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Abstract

In this paper, we study the Rosenzweig-MacArthur predator-prey model with predator-taxis and time
delay defined on a disk. Theoretically, we studied the equivariant Hopf bifurcation around the positive
constant steady-state solution. Standing and rotating waves have been investigated through the theory
of isotropic subgroups and Lyapunov-Schmidt reduction. The existence conditions, the formula for the
periodic direction and the periodic variation of bifurcation periodic solutions are obtained. Numerically,
we select appropriate parameters and conduct numerical simulations to illustrate the theoretical results and
reveal quite complicated dynamics on the disk. Different types of rotating and standing waves, as well as
more complex spatiotemporal patterns with random initial values, are new dynamic phenomena that do not

occur in one-dimensional intervals.
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I. INTRODUCTION

In order to survive and reproduce, organisms will respond to the surrounding environment, such
as staying away from the environment that hinders their own growth and approaching the environ-
ment that is conducive to them. This phenomenon of directed movement is called chemotaxis and
research on it can be traced back to [1]]. In predator-prey models, prey- or predator-taxis can ef-
fectively characterize the predator’s directional movement toward habitats with high prey density
or the prey’s behavior of perceiving predation risks to avoid predators, respectively. Many studies
have focused on the global existence, boundedness, or stability of solutions in models with prey-
taxis [2-7]] or predator-taxis [8H10]. Besides, based on the Hopf bifurcation theory for quasilinear
reaction-diffusion systems [11]], the existence of center manifolds [12], and the principle of lin-
earized stability [[13]], there are many studies exploring patterns induced by taxis and bifurcations,
through center manifold reduction [[14-17] or Lyapunov-Schmidt reduction method [[18-20].

The above studies mostly focus on one-dimensional intervals. Nevertheless, in real life, the
interaction between predators and prey frequently occurs in two-dimensional spatial domains. Ex-
amples include lakes [21], irregularly shaped protected areas [22]], and circular Petri dishes, which
are often chosen as experimental arenas for many studies on the interaction between miniature
predators and prey [23] 24]]. Establishing a predator-prey model on a circular domain can better
depict real-world situations. Hence, we consider the Rosenzweig-MacArthur predator-prey model

with predator-taxis and time delay on a disk D ={(r,0): 0 <r<R,0< 60 <2m},

u = d1Argu+x V- (uVygv)+u (1 - ,%) —a (n0)eb, >0,

u+1’
Vi = doAgv —dv+ IZ,—I:E‘{’ (r,0) eD, t >0, (1)
a”u('>R79) = arv(-,R,B) = 07 0 c [0,271'),

where u =u(r,0,t), v=v(r, 0,t) represent the density of prey and predator at radius r, angle 6 and
time #, respectively, and u; = u(r, 0,t — 7). The parameters d;, d, X, K, a, d are all positive and
defined in [16], in which the authors investigated the same model on a one-dimensional interval
0,[x].

With the aid of the phase portraits of the normal form with O(2) symmetry [25], the equiv-
ariant bifurcation theory [26, 271, and various wave solutions induced by equivariant bifurcations
[28] 29], we plan to further explore the joint effect of time delay, predator-taxis and O(2) symme-
try. Compared to results in [[16]], spatially inhomogeneous periodic solutions on a disk, including

standing and rotating waves are found. The new wave solutions generated in circular domains
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TABLE I: Notations

Symbols Descriptions
Y = L*(D) The Lebesgue space of integrable functions defined on D
HJ (D) HY(D) = {(u,v) € HY(D)|du= v =0, 6 € [0,27)}
X X = H*(D) NH} (D)
Xc, Y The complexification of X and Y

C(]—7,0],Xc)  The Banach space of continuous mappings form [—7,0] to X¢ with supremum norm

Ap, Aum [28129]  The eigenvalues of —A,¢ on D with homogeneous Neumann boundary conditions

(13;, o, 02, [28.29] The normalised eigenfunctions corresponding to A,,, A,
0(2) The orthogonal group
St The circle group

have greater practical significance and can offer enhanced insights into characterizing population
dynamics within high-dimensional spatial domains. In fact, the disk is a very simple abstraction of
a two-dimensional compact simple-connected region, where many methods or ideas can be tested
on it before applying to more complicated domains. The research methodologies employed to
analyze the properties of these wave solutions in this article can also be further extended to more
complex domains.

