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Abstract. This paper is devoted to the study of the second-order variational analysis of 
spectral functions. It is well-known that spectral functions can be expressed as a composite 
function of symmetric functions and eigenvalue functions. We establish several second- 
order properties of spectral functions when their associated symmetric functions enjoy 
these properties. Our main attention is given to characterize parabolic regularity for this 
class of functions. It was observed recently that parabolic regularity can play a central rule 
in ensuring the validity of important second-order variational properties, such as twice 
epi-differentiability. We demonstrates that for convex spectral functions, their parabolic 
regularity amounts to that of their symmetric functions. As an important consequence, we 
calculate the second subderivative of convex spectral functions, which allows us to estab-
lish second-order optimality conditions for a class of matrix optimization problems.
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1. Introduction
This paper aims to study second-order variational properties, including parabolic regularity and twice epi- 
differentiability, of spectral functions. These are functions g : S

n → R :� [�∞,∞], where S
n stands for the real 

vector space of n × n symmetric matrices, that are orthogonally invariant; namely, for any n × n symmetric 
matrix X and any n × n orthogonal matrix U, we have

g(X) � g(U⊤XU):

It is well-known (cf. Lewis [18, proposition 4]) that any spectral function g can be equivalently expressed in a 
composite form

g(X) � (θ ◦ λ)(X), X ∈ S
n, (1) 

where θ : R
n → R is a permutation-invariant function on Rn, called symmetric, and λ�is a function, which assigns 

to each matrix X ∈ S
n its eigenvalue vector (λ1(X), : : : ,λn(X)) arranged in nonincreasing order.

Davis [9] showed that convexity of the permutation-invariant function θ�in (1) is inherited by the spectral func-
tion g. A similar observation was made by Lewis [17] about differentiability and strict differentiability and by 
Lewis and Sendov [19] about twice differentiability. It was shown in Lewis [17], Lewis [18], and Daniilidis et al. [8], 
respectively, that the calculation of different notions of subdifferentials of spectral functions and prox-regularity, 
which plays an important role in second-order variational analysis, enjoys this striking pattern as well.

The main question that we are trying to answer in this paper is whether such a striking pattern can be 
extended for other important second-order variational properties, including parabolic regularity (see Definition 1) 
and twice epi-differentiability. Although the former was first introduced more than two decades ago in Rockafel-
lar and Wets [25, definition 13.69], its persuasive role in second-order variational analysis was revealed quite 
recently in Mohammadi et al. [21] and Mohammadi and Sarabi [20], where it was shown for the first time that 
any parabolic regular function is twice epi-differentiable at any points in the graph of its subgradient mapping. 
This observation provided a systematic approach for the study of twice epi-differentiability of extended-real- 
valued functions, which has important applications in understanding various second-order variational concepts, 
such as proto-differentiability of subgradient mappings (cf. Mohammadi and Sarabi [20, corollary 3.9]), twice 
epi-differentiability of the augmented Lagrangian functions associated with composite and constrained 
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optimization problems (cf. Mohammadi et al. [21, theorem 8.3]), and the characterization of the quadratic growth 
condition for this class of functions (cf. Hang and Sarabi [16, theorem 4.1]). Moreover, parabolic regularity was 
utilized in Mohammadi et al. [21] and Mohammadi and Sarabi [20] to obtain the exact chain rule for the second 
subderivative of certain composite functions, commonly seen in different classes optimization problems. Such a 
chain rule has an important application in finding second-order necessary and sufficient optimality conditions 
for optimization problems.

It was demonstrated in Mohammadi and Sarabi [20] that important second-order variational properties of a 
composite function ψ ◦ F, where ψ : X → (�∞,∞] is convex and F : X → Y is twice differentiable with X and Y 

being finite-dimensional Hilbert spaces, can be established at any x ∈ dom (ψ ◦ F), provided that ψ�is paraboli-
cally regular and that the following metric subregularity constraint qualification is satisfied (cf. Mohammadi and 
Sarabi [20, definition 4.2]): There exists a constant κ ≥ 0, such that the estimate

dist(x, dom (ψ ◦ F)) ≤ κ dist(F(x), dom ψ), (2) 

