methanolic extract of pressed cake on different steps in anaerobic digestion

The biogas potential of *J. curcas* seed and the effect of methanolic extract of de-oiled JPC were evaluated on different steps of anaerobic digestion in batch reactors (Fig. 3A and B). The biogas produced by methanolic residues, Jatropha pressed cake, n-hexane residues and aqueous residues was 829 Nml, 560 NmL, 506 NmL and 314 NmL, respectively. Methanolic residues produced more biogas than Jatropha pressed cake (35.5%), *n*-hexane residues (39%), and aqueous residues (62%) (Fig. 3A). This suggests treating de-oiled JPC with a methanolic extraction may increase the seed cake anaerobic biodegradability by removing the compounds that inhibit anaerobic microbial communities, which is confirmed by the observed inhibition due to addition of methanol extracts to the reactor fed with cellulose (Fig. 3B). The higher biogas yield of methanolic residues (829 NmL) compared to residues

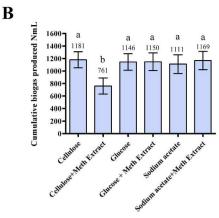
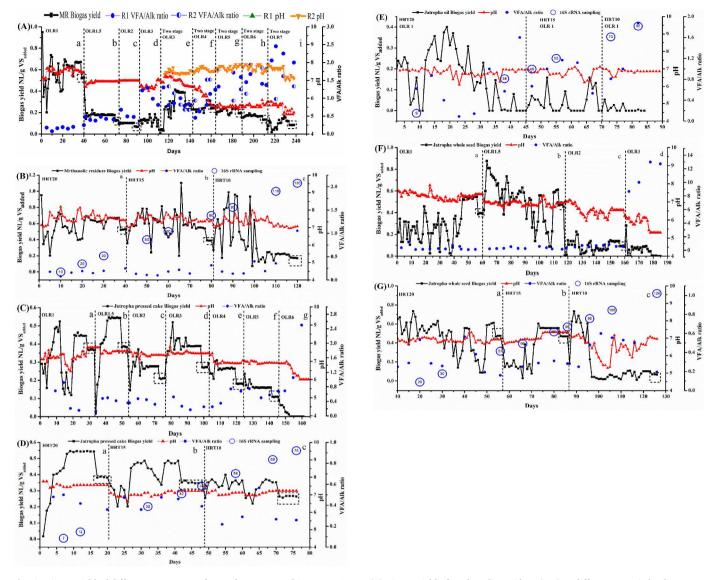


Fig. 3. Net cumulative biogas production of different treatments of J. curcas seed and the effect of methanolic extracts of de-oiled Jatropha pressed cake (JPC) on different steps of anaerobic digestion. (A) Biogas potential of different fractions of J. curcas seed. Inocula were used as negative control that was subtracted from biogas yield of substrates. (B) Inhibitory effects of methanolic extract of de-oiled JPC on net biogas production of cellulose, glucose and acetate representing different steps of anaerobic digestion. The background biogas produced by a negative control (inocula plus methanolic extract) was subtracted from biogas produced by each substrate. The experiments were carried out in triplicate and the data was presented as mean \pm standard deviation. One-way ANOVA followed by Tukey's post-hoc test for multiple comparisons was used. The same lowercase letters on the adjacent bars indicate no significant differences; different letters indicate significant differences. Level of significance was p < 0.05.

from *n*-hexane (506 NmL) and aqueous residues (314 NmL) (Fig. 3 A, B) suggests more antimicrobials were removed by methanol extraction. This is likely because methanol, whose polarity index falls between the other solvents, has the capability to dissolve both polar and non-polar compounds (Haq et al., 2016).

The addition of methanolic extract to a cellulose-fed reactor, which necessitates hydrolysis, resulted in a substantial reduction in biogas production (p < 0.05). Specifically, the biogas yield decreased by 35.5%, with only 761 NmL of biogas being produced. However, the methanolic extract did not inhibit biogas production when added to substrates not requiring polymer hydrolysis (*i.e.*, sodium acetate and glucose) (Fig. 3B). This suggests that the microbial inhibitors in *J. curcas* seed selectively affect hydrolysis by either directly inhibiting the relevant bacterial communities or inhibiting their enzymes i.e., hydrolases. The effect of methanolic extract on microbial communities is explained in Section 3.4, where the *J. curcas* seed long chain fatty acids and phytochemicals inhibited the acetogenic bacterial groups.


3.3. Effect of operational parameters and inhibitory compounds on biogas yield during anaerobic digestion

Operational parameters and inhibitors present in *J. curcas* seeds both affect biogas and biomethane yields. In continuous anaerobic digestion, all reactors were mainly sensitive to OLR, because it is directly correlated to loading of inhibitory compounds and, in the case of methanolic residues, over-acidification. HRT, although affecting yield and stability to a lesser extent than OLR, is also an important parameter. Previous studies have shown that higher OLR and shorter retention time favors over-acidification due to an increase in VFA accumulation, thus resulting in decreased biogas production (Dareioti and Kornaros, 2015; Nakasaki et al., 2015; Zhang et al., 2015; Razaviarani and Buchanan, 2014; Doğan and Demirer, 2009). Hence, low OLRs and extended HRTs have been considered ideal strategies to enhance the efficiency and stability of the reactors to avoid accumulation of VFAs. For instance, Lu et al. (2015) observed a sharp decline in pH (below 6.7) and biogas production from 3.95 to 0.5 L/L $_{reactor}/d$ by shortening HRT from 24 to 3 h and increasing the OLR from 1 to 8 g COD/L_{reactor}/d in long term operation of a lab-scale reactor treating wastewater (Alavi-Borazjani et al., 2020). It appears that long-chain fatty acids (LCFAs), when present, produce rapidly failing reactors, likely by initially inhibiting microbial communities. Anaerobic digestion is a complex process that relies on the concerted efforts of various microbial communities, such as

