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Abstract
Circular domains frequently appear in mathematical modeling in the fields of ecology, biology and
chemistry. In this paper, we investigate the equivariant Hopf bifurcation of partial functional differential e-
quations with Neumann boundary condition on a two-dimensional disk. The properties of these bifurcations
at equilibriums are analyzed rigorously by studying the equivariant normal forms. Two reaction-diffusion
systems with discrete time delays are selected as numerical examples to verify the theoretical results,
in which spatially inhomogeneous periodic solutions including standing waves and rotating waves, and

spatially homogeneous periodic solutions are found near the bifurcation points.
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I. INTRODUCTION

The research on the reaction-diffusion equation plays an important role in physics, chemistry,
medicine, biology, and ecology. Many mathematical problems, such as the existence, bounded-
ness, regularity and stability of solutions and traveling waves have been raised in [1-4]. Recently,
the effect of time delay has drawn a lot of attention and Hopf bifurcation analysis has become an
effective tool to explain complex phenomena in reaction-diffusion systems, and even in more gen-
eral partial functional differential equations (PFDEs). [5] gave a general Hopf bifurcation theorem
for PFDEs by restricting the system to an eigenspace of the Laplacian. [6] gave a framework for
directly calculating the normal form of PFDEs with parameters. Based on these theories, many
achievements have been made in the study of local Hopf bifurcation [7-11] or other codimension-

two bifurcations [12—-14].

The phenomena of symmetry appear a lot in real-world models, which usually leads to multiple
eigenvalues, and the standard Hopf bifurcation theory of functional differential equations cannot
be applied to solve such problems. [15] used group theory to characterize transitions in symmetric
systems and worked out the bifurcation theory for a number of symmetry groups. Based on these
theories, there have been many subsequent studies on symmetry. First, some researchers were
concerned about nonlinear optical systems, which can effectively characterize optical problems
such as circular diffraction [16—18]. Besides, a Hopfield-Cohen-Grossberg network consisting of
n identical elements [19-21] also has a certain symmetry. Furthermore, there have been many
studies on the regions with O(2) symmetry where the models are established. For example, in
[22], the authors considered Hopf bifurcation in the presence of O(2) symmetry and distinguished
the phase portraits of the normal form into six cases. [23] studied a delay parabolic equation in
a disk with the Neumann boundary conditions and proved the existence of rotating waves with

methods of eigenfunction.

In recent years, a sequence of results about equivariant Hopf bifurcation in neutral functional
differential equations [24, 25] and functional differential equations of mixed type [26] have been
established. In particular, [27] applied the equivariant Hopf bifurcation theorem to study the Hopf
bifurcation of a delayed Ginzburg-Landau equation on a two-dimensional disk with the homoge-
neous Dirichlet boundary condition. More recently, Qu and Guo applied Lyapunov-Schmidt re-
duction to study the existence of inhomogeneous steady-state solutions on a unit disk [28], whereas

different kinds of spatial-temporal solutions with symmetry have been detected by investigating
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isotropy subgroups of these equations [15, 21, 29, 30].

In fact, the disk, a typical region with O(2) symmetry, is usually used to describe many real-
world problems. For example in physics, rotating waves were often observed in the case of a circu-
lar aperture [31-33]. In chemical experiments, one usually studies chemical reactions in circular
Petri dishes, whose size may affect the existence and pattern of spiral waves [34, 35], and the most
suitable boundary condition for chemical species in a disk is the homogeneous Neumann boundary
condition [35]. Besides, in the field of ecology, some lakes could be abstracted as circular domains
to study the interaction between predator and prey, and the mathematical modeling of predator-
prey systems on the circular domain has been summarized in [36, 37]. We found that a complete
derivation of normal forms and bifurcation analysis in general PFDEs on two-dimensional circular
domains remains lacking. Therefore, in this paper, we aim to consider general PFDEs with ho-
mogeneous Neumann boundary conditions defined on a disk and to improve the center manifold
reduction technique established in [6, 38] to the normal form derivation for PFDEs on circular

domains to fill the gap.

Compared to the results in [5], due to the O(2) symmetry leading to multiple pure imaginary
eigenvalues, the eigenspace of the Laplacian is sometimes two-dimensional, which gives rise to
higher dimensional center subspace of the equilibrium at the bifurcation point. By introducing
similar operators as in [6], we derive the normal form of the equivariant Hopf bifurcation of general
PFDE:s on a disk in explicit formulas, which can be directly applied to some models with practical
significance or the model on other kinds of circular domains, for example, an annulus or a circular
sector. In addition to the results in [27], there are clearer classification and quantitative criteria for
the existence, stability, and approximate expressions of various solutions. With the aid of normal
forms, we find standing wave solutions and rotating wave solutions in a delayed predator-prey

model. This is done after all the coefficients in the normal forms are explicitly computed.

The structure of the article is as follows. In Sec. II, the eigenvalue problem of the Laplace
operator on a circular domain is reviewed and the existence of Hopf bifurcation is explored. In Sec.
III, we study the properties of equivariant Hopf bifurcation on the center manifold. The normal
forms are also rigorously derived in this section. In Sec. IV, two types of reaction-diffusion
equations with discrete time delay are selected and numerically solved to verify the theoretical

results.



II. PRELIMINARIES
A. The eigenvalue problem of the Laplace operator on a circular domain

The eigenvalue problem associated with Laplace operators on a circular domain could be given
in a standard way, see [39, 40]. For the convenience of our research, we use a similar method to

treat the eigenvalue problem and state the main results here. Consider a disk as follows:
D={(r,0):0<r<R0<06<2n}.

The Laplace operator defined in the Cartesian coordinates is AQ = aa—xzz(p + g—;z(p. Letting x =

: : : . 2
rcos(0),y = rsin(0), it can be converted into the polar coordinates as A,g¢ = %QD +1. %QD +
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One needs to consider the following eigenvalue problem and calculate the eigenvectors on the
disk:
Ao =—A9,
0/(R,0)=0, 6¢c]0,27].

(1

Using the method of separation of variables and letting ¢ (r, 0) = P(r)®(0), we get that the eigen-

function corresponding to A, is

Gun(1,0) = Jn (/A ) @4 (6), @

with
®,(0) = a,cosn@ +b,sinnd, (3)
and )
_ v (=" p "+
Tn(p) _n;om!F(n+m+l) (2) ‘ “)

Aum is chosen such that the boundary condition P'(R) = 0 is satisfied.

Remark I1.1. Considering the Neumann boundary conditions, we have
J(/ AumR) = 0,

which indicates that at r = R, A, are roots of J,’,(\/7_L r). We use Oy, to represent these nonzero
roots and assume that they are indexed in increasing order, i.e. J,'Z (Qm) = 0,061 < O < O3 <
.-+, where n > 0 is the indices of the Bessel function (4) and m > 1 are the indices for these roots.

So Apyn = (Ot,,m/R)z. For convience, we use 0y = 0, Apg = 0.
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Remark IL1.2. From the standard Sturm-Liouville theorem, we know that for any given non-

anm

negative integer n, J, ( r) are the orthogonal sets with weight r on the interval [0,R], where

J! (Om) = 0. That is, for any given m,k, we have

/ORr] <a]’;m )Jn <%r>dr: %2 {1_(

Furthermore, for any given non-negative integer n, the > norm with weight r of function systems

0, m#k,
2
) ]ﬂ(a,,m) m=k.

nm

{Jn (%r)} that include oy are complete in the space L2 [0,R]. Besides, the trigonometric func-
tion systems are orthogonal in the interval [0,27] and complete in the space 1.?[0,27]. Therefore,

forn=0,1,2,---,m=1,2,---, we use a complexification of the space and the system of functions

¢07 ¢1§m7 ¢r§m=

constitutes an orthogonal basis with weight r in the space L2{0 <60 <2m,0<r <R} with

(07 ; (01 i
()1 o () o ()

From the above analysis, we can draw the following conclusions.