The rest of the paper is organized as follows. In Sect. we analyze the equivariant Hopf
bifurcation around the positive steady state through Lyapunov-Schmidt reduction. In Sect. we
simulated spatially inhomogeneous periodic solutions, including standing waves, rotating waves,

and more complex periodic spatiotemporal patterns with random initial values.

II. EQUIVARIANT HOPF BIFURCATION

In this section, we will study the constant steady states of (1) through a linearization analysis
and analyze the equivariant Hopf bifurcation around the steady state through Lyapunov-Schmidt

reduction [19] 26] 27, 30]. Firstly, we need to introduce some notations in Table I}
d_ (K—u)(1+u")

By [[16]], we know that H has a unique positive constant steady state (u*,v*) = ( o %o

fact, for U = (u,v)T, Ur = (ur,v;)7T, the linearized system of system (T)) around (u*,v*) is
aU

E - %U‘l‘drUﬁ (2)

)n



where

diAg+a u*Ag—d 0 0
oy — 1870 11 XU Arp oty ,
0 dzArQ any 0
with a;; =1 — % — %, ar| = ﬁ. On a disk, the linearized system (2)) restricted to

span {@;, oc., éflm} is equivalent to a sequence of functional differential equations (FDEs) on R,
with a sequence of characteristic equations. Due to the symmetry, some of them have the following
form

F(%)'IHX) = 72+Apy+Bpe_yr+Cp = 07 P = 07 172a"' s (3)

and the others are in the following form [28, 29]
_ 2
F(’}/a Afnm»%) = [’}’2 +AumY + Bume e +Cnm] =0,n>0,m>0, 4

with A, = (dl +d2)/lnm —ait, Bum = aZI(XM*/Inm + d), Com = (dl/lnm - all)dZ;an, and the
expressions for A,, B,, C, can be obtained analogously. In [16], the authors obtained that the
system defined on the interval [0, /7] undergoes spatially inhomogeneous periodic solution at T =

k
T

~, around (u*,v*), under assumptions (H;)-(H3).

(H) 0<K<1+4+2u*, a>d,0<u* <K, x>0.
(H2) C5(Cpy) — B (Bgy) <O.
(H3) x> X+

In this article, we are more concerned about the phenomenon caused by symmetry, so we will

study the problem in the case of n > 0, m > 0. To distinguish the symbols with [16l], we record the

critical value of the bifurcation parameter 7 as t¥,., and Eq. has a pair of repeated purely imagi-

nary roots y = i@, (@, > 0), with @, = \/ <(2Cnm — A2 Y+ \/(2Cpm — A2, YT —4(C2, — B,Z;m)) /2,
under the same assumptions (H;)-(H3). Besides, the transversality conditions hold, i.e. Re{y/ (¥ )} #
0. That is to say, system () will generate equivariant Hopf bifurcation at T = ¥ on the disk, by
[16] 28] 30].

In the following content, we will study the equivariant Hopf bifurcation around (u*,v*) and

find a periodic solution with a period near 7' = i)—f For preparation work, let

Cr (CY)={F(t,-,-) :R = X¢|F(t+T,-,-) =F(t,-,")

and is continuous (differentiable) with respect to ¢} .
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For F (t) € Cr (C7), note that || F (¢)]|o = max,ejo,ri {1 F (1) | 2.} (1F (1) [y = max {||[F (1)llo. | F'(£)lo})-
Then, C7 and C. are Banach spaces with norms ||F(t)||o and ||F()||1, respectively. In fact, Cr is

a Banach representation of the group S!, i.e.
Kk-F(t)=F(t+x), k€S, F € Cay.

For all F, G in Cr, define the inner product (-,-)7 : C7 xCr - R as (F,G)r = %fOT (F(1),G(t))dt,
where (u(r,0),v(r,0)) = [[p ru(r,0)v(r,0)drde is the inner product weighted r on Y¢.