methanogens, acidogens, acetogens, and hydrolytic bacteria. These microbial groups are interdependent, and any slight variation in their composition can disrupt or modify the entire anaerobic digestion process (Pasalari et al., 2021). Previous studies have demonstrated inhibitory effects of LCFAs on methanogenesis and acetogenesis, while no inhibitory effects were reported for hydrolysis and acidogenesis (Rodríguez-Méndez et al., 2017). The methanogenesis was inhibited at concentrations of 0.11 g_{LCFA}/L but it was more prominent at the higher concentrations of 0.5 g_{LCFA}/L (Rodríguez-Méndez et al., 2017). Even when LCFAs concentrations are reduced after removing Jatropha oil (such as for biodiesel), remaining phytochemicals can inhibit the reactor. In the case where both LCFAs and phytochemical concentrations are reduced, the main cause of instability is organic overloading leading to acidification (Fig. 4 A and 4E). Previous findings are also in agreement with our statement that an increase in OLR leads to accumulation of VFAs, thus resulting over-acidification (Ferguson et al., 2016).

The maximum biogas (0.65 NL/g VS_{added}) yield for MR was obtained at an OLR of 1 g VS L⁻¹ d⁻¹ and a HRT of 20 days (depicted in Fig. 4A and B), which was significantly higher (p<0.05) than at other OLRs (1.5, 2, 3, 4, 5, 6, and 7 g VS L $^{-1}$ d $^{-1}$ yielding biogas 0.18, 0.1, 0.4, 0.3, $0.24,\,0.17,\,0.1,\,0.55,\,0.22$ NL/g VS $_{added},$ respectively) and HRTs (15 and 10 days with biogas yield of 0.55 and 0.22 NL/g VS_{added}, respectively). Further, the biomethane yield (0.536 NL/g VS_{added}) of MR treating reactor was significantly higher (p < 0.05) than the maximum yields from reactors treating jatropha pressed cake (0.38 NL/g VS_{added}), whole seed (0.47 NL/g VS_{added}), and oil (reactor failed). In reactors fed with methanolic residues, the biogas yield decreased at OLRs above 1 g VS $\boldsymbol{L}^{-1} \; day^{-1} \; likely \; due \; to \; its \; high \; biodegradability \; resulting \; in \; accumu$ lating VFAs faster than they could be converted to methane. The VFAs/ alkalinity ratio (Supplemental Information, Table S6) continued to increase with OLR; to address this issue the reactor was converted two stage anaerobic digestion for OLRs 4 g VS L⁻¹ day⁻¹ through 7 g VS L⁻¹ day⁻¹, but the biogas yield did not fully recover. The methanolic residues treating reactor was stopped at OLR of 7 g VS L⁻¹ day⁻¹ as the small diameter pipes began to clog from the amount of methanolic residues used during feeding.

The reactor fed with Jatropha pressed cake produced maximum biogas (0.54 NL/g VS_{added}) and biomethane (0.38 NL/g VS_{added}) yields at an OLR of 1.5 g VS L^{-1} d⁻¹ and HRT of 20 days (Fig. 4C and D). Although also inhibited with increased organic loading, Jatropha pressed cake degradation did not appear to produce VFAs as rapidly as

Fig. 4. Biogas yield of different treatments of *Jatropha curcas* seed in NL/g VS_{added}. (**A**) Biogas yield of methanolic residues (MR) at different organic loading rates, (**B**) Biogas yield of MR at different HRTs at an OLR of 1 g VS L⁻¹ day $^{-1}$, (**C**) Biogas yield of jatropha pressed cake (JPC) at different OLRs, (**D**) Biogas yield of JPC at different HRTs at an OLR of 1.5 g VS L $^{-1}$ Day $^{-1}$, (**E**) Biogas yield of jatropha seed oil (JO) at different HRTs at an OLR of 1 g VS L $^{-1}$ Day $^{-1}$, (**F**) Biogas yield of Jatropha whole seed (JWS) at different HRTs at an OLR of 1.5 g VS L $^{-1}$ Day $^{-1}$, (**G**) Biogas yield of JWS at different HRTs, The Biomethane yield is covered by dashed squares. The different letters show significant differences in biogas yields at steady state among different OLRs and HRTs. One-way ANOVA followed by Tukey's posthoc test for multiple comparisons was used. The level of significance was (p < 0.05). Labelled blue circles show the days at which 16S rRNA samples, for microbial profile in the reactor, were taken from reactors and results are discussed in Section 3.4. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

methanolic residues degradation, leading to a less abrupt drop-off in yields. We believe this is caused by reduced biodegradation rates (and thus over-acidification) due to phytochemical inhibitors present in the Jatropha pressed cake that are not in the methanolic residues.

The reactor treating Jatropha oil was inhibited during the early stages at OLR of 1 g VS L^{-1} day $^{-1}$ at HRTs of 20, 15 and 10 days (Fig. 4E). This is likely due to high concentration of LCFAs in the Jatropha oil, which are known to decrease biogas yields and cause reactor failure (Xu et al., 2015). LCFAs, which is a product of hydrolysis of lipid is further degraded anaerobically through β -oxidation pathway to acetate and hydrogen. The acetate and hydrogen are subsequently converted to methane (Xu et al., 2015). The process of β -oxidation is initiated when the fatty acids are activated with coenzyme A, which subsequently oxidized to release acetyl-CoA and synthesis of a fatty acid chain. The fatty acids activation with coenzyme A starts the process of β -oxidation and further oxidation leads to the liberation of acetyl-CoA

and the synthesis of a fatty acid chain (Madigan and Martinko, 2006). A notable concern arises from the potential detrimental impact of LCFAs on methanogenic bacteria when they are introduced at significant concentrations or loading rates. Researchers have posited that the adverse impact on microbial communities and biogas yield could be attributed to several factors, including sludge floatation and washout, transport limitation caused by a layer of LCFAs coating the bacteria, impeding their access to substrates and their ability to release biogas, as well as the potential toxicity effect of LCFAs on microbial communities (Nzila et al., 2019). Another operational concern is the digester foaming due to lipids during anaerobic digestion process (Long et al., 2012). Foaming can result in reduced gas recovery due to accumulation of high concentrations of solids at the top of a digester, thus resulting in blockage of gas mixers, fouling of gas pipes and so on (Ganidi et al., 2009).