Theorem I1.3. The solution of the eigenvalue problem (1) can be written as

400 +oo Fo0 o0
@(r,0)=900(r,0) +Aun ), Y, Gn(r.0) +Bun Y Y, $un(r:0),
n=0m=1 n=1m=1

where

2n
Apm = / / (r,0)J, O‘”’" ) e "0drde,
R [1 - <(Xnm> :| J2 anm

B,, — //M (r,0)J a"m>1”9drd9
nm —

1,n=0,
6’1 -
2,n#0.
This means, for n =0, the eigenspace corresponding to the eigenvalue Aoy, is spanned by ¢, , m =
0,1,---. For n > 0, the eigenspace corresponding to the eigenvalue Ay, is spanned by ¢S, and
¢S, m=1,2,--



Remark I1.4. The above eigenvalue problems can be directly applied to an annular domain
D={(r,0): Ri<r<R;, 0<6<2rx}.

The difference is that the homogeneous Neumann condition is given at r = Ry and r = R;. Besides,

P(r) becomes

O, O,
By (Cum, 1) :A,J,,(%r) + BN, (=2
2 Ry

r),
with P,(Gum,R1) = P,(Cnm,R2) = 0, where

_ Ju(p)cosnmt—J_,(p)
Nu(p) = sinnm '

Then % forms a standard orthogonal basis of the space L>{R; < r < R,}. In what
follows, there will be no significant difference in the subsequent process of bifurcation analysis.

In fact, the above eigenvalue analysis in a circular sector domain
D={(rn0): 0<r<R,0<6<0,0<n},

is also similar. The difference is that the homogeneous Neumann conditions make ®(0) become
d,(0) = cos %9. The subsequent calculation process is even simpler, which is a direct extension

of the case in one-dimensional intervals.

B. The existence of the Hopf bifurcation

We consider a general PFDEs with homogeneous Neumann boundary conditions defined on a

disk as follows:

U (t,x,y)

ot

wherer € [0,—'_00)7 Q= {(x7y) < Rz ‘x2+y2 < Rz} ) D(V) :diag{dl(V),dz(V),'-~ >dn(v)}7 di(v) >
0,i=12,---,n, veR, U(t7x7y) = (ul(t7-x7y)7”t2(t7xay)7"' 7un(t7x7y))T’ Ut(ﬁ)(xay) = U(l+
1’97X7y)7 ClS [_15017 Ul(ﬁ)<x7y) = (ul1<19)(x7y)7ut2(19)(x7y)7 ,u?(ﬁ)(x,y)>T7 Ut<x7y) S ng =
C([-1,0], Zc), L:Rx %€ — Z2¢ is a bounded linear operator, and F : € x R — Xy is a
C* (k > 3) function such that F (0,v) =0, DyF (0,v) = 0 that stands for the Fréchet derivative of

= D(V)AU(t7x7y) +L(V)Ut(x7y) +F (Ut(xvy)v V) ) (5)

F (@, V) with respect to ¢ at ¢ = 0.

Zec={U(x,y) € W22(Q) : VU (x,y)-n =0, (x,y) € 0Q},
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where 1) is the out-of-unit normal vector. Here we use the complexification space Z¢, because
a complex form of eigenvector is more suitable to shorten the expressions in the normal form
derivation.

Let us now explore the existing conditions of Hopf bifurcation based on system (5). Again, we
use x = rcos 0, y = rsin 0 and the domain Q is transformed into D = {(1,0) : 0 <r <R,0< 0 <
2r}. For simplicity, we still use symbols in (5). System (5) can be converted in polar coordinates

to
oU(t,r,0)
ot

and analogously, define the phase space

— D(V)AgU(1,7,8) + L(V)U,(r, ) + F (Us(1,0),V), 6)

% :=C([-1,0], Zo),
where
2c=4{0(r,0) e W**(D):9,U(R,0) =0, 6 € 0,27)},
with inner product
(u(r,0),v(r, 8)) = / /D ru(r, 0)7(r, 0)drde
weighted r for u(r,0), v(r,0) € Zc. Then, U;(r,0) € €.

Linearizing system (6) at the origin, we have

aU(t,r,0)
ot

The characteristic equations of (7) are

= D(V)AeU(1,7,0) + L(V)U,(r, ). 7

Y9 —D(V)Ag@ — L(V)(e" @) =0, (8)

where e” ()@ = e?® @, for ¥ € [—1,0], and 7 is an eigenvalue of Eq. (7). By Theorem IL.3, we
find that solving (8) is equivalent to solving the following two groups of characteristic equations.

The first group is given as
det[yl + AouD(V) —L(V)(e"I)] =0, m=0,1,2,--- . 9)

The second groups of equations have multiple roots as the eigenspace of Ay, n=1,2,---, m =

1,2,--- is of two-dimensional. They are
det [yl + AywD(V) —L(V)(e"D)]* =0, n=1,2,-- , m=1,2,--- . (10)

In order to consider the Hopf bifurcation, we assume that the following conditions hold for

some V3, A = Ay OF Ay



(H;) There exists a neighborhood % of Vi 1= Aom such that for v € %/, system (7) has a pair
of complex simple conjugate eigenvalues o; (V) &-i®; (V) and the remaining eigenvalues of

(7) have non-zero real part for v € 2.

(H) There exists a neighborhood %, of Vi 1= Anm such that for v € %, system (7) has a pairs
of complex repeated conjugate eigenvalues a; (V) £iw; (v) (both geometric multiplicity
and algebraic multiplicity are two) and the remaining eigenvalues of (7) have non-zero real

part for v € 2.
(H3) @ (v)=+iw; (v) are continuously differential in v with o3 (v4) =0, @; (v4) = @3 > 0.

Remark IL.5. According to [15], problem (6) is T equivariant, withT" = O(2) x S L. For instance,
write the right hand of system (6) as F (U (t,r,0)), we have

F(kU(t,r,0)) =kF(U(t,r,0)),Vk €T.
Thus, in what follows, any solution after the action of this group is still a solution of the equation.

By [15, 20, 38, 41] and Remark IL.5, if (H;) and (H3) or (Hy) and (H3) hold, noting V =
min{v;l } we know Hopf bifurcations occur at the critical values v = V. When 1= Aom, m =
0,1,2,---, the center subspace of the equilibrium is two-dimensional, so we call this a standard
Hopf bifurcation. When A= Apm, n=1,2,--- m=1,2,---, the center subspace of the equilibri-
um is four-dimensional, we say this is a (real) equivariant Hopf bifurcation. In the coming section,

we will calculate the equivariant Hopf bifurcation at the origin.

III. HOPF BIFURCATION ANALYSIS
A. Normal form for PFDEs

In this section, we will investigate the properties of the equivariant Hopf bifurcation at the
origin, using the theory in [5, 6, 22, 30, 38].
Letting v = V + u, where ¥ is given in Sec. II B and u € R, following the method proposed in

[6], and using u as a new variable, the Taylor expansions of L(V + ) and D(V + ) are as follows:
X T
LV+p)=Lo+ply+ uLo+-,
X i I
D(V+p)=Do+puDy+ 51" Do+,
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where Dy = D(V), Lo(-) = L(V)(-) is a linear operator from ¢ to 2. Now, in the space &, system

(6) is equivalent to
dU (1)
dr

where F (@, 1) = [D(V+ 1) — DolAe@(0) + [L(V + 1) — L] (@) + F (@, ¥ + ), and the lineariza-

= DoAvoU () + LoUs + F (U, ). (11)

tion system of (11) is obtained as follows

dU(r)
dr

= DoAoU (t) + LoU,. (12)

1. Decomposition of €

Let A: ¢ — Z¢ represent the infinitesimal generators of the semigroup induced by the solutions
of (12), and A* is the adjoint operator of A, which satisfy
(Pl(ﬁ)’ v e [_170)7

A= J2.dn(p, 9)(¥), ¥ =0, )

—y'(p), p € (0,1],
A” ( ): (14)
e [ w(=p)dn(u, ), p=0.