Normalizing of the period, let p € (—1,1) and U () = (u((1+p)t),v((1+p)t))", then system
(1) can be transformed into

dU(r)
dt

(I+p) =oU(t)+ Ut — (14+p)t)+ 5 (U, T), (3)

where 7(9,7) = 328(9,9) + c€(6,0,9) +o(||¢]]°), for ¢ € XZ. The above transformation
simplifies the study of periodic solutions with time 7" and its similar times of system (I]). Finding
%—periodic solutions of system is equivalent to solving .# (U, 7,p) = 0, where .Z : (ClT X
R? — Cry is defined by

dU(¢)

FU,t,p)=-(1+p)—

+ U (t) + <eU(t — (14 p) 1) + 5 (U, 7). (6)
Obviously, .Z is O(2) x S'-equivariant, i.e. for (8, k) € 0O(2) x S,

(0,x).7(U,t,p)=F <U (r,@ + g,t—l— m) ,T,p) , (6 stands for a rotation)

or
(60,x).7(U,t,p)=F (U (r,—@,t—l— m> ,T,p) , (8 stands for a reflection)

Let Z : X¢ — Y be the first derivative of .# with respect to U (¢) at (U, 7,p) = (0, = . 0).
Clearly, the elements of Kerﬁfﬁm correspond to the T -periodic solutions of the linearized equation

Ly U=0. Let 5,

be the adjoint operator of D%T}{fm with (-,-) that is a kind of bilinear form,
defined in 28}, 130]. Then we have the following results.

"
T T : —1®Tm — X" Ay —d
Lemma IL.1. Let Vl = (l,po) 5 V2 = M(l,qo) N with Po = %—+m, qo = dflunm——ia)*’ M =

(14 pogo +¢€'®qoaz1)~'. For ® € [—1,0], define

{(Pl (0)7 (Pz(ﬁ)a (P3(l9)7 (P4(19)} = {eim*ﬁvl érct.mveiim*ﬂvl (Brcz.maeiw*ﬂvl é;m,efiw*ﬂ‘—/] q;rim}a
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and
{01(8),05(8), 03(8), 05 (8)} = { Vady, e O PVay,, €O PVaGy, 67O OV, )
Then
(i) Ker.Z is spanned by {@1, @2, 93, ¢4} and Ker.,?;:,gm is spanned by { 9}, 03, 03, 95 }.
(i) (¢, 9;) = 1, for j=1,2,3,4, and (¢}, ¢;) =0, for i # j.

Obviously, er;:m is a Fredholm operator with index 0 [18, [31]], and according to [30]], we can

get a space decomposition by O(2) x S!-invatiant subspaces of C7 :
Cr =KerZy ®RanZy , Cl = KerZy ©W,

where W = (Ker.,?;:,l{m)L N CL. Next, we aim to obtain the bifurcation mapping corresponding
to .# (U, t,p) = 0 through Lyapunov-Schmidt reduction. Define two project operators P : C; —
RanZy and [ —P:Cy — KerZy . Then, P and I — P are O(2) x S!-equivariant. According
to the above space decomposition, .% (U, 7,p) = 0 can be decomposed into the following two

equivalent equations:
F1(V,W,1,p)=PF(V+W,1,p) =0,
Fr(VW,t,p)=I—-P)F(V+W,t,p) =0,

where U =V +W, V € Ker.Zy , W € W. Due to .#(0,0 tk .0) = 0, Dy.%,(0,0,7,0) =

Y Ynm?
PZLy = L4 ,and Ly w is invertible, by the implicit function theorem, we get a continuously

differentiable O(2) x S!-equivariant map # : L X R? — W and satisfies # (0, t5,.,0) = 0 and
F1(V+W(V,t,p),7,p) =0. Replacing W in .%,(V,W, t,p) by #', we have
F (V,7,p)=(I—P)F(V+#(V,7,p),7,p) =0. (7)

Itis easy to see .#; is O(2) x S'-equivariant and satisfies %, (0, z¥,,,0) = 0 and Dy.#) (0, £,,,0) =
0. Therefore, by [30], the periodic solution with time period close to i)—’: of system (I)) corresponds
to the solution of (7).