Biogas yields from the reactor treating Jatropha whole seeds fluctuated, with maximum biomethane (0.47 NL/g VS_{added}) and biogas (0.6

 $NL/g VS_{added}$) yields at an OLR of 1.5 g VS $L^{-1} d^{-1}$ and a HRT of 20 days and the reactor failed at OLRs of 2 and 3 g VS L⁻¹ day⁻¹ (Fig. 4F). Because the failure occurred before the VFA/alkalinity ratio increased, we attributed the failure and variability primarily to inhibitory compounds rather than over-acidification. The increase in VFAs after methane generation ceased which suggests that methanogenesis was inhibited earlier than hydrolysis and acid production and this may have been caused in two ways. First, the methanogens themselves may have been directly and preferentially inhibited by the LCFAs (Nielsen and Ahring, 2006). Alternatively, the methanogens may have been starved for substrate either due to LCFA/phytochemical inhibited acetate-producers or additional upstream effects such as the potential hydrolysis inhibition suggested in Fig. 3B. The acetogenic activities are reduced as the LCFAs are accumulated, and subsequently lead to low methanogenesis (Pereira et al., 2003). Further, acetate starvation may also have occurred if the LCFA degrading acetogens were washed out at the lower HRTs. Regardless of the many potential explanations, the high toxicity of compounds in Jatropha whole seeds makes it an unsuitable direct substrate.

3.4. Effects of methanolic extract of J. curcas pressed cake and hydraulic retention time on microbial diversity

The total counts of raw reads were 7,786,706 sequences, with 97,334

mean raw reads per sample. Alpha diversities based on microbial richness (Chao1 index) and diversity (Shannon index) differed between reactors treating J. curcas seed fractions at HRTs of 10, 15 and 20 days (Fig. 5 A). The reactor treating methanolic residues generally had a significantly higher (p < 0.001) Shannon index (even diversity) than those fed with Jatropha oil and whole seed (see supplementary file Tables S7–S10), however, there were no significant (p > 0.05) variations in microbial richness based on the Chao1 index among them. As Chao1 index is not statistically different, the main effect seems to be on evenness of the microbial communities within the reactors. Those reactors, which treated Jatropha oil and whole seed, had generally the lowest Chao1 and Shannon diversity. We suggest both the evenness and richness were lowered by inhibitory compounds in the seeds, primarily the LCFAs present in the jatropha oil and, to a lesser extent, phytochemicals present before methanolic extraction. It is possible that the different inoculum batches contributed to different Shannon diversity values, however Jatropha pressed cake had a Shannon diversity closer to that an of the MR-associated inoculum than the one to which it was exposed. The lower diversity reactors were also the less stable ones, which correspond to established theory (Carballa et al., 2015). Higher richness and evenness are signs of functional stability of a reactor and the lower richness or evenness are usually considered as a warning indicator for reactor instability (Carballa et al., 2015). The statistical analysis of alpha diversity indices implies that proper and sustainable management of

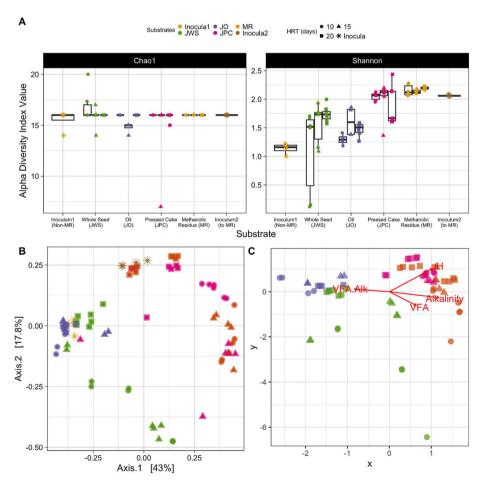


Fig. 5. 16S rRNA analysis of microbial communities during anaerobic digestion of *J. curcas* seeds. (A) Chao1 and Shannon indexes of alpha diversity (within sample diversity) of microbial communities within different anaerobic reactors treating jatropha oil (JO), whole seed (JWS), pressed cake (JPC) and methanolic residues (MR) substrates. (B) Principal coordinate analysis (PCoA) plot using Bray Curtis distances (dissimilarity) between *J. curcas* substrates (JO, JWS, JPC, and MR), inocula1 and inocula2 at different HRTs (20, 15 and 10 days). The shaded circle, triangle, square and plus signs in PCoA plot represent HRT 10, 15, 20 and inocula, respectively in continuous anaerobic digestion setup. The substrates are represented by different colors. (C) Canonical correspondence analysis to identify the relationship between operating parameters and microbial communities during anaerobic digestion of different setups of *J. curcas* seed. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

inhibitory compounds may greatly increase the microbial diversity inside the reactors, resulting in both more stable reactors and an enhanced biogas yield.

The beta diversity between samples, visualized as a PCoA ordination based on Bray-Curtis distances (Fig. 5B), also shows that both substrate composition and HRTs affected the microbial communities. Communities associated with the Jatropha whole seed and oil deviated from their inoculum due to the presence of phytochemicals. They indicated similar microbial community composition and tended to cluster together at long HRTs. On the other hand, MR and JPC clustered close to each other especially at HRT of 20 days, indicating similar microbial communities; interestingly, they clustered close to the inocula. This close adherence of MR and JPC to their inocula shows the strong adaptability and acclimatization of the microbial communities present in their respective inocula for breakdown of these substrates. Moreover, the microbial communities in all reactors at HRT of 20 days were dissimilar than those at HRT 10 and HRT 15 except for Jatropha oil, illustrating the effect of HRT on the microbial shifts between the reactors. The performance and stability of the reactors varies with HRTs. The microbial communities performed well and were more stable at longer HRTs compared to shorter ones as evident from biomethane yield.