In addition, define a bilinear pairing

o= [ [ [v@eo- [ [ vEoune.oip@g ano. a3

From the discussion in Sec. II B, we know that A has a pair of repeated purely imaginary eigenval-
ues +i@; which are also eigenvalues of A*. Let the central subspace P and P* be the generalized
eigenspace of A and A* about Ag = {:l:ia)i}, respectively, where +i@; are repeated. P* is the
adjoint space of P. An important task is to decompose the space ¢  through the relationship of
bases in P and P*, and we write ¥ = Pcy @ Qs, where Pcy is the central subspace and Qg is its

complementary space.

Define
2 ¢lfm g ¢r§m
(PC — ) (P = .
TGl T 22
Lemma IIL.1. Let the basis of P is
CDr9(19) = (q)}e(ﬁ)uq)%G(ﬁ)) = (CI)I(‘[S> : (b\riqu)z(ﬁ) : ¢3rim) ) NS [_170]7 (16)
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with
@Lo(8) = (®1(0) G, @2(9) - 65,) = (69765, UIER, ).
q’%e(ﬁ) = ((1)3(19> ’ élimaq)4(ﬁ) ' (ﬁrfm) = <eiwiﬁ§$2m’e—iwiﬂéézm> 5

where & can be noted as & = (p11,p12,--+ ,P1n) - A basis for the adjoint space P* is

T e ro \T
¥r0(p) = (Fr0(P), ¥ro(P)) = (¥'(P)- b1, ¥*(P) - O) - P €[0.1], (17)
with T
‘P}G (P) = <‘P1 (p) : (ﬁrfmv‘}]Z( ) (an) = < elwipn(ﬁrimaq__le_lw’ipﬁé\;fm> y
2 o 25 \T -1, 1050 As ~—1.—105p = 45 T
\Pre(P) = (‘P3(p)¢nm7‘{]4(p)¢nm) = (q e n¢nm7q € A n¢nm> )
where N = (q11,912,"* ,q1n) and q in the expressions of ¥, (p) and W?,(p) can be obtained by
(W,9,Pr9) = I, according to the adjoint bilinear form defined in (15).

One can decompose U; into two parts:
2
U, =UF +UQ = Zcp’;g( rg,Ut>+U - Z@rezre—l—y,, (18)
k=1

where z’r‘e = (‘P’;G,U,), vt € Qs. Define z = (zre,zfe) = (21,22,23,24)" as the local coordinate
system on the four-dimensional center manifold, which is induced by the basis ®,¢.

Then, we get that

5 (F(XRo) Phozlo +y,10), We(0))
(F(Lio Phothg +3:10),¥2(0))

(19)

d . 2
d—)t] :AQy+ (I—ﬂ:)X()F ( E ¢I;QZI;9 +y7.u> ’
k=1

where A is the restriction of A on Qy, Agp = A for ¢ € Q,, m: € — Pcy is the projection, and
im0 0 0

0 —iw; O 0

0 0 1wy O

0 0 0 —imy

S~
I

According to the formal Taylor expansion F(@, 1) =Y >, l, Fi(@,u), (19) can be written as

() +Z_f] LM )7

d ]>2 (20)
dl—AvaLZ f] 2,y 1),

>2

JZ
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where f; = (fjl,sz), J > 2 are defined by

(F(Lio Photg +3:10),¥)5(0))

fi@yu) ="
<F Z%:l CI)I;QZI;Q +y7 uu)ulpze (0)>

Y

(21)
fi(zy.m) = (I— 1) XoF; (Zcbrez,@ﬂ,u).

Referring to [6], the normal form is

) 1 1
4(1) = Bz(t) + 5&2(2.y 1) + ¢ g3(e ) +heot.,

dy
—=A
a Aot

(22)

1 1
2gz(z Y1)+ gg%(z,y,u) +hot.,

where g = (g},g?), J > 2is given by

gi(zy, 1) = fi(z,y, 1) —M;Uj(z, 1),

where f} is the terms of order j in (z,y) obtained after the computation of normal forms up to
order j—1,U; = (U Jl , UJZ) denotes the change of variables about the transformation from f; to g;,
and the operator M; = (M} ,MJZ-) is defined by

M} V(€1 = V3i(%Y),
MjU} =D.U}(z,u)Bz— BU} (z, 1), 03
M]2~ : V?(Qs) — V?(Kerﬂ?),
M;U; =D.U;(z,1)Bz— AU} (z, 1),
where V? (Y) denotes the space homogeneous polynomials of z = (z1,22,23,24)" and u with coef-
ficients in €*.

It is easy to verify that

(ﬂZpek) =105 U <P1 p2+p3—ps+ (—1)k> e, [p|=j—1, (24)

where j > 2, k=1,2,3,4, and {e1,ey,e3,e4} is the canonical basis for . Applying the center
manifold theory [5, 42], the existence of an invariant local center manifold of the origin can be

obtained, and referring to [6], the flow on it is given by the four-dimensional ODEs

£3(2,0,1t) + —g3(z,0, ) + (25)

1
653
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2. The normal form

By calculating g3 (z,0, it) and g1(z,0, i), the normal form truncated to the third order on the center

manifold can be summarized as follows:

. 2 2 2 2
21 =105 21 + Brizi b + B21002122 + B2o012124 + Bo1202322 + Boo212324 + Bi110212223 + B1o11212324,

. - T 2 2 2 2 T
2 = — 10522 + Bzt + B21002125 + B20012523 + Bo1202321 + Boo212423 + B1110212224 + B1o11222324,

s 2 2 2 2
23 =103 23 + B11z3 4 + B21002324 + B20012322 + Bo1202124 + Boo212122 + Bi110212324 + B1o11212223,

: - o 2 2 2 2 I
24 = — 105 24 + Bi1zapl + B21002325 + B20012321 + B01202523 + Boo212122 + B1110222324 + B1o11212224-
(26)

Please refer to Sec. 1 in supplementary materials for the specific calculation process.
Lemma IIL.2. By [22], the normal form truncated to the third order can be reduced to

. . 2
21 =105 21 + Brizipt + Baoo1 2124 + Bi110212223,

. . 5 . 2,
22 = =103 22 + Briza b + B2o012325 + B1110212224,

27)
23 = 10523+ B123lt + Baoo1 2322 + B1110212324,
4= —10524 + Bi1zal +3200121242; + B1110222324.
and the symmetry properties are preserved.
The proof is given in Sec. 2 in supplementary materials.
Introducing double sets of polar coordinates
21 = pie’t, 7y = pre ¥,
. . (28)
73 = p261X27 0= pze_lXZ7
we can obtain that
p1 = (a1l +axpi +az3p3)pi,
X] = @5,
* (29)

P2 = (a1l +azp3 +aspi)pa,
X2 = 5,
with

a; =Re{Bi1}, ap =Re{Boo1 }, a3 =Re{Bi110}-

12



TABLE I. The six unfoldings of system (29).

Case 1 2 3 4 5 6
a - - - + + +
a+as - - + — + +
ap —as - + - + + -

TABLE II. The dynamical classifications of system (29) in each case.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
F P \ A / 2] \ F \ P
A ) N ey .

Based on the above analysis, by [22, 43], we get, when a;u < 0(> 0), system (29) has six
unfoldings(see Table I) and their dynamical classifications are shown in Table II.

Therefore, we can draw the following conclusions.

Theorem II1.3. We are mainly concerned with the properties corresponding to the following four
equilibrium points of (29).

(i) (p1,p2) = (0,0) corresponds to the origin in the four-dimensional phase space and undergoes
a stationary solution, which is spatially homogeneous.