However, finding periodic solutions of system (T]) is closely related to the O(2) x S' symmetry,
which often requires a subspace with simple eigenvalues to study. Therefore, we can discuss based
on the isotropy subgroup theory. By [27, 30, 32]], the maximal isotropy subgroup of O(2) x S!
is 5?6(2) and Z, © ZS. Obviously, the SAO(Z)—symmetric solutions correspond to rotating wave

solutions, and satisfy that

_ 6 6 _
(O,O)M(r,e,t):u(r,6+;,t+5), GESI, (8)

'



£

_ 0 0\ -
(9,—9)u(r,9,t):u(r,9+—,t——>, 6 es!, 9)
n )
which correspond to the two possible senses of rotation: clockwise and anticlockwise. Note that
Fix(SO(2),Ker.Zy ) = span{y, ¥/} with y = @3, ¥ = ¢ or Y = @1, ¥ = ¢4, and y* = ¢} or
y* = @] Itis easy to see that dimFix(S‘B(Z), Ker.Z ) =2. Analogously, the Z, ® Z5-symmetric
solutions correspond to a standing wave solutions, and satisfy that
T T
ku(r,0,t) =u(r,—0,t), (m,m)u(r,0,t) =u (r, 0+ —,r+ 5) ,
n
(10)

T T
0.t)= —0——t+—).
cm (6.0 =u (-0~ T+7)

Note that Fix(Z, @Z?,Kerfrgm) =span{y, ¥} with y = @; + @3, ¥ = @1+ ¢, and y* = ¢ +

*

?s3.
Inspired by [27, 30], we simplify the problem once again and consider a new restriction map-

ping .# : Fix(E,Ker.Z ) x R? — KerZy , = 55(2) or Zo B LS,
M (V,T,p) = yZ//(Vv T,p).

Then, .7 (V,7,p) = 0 is equivalent to the one-dimensional bifurcation map ¥(z,,p) : C x R? —
C

G (z,7,p) = (¥*, M2y +2W,7,p))T, (11)

where z = (y*,V)7. Now, our problem is reduced to finding solutions of (IT)). Clearly, ¥(z, t,p)
is S'-equivariant, and satisfies %,(0,7%,,0) = 0, ¥(0,7%,,0) = 0. Therefore, there exist two

functions g', g% : R — R, such that
12 201,12 -
Y(z,7,0) =g (|2°7,p)z+8 (|27, 7, p)iz. (12)
Since ¥,(0, ¢, ,0) =0, then g (0, 7%, ,0) = g*(0, 7%, .0) = 0. Let z = pei®, then %(z,7,p) = O is
equivalent to either solving p = 0 or g' (32, 7,p)z =0 and g2(p?,7,p)z = 0. Notice that
G (2, Ty, 0) = 2V (T) + O([2%),
gp (Z’ Tr];mao) = —i0.z+ 0(‘Z‘2)'

Therefore,

| SO0 805, 0) | _ N ReY ()} Iy (@)} |

g%(()?dfm?o) glz)(ov Tilim70) 0 —



The implicit function theorem implies that there exists two functions 7 = 7(p?) and p = p(p?)

satisfying 7(0) = ¥, p(0) = 0 and

g (p*,1(p%).p(p?) =0, &2 (p* 7(p*),p(p*)) =0, (13)

for all sufficient small p. Therefore, we have the following equivariant Hopf bifurcation theorem

for system ().

Theorem IL.2. For every maximal isotropy subgroup ¥ C O(2) x S! in which £ = S‘Z)(Z) or Zn @

2§, Fix(L,X) = {U €X|8-U =U, § € X} is of dimension two, system (1) has a branch of periodic

solutions emanating from (u*,v*) at T = ’E,]fm, whose spatiotemporal symmetry can be completely

characterized by X, corresponding to a branch of anticlockwise (clockwise) rotating waves of the

form (8) (form (9)) or a branch of standing waves of the form (10).