Canonical correspondence analysis (CCA) shows that the microbial communities present in MR and JPC treating reactors exhibited positive correlation with increased operating pH (Fig. 5C). Microbial communities consuming methanolic residues and Jatropha pressed cake at HRT 20 days had a strong positive correlation with pH and negatively correlated with increased VFAs/Alkalinity ratios. HRT has strong effects on the pattern and composition of microbial communities during anaerobic digestion. Higher HRTs favor greater microbial diversity, while lower HRTs tend to lower the microbial diversity due to microbial washout (assuming no biomass retention mechanism which decouples mean cell residence time (MCRT) from HRT). Microbes that have longer doubling times than the HRTs are liable to washout at shorter retention time during anaerobic digestion (Xu et al., 2018). As previously mentioned, the Jatropha whole seeds in their natural form are enriched with several phytochemicals and LCFAs, which impedes the process of anaerobic digestion and affects the associated microbial communities. Similarly, Jatropha oil, enriched in LCFAs, has negative effects on the microbial communities involved in the process of anaerobic digestion as discussed earlier in section 3.3. In the other fractions, such as pressed

cake and methanolic residues, the level of phytochemicals and LCFAs are reduced subsequently compared to the Jatropha whole seeds and oils. Particularly, the methanolic extraction has the tendency to extract both polar and non-polar phytochemicals from jatropha seeds, thus resulting in relatively lower phytochemicals or LCFAs. On the other hand, the microbial communities in Jatropha oil and whole seed reactors were positively correlated with increased VFAs/Alkalinity ratios. In addition, the methanolic residues and Jatropha pressed cake had positive correlation with VFA but this increase had no obvious negative effects on the biogas yield due to higher alkalinity (Eduok et al., 2017).

The methanolic residue reactors had higher relative abundance of acetogenic bacteria than the whole seed reactors (Fig. 6). The relative abundance of Clostridium was 0.7% in MR, while for JWS it was 0.4% (Table S11). Clostridium and Syntrophomonas were found in higher abundance in the methanolic residues compared to Jatropha whole seed treating reactors at HRT of 20 days; these organisms are known for their broader range of substrate utilization and higher abundance in well operating and stable anaerobic digesters (Papp et al., 2016). Both genera are syntrophic acetate oxidizers and are in general involved in proteolytic and saccharolytic conversions (Vanwonterghem et al., 2014). Syntrophomonas is a facultative bacterium that consumes acetate and converts it into H2 and CO2 via acetate oxidation and the resultant products are further utilized by hydrogenotrophic methanogens to produce CH₄ (Treu et al., 2019). Syntrophomonas is highly resilient, but it can be out-competed by acetoclastic methanogens, and is negatively correlated with higher VFAs (Treu et al., 2019). The methanogens were more abundant in Jatropha oil and whole seed compared to methanolic residues treating reactors. The percent relative abundance of Methanosaeta at HRT 20 was 44.4%, 37.9%, 17.7% and 12.5% in reactors treating Jatropha whole seed, oils, pressed cake and methanolic residues, respectively (Table S11). A similar trend was seen for other methanogenic microbial communities in reactors treating Jatropha whole seed, oils, pressed cake and methanolic residues at HRTs of 15 and 10 days (Table S11). The high abundance of the genus Methanosaeta in reactors treating high amount of LCFAs may be due to their acetoclastic activity and LCFA-resistant nature. Thus the genus Methanosaeta is the most dominant group in LCFAs-rich reactors (Usman et al., 2020).

Methanosaeta was relatively more abundant in Jatropha whole seed, oil and pressed cake reactors compared to the methanolic residues reactor community (Table S11). The lower relative abundance of

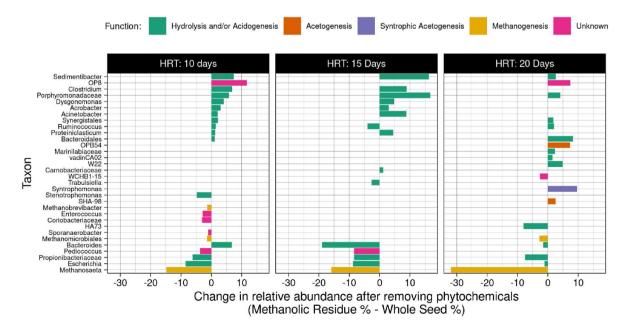


Fig. 6. Relative abundance of microbial communities in reactors treating jatropha whole seed (JWS) compared to those in methanolic residues (MR) at hydraulic retention time (HRT) of 20, 15 and 10 days.

Syntrophomonas in Jatropha whole seed and oil compared to methanolic residues and pressed cake treating reactors may have caused a decrease in acetate production (Regueiro et al., 2015). Syntrophomonas is specialized in converting butyrate and propionate to acetate, therefore, a lower relative abundance of Syntrophomonas indirectly indicates lower acetate concentration (Regueiro et al., 2015). Methanosaeta has higher affinity for acetate but can be sustained only at a lower concentration of acetate (Liu and Whitman, 2008). The Methanosaeta having a high affinity for acetate are only capable to produce methane by consuming it at concentrations not exceeding 100-150 mg/L (Kim et al., 2014; Lim et al., 2013). The higher relative abundance of Methanosaeta and lower relative abundance of Syntrophomonas is an indication of perturbation and instability of anaerobic digestion process. The Actinobacteria with unidentified genera were dominant in Jatropha oil and whole seed compared to pressed cake and methanolic residues treating reactors (Table S11) and have been reported to consume propionate; they can sustain in higher VFAs/Alkalinity ratios during anaerobic digestion (Cabezas et al., 2015). Sedimentibacter is a non-carbohydrate dependent bacterium, supported by pyruvate or amino acids fermentation (Gulhane et al., 2017). They were found in higher abundance in methanolic residues and pressed cake compared to Jatropha oil and whole seed treating reactors. The Cloacimonetes (WWE1) genus W22 is thought to play a role in protein and cellulose fermentation and oxidizes VFAs during anaerobic digestion (Chojnacka et al., 2015). They were found in higher abundance in methanolic residues followed by pressed cake, whole seed and Jatropha oil (Table S11). Their relative abundance indicated that the J. curcas seed long chain fatty acids and phytochemicals inhibited acetogenic bacterial groups (Fig. 7); however, no obvious decrease in methanogenic abundance was observed, contrary to previous literature (McMurdie and Holmes, 2013).