(ii) For aip-a; <0, (p1,p2) = (0, \/%) corresponds to a periodic solution in the plane of
(z2,23), which is spatially inhomogeneous. At this point, the periodic solution restricted to the
center subspace has the following approximate form:

—ail

az

Ui(9)(r.0) = ) 2|pii Jn(V/ Aumr) cOs(Arg(pri) + @3 0 + @1 +n0)e;,
i=1

where ¢; is the ith unit coordinate vector of R". When ajpt > 0(< 0), ax < 0(> 0), system under-

goes an anticlockwise rotating wave. Only when ajpt > 0, a» +a3z <0, a, —asz > 0, the periodic

13



solution of the equivariant Hopf bifurcation is orbitally asymptotically stable.
(iii) For ajp-a; <0, (p1,p2) = (4/ %21”,0) corresponds to a a periodic solution in the plane
of (z1,z4), which is spatially inhomogeneous. At this point, the periodic solution restricted to the

center subspace has the following approximate form:

n
0)~ Y 2|piil
i=1

When ajp > 0(< 0), ap < 0(> 0), system undergoes a clockwise rotating wave. lIts stability

‘an(\/ Aumr) cos(Arg(p1i) + @3 O + w5t —nb)e;

conditions are as same as (ii)

(iv) For aju-(ax+a3z) <0, (p1,02) = (1/ a;—lklci \/ a;jrlf corresponds to a periodic solution,

which is spatially inhomogeneous. At this point, the periodic solution restricted to the center

subspace has the following approximate form:

Z4|p11| a+a Jn(V A1) cos(Arg(p1;) + @3 O + w51) cos(nb )e;

When ajpu > 0(< 0), a» +az < 0(> 0), system undergoes a standing wave. Only when a;p >
0, ap+a3 <0, ap —a3 <0, the periodic solution of the equivariant Hopf bifurcation is orbitally

asymptotically stable.
The proof is given in Sec. 3 in supplementary materials.

Corollary IIL4. For Aom,m =0,1,2,---, the corresponding characteristic function is ¢,. Define
(ﬁgm = T6c. 13 % H . According to [6], after a similar calculation process shown above, the following
normal form on the center manifold is obtained,

21 =i0321 + Bl izl + Byjgosiza

2 = —1M322 +B_]k122u +B§IOOZ1Z% +oe
Introducing a set of polar coordinates, we can get

N * * 2 2 4

p = (ai+ap”)p+o(up+[(p, 1)),
with

a; =Re{B}}, a; =Re{Bj o},
where the specific representation of By, and B3, is shown in [6].
Besides, we get that

(i) When a3 < 0(> 0), the periodic solution is orbitally asymptotically stable(unstable).

i1 en aya, < 0(> 0), the bifurcation is supercritical(subcritical).
ii) When aja; <0(>0), the b on i tical(subcritical)
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B. Application to a class of reaction-diffusion model with discrete time delay

S

In a specific model, it is necessary to calculate A, ,psp,, S y

y(0)zx> (—I)Zk’ k = 1727374 to

determine the explicit expression of B, ,p,p, in the normal form, and the time delay is often
selected as a bifurcation parameter to study the Hopf bifurcation. Therefore, in order to provide
a more general symbolic expression, we will consider a class of reaction-diffusion system with

discrete time delay defined on a disk as follows:

Qs — g, A,gult,r,0) + F(u(t,r,0),v(t,1,6)), (r,0) €D, 1 >0,

MLEB) — gy Agv(t,r, 0) + F O (u(t,r,0),v(t,7,0),u(t — T,7,0),v(t — 7,1,6)), (r,0) €D, 1 >0,
ou(+,R,0)=39v(-,R,0) =0, 6 €[0,27).
(30)

This type of model covers some predator-prey systems and chemical reaction models, etc. While
in practice there are many ways to introduce the time delay 7, we demonstrate the critical method
of analysis by including 7 in the second equation for simplicity. Other types of systems can also

refer to this process for calculation.

Assume that the model has a positive equilibrium point E*(u*,v*) and select the time delay 7
as the bifurcation parameter. Letting i(¢,r,0) = u(tt,r,0) —u*,v(t,r,0) = v(tt,r,0) —v*, we drop

the bar for simplicity. Then system (30) can be transformed into

( du(t,r,0)

5 =td1Argu(t,r,0) + tlay (u(t,r,0)+u")+ap (v(t,r,0)+v")]

L) . .
ve % h 0000 r0)
av(t,r,0)

5 =TdyAgv(t,1,0) + T|az (u(t,r,0) +u™) +axp (v(t,r,0)+v")]

+T by (u(t—1,r,0)+u*)+ by (v(t—1,1,0) +v")]

L)

T i1k ikl

L i+ k=2

(0,0,0,0)u (¢, r,0)v (t,r,0)u*(t — 1,r,0 W (t — 1,1, 0),

(D

with
F D) (u* v*) AF ) (u* v*)
aiy ap ul

1)
AF @ (u* v* u* v*)  IF @ (u* v* u* v*) !
a1 a Ju(r) I

oF®? (u* V" u* v*) oF®? (u* V" u* v*) ’
by b Iul=7) I(=7)
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1y Qi)
Fjj —W(O,O),

o0 _ gitithkt p(2)

UKL Quidvi duk (t — T) vl (t — 1)

Letting T = T+ u, where pt € R and 7 is the critical values at which Hopf bifurcations occur,

(0,0,0,0).

then system (31) can be written in an abstract form like (11), where operators Ly and F are given,
respectively, by
a11¢1(0) +ag2(0)

L _ (s )
0(¢) (T—I—‘Ll) bZI(PI(_l)+b22¢2(_])—|—a21([)](0)+a22(P2(0)

Yiejoa by (0,009 (0)94(0)
Yitjrktiz2 l'j']WF;gi)l (0,0,0,0)9(0)@; (0)¢f (—1)¢3(—1)

o= (01,0 €C.

iwi+dllnmfa“
a2

Fo,u)=(t+u)

Y

Choosing & = (1, po)”, with py = , we get that the bases of P is

iw; 79S¢ —iw; 1Y Rc iw; 9 Rs —iw; T Rs

)] —
r9(7-9> ico;l%ﬁ\ rc — —ia)ﬁﬁ rc ia)i%ﬂ s — —ia)ifﬁ As
poc ¢nm poc ¢nm po ¢nm po€ ¢nm

b

and the basis of P* can also be obtained. The explicit formulas of Ap, p)pspss Sy(0)z> Sy(—1)zs k=
1,2,3,4, and hjp, p, p;p, in the calculation of normal form are shown in Secs. 4-6 in supplementary

materials.

IV. NUMERICAL SIMULATIONS

In this section, we present two reaction-diffusion systems with discrete time delays as numeri-
cal examples. The time delay is chosen as a bifurcation parameter in both two models to simulate
spatially homogeneous periodic solutions and spatially inhomogeneous periodic solutions, includ-

ing standing and rotating waves.

A. Numerical example 1: A diffusive Brusselator model with delayed feedback

[44] studied a diffusive Brusselator model with delayed feedback. We put this model on a disk

with Neumann boundary conditions and perform some numerical simulations. The model in polar

16



form now turns to be

au(gtrﬁ) =d|Agu(t,r,0)+a— (b+1)u(t,r,0) +u2(t,r, 0)v(t,r,0), (n0) €D, >0,

av(g’;’e) = doAgv(t,r,0) +bu(t,r,0) —u*(t,r,0)v(t,r,0) + g(v(t — 7,1,0) —v(t,1,0)), (,0) €D, t > 0,

ou(-,R,0) =9dv(-,R,0) =0, 0 € [0,27).

(32)

Fixinga=1,b=15, g=2,d =2, dy=35, R= 10, we get that the unique positive equi-
librium solution of the model is (1,1.5). When 2 = Ao, @ ~ 0.6166 and % ~ 0.7128. Accord-
ing to the common analysis of the standard Hopf bifurcation, we get that when 7 € [0,0.7128),
E™ is locally asymptotically stable. When 7 increases from zero and crosses the critical value
72 (.7128, a family of periodic solutions are bifurcated from E*, which is spatially homogeneous.
By Corollary III.4, the Hopf bifurcation is supercritical and the periodic solutions are stable since
aja, ~ —0.8264, a5 ~ —0.6920. This is actually the periodic solution of the corresponding delay

differential equations without diffusion, so the figure is not given here.