holds for all x sufficiently close to x. Thus, it is natural to ask whether a similar approach can be utilized for the 
composite representation in (1) of spectral functions. To do so, two major obstacles seem to hinder proceeding 
with the approach in Mohammadi and Sarabi [20]: (1) the lack of twice differentiability of the inner function λ(·)
in (1); and (2) the validity of a constraint qualification similar to the aforementioned condition for the Composite 
Form (1). Given the Composite Representation (1), it follows from Daniilidis et al. [8, proposition 2.3] that for any 
X ∈ S

n, the equality

dist(X, dom g) � dist(λ(X), dom θ), (3) 

always holds. This simple, but important, observation from Daniilidis et al. [8] tells us that the required con-
straint qualification for dealing with the Composite Form (1) is automatically satisfied. Moreover, looking closer 
into the established theory in Mohammadi et al. [21] and Mohammadi and Sarabi [20] tells us that twice differen-
tiability of the inner function was not required. Indeed, a quadratic expansion will suffice to proceed in both 
these publications. Such a quadratic expansion, which is of a parabolic type, is already achieved in Torki [27] for 
eigenvalue functions. These open the door for using the approach from Mohammadi et al. [21] and Mohammadi 
and Sarabi [20] to study second-order variational properties of spectral functions.

The outline of the paper is as follows. Section 2 recalls important notation and concepts related to the eigen-
value function. In Section 3, we begin with establishing a chain rule for subderivative of the spectral function in 
(1). Section 4 is devoted to the study of the parabolic drivability of spectral sets. We will obtain a chain rule for 
the parabolic subderivative, which plays a central role in the study of parabolic regularity of spectral functions. It 
is also shown that the parabolic subderivative is a symmetric function with respect to a subset of the space of 
orthogonal matrices. In Section 5, we demonstrate that the spectral function g in (1) is parabolically regular if and 
only if the symmetric function θ�in (1) enjoys this property. As a consequence, we are going to calculate the sec-
ond subderivative of spectral functions when the symmetric functions associated with them are convex. This 
allows us to find second-order optimality conditions for a class of matrix optimization problems.

2. Notation
In what follows, X and Y are finite-dimensional Hilbert spaces. By B, we denote the closed unit ball in the space 
in question, and by Br(x) :� x+ rB, the closed ball centered at x with radius r > 0. For any set C ⊂ X, its indicator 
function is defined by δC(x) � 0 for x ∈ C and δC(x) � ∞ otherwise. We denote by dist(x, C) the distance between 
x ∈ X and a set C. For v ∈ X, the subspace {w ∈ X | 〈w, v〉 � 0} is denoted by [v]⊥. We denote by R+ (respectively, 
R

�
) the set of nonnegative (respectively, nonpositive) real numbers. Given an n × n matrix Z and index sets 

I, J ⊆ {1, : : : , n}, denote by ZIJ the submatrix of Z obtained by removing all the rows of Z not in I and all the col-
umns of Z not in J. The matrix ZI is the submatrix of Z with columns specified by I. Particularly, Zi is the i-th col-
umn of Z, and Zij is the entry of Z at (i, j) position. Denote by Z† the Moore-Penrose generalized inverse of Z. 
Finally, the cardinality of the set I ⊂ N, where N stands for the set of natural numbers, is denoted by |I | .

Throughout this paper, we denote by Rn×m the space of all real n × m matrices and by Sn the space of all real 
n×n symmetric matrices equipped with the inner product

〈X, Y〉 � tr (XY), X, Y ∈ S
n:

The induced Frobenius norm of X ∈ S
n is defined via the trace inner product by ‖X‖ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr (X2)

p
. Given X ∈ S

n, its 
eigenvalues, in nonincreasing order, are denoted by

λ1(X) ≥ λ2(X) ≥⋯≥ λn(X):
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For any vector x � (x1, : : : , xn) ∈ R
n, denote by Diag (x), the diagonal matrix whose i-th diagonal entry is xi for any 

i � 1, : : : , n. The set of all real n × n orthogonal matrices is denoted by On. It is known that for any X ∈ S
n, there 

exists an orthogonal matrix U, for which we have

X � U Diag (λ(X))U⊤ with λ(X) :� (λ1(X), : : : ,λn(X)): (4) 