At lower HRTs, the methanogens were at low levels, resulting in reactor instability and lower biogas yields (Fig. 7). Conversely, the relative abundances of *Methanosaeta* (methanogens) and *Bacteroidetes* (hydrolyzers) were adequate to keep the anaerobic digestion process stable at HRT 20, in contrast to the instability at HRTs of 15 and 10 days. The relative abundances of genera *Pediococcus*, *Proteiniclasticum*, *Clostridium*, *Sedimentibacter* and *Sporanaerobacter* within *Firmicutes* were higher at shorter HRTs compared to longer HRTs (Table S11). The genus *Firmicutes* possess thick cell wall and bear harsh condition by forming endospore surrounding their cells, thus allowing them to thrive under different operational and environmental conditions (De Sa et al., 2011). Therefore, they have the capability to sustain in higher relative abundances at shorter HRTs. *Firmicutes* play a major role in hydrolysis and hydrogenogenic acidogenesis of different feedstocks during anaerobic digestion (Fitamo et al., 2017), as they are involved in a variety of roles

such as degradation of cellulosic materials and secretion of ligninolytic enzymes (Laccases) (Dassa et al., 2014; Ze et al., 2015; Lage and Bondoso, 2014). They highly influence the composition of methanogens and the process of hydrogen (H2) removal to maintain a low H2 partial pressure (Garcia-Peña et al., 2011; Palatsi et al., 2011). Sporanaerobacter is a sulphur reducing acetogen and is considered fast grower compared to methanogens (Hernandez-Eugenio et al., 2002). The J. curcas seed being rich in oil has a low level of sulphur (Islam et al., 2015), which can be used by the sulphur reducing acetogen during anaerobic digestion. The perturbation in the Jatropha whole seed and oil reactors at shorter HRTs (15 and 10 days) may be due potentially to an increase in relative abundance of sulphur reducing Sporanaerobacter, which outcompeted the methanogens. On the other hand, some of the Firmicutes genera including Syntrophomonas and Ruminococcus were found in higher abundance at longer HRTs compared to shorter HRTs (Table S11). Synergistetes with genera HA73 and vadinCA02 had higher relative abundance at longer HRT compared to shorter HRT. The HA73 and vadinCA02 can convert protein into acetic acids during anaerobic digestion (Yamashita et al., 2016).

4. Conclusions

For Jatropha curcas seeds to be a suitable feedstock for biogas production, phytochemicals in the seeds that affect methane production, specifically by inhibiting hydrolytic and acetogenic bacterial communities, need to be removed. The phytochemicals extracted with methanolic solvent inhibited hydrolysis, reducing biogas production by 35.5% compared to the same treatment without extracts. Residues from which the phytochemicals were removed using methanolic extraction (methanolic residues) appear to not inhibit microbial communities and produced higher methane yields than other seed preparations. In the continuous setup, the reactor utilizing methanolic residues (MR) consistently demonstrated superior stability in biogas production compared to reactors treating Jatropha whole seeds, oils, or pressed cake. This heightened stability can be attributed to the notably higher abundance of syntrophic acetogens in the MR-treated reactor, with a relative abundance of 12.1%, compared to 9.6% in reactors fed with Jatropha pressed cake, 4.0% with seed oil, and only 2.5% with whole seeds. Enhanced biogas yield of 0.65 NL/g VS_{added}, 0.60 NL/g VS_{added} and 0.54 NL/g VS_{added} was achieved at longer HRTs (20 days), which we attribute to reduced washout of key slow-growing communities, and lower OLRs. The extracted phytochemicals and oil are themselves potentially valuable to the pharmaceutical industry and biodiesel production, respectively. This approach will increase the economic value of J. curcas for the biofuel and biorefinery sectors, by providing a

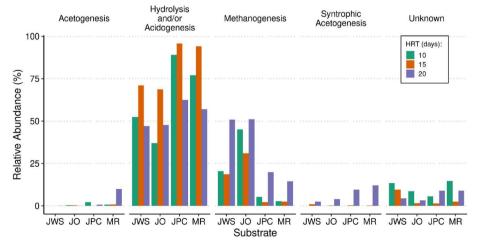


Fig. 7. Relative abundance of major microbial groups in different anaerobic reactors treating jatropha oil (JO), whole seed (JWS), pressed cake (JPC) and methanolic residues (MR) substrates at hydraulic retention time (HRT) of 20, 15 and 10 days.

potentially sustainable cleaner solution to mitigate waste and enhance the value of the feedstock for production of energy carriers and valueadded compounds.

CRediT authorship contribution statement

Abdul Haq: Conceptualization, Methodology, Software, Formal analysis, Investigation, Visualization, Writing – original draft. Ayesha Malik: Methodology, Formal analysis. Alam Khan: Conceptualization. Joseph E. Weaver: Experimental Work, Software, Formal analysis. Ling Wang: Experimental Work, Software, Formal analysis. Haji Khan: Results interpretation. Samiullah Khan: Supervision. Aamer Ali Shah: participated substantially in discussion and modifications. Safia Ahmed: Supervision. Asif Jamal: Results interpretation. Francis L. de los Reyes III: Supervision, Writing – review & editing, Formal analysis, Resources. Malik Badshah: Conceptualization, Supervision, Writing – review & editing, Formal analysis, Resources, Funding acquisition, Project administration.