In what follows, we consider the bifurcation direction and the monotonicity of the period. We

use

821 = (‘I’*fg(‘l/a v, ‘/7))T+2(‘l/*,=%’(‘l/>W11))T+(‘I’*>%(‘I77W20))T7 (14)

2

to denotes the coefficient of the term z27 in the Taylor expansion of ¢(z, 5, ,0). We still need to

compute Wi and W, which denote the coefficient of the terms zZ and Z% in the Taylor expansion

of # (zy + 72y, 1%, ,0), respectively. In fact,

Wit = -2 'PB(y, ), Wy = —XTE;P%(W, V).

nm

Namely, Z(y, W), %(y,y) € RanZy , thus, the projection operator P on them acts as the iden-
tity. Following the definition of "?f,’fm’ we have

- -1

diAvg +ary qu*Ag—d _
Wi =— ' ’ By, W),
az drAvg

- -
=2iw, +diArg+an  xu'Ag—d

Who = — By, vy).

. k .
a21e_21“’*7nm =210, +drA,g

By [26, 130, 33, 34], we summarize the following results.

Theorem I1.3. There exists a branch of X-symmetric periodic solutions (¥ = §6(2) or 7o & Zg ),
parameterized by T, bifurcating from the positive constant steady state of (I). Moreover,

(i) 7(0) = —% determines the direction of the bifurcation. The bifurcation is supercritical



(subcritical), if T(0) > 0 (< 0).
(ii) p’'(0) = —% determines the period of the bifurcation periodic solutions. The period
is greater (smaller) than (20—7:, if p'(0) <0 (>0).

III. NUMERICAL SIMULATIONS

Fixing di = 0.1, d =02, a =1, K=6, d = 0.8, R = 10, at the unique positive constant
steady solution (u*,v*) = (4,1.67), partial bifurcation curves on the y — 7 plane are shown in Fig.
Selecting (x,7) = (0.286,9.936) (Case 1) or (x,7) = (0.295,9.9) (Case 2), the standing wave
(see Fig. [2]and Fig. [3)), anticlockwise (see Fig. [)) and clockwise rotating wave (see Fig. [5)) can be
found. For simplicity, patterns of the clockwise rotating wave under Case 1 and the anticlockwise
rotating wave under Case 2 have not been listed. Besides, more complex periodic spatiotemporal
patterns (see Fig. [6) with random initial value can be found.

Through numerical calculations, we obtain that under Case 1, @, =0.1316, T?l =9.9300. 7'(0) =~
0.4638, p’(0) ~ —0.0123 for y = e!®PV;¢¢,, and 7/(0) =~ 1.9065, p’(0) ~ —0.0491 for y =
e PV 6¢, + e PV $f,. Under Case 2, @, = 0.1391, 73, = 9.8965. 7/(0) ~ 0.0671, p'(0) ~
—0.0029 for y = e ®?V;ds|, and 7/(0) ~ 0.2212, p’(0) ~ —0.0117 for y = e ®VV, 5, +
el®0y, (ﬁzsl By Theorem 2, four bifurcation periodic solutions under two cases are both su-

percritical the period of them are both greater than é—’f

~ i, L e
~~ oS 1

9927 (0.2869.936) LT~ w_ 21
L 99t s, St o |
(0.295,9.9) ~ <> S

stable region s

9.8 . . . . .
0.28 0.285 0.29 0.295 0.3 0.305 0.31

X

FIG. 1: Partial bifurcation curves on the ¥ — 7 plane. Parameters are

di=0.1,d,=02, a=1, K=6,d=0.8, R=10.
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-0 010 0 210 0 10 0
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(@ ! ! - (b) ! ! o

FIG. 2: System (1) generates standing wave that has a fixed axis under Case 1. Initial values are
u(t,r,0) =u*(1+0.1-cost- coszT’f’ -cos0), v(140.1 -cost-cos% -cosB), t € [-7,0). (a): u;
(b): v.

1.68

1.67
vat time=420 and 462 | g6 1.675

10

0 0 10 1.67
-10 -10
y X X y X

1.665
1.68
v at time=441 and 483 | 67 1.66
1.66 w
1.655
10 10

0 0
-10 -10
X 1.65

u at time=441 and 483 4

3.95 l

10
0
-10 -10

FIG. 3: System (1) generates standing wave that has two fixed axes under Case 2. Initial values
are u(t,r,0) = u*(1+0.1-cost - cos 2& - c0s20), v*(1+0.1-cost-cos 2 - c0s20), t € [—T,0).

(a): u; (b): v.