For a given matrix X ∈ S
n, the set of such orthogonal matrices U is denoted by On(X). We say that two matrices 

X, Y ∈ S
n admit a simultaneous spectral decomposition if there exists U ∈ O

n such that U⊤XU and U⊤YU are 
diagonal matrices. The matrices X and Y are said to have a simultaneous ordered spectral decomposition if there 
exists U ∈ O

n such that U⊤XU � Diag (λ(X)) and U⊤YU � Diag (λ(Y)). It is well-known that for any two matrices 
X, Y ∈ S

n, the estimate

‖λ(X)�λ(Y)‖ ≤ ‖X �Y‖, (5) 

always holds. Moreover, equality in this estimate amounts to X and Y admitting a simultaneous ordered spectral 
decomposition. It is not hard to see that the estimate in (5) amounts to the trace inequality, known as Fan’s 
inequality,

〈X, Y〉 ≤ 〈λ(X),λ(Y)〉, X, Y ∈ S
n: (6) 

Assume that µ1(X) >⋯> µr(X) are distinct eigenvalues of X ∈ S
n and define then the index sets

αm :� {i ∈ {1, : : : , n} |λi(X) � µm(X)} for all m � 1, : : : , r: (7) 

Moreover, define ℓi(X) for any i ∈ {1, : : : , n} to be the number of eigenvalues of X that are equal to λi(X), but are 
ranked before λi(X), including λi(X). This integer allows us to locate λi(X) in the group of the eigenvalues of X 
as follows:

λ1(X) ≥⋯≥ λi�ℓi(X) > λi�ℓi(X)+1(X) �⋯� λi(X) ≥⋯≥ λn(X): (8) 

Note that the index sets αm present a partition of {1, : : : , n}, meaning that {1, : : : , n} �∪r
m�1 αm. In what follows, we 

often drop X from ℓi(X) when the dependence of ℓi on X can be seen clearly from the context. Given an n × n 
matrix W, it is not hard to see that for any U ∈ O

n and any m � 1, : : : , r, we always have

U⊤
αm

UWU⊤Uαm
� Wαmαm

: (9) 

This simple observation will often be utilized in Section 5.
The following estimates are an easy consequence of Torki [27, proposition 1.4] (cf. see the proof of Torki [27, 

theorem 1.5]) and play a major role in our second-order variational analysis of eigenvalue functions in this 
paper.

Proposition 1 (First-Order Expansion of Eigenvalue Functions). Assume that X ∈ S
n has the Eigenvalue Decomposition (4) 

for some U ∈ O
n(X). Let µ1 >⋯> µr be distinct eigenvalues of X. Then, for any H ∈ S

n that H → 0 and any i ∈ {1, : : : , n}, 
the estimates

λi(X+H) � λi(X) +λℓi(U⊤
αm

HUαm
+U⊤

αm
H(µmI �X)†HUαm

) +O(‖H‖3), (10) 

and

λi(X +H) � λi(X) +λℓi(U⊤
αm

HUαm
) +O(‖H‖2), (11) 

hold, where m ∈ {1, : : : , r} with i ∈ αm.

Note that the Estimate (11) clearly tells us that the eigenvalue function λi(·), i ∈ {1, : : : , n}, is directionally differ-
entiable at X at any direction H ∈ S

n, and its directional derivative λ′i (X;H) can be calculated by

λ′i (X;H) :� lim
t↓0

λi(X+ tH)�λi(X)
t

� λℓi(U⊤
αm

HUαm
), (12) 

where m ∈ {1, : : : , r} with i ∈ αm. In other words, we have

λ′(X;H) � (λ(U⊤
α1

HUα1
), : : : ,λ(U⊤

αr
HUαr

)), 

where λ(U⊤
αm

HUαm
) ∈ R

|αm | for any m � 1, : : : , r. This observation indicates that both estimates in (10) and (11) are, 
indeed, a first-order estimate of eigenvalue function λi(·). To obtain a second-order estimate, we need to repeat a 
similar argument for each of the symmetric matrices U⊤