Funding

This study is a part of NRPU projects (6195/Federal/NRPU/R&D/HEC/2016) and (20-1482NRPU/R&D/HEC/2021). The financial support to accomplish this research was provided by Higher Education Commission of Pakistan.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

Higher Education Commission of Pakistan and Quaid-i-Azam University, Islamabad is highly acknowledged. Abdul Haq was supported by postgraduate fellowship granted and international research support initiative program by Higher Education Commission of Pakistan.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jclepro.2023.139154.

References

- Alavi-Borazjani, S.A., Capela, I., Tarelho, L.A., 2020. Over-acidification control strategies for enhanced biogas production from anaerobic digestion: a review. Biomass Bioenergy 143, 105833.
- Amplicon, P., Clean-Up, P., Index, P., 2013. Metagenomic Sequencing Library Preparation, 16S. Illumina, San Diego, CA, USA.
- Aslanzadeh, S., Rajendran, K., Taherzadeh, M.J., 2014. A comparative study between single-and two-stage anaerobic digestion processes: effects of organic loading rate and hydraulic retention time. Int. Biodeterior. Biodegrad. 95, 181–188.
- Astals, S., Batstone, D., Mata-Alvarez, J., Jensen, P., 2014. Identification of synergistic impacts during anaerobic co-digestion of organic wastes. Bioresour. Technol. 169, 421–427.
- Astals, S., Koch, K., Weinrich, S., Hafner, S.D., Tait, S., Peces, M., 2020. Impact of storage conditions on the methanogenic activity of anaerobic digestion inocula. Water 12 (5), 1321.
- Basri, D.F., Fan, S., 2005. The potential of aqueous and acetone extracts of galls of *Quercus infectoria* as antibacterial agents. Indian J. Pharmacol. 37 (1), 26.
- Bhardwaj, R., 2018. GC-MS analysis and antimicrobial activity of alkaloids of *Tecomella undulata*. J. Med. Plant Stud. 6 (6), 68–72.
- Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 (15), 2114–2120.

- Cabezas, A., de Araujo, J.C., Callejas, C., Galès, A., Hamelin, J., Marone, A., Sousa, D.Z., Trably, E., Etchebehere, C., 2015. How to use molecular biology tools for the study of the anaerobic digestion process? Rev. Environ. Sci. Biotechnol. 14, 555–593.
- Caporaso, J.G., Bittinger, K., Bushman, F.D., DeSantis, T.Z., Andersen, G.L., Knight, R., 2010a. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26 (2), 266–267.
- Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., 2010b. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7 (5), 335–336.
- Carballa, M., Regueiro, L., Lema, J.M., 2015. Microbial management of anaerobic digestion: exploiting the microbiome-functionality nexus. Curr. Opin. Biotechnol. 33, 103-111
- Chojnacka, A., Szczęsny, P., Błaszczyk, M.K., Zielenkiewicz, U., Detman, A., Salamon, A., Sikora, A., 2015. Noteworthy facts about a methane-producing microbial community processing acidic effluent from sugar beet molasses fermentation. PLoS One 10 (5), e0128008.
- Clesceri, L.S., Greenberg, A.E., Eaton, A.D., Franson, M.A.H., 1998. Standard Methods for the Examination of Water and Wastewater.
- Dareioti, M.A., Kornaros, M., 2015. Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: effect of hydraulic retention time. Bioresour. Technol. 175, 553–562. https://doi.org/ 10.1016/j.biortech.2014.10.102.
- Dassa, B., Borovok, I., Ruimy-israeli, V., Lamed, R., Flint, H.J., Duncan, S.H., Henrissat, B., Coutinho, P., Morrison, M., Mosoni, P., Yeoman, C.J., White, B.A., Bayer, E.A., 2014. Rumen cellulosomics: divergent fiber-degrading strategies revealed by comparative genome-wide analysis of six Ruminococcal strains. PLoS One 9, 1–14.
- De Sa, L.R.V., De Oliveira, T.C., Dos Santos, T.F., Matos, A., Cammarota, M.C., Oliveira, E.M.M., Ferreira-Leitao, V.S., 2011. Hydrogenase activity monitoring in the fermentative hydrogen production using heat pretreated sludge: a useful approach to evaluate bacterial communities performance. Int. J. Hydrogen Energy 36 (13), 7543–7549.
- Doğan, E., Demirer, G.N., 2009. Volatile fatty acid production from organic fraction of municipal solid waste through anaerobic acidogenic digestion. Environ. Eng. Sci. 26 (9), 1443–1450. https://doi.org/10.1089/ees.2009.0062.
- Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26 (19), 2460–2461.
- Eduok, S., Ferguson, R., Jefferson, B., Villa, R., Coulon, F., 2017. Aged-engineered nanoparticles effect on sludge anaerobic digestion performance and associated microbial communities. Sci. Total Environ. 609, 232–241.
- EFSA Panel on Contaminants in the Food Chain (CONTAM), 2015. Risks for human and animal health related to the presence of phorbol esters in Jatropha kernel meal. EFSA Journal 13 (12), 4321.
- Federation, W.E., Association, A., 2005. Standard methods for the examination of water and wastewater. American Public Health Association, APHA): Washington, DC, USA, p. 21
- Ferguson, R.M., Coulon, F., Villa, R., 2016. Organic loading rate: a promising microbial management tool in anaerobic digestion. Water Res. 100, 348–356.
- Fitamo, T., Treu, L., Boldrin, A., Sartori, C., Angelidaki, I., Scheutz, C., 2017. Microbial population dynamics in urban organic waste anaerobic co-digestion with mixed sludge during a change in feedstock composition and different hydraulic retention times. Water Res. 118, 261–271.
- Ganidi, N., Tyrrel, S., Cartmell, E., 2009. Anaerobic digestion foaming causes–a review. Bioresour. Technol. 100 (23), 5546–5554.
- Garcia-Peña, E.I., Parameswaran, P., Kang, D.W., Canul-chan, M., Krajmalnik-brown, R., 2011. Anaerobic digestion and co-digestion processes of vegetable and fruit residues: process and microbial ecology. Bioresour. Technol. 102, 9447–9455.
- Gulhane, M., Pandit, P., Khardenavis, A., Singh, D., Purohit, H., 2017. Study of microbial community plasticity for anaerobic digestion of vegetable waste in Anaerobic Baffled Reactor. Renew. Energy 101, 59–66.
- Haas, B.J., Gevers, D., Earl, A.M., Feldgarden, M., Ward, D.V., Giannoukos, G., Ciulla, D., Tabbaa, D., Highlander, S.K., Sodergren, E., 2011. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21 (3), 494–504.
- Haq, A., Adeel, S., Khan, A., Rana, Q.u.a., Khan, M.A.N., Rafiq, M., Ishfaq, M., Khan, S., Shah, A.A., Hasan, F., 2020. Screening of lipase-producing bacteria and optimization of lipase-mediated biodiesel production from *Jatropha curcas* seed oil using whole cell approach. BioEnergy Research 13, 1280–1296.
- Haq, A., Siddiqi, M., Batool, S.Z., Islam, A., Khan, A., Khan, D., Khan, S., Khan, H., Shah, A.A., Hasan, F., 2019. Comprehensive investigation on the synergistic antibacterial activities of *Jatropha curcas* pressed cake and seed oil in combination with antibiotics. Amb. Express 9 (1), 1–21.
- Haq, M.N.U., Wazir, S.M., Ullah, F., Khan, R.A., Shah, M.S., Khatak, A., 2016. Phytochemical and biological evaluation of defatted seeds of *Jatropha curcas*. Sains Malays. 45 (10), 1435–1442.
- Hernandez-Eugenio, G., Fardeau, M.-L., Cayol, J.-L., Patel, B.K., Thomas, P., Macarie, H., Garcia, J.-L., Ollivier, B., 2002. Sporanaerobacter acetigenes gen. nov., sp. nov., a novel acetogenic, facultatively sulfur-reducing bacterium. Int. J. Syst. Evol. Microbiol. 52 (4), 1217–1223.
- Islam, A.A., Islam, A.M., Nadhirah, N.A., Anuar, N., Yaakob, Z., 2015. Propagation of Jatropha Curcas through Seeds, Vegetative Cuttings and Tissue Culture, vol. 131. JATROPHA CURCAS.
- Kim, S., Bae, J., Choi, O., Ju, D., Lee, J., Sung, H., Park, S., Sang, B., Um, Y., 2014. A pilot scale two-stage anaerobic digester treating food waste leachate (FWL): performance and microbial structure analysis using pyrosequencing. Process Biochem. 49 (2), 301–308.