B. Numerical example 2: A delayed predator-prey model with group defense and nonlocal com-

petition

In [45], the authors investigated a predator-prey model with group defence and nonlocal com-
petition. Here, we use the method established above to investigate the dynamics of such a model

on a disk.
WGe0) — dyAvgu(t,1,0) + bu(t,,0) (1~ "2 ) —au(1,r,0)v(1,1,6), (r,6) € D, 1 >0,
av(glne) = dyArgv(t,r,0) —dv(t,r,0) +aeu®(t — t,r,0)v(t,r,0), (,0) €D, t >0,
du(,R,0)=dv(-,R,0)=0, 6 €0,27),

(33)
where the state u, v and parameters are defined in [45]. In particular, ii(r, 8,1) depicts the nonlocal

competition with the form of

1 R 2w _ _
i(r,0,1) = W/o /O Fu (7, 0,1) dBdr.
According to subsection II B, characteristic equations of the linearization equation at the positive

equilibrium point E* for system (33) are

72+P0m7+ QOm_aIZbZIG_YT - 07 m= 07 1727"' )

o i (34)
(yz‘f’an}/‘f’Qnm_aleZle_yT) :07’1:1727"'7’/’1:1727"'7
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with

Pom = (d\ +d2) dom — a11 — c11, Qom = (d1Aom —ai1 — c11)d2Aom, m=0,1,2,---;
pnm = (dl +d2)lnm_all7 Qnm = (dllnm_all)dzlnma n=12--,m=1.2,---,

where the expressions of a1, a2, bz1, c11 are shown in [45].

Fixing b =0.25, K =20, a=0.3,d=0.7, e=0.5, di = 0.3, d, =0.75, R = 6, applying the
same mathematical analysis method mentioned in [41, 45], at the unique positive constant steady
solution, the first two bifurcation curves on the & — 7 plane are shown in Figure 1. We select
o = 0.6 on the plane of o¢ — 7. When A= A1, Hopf bifurcation occurs at T = Tgu ~ 1.7825.
We know that when 7 < 1.7825, E* is locally asymptotically stable, and when 7 > 1.7825,
E* is unstable. The bifurcation generated at this time is an equivariant hopf bifurcation. It can
be obtained through numerical calculation that g = 1.2175, By; ~ 0.0021 — 0.0911i, Bjgo; =
—0.1075+0.07451, Bq110 ~ —0.181340.1620i. Thus, aju ~ 0.0026, a; ~ —0.1075, ar +a3 =
—0.2888, ar —az ~ 0.0738, which corresponds to Case 2 when a;tt > 0 in Table II. By Theorem
III.3, we know that system possesses an unstable standing wave (see Figure 2-4) and two orbitally

asymptotically stable rotating waves (see Figure 5-6).

Remark IV.1. We can see from Fig. 1 that as a changes, a double Hopf point HH appears. Below
the lower line is the stable region of the system where T < min{’clgo, 7o }. Above the lower line
where T > {Tlé’o’ T/Iﬂ} the system may produce spatially homogeneous or inhomogeneous period
solutions. Investigating the detailed bifurcation sets might require studying a center manifold that

is at least six-dimensional.

Remark IV.2. We can find that only when the initial value restricted to the center subspace satis-
fies p1 = pa, the spatially inhomogeneous periodic solution is in the form of standing waves. For
example, we select the initial value as u(t,r,0) = u* + ¢ (t,r)-cos(0 + 0), t € [-7,0); v(t,r,0) =
V¥ 4+ 6 (t,r)-cos(08 +0), 1 € [—1,0), which has the following approximate form restricted to the

center manifold

A

Up(0)(r,0) ~4(Re{g1(¥,r)},Re{po- (D, r)})Tcos(G +0),

with 71 = 7o = 73 = 74 = 1. Thus, the spatially inhomogeneous periodic solutions in Figs. 2-4 are
in the form of standing waves. No matter what value of 0 is taken, the simulation is a standing

wave solution, which reflects the effect of O(2) equivariance. However, when the initial values of

18



u and v are chosen with other forms, solutions of the system are attracted by one of two coexisting
stable rotating waves (see Figs. 5 and 6), which may be clockwise (Fig. 6) or counterclockwise

(Fig. 5).

5 T T T
1
451 1 iy a
| spatially inhomogeneous 200
4+ | periodic solutions o ())\ 8
\ 11
35r i a
\
3t “ 0.6,3) .
\
= 25F \ b
\
2r b spatially homogeneous i
\ periodic solutions
1.5+ N
~
1 L ~
stable region === 0z ®= — — o _ _ - - -
0.5r
O 1 1 1 1
0.5 0.6 0.7 0.8 0.9 1
«
FIG. 1. Partial bifurcation curves on the @ — 7 plane.
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FIG. 4. The system produces standing waves with parameters: b = 0.25, K =20, a =0.3, d =0.7, e =
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I. THE SPECIFIC CALCULATION OF THE NORMAL FORM
A. The calculation of g}(z,0, )
For j = 2, similar to the results in [1, 2], we have
Im(M,)° = span{pizie1, 1zzer, Hzaer, Hzaea, Uzzes, Haie3, Mzaes, [zres},
then

Im (M3 )¢ Nispan { uz’ey;

pl=1,k=1,2,3,4} =span{uzier, Uz3er, Uz2e2, hz4e2, UZ1€3, hT3€3, hT2e4, hTses ) .
Therefore, the second order term of F(U;, 1) is
B (Up, 1) = uD1 AU (0) + uL Uy + F> (Uy, 1), (1)
and
Fy(z,y.1u) = F(®rz+y,1t) = uD1A(D,6(0)2+(0)) + L1 (P02 +) + Fo(Proz+y,14). (2)
Since F(0,11) =0, DoF(0,u) =0, F>(®P9z+y, 1t) can be written as follows

FZ(q)r9Z+y7“) :F2(¢rez+ya 0)

2 pi+p 2 p3+p 2
- Z Apipap3pa (¢r€m) v (¢r§m) ’ 44)1552%)344+SZ(CDV9Z=)’)+0(|)’| )s
P1+p2+p3+ps=2
3)

where S5 represents the linear terms of y, which can be calculated by DF>(®,92+y,0)|y—0(y).
By (1)-(3), noticing the fact f(f 02 & r(ﬁ,fmqs,fmdedr = 1, and the relationship of ®,9 and ¥, g, we

obtain
Biiuzy
1 1. . Bi1lz
Egé(zaoa.u) = EPrOJKer(le)fZI (Zv()a.‘i) = 3 (4)
Biiuzs
Bz
with
1——— - s
B = 5‘1’1(0)(—/1an161>1(0) +LPy). 5)



B. The calculation of g}(z,0,1)

For j = 3, we have
1\¢ 2 2 2 2 2 2 2 2 2 2
Im(M3)¢ = span{zjzze1, z{22€3, 2124€1, Z124€3, 2322€1, 2322€3, 2324€1, 2324€3, 2521€2, ZHZ1€4,
2 2 2 2 2 2
7p33€2, 2pT4€4, 2421€2, T471€4, 2423€2, 7433€4, 212223€1, 212223€3,
Z13334€1, 213334€3, 212234€2, 212234€4, 227334€2, Z2Z3Z4€4}7

see [1, 2] again. Then
Im(M3)¢ Nspan{uzPey; |p| =2,k =1,2,3,4} = 0.
We define

_ 3
F3(2,0.1) =3 [Def3 (2.0, 1)U3 (2. 1) + Dy f3 (2,0, U3 (2, 1t) = DeU3 (2, 1)83 (2.0, 1)} +£5 (2,0, ).
(6)

According to [3], the normal form up to the third order is

g%(Z,O,,U.) = PrOjKer(MSI)f?,l (Zaovu) = ProjKer(M%)]g1 (Z,0,0) +0(“2|x|)'

Since g}(z,0,0) = 0, we only need to calcalate three parts Proj Ker(M)) f31 (z,0,0), Projge( i) (DZ £ (z,0,0)U] (z, O))
and PrOjKer(Mé) (Dyfil (Zv Ov 0)U22 (Za 0)) :

1. The calculation ofPlrojKer(A,131)f31 (z,0,0).

. =, 2e \P1FTD2 (2 \P3TD
Writing F3 (q)rezmu) as F3 (‘Dr@za 0) = Zp1+p2+p3+p4:3AP|P2P3P4 ((P;im) ne ((Prfm) ’ 421171252253224,
then we have
r9Z70)7T;9 (O)>
r62,0), %% (0))
R 2 2e \P1+P2 (2g \P3tpatl
[ Lpitprtpstm=3Amppsps Jo Jo T (Bim) T (Bhn) T dOdre 252!