αm
HUαm 

for any m ∈ {1, : : : , r}. To this end, fix m ∈ {1, : : : , r}

Mohammadi and Sarabi: Parabolic Regularity of Spectral Functions 
Mathematics of Operations Research, Articles in Advance, pp. 1–30, © 2024 INFORMS 3 



and observe that U⊤
αm

HUαm
∈ S

|αm | . Thus, we find Qm ∈ O
|αm | (U⊤

αm
HUαm

) such that

U⊤
αm

HUαm
� QmΛ(U⊤

αm
HUαm

)Q⊤
m: (13) 

Denote by ηm
1 >⋯> ηm

ρm 
the distinct eigenvalues of U⊤

αm
HUαm

. Similar to (7), define the index sets

βm
j :� {i ∈ {1, : : : , |αm | } |λi(U⊤

αm
HUαm

) � ηm
j } for all j � 1, : : : ,ρm: (14) 

To state the promised second-order estimate for eigenvalue functions, we need to clarify some of the indices, 
appeared therein. To do so, pick i ∈ {1, : : : , n}, and observe that there is m ∈ {1, : : : , r} such that i ∈ αm and that 
ℓi(X) ∈ {1, : : : , |αm | }, where ℓi(X) is defined by (8). Furthermore, we find j ∈ {1, : : : ,ρm} such that ℓi(X) ∈ βm

j . Define 
now the integer ℓ′i (X, H) by

ℓ′i (X, H) � ℓℓi(X)(U⊤
αm

HUαm
), 

which, in fact, signifies the number of eigenvalues of U⊤
αm

HUαm that are equal to λℓi(X)(U⊤
αm

HUαm), but are ranked 
before λℓi(X)(U⊤

αm
HUαm

), including λℓi(X)(U⊤
αm

HUαm
). As before, we often drop X and H from ℓ′i (X, H) when the 

dependence of ℓ′i on X and H can be seen clearly from the context. In summary, for any i ∈ {1, : : : , n}, there are 
m ∈ {1, : : : , r} and j ∈ {1, : : : ,ρm}, for which we have, respectively,

i ∈ αm and ℓi(X) ∈ βm
j : (15) 

The following second-order estimate of eigenvalue functions was established in Torki [27, proposition 2.2] and 
has important consequences for second-order variational analysis of eigenvalue functions; see also Zhang et al. 
[28, proposition 2.1].

Proposition 2 (Second-Order Expansion of Eigenvalue Functions). Assume that X ∈ S
n has the Eigenvalue Decomposition 

(4) for some U ∈ O
n(X) and that H, W ∈ S

n. Let µ1 >⋯> µr be distinct eigenvalues of X. Then, for any t > 0 sufficiently 
small and any i ∈ {1, : : : , n}, we have

λi(Y(t)) � λi(X) + tλℓi(U⊤
αm

HUαm
) + 1

2
t2λℓ′i (Rmj

⊤(U⊤
αm
(W + 2H(µmI �X)†H)Uαm

)Rmj) + o(t2), 

where Y(t) :� X + tH + 1
2 t2W + o(t2) ∈ S

n, and Rmj :� (Qm)βm
j 

with Qm and βm
j taken from (13) and (15), respectively, and 

where the indices m and j come from (15).

In the framework of Proposition 2, we can conclude from (12) that for any i ∈ {1, : : : , n}, the parabolic second- 
order directional derivative of the eigenvalue function λi(·) at X for H with respect to W, denoted λ′′i (X;H, W), 
exists. Recall that the latter concept is defined by

λ′′i (X;H, W) � lim
t↓0

λi X + tH + 1
2t

2W
� �

�λi(X)� tλ′i (X;H)
1
2t

2
:

According to Proposition 2, we can conclude further that

λ′′i (X;H, W) � λℓ′i (Rmj
⊤(U⊤

αm
(W + 2H(µmI � X)†H)Uαm

)Rmj): (16) 

Combining these with (12) brings us to the following estimate for the eigenvalue function λ(·) from (4), important 
for our development in this paper.