- Kurade, M.B., Saha, S., Salama, E.-S., Patil, S.M., Govindwar, S.P., Jeon, B.-H., 2019. Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane. Bioresour. Technol. 272, 351–359
- Lage, O.M., Bondoso, J., 2014. Planctomycetes and macroalgae, a striking association. Frontiers in Microbiology. 5, 1-9.
- Lim, J.W., Chen, C.L., Ho, L.J.R., Wang, J.Y., 2013. Study of microbial community and biodegradation efficiency for single- and two-phase anaerobic co-digestion of brown water and food waste. Bioresour. Technol. 147, 193–201.
- Liu, Y., Whitman, W.B., 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci. 1125 (1), 171–189.
- Long, J.H., Aziz, T.N., Ducoste, J.J., 2012. Anaerobic co-digestion of fat, oil, and grease (FOG): a review of gas production and process limitations. Process Saf. Environ. Protect. 90 (3), 231–245.
- Lu, X., Zhen, G., Estrada, A.L., Chen, M., Ni, J., Hojo, T., Kubota, K., Li, Y.Y., 2015. Operation performance and granule characterization of upflow anaerobic sludge blanket (UASB) reactor treating wastewater with starch as the sole carbon source. Bioresour. Technol. 180, 264–273. https://doi.org/10.1016/j.
- Ma, J., Zhao, Q.-B., Laurens, L.L., Jarvis, E.E., Nagle, N.J., Chen, S., Frear, C.S., 2015. Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnol. Biofuels 8, 1–12.
- Madigan, M.T., Martinko, J.M., 2006. Brock Biology of Microorganisms. Pearson Prentice
- McMurdie, P.J., Holmes, S., 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8 (4), e61217.
- Mendonça, S., Gomes, T.G., de Siqueira, F.G., Miller, R.N.G., 2019. Applications of Jatropha curcas cake. In: Jatropha, Challenges for a New Energy Crop, vol. 3. A Sustainable Multipurpose Crop, pp. 365–380.
- Mu'azu, K., Mohammed-Dabo, I., Waziri, S., Ahmed, A., Bugaje, I., Ahmad, A., 2013. Development of a mathematical model for the esterification of *Jatropha curcas* seed oil. J Pet Technol Altern Fuels 4 (3), 44–52.
- Nakasaki, K., Kwon, S.H., Takemoto, Y., 2015. An interesting correlation between methane production rates and archaea cell density during anaerobic digestion with increasing organic loading. Biomass Bioenergy 78, 17–24. https://doi.org/10.1016/ j.biombioe.2015.04.004.
- Nielsen, H.B., Ahring, B.K., 2006. Responses of the biogas process to pulses of oleate in reactors treating mixtures of cattle and pig manure. Biotechnol. Bioeng. 95 (1),
- Nzila, A., Razzak, S.A., Sankara, S., Nazal, M.K., Al-Momani, M., Kang, G.U., Ibal, J.C., Shin, J.H., 2019. Characterisation and microbial community analysis of lipid utilising microorganisms for biogas formation. PLoS One 14 (11), 0224989.
- Palatsi, J., Viñas, M., Guivernau, M., Fernandez, B., Flotats, X., 2011. Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions. Bioresour. Technol. 102, 2219–2227.
- Papp, B., Lakatos, G., Nagy, P.T., Boboescu, I.Z., Maróti, G., 2016. Metagenomics investigation of anaerobic degradation ecosystems. Journal of Central European Green Innovation 4 (1063–2016-86274), 73–88.
- Pasalari, H., Gholami, M., Rezaee, A., Esrafili, A., Farzadkia, M., 2021. Perspectives on microbial community in anaerobic digestion with emphasis on environmental parameters: a systematic review. Chemosphere 270. 128618.
- Pereira, M., Cavaleiro, A., Mota, M., Alves, M., 2003. Accumulation of long chain fatty acids onto anaerobic sludge under steady state and shock loading conditions: effect on acetogenic and methanogenic activity. Water Sci. Technol. 48 (6), 33–40.
- Razaviarani, V., Buchanan, I.D., 2014. Reactor performance and microbial community dynamics during anaerobic co-digestion of municipal wastewater sludge with restaurant grease waste at steady state and overloading stages. Bioresour. Technol. 172, 232–240. https://doi.org/10.1016/j.biortech.2014.09.046.
- Regueiro, L., Lema, J.M., Carballa, M., 2015. Key microbial communities steering the functioning of anaerobic digesters during hydraulic and organic overloading shocks. Bioresour. Technol. 197, 208–216.