Remark III.1. On a one-dimensional interval, the solution often quickly converges to a coskx-
like spatially inhomogeneous periodic solution [14, 16l]]. However, the two-dimensional domain
vields a more significant process of aggregation and dispersion, ultimately presenting periodic
patterns with complex spatial structures. The standing wave, rotating wave, and more complex
spatiotemporal patterns under different initial conditions on a disk are new and interesting phe-
nomena. These solutions with temporal and spatial regularity can effectively reflect the spatial
structure and temporal evolution characteristics of species distribution in approximately circular
areas such as lake ecosystems. Exploring the mechanisms behind the generation of these patterns
holds promise for predicting and studying the evolutionary dynamics of associated ecosystems,

thereby contributing to the preservation of ecosystem stability.
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FIG. 4: System (1) generates anticlockwise rotating wave under Case 1. The patterns at seven

different time within a period are selected to show the periodic changes in population

distribution. Initial values are

* 2nr o * 2nr .
u(t,r,0) = u*(1+0.1-cost-cos =g -sinB), v*(1+0.1-cosz-cos =g -cos @), t € [-7,0). (a): u;
(b): v.
u at time=420 and 462 v at time=420 and 462
70 N 405 10 N 1.69
7 - 0 ‘ A 4.04 7 - 0 N 1.685
u at time=453 ' u at time=430 v at time=453 v at time=430
10 10 403 10 10 1.68
‘ o0 w0 i \ o0 T |
> 0 1 X > 0 402 >0 i X Y50 1675
| 4 A -
-10 -10 01 10 410 1167
-10 0 10 -10 0 10 -10 0 10 -10 0 10
X : 14 X 1 1.665
A\ \M
u at time=449 wattime=435 | |50 v at time=449 v at time=435
1 I 4’ 00— b 10 ﬂ 10 f 1.66
.\ 1308
> 0 ,\ 0 uattime=441 > 0 > 0 0 vattime=441 > 0 4 1,655
-10 ———‘ ° _10 10 1o 1.65
00 10 > 0 000 10| i G000 10 > 0 G000 10
X o X . X X 1.645
Y\ PR H V\ -
Sa_o-10 7 395 So_-0 - “164
SO0 0 100 e .0 0 10 - .
(a)- b (b) X

FIG. 5: System (1) generates clockwise rotating wave under Case 2. The patterns at seven
different time within a period are selected to show the periodic changes in population

distribution. Initial values are

2nr

u(t,r,0) =u*(1+0.1 -cost-cos% -€0s20), v*(14-0.1-cost-cos =%

u; (b): v.

sin20), t € [—1,0). (a):

IV. CONCLUSION

In this paper, we mainly investigated the equivariant Hopf bifurcation bifurcating from the

positive equilibrium of (T). Methods of Lyapunov-Schmidt reduction and isotropic subgroups
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|
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3.96 3.98 4.1 4.12
4 4.1 42 4 41 392396 4 4.04: U at timew 455
@ C |

Short Term Transient Patterns Long Term Dynamic Phenomena

v at time=0 10 v at time=25 0 v at time=50 v at time=411 _1)0 v at time=423 —1>0 v at time=433

v at time= 455

1
1
1
110
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a y . ¢ -
. i 4
", i >0 = 0
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1
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0 10 -10 0 01 -10 0 0 <10 o0 10 2000 10
X X X : X X X
e — ] [ — ]
Er am BT O Wm e s
1165 166 167 159 16 161 164 1.66
1
1
1

(b)

FIG. 6: System (1) generates rich transient patterns within a short term and periodic patterns with
complex spatial structures after long-term evolution under random initial value and Case 2. The
patterns at three different time within a period are selected to show the periodic changes in

population distribution. (a): u; (b): v.

were combined to explore the interaction between symmetry, time delay, and taxis on a disk.
We have done numerical simulations and spatially inhomogeneous periodic solutions were found,
including standing waves, rotating waves, and more complex patterns.

The time delay and taxis can induce the generation of spatially inhomogeneous periodic solu-
tions, while specific forms of standing and rotating waves will be generated on the disk. It is worth
mentioning that the algorithm in this paper can also be extended to other fields, such as chemistry,
mechanics, nonlinear optics, etc. This extension allows for the exploration of the properties of

standing and rotating waves, offering effective control in diverse applications.
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