Corollary 1. Assume that X ∈ S
n has the Eigenvalue Decomposition (4) for some U ∈ O

n(X) and that H, W ∈ S
n. Then, for 

any t > 0 sufficiently small, we have

λ X + tH + 1

2
t2W + o(t2)

� �
� λ(X) + tλ′(X;H) + 1

2
t2λ′′(X;H, W) + o(t2): (17) 

We proceed with recalling some concepts utilized extensively in this paper. Given a nonempty set C ⊂ X with 
x ∈ C, the tangent cone TC(x) to C at x is defined by

TC(x) � {w ∈ X |∃ tk ↓ 0, wk → w as k →∞ with x + tkwk ∈ C}:
We say a tangent vector w ∈ TC(x) is derivable if there exist a constant ε > 0 and an arc ξ : [0,ε] → C such that 
ξ(0) � x and ξ′+(0) � w, where ξ′+(0) :� limt↓0[ξ(t)� ξ(0)]=t signifies the right derivative of ξ�at 0. The set C is 
called geometrically derivable at x if every tangent vector w to C at x is derivable. The geometric derivability of C 
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at x can be equivalently described by the sets [C� x]=t converging to TC(x) as t ↓ 0 in the sense of the Painlevé- 
Kuratowski set convergence (cf. Rockafellar and Wets [25, definition 4.1]).

Given a function f : X → R, its domain is defined by dom f � {x ∈ X | f (x) < ∞}. The function f is called locally 
Lipschitz continuous around x relative to C ⊂ dom f with constant ℓ ≥ 0 if x ∈ C with f (x) finite, and there exists a 
neighborhood U of x such that

| f (x)� f (y) | ≤ ℓ‖x� y‖ for all x, y ∈ U ∩ C:

Such a function is called locally Lipschitz continuous relative to C if it is locally Lipschitz continuous around 
every x ∈ C relative to C. Piecewise linear-quadratic functions (not necessarily convex) and an indicator function 
of a nonempty set are important examples of functions that are locally Lipschitz continuous relative to their 
domains. The subderivative function of f at x, denoted by df (x) : X → R, is defined by

df (x)(w) � lim inf
t ↓ 0

w → w

f (x + tw)� f (x)
t

:

When f is convex, its subdifferential at x with f (x) finite, denoted by ∂f (x), is understood in the sense of convex 
analysis, namely, v ∈ ∂f (x) if f (x) ≥ f (x) + 〈v, x� x〉 for any x ∈ X. Given a nonempty convex set C ⊂ X, its normal 
cones to C at x ∈ C is defined by NC(x) � ∂δC(x). The second-order tangent set to C ⊂ X at x ∈ C for a tangent vec-
tor w ∈ TC(x) is given by

T2
C(x, w) � u ∈ X |∃ tk ↓ 0, uk → u as k →∞ with x + tkw+ 1

2
t2
kuk ∈ C

� �
: (18) 

A set C is called parabolically derivable at x for w if T2
C(x, w) is nonempty, and for each u ∈ T2

C(x, w), there are ε > 0 
and an arc ξ : [0,ε] → C with ξ(0) � x, ξ′+(0) � w, and ξ′′+(0) � u, where ξ′′+(0) :� limt↓0[ξ(t)� ξ(0)� tξ′+(0)]= 1

2 t2. It is 
known that if C is convex and parabolically derivable at x for w, then the second-order tangent set T2

C(x, w) is a 
nonempty convex set in X (cf. Bonnans and Shapiro [3, p. 163]). Below, we record a simple characterization of para-
bolic derivability of a set, used extensively in our paper.

Proposition 3. Assume that C ⊂ X, x ∈ C, and w ∈ TC(x). Then, the following are equivalent: 
a. C is parabolically derivable at x for w;
b. For any u ∈ T2

C(x, w), we find ε > 0 such that

x + tw+ 1

2
t2u+ o(t2) ∈ C for all t ∈ [0,ε]:

Proof. If (b) is satisfied, one can define ξ(t) � x + tw+ 1
2 t2u+ o(t2) for any t ∈ [0,ε] with ε�taken from (b). It is easy 

to see that ξ(0) � x, ξ′+(0) � w, and ξ′′+(0) � u, which confirm (a). Suppose that (a) holds and then pick u ∈ T2
C(x, w). 