- Rodríguez-Méndez, R., Le Bihan, Y., Béline, F., Lessard, P., 2017. Long chain fatty acids (LCFA) evolution for inhibition forecasting during anaerobic treatment of lipid-rich wastes: case of milk-fed veal slaughterhouse waste. Waste Manag. 67, 51–58.
- Scarlat, N., Dallemand, J.-F., Monforti-Ferrario, F., Nita, V., 2015. The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environmental development 15, 3–34.
- Sinbuathong, N., Sillapacharoenkul, B., Khun-Anake, R., Watts, D., 2010. Optimum organic loading rate for semi-continuous operation of an anaerobic process for biogas production from *Jatropha curcas* seed cake. Int. J. Glob. Warming 2 (2), 179–188
- Sinbuathong, N., Sirirote, P., Sillapacharoenkul, B., Munakata-Marr, J., Chulalaksananukul, S., 2012. Biogas production from two-stage anaerobic digestion of *Jatropha curcas* seed cake. Energy Sources, Part A Recovery, Util. Environ. Eff. 34 (22), 2048–2056.
- Skřivanová, E., Marounek, M., Benda, V., Březina, P., 2006. Susceptibility of Escherichia coli, Salmonella Sp and Clostridium perfringens to Organic Acids and Monolaurin. Veterinární medicína.
- Steinbrenner, J., Jeen, J., Nägele, H.-J., Kirchner, S., Bohlinger, B., Lemmer, A., 2020. Anaerobic digestion of aqueous Jatropha seed oil extraction residues and phorbol ester degradation. Bioresour. Technol. Rep. 12, 100601.
- Sundberg, C., Al-Soud, W.A., Larsson, M., Alm, E., Yekta, S.S., Svensson, B.H., Sørensen, S.J., Karlsson, A., 2013. 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol. Ecol. 85 (3), 612–626
- Treu, L., Tsapekos, P., Peprah, M., Campanaro, S., Giacomini, A., Corich, V., Kougias, P. G., Angelidaki, I., 2019. Microbial profiling during anaerobic digestion of cheese whey in reactors operated at different conditions. Bioresour. Technol. 275, 375–385.
- Usman, M., Salama, E.S., Arif, M., Jeon, B.H., Li, X., 2020. Determination of the inhibitory concentration level of fat, oil, and grease (FOG) towards bacterial and archaeal communities in anaerobic digestion. Renew. Sustain. Energy Rev. 131, 110032
- Vanwonterghem, I., Jensen, P.D., Ho, D.P., Batstone, D.J., Tyson, G.W., 2014. Linking microbial community structure, interactions and function in anaerobic digesters using new molecular techniques. Curr. Opin. Biotechnol. 27, 55–64.
- Xu, R., Yang, Z., Chen, T., Zhao, L., Huang, J., Xu, H., Song, P., Li, M., 2015. Anaerobic co-digestion of municipal wastewater sludge with food waste with different fat, oil, and grease contents: study of reactor performance and extracellular polymeric substances. RSC Adv. 5 (125), 103547–103556.
- Xu, R., Yang, Z.H., Zheng, Y., Liu, J.B., Xiong, W.P., Zhang, Y.R., Lu, Y., Xue, W.J., Fan, C.Z., 2018. Organic loading rate and hydraulic retention time shape distinct ecological networks of anaerobic digestion related microbiome. Bioresour. Technol. 262. 184–193.
- Yamashita, T., Ishida, M., Asakawa, S., Kanamori, H., Sasaki, H., Ogino, A., Katayose, Y., Hatta, T., Yokoyama, H., 2016. Enhanced electrical power generation using flameoxidized stainless steel anode in microbial fuel cells and the anodic community structure. Biotechnol. Biofuels 9 (1), 1–10.
- Yu, Y., Lee, C., Kim, J., Hwang, S., 2005. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol. Bioeng. 89 (6), 670–679.
- Ze, X., David, B., Laverde-gomez, J.A., Dassa, B., Sheridan, P.O., Duncan, S.H., Louis, P., Henrissat, B., Juge, N., Koropatkin, N.M., Bayer, E.A., Flint, J., 2015. Unique organization of extracellular amylases into amylosomes in the resistant starchutilizing human colonic firmicutes bacterium *Ruminococcus bromii*. mBio 6, 1–11.
- Zhang, C., Su, H., Wang, Z., Tan, T., Qin, P., 2015. Biogas by semi-continuous anaerobic digestion of food waste. Appl. Biochem. Biotechnol. 175, 3901–3914. https://doi.org/10.1007/s12010-015-1559-5.