=¥(0)
R (2m _ ( 4c \P1+P2tl s~ \P3+p4 D1._D2._D3_D.
Zp1+p2+p3+p4=3AP1P2P3p4 fO 0 r((Pém) (‘Prszm) ded”leZ22Z33Z44

f31 (Z707O) = <}j3(q)
(F3(®

Noticing the fact

R p2m 4 R 2w 4

[ [ r@staear= [ [7r(63,) a0ar =0
0 Jo 0o Jo

R r2m 3. R /2m .3

L[ r @) dra0ar= [ [7 s (62,) a0ar =0,
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R 27 re 2/ rs 22 N
)T (D5m)” (Bpn)~ dOdr = Moy,
and the relationship of ®,¢ and ¥,¢, we get

C20012324 + C1110212223

1. C20012323 + Ci110212224
gpro-]l(er(MSI)fB1 (Z7 0, O) = ) ) (7
: C20012322 +C1110212324
C20012321 + C1110222324
where
1 1
Cro01 = 8‘1’1(0)1420011\/[22, Citio = g‘Pl(O)AmoMzz, (8)

2. The calculation of Projgy ( .f2(2,0,0)U3 (z,0)) .

We have

2 p1+p2 /2 p3+pa+1 P1._DP2._DP3._D4
:W Ypi+patpstpa=2Apipapspa Jo Jo r(q),fm) (¢f§m) dOdrzy" z;°237 2y

~ +pr+1 +
2ﬂr(¢c )Pl P2 (q)nm)l?% p4d9drzf‘zgzz§"%zf4

Zm +p2+p3+ps=2 Ampzps D4 fo nm
)

Noticing the fact that

r(S,) dodr = r(2,)d6dr =0
/OR/OZTE ( ) /)R[)Zﬂ ( )
/ / 7 (65,)7 62, d0dr — / / e, (65, d0dr = 0

then we get Projy,,( M) (D.f)(2,0,0)U3 (2,0)) =

3. The calculation of Projy. ) (Dyf3(2,0,0)U3(2,0)) .

Firstly, we calculate the Fréchet derivative D, le (z,0,0) : Qs — Z¢. By (2) and (3), F5(z,y,0)
can be written as
F5(2,5,0) = S2(@rpz.y) +0(z*,)%)

. . A A (10)
= Syzl (y)m (pigm + S)’Zz (y)ZZ(prfm + S}’ZS (y)Z3 (Prim + S)’Z4 (y)z4¢r§m + 0(Z27y2)’
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where Sy, (k=1,2,3,4) : Q; — Z are linear operators, and Sy, (@) =S

A

Let U3 (z,0) £ h(z) = ¥,;50h,(2)§jx(r, 0), with

M (@) @)
hj(z) = f’z‘) — y {lzcsmpzpsm D,
(z) 2\ h
jk PUtp2tpstpa=2 Jkp1pap3ps\©

Therefore,

(DyF>(z,0,0) (U3 (z,0)) , 1, (0))

~ 2 —
DyF>(z,0,0) (U3(2,0)) = (DyF(2,0,0) (U3(2,0)) , 2, (0))

Y750 [MikesSyz, (Rjk) 21 +MjesSyz, (hj) 22
_ W +M jkssSyzs (hjk)Z3 + MjkssS yZ4 Jk Z‘d
Y j>0[M jkeeSyzy (Rjk)z1 + M jkeeSyz, (hji)z2
M jkseSyzs (M ji) 23 +MijiseSyz, (M k) 24]
where

R r2m Mg (]3 or (ﬁc
NP Ok 0 0k>
Mjksc - Mjkcs = /0 ~/O r¢jk¢rfm¢i§md9dr = “

0, otherwise,

R 2m M¢< dix = 0
2Rns A 2nkss: Pjk 2nk>
Mjkss = /0 /0 ’”¢jk¢y§m¢,;md9dl’ = 1SS "

0, otherwise,

R 2m M Oix =3
AoAe A 2nkee> Yk 2nk>
Mjkcc = /0 /0 r¢]k¢1§m¢r€md0dr = e "

0, otherwise.

Moreover, we have DyF5(z,0,0) (U22 (z,0)) =¥(0)
N,

, with

Nt =Miges (Syz (hor )21 + Syzy (55 )22) + My (Syes (Mo )23 + Syey (Mo ) 24)

N :M%nkcc (SYZl (h2nk)zl + S)’Zz( gflh;c)ZZ) + M(C)kcs (Syz3 (hOk )Z3 + Syz4 (hgis)Z4) )
Thus,

1
3 PrOJKer Ml) ( yf2 (z,0 O)U2 (z, 0))

) ) ) 1 I
E} 002122 + Ejo 2324 + E 1002522 + Egp 1 2324 + Ef 19212223 + Ef 212324

2 2 2 2 11
E} 1002123 + E001 2323 + Eg1202421 + Ep1 232 + 110212228 + Efg 222324 (1)

2 2 2 2 2 2 2 2 2 2
E3 1002122 + Ejp012124 + Eg1202322 + Egp 2524 + ET 19212223 + Efg 1212324

3 2 2 7 2 p 2 p
E3 1002125 + E50012523 + Egy02421 + Eggp 2323 + £y 19212224 + By 1222324

5
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where

E0 = ém [Moges (Syzi (Rox1100) + Syz2 (MGi2000))] »

Ejp1 = ém [MokesSyzi (Boi001) + MkgsSyzs (Bonia000)]

B0 = £100) M8y (i020)) + Mt Soes (i5on10)]-

Ebn = 21000 M4, (s 5k0011) + ey (k020

Eljjo= éT(O) [Mokes (Syz (hoko110) + Syz2 (Rok1010)) T M2kssSyzs (Ao 100)]
Epy = ém [MogesSyzi (Boroo11) +Mapigs (Syzs (haprioo1) + Syzs (h2nki010))]
B0 = ¢500) Mk (S, U5k1100) + Srea5aonn))]

Edoon = ¢ #5(0) M, (S5ka001) + MiesSics ()]

Egino = éW(O)[ 2nkeeSyz (Mamk0020) + MogesSyzs (Moko110)]

BB = £5(0) M (Ses (5hor1) + e, (iono))]

B0 = ¢ #5(0) S, (S 05501100 + s (5531010)) + MbicsSoes ()

Efo11 = 6‘1’3(0) M3, kceSyar (Banio011) + Mokes (Syzs (Boi1001) + Syzs (Boi1010))] -

Now, we need to calculate

ccs ccs hecs ccs ccs ccs ccs
0k2000> "*0k1100> "*0k1010> "*0k1001> "*0k0110> "*0k0020> "*0k0011>

ces

ccs ccs ccs ccs ccs ccs
2nk2000> h2nkl 100 h2nk1010 ) h2nk1001 ’ h2nk01 10> h2nk00207 h2nk001 1>

css css css css css css css
2nk2000° thk 1100 thk 1010 h2nk 1001 h2nk0 110> h2nk0020 ’ h2nk00 11

From (20) and(23), we get

M3U3 (2,0)(8) =M3h(z)(9)

Dzh(Z)BZ - D()A/’Z(O) — ZQ(I’Z(Z)), U= 0,
D;h(z)Bz — Dyh(z), B #0,

Y50 [D:hj(2)§jx(r, 0)Bz — DoAhj(2) @ (r, 0) — Lo(hj(2) (1, 0))]

Y0 [D:hj(2)@j(r,0)Bz— Dh(2)$ju(r,0)]

6
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and

;

F2(2,0,0) — @, (0) £ (2,0,0) 65, — 22(0) 3 *) (2,0,0) 85,
£:.0.0) —®3(0) 5" (2,0,0)85,, — 4 (0) £ " (2,0,0) 8, B =0,
2 Z7 9 - ~ "
~@1(8)f5"(2,0,0)85, — P2(8) f, 7 (2,0,0) 83,

—®3(8)f3 " (2,0,0)05,, — Pa(8) £ (2,0,0) 45, 8 0.