Because C is parabolic drivable at x for w, we find ε > 0 and an arc ξ : [0,ε] → C such that ξ(0) � x, ξ′+(0) � w, and 
ξ′′+(0) � u. Set u(t) � (ξ(t)� ξ(0)� tξ′+(0))= 1

2 t2 for any t ∈ [0,ε]. It follows from ξ′′+(0) � u that u(t) → u as t ↓ 0. By 
the definition of ξ′′+(0), we get

ξ(0) + tξ′+(0) +
1

2
t2u(t) � ξ(t) ∈ C:

One other hand, one can express ξ(t) equivalently as

ξ(t) � ξ(0) + tξ′+(0) +
1

2
t2u+ v(t) with v(t) :� 1

2
t2(u(t)� u):

Clearly, we have v(t) � o(t2), which proves (b) and, hence, completes the proof. w

3. Subderivatives of Spectral Functions
In this section, we present two important results about the spectral functions, central to our developments in this 
paper. The first one presents a counterpart of the estimate in (3) for symmetric functions in Proposition 4. The 
second one presents a chain rule for the subderivative of spectral functions in Theorem 1. To state the former 
about symmetric functions, recall that a function θ : R

n → R is called symmetric if for every x ∈ R
n and every n × n 

permutation matrix Q, we have θ(Qx) � θ(x). Recall also that Q is a permutation matrix if all its components are 
either 0 or 1 and each row and each column has exactly one nonzero element. We denote by Pn the set of all n × n 
permutation matrices. As pointed out before, for any spectral function g : S

n → R, there exists a symmetric function 
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θ : R
n → R satisfying (1). Indeed, θ�can be chosen as the restriction of g to diagonal matrices, namely,

θ(x) � g(Diag (x)) for all x ∈ R
n: (19) 

A set C ⊂ S
n is called a spectral set if δC is a spectral function. Likewise, Θ ⊂ R

n is called a symmetric set if δΘ�is a 
symmetric function. Similar to (1), it is easy to see that for any spectral set C ⊂ S

n, there exists a symmetric set 
Θ ⊂ R

n such that
C � {X ∈ S

n |λ(X) ∈Θ}, (20) 

where Θ�can be chosen as

Θ � {x ∈ R
n |Diag (x) ∈ C}: (21) 

The Composite Forms (1) and (19) readily imply, respectively, that

dom g � {X ∈ S
n |λ(X) ∈ dom θ} and dom θ � {x ∈ R

n |Diag (x) ∈ dom g}: (22) 

Next, we are going to justify a similar estimate as (3) for domains of symmetric functions, which allows us to 
show via the established theory for composite functions in Mohammadi and Sarabi [20] that second-order varia-
tional properties of spectral functions are inherited by symmetric functions.

Proposition 4. Let g : S
n → R be a spectral function, represented by (1). Then, for any x ∈ R

n, we have

dist(x, dom θ) � dist(Diag (x), dom g), (23) 

where θ�is taken by (1).

Proof. For any x ∈ R
n, we know that there exist a permutation matrix P ∈ O

n such that λ(Diag (x)) � Px. Because 
θ�is a symmetric function, dom θ�is a symmetric set. Thus, for any X ∈ dom g, we have P⊤λ(X) ∈ dom θ: This, 
coupled with (5), leads us to

‖Diag (x)�X‖ ≥ ‖λ(Diag (x))�λ(X)‖ � ‖Px�λ(X)‖
� ‖x�P⊤λ(X)‖ ≥ dist(x, dom θ), 

for all X ∈ dom g, which, in turn, brings us to

dist(x, dom θ) ≤ dist(Diag (x), dom g):
To prove the opposite inequality, pick any y ∈ dom θ: By (22), we get Diag (y) ∈ dom g, which implies that

‖x� y‖ � ‖Diag (x)�Diag (y)‖ ≥ dist(Diag (x), dom g):
Combining these clearly justifies (23). w

Note that the identity in (3) allows us to show that second-order variational properties of a symmetric function 
θ�from (1) are disseminated to the spectral function g. Appealing to (23), we will show in the coming sections 
that those variational properties of the spectral function g are inherited by the symmetric function θ�from (1). 
This will be achieved by using the second-order variational theory in Mohammadi and Sarabi [20] for the Com-
posite Form (19). Note also that the results in Mohammadi and Sarabi [20] were proven under a constraint quali-
fication, which is similar to (2). According to (23), such a constraint qualification automatically holds for the 
Composite Form (19). Moreover, the inner mapping x ⊢→ Diag (x) in this composite form is twice continuously 
differentiable, which allows us to exploit the results in Mohammadi and Sarabi [20] and Mohammadi et al. [22].