Besides, we have
<M22 (UZZ(Z7O)) 7Bjk> = <f22(z7070)7ﬁjk>7 (12)

with B = 7547

Thus, the expressions of %y, p,p;p, can be obtained. Due to the large number of expressions,
we show the specific results in the Section VI.

Noting the fact that M, M5, +» therefore, we have

nkce —
T S T e L e R T
Es100 = Ego215 E2001 = E61205 E0120 = E20015 E0021 = E21000 E1110 = Eio11> Eio11 = Ef110-
For simplification of notations, we rewrite (11) as

1 )
aprOJKer(Mé) (Dyf21 (Z,O, 0)U22 (Z,O))

2 2 2 2
E>1002722 + E20012724 + E01202322 + E00212324 + E1110212223 + E1011212324

2 2 2 2 Eio 13
E>1002125 + E20012523 + E01202521 + E00212423 + E1110212224 + E1011222324 (13)

2 2 2 2
E»1002324 + E20012322 + E01202124 + E00212722 + E1110212324 + E1011212223

2 2 2 2 o
E31002324 + E20012421 + E01202523 + E00212722 + E1110222324 + E1011212224

Hence, we have

1,

1 . _
§g3(z,0,0) PrOJKer(Mé)fS'l (Z,0,0)

T3l
2 2 2 2
B2100z722 + B20012124 + B01202322 + Bo0212324 + B1110212223 + B1011212324

A 2 B2 A2 L2 L Ty
B21002125 + B20012523 + B01202521 + B00212423 + B1110212224 + B1011222324

BZ]OOZ%Z4 + BzomZ%Zz + Bo1207324 + Boo212322 + B1110212324 + B1o11212223

A 2 2 P2 A2 L B T
B11002324 + B20012321 + B01202523 + Bo0212722 + B1110222324 + B1011212224
(14)

: _ 3
With By, ppsps = Cpipapsps + 5 (Dpipapsps + Epipapsps)-
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II. PROOF OF LEMMA 2

By a smooth transformation

2 =8+018 G+ 0830 + 3G G+ ba 81 G,

(15)
3= 8G+b18G8+b87 G+ b3 6+ bal1 66,
with 20 = 73, z4 = Z1, we have
&1 =21 — biziza — baz3zo — b3z3za — bazizaza +o0(4), 16)

&3 =23 — b1Z324 — baziza — biziza — bazizaz3 +0(4).

Then

81 =21 —2b1z12021 — b1z} — 2ba2az383 — baziza — 2bszazais — b33
— b4712324 — b4z12423 — baz3zaz1 +0(4)
=(i@; +B111t)z1 + B2100z122 + Bio11212324 + B2oo12124 + Bo1202322 + Boo21 2324
+Bi110212223 — b1 (2(i05 + Biip) + (—iw; +Bii))ziz
— by (2(i; + B11 ) + (—i@; +Brip))s3z — b3 (2(i0 +Bupt) + (—iwy +Biik))z3z

—by(2(iw; + By1u) + (—iwy +Bi11))z12324 +0(4).

Let
B100 B Bo120
" 2(iwy +Bup) - (—ioy +Bup) o 2(i@; +Bil) + (—ioy +Brp)’
_ Boo21 _ py= Bio11
2(ia)i —i—B”u) + (—ia)i +Bll,u) ’ 2(ia)i —l—Bll‘LL) + (—ia)i +B_1]/.L) ’
then

< =(ioy +Brip)zn + Baoo12324 + B1110212223 + 0(4)
=(io5 +B111) &1 + Booo1 §E8s + Biino&i1 583+ 0(4).

The same is true for (iz, ij3 and Zj4 so that (27) is established.

III. PROOF OF THEOREM 2

We only need to prove the approximate expressions of rotating and standing wave solutions
reduced to the center subspace, and the rest of the theorem can be easily obtained from previous

analysis.



By (16), (18),(28), we get

Ui (8)(r,0) ~E' P 1, (\/ Apmr)e™ pre1 1) 4 Ee 719D 1 (\/ Ar)e® ppe—1220)
+ &4, (V/ Aymr)e 0 pye2) 4 Ee 1D (\/ Ar)e ™0 prem i1 ()

with & = (p11, p12,--+, p1a) . For simplicity, we also rewrite py; in the form of a complex angle

as p1; = | p1i|e"2(P1) in the subsequent calculations.

For (p1,p2) = (0, /=415),

U;(ﬁ)(r, 9) zéeiwiﬁ-] ( \Y% Anmr>ein9plei}a(t) + geiiw’iﬁjn( \% A«nmr) Ple —i2()

n
—a
Z |p1il ;“Jn(\/ Aumr) cOs(Arg(p1i) + @3 O + @31 +nb)e;.

where e; is the ith unit coordinate vector of R"”. This corresponds to the form of a rotating wave

solution in the plane of (z3,23).

For <p17p2) - (\/ #70),

Ui (8)(r,0) ~Ee 70 1, (\/ Apmr) e pae =021 1 E69P 1, (\/Apr)e ™0 preit2()

n
—a
Z Pl ;“Jn(\/lnmr)cos(Arg(pli)+a)119—|—a)it—n9)ei,

R

which corresponds to the form of a rotating wave solution in the opposite direction in the plane of

(z1,24).

For (p1,p2) = (\/ arttas s \/ arbas)s
(,0) 22|p11|1/ v At ) cos(Arg(p1i) + @3 O + @31 +nb)e;

+ Z 2|p1il Jn(\/ Aumr) cOS(Arg(p1;) + 05 0 + 051 —nb)e;

—ai
~ Z 4|p1il > +Z3 n(V Aumr) cos(Arg(p1;) + @5 O + @5 1) cos(nb)e;,
which means when n6 = 2 ornf = 2 , the form of the solution does not change over time. In other
words, in a two-dimensional plane, the image of the solution has a fixed axis, thus, it corresponds

to the form of a standing wave solution.



IV. THE CALCULATION FORMULA FOR A, 1, .,

A. The calculation formula for A, ,,,.,,(p1 + p2+ p3 + ps =2)

Al Al Al
~ [ 42000 N 1100 N 1010
Ano00 =21 5 , Ar100 =21 5 ,A1010 = 27 5
A3000 Al100 Aloro
Al Al Al
N 1001 ~ [ 20020 ~ [ Aoon
A1p01 =27 ) , Ago20 = 2T ) Ago11 =27 ) )
Afoo1 Ajo20 Abor

Ap200 = A2000, Ao101 = A1010, Ao110 = A1001, A0002 = A0020,
with
1 1 1 1 1) 2
A2000 = A0020 :Fz(o) JrFl(l 'po+ Fo(z)POv
| 1 _ ) -
Al100 = Algor = Ador :2F2(0) + Fl(l ) (po+ po) + 2F0(2)P0P07

1 | 1
A%OIO :2F2(0) —|—2F1(1)p0 +2F0(2)P(2)7

2)

) ) 2 2 2 Q) dint () diest i, 2
A2000 = A0020 :FZ(O())O +F 1(130170 + K ()(200P0+F 0(0%0e 1T+ F 0(01)1170e T+ ot

2) 2
Foo02P0€
+ Fl(gfoe‘i"’“ + (Fl(g())l +F0(1220)p06_iwﬁ +Fo(12())1p(2)e_iwﬁ,

2 2 2 2 2 _ 1 _ 5 ) . 5 )
A100 = Ao = ABo11 =2F3000 + F0(Po -+ o) + 2Fs00poio + 2Fag + Faoty (o + 5o) + 2Fo0,popo

N A i 5 P 5 A
+F1(01)0(e lwﬂ‘f‘elwﬂ)‘f‘F](()g](pOe 1a)lr_|_poela)lf)_i_Fo(ll)O(pOelwlf_'_poe 1a)lr)
5 o A
+E) (popoe'®a® + popoe % %),

2 2 ! ) i 7 2 i b 2 i b
Afg1o =2F. 2(00)0 +2F, 1(1())0170 +2F, 0(2())019(% +2F 0(02)0‘3 2% 4 2F, 0(01) 1Po¢ 2% 1 2F, 0(03217%6 2ot

. 5 5 o ) o
+2F510e %+ 2(F 50, + Fyrlo)poe ™ 4+ 20, phe 4.
B. The calculation formula for A, ,,,.,, (p1 +p2+ p3+ ps =3)
Al Al Al Al
Az100 = 61 2100 Axo10 = 61 ;OIO ,A2001 = 67 2001 Ajno = 61 ;020 ,
A3100 A3o10 A3001 Al
Al Al Al Al
Ao120 = 6% (2)120 Aoo21 = 61 (2)021 JAt110 =61 ;“O Ao =61 ;O“ ,
Aj120 AGoa1 Al Alon

A1200 = A2100, A0210 = A2010, A0201 = A2001, A0002 = A0020,
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with

o, 1 (1 _
Ad100 = Adoor = Ad120 = Adon :3F3(0) +(P0+2P0)F2(1) +(P(2)+2P0P0)F1(2) +3P(2)P0F0(3)7

1 | | |
Ado10 = Alooo :3F3(0) + 3P0F2(1 )+ 3P(2)F1(2) + 3P(3)Fo(3)»

Altio = Aot _6F3(0) + (260 +4po)Fay) + (2p% + 4popo) Fiy + 6P0P0Fo(3 )
100 = Aoor = AJ120 = Adon1 =3Fy000 + (Po +2p0) Fajog + (08 +2p0p0) Fizgg + 3P0170Fo(330
(3F 0(03)0 + (Po+ 2P0)Fo(o%1 +(pg+ 2P0P0)Fo(o1) ) T 3P0P0F0(§())3> e 1t

+ Figlg (€17 +2e7190%) 4 B, (Boe'® " +2poe %)
+E) (2popoe % + paei®t) + F3) (2p3poe % + pdpoe @)
+ Fioo (€759 4+2) + i, (e ™24 F + 2po o)
(Po

+ F0120 21(017 + 2PO) + F()(132 (Poﬁoe_zmﬂ + 2P(2)I50)7

2
A3p10 = Afpag =3F. 3(030 + 3poF. 2(1())0 +3pF 1(2())0 + 3P0F0(3())0

+ <3F0(03)0 +3 pOFO(OZ)l +3 pOF()(Ol)z +3p3 FO(033> o3Iy
+ <3F ) £ 3poF) 3PS 43 pSFéZZ(%l) e 101
+ <3F1(£0 +3p0Fy 130+ 3P0Fio0 + +3P(3)Fo(12())2> e 20T,
3110 = Ao, =6F3000+ (2550 +4p0) Py + (208 +4popo) Fiyg + 618 PoFos00
+ (6Fg000 -+ (250 -+ 4po) Foghy + (28 + 4popo) iy, + 6p3poFs ) €%
+ Fygl (2% +4e—“°ﬁ> A (2504 + 4poe %)
+ Fogto(4popoe™ ¥ 4 2056 ) + oy (4ppoe " + 25 poc'?)
+ F1020 (2672“”/1 +4)+ FI(O(%Z (2poe Zioyt | 4popo)
(2p

+F0120 o it Jr41’?0)JFF()(1())2(2P01??0e A0 1 dpd po).
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V. THE CALCULATION FORMULA FOR Sy ).,, Sy(_ 15 k= 1,2,3,4

kY

1 1 1 1 1 . . 1) _
2}'ﬂ:z(o)JF}'ﬂl(l)pO F1(1)+2Fo(2)170 g _ 2F2(0)+F1(1)p0 F1(1)+2F0(2)P0
y(0)z — » Oy(0)z2 — 3
Sa Sb Sc Sd
(1) (1) (1) (1) (1) 1) - (1) (1) -
S | 2Fy +Fy po By +2Fy, po g [ 2Fy +E po Fyy+2Fy, po
y(0)z3 = » Oy(0)z4 )
Sa Sb Sc Sd
< 00 0 0 S 0 0 < 0 0
71 = 71 - Y 71 - b) —1 -
y(=1)zi S, S, y(—1)z2 Se i y(—1)z S, S, y(—1)z4 S, S
with

2 2 2 ot 2 o 3
Sa:2F2(030+F1(1())0P0+F1(01)oe 1@17+F1(031p06 9,
2 2) _ ) w4 2) et
Se = 21[72(030 + F1(130P0 + Fl(oioelw’lr + Fl(oglpoelwﬂv

2 i A 2 —is # 2 2
Se = 2F()(0%()e 1w’lr‘f‘F()(()l)lpoe ot +Fl(01)0 —|—F0(120p(),

2 2 D) o4 2 it
Sb:Fl(l())0+2F()(2())Op0+F()(ll)Oe lwﬂ—i_FO(l())lpOe o,
2 2) _ ) w4 2) - ot

Sqa = F1(130 + 2F0(2())0p0 + 1':0(1206160’1T + Fo(l(%lpoelw’ﬂ

) o4 2 it 2 2
Sf:Fo(m)le lwﬂ—i_ZFO(O(%Zpoe lmﬂﬂLFl(ogﬂLFo(l(%lPOv

2) w4 2 _ ioe 4 2 2) 2) ot ) i 2 2) _
Sg= 2}’ﬂo(oz)oelwﬂ + Fo(01)1poelwﬂ JrF1(01)0 +F0(11)0po, Sh= Fo(ofle‘“’“ + 2F0(0())2P061w“ + Fl(O())l + F()(131P07

VI. THE CALCULATION FORMULA FOR £y, p, s

hoka000(P) =

hogi100(%) =

hees
0k1010

(
hokioo1 (B) =
(

ccs
0k0110 19)

¥) =

(,CS

0k0020 v )

hecs
0k001 1

(
(¥) =

where k=0,1,2---

Gres® 27 —2iw; — AoxDo + Lo (e? 'Id)_ A2000,
< -1
~Mes [—A0kDo +Lo(La)] " At100,
¢ liosd [ o = = i ]!
Okes© _—210);1—10kD0+L0(6 x'Id)_ A1010,
< - 1
~Mes [—AokDo +Lo(12)] Aioor,
< -1
—Mes [—20kDo +Lo(12)]  Aotio,
¢ Diad [~ < 7 (o -1
Okes€ * [—21w;1—3~0kD0+L0(e LIg)| Aoozo,

_— 1
~M{es [—AokDo+Lo(1a)] " Aoorr,
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-1

Sera000(9) = —M3, 1 %0 :—21(0;1 — XoniDo + Lo (e 'Id): A2000,
S 100(8) = —M3 e [~ AomDo +Lo(Ia)] ' Arrco,
Soi010(0) = —M3, . €2 :—21(0;1 — DomDo + Lo(e*2 ‘Id): _1A1010,
<1001 (%) = ~M3,ce [~ AamDo + Lo(La)] ™' Aroor,
e o110(8) = ~Mee [~A2mDo + Lo(12)] ™" Aorno,
Sero020(9) = —M3, ;. &0 [—21(0;1 — MaeDo + Lo(e%% - 1) _1A0020,

hSsroo11 (%) = =M [—A2mDo + Lo(la)] ! Ao,

hSia000(8) = =M, @7 :—Zia)i — AoniDo + Lo (e*® ‘Id): 71Azooo,
Sri1100(D) = =M, [—AamDo + Lo(1y) | ! Ati00,
Si010() = —M3, @H 4 ? :—21(01 — XaniDo + Lo(e*®2 'Id): _1A1010,
Srk1001 () = —=MS, i [=AomDo + Lo(1a)] A0,
S 0110(9) = —MS, [~ AauDo + Lo(1a)] ™ Aoto,
Sok0020 (D) = =M, ¥ 4? [_Ziwi — AonikDo + Lo (e* 'Id)] 71Aoozo,
Smk0011 (%) = =MS s [—AauiDo + Lo(I)] ! Agoi1.

where k=1,2,---
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