Proposition 5. Let g : S
n → R be a spectral function, represented by (1), and let the symmetric function θ, taken from (1), 

be locally Lipschitz continuous relative to its domain. Then, for any X ∈ S
n with g(X) finite and any v ∈ R

n, we have

dθ(λ(X))(v) � dg(Diag (λ(X)))(Diag (v)): (24) 

In particular, if g � δC, where C ⊂ S
n is a spectral set, then we get for any X ∈ C that

TΘ(λ(X)) � {v ∈ R
n |Diag (v) ∈ TC(Diag (λ(X))}, (25) 

where Θ�is taken from (20).

Proof. It follows from (1) that the symmetric function θ�satisfies (19), which means that θ�can be represented as a 
composite function of g and the linear mapping x ⊢→ Diag (x) with x ∈ R

n. We also deduce from the imposed 
assumption on θ�and the inequality in (5) that g is locally Lipschitz continuous relative to its domain. This, 
together with (23) and Mohammadi et al. [22, theorem 3.4], justifies (24). To justify (25), recall the representation 
Θ�from (21), which can be equivalently expressed as δΘ(x) � δC(Diag (x)) for any x ∈ R

n. The claim equality in 
(25) results from (24) and the fact that dθ(λ(X)) � δTΘ(λ(X)) and dg(Diag (λ(X))) � δTC(Diag (λ(X))). w
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Remark 1 (Symmetric Property of Subderivatives). If θ : R
n → R is a symmetric function and X ∈ S

n with θ(λ(X))
finite, one may wonder whether the subderivative dθ(λ(X)) is a symmetric function. This can be easily disproven 
by taking θ � δR

n
�

and X ∈ S
n such that all its eigenvalues are not the same; see Example 1 for more details. 

Although this may seem disappointing, we can show that dθ(λ(X)) is a symmetric function with respect to a sub-
set of Pn. Indeed, assume that Pn

X is the set of all n × n block diagonal matrices in the form Q � Diag (P1, : : : , Pr), 
where Pm ∈ R

|αm | × |αm | is a permutation matrix for any m � 1, : : : , r with αm taken from (7) and r being the number 
of distinct eigenvalues of X. It is clear that Pn

X ⊂ P
n and that if Q ∈ P

n
X, then we have Qλ(X) � λ(X). Moreover, for 

any v ∈ R
n and Q ∈ P

n
X, we get

dθ(λ(X))(v) � lim inf
t ↓ 0

v′ → v

θ(λ(X) + tv′)�θ(λ(X))
t

� lim inf
t ↓ 0

v′ → v

θ(λ(X) + tQv′)�θ(λ(X))
t

≥ lim inf
t ↓ 0

w → Qv

θ(λ(X) + tw)�θ(λ(X))
t

� dθ(λ(X))(Qv):

Because Q�1 � Diag (P�1
1 , : : : , P�1

r ), we can show similarly that dθ(λ(X))(v) ≤ dθ(λ(X))(Qv) for any v ∈ R
n and 

Q ∈ P
n
X, which leads us to

dθ(λ(X))(v) � dθ(λ(X))(Qv) for all v ∈ R
n, Q ∈ P

n
X, 

demonstrating that dθ(λ(X)) is a symmetric function with respect to Pn
X.

We proceed by proving a chain rule for subderivatives of spectral functions. We begin with recalling a useful 
characterization of the subdifferential of the spectral functions.

Proposition 6. Assume that θ : R
n → R is a proper, lower semicontinuous (lsc), convex, and symmetric function. Then, 

the following properties are equivalent: 
a. Y ∈ ∂(θ ◦λ)(X);
b. λ(Y) ∈ ∂θ(λ(X)) and the matrices X and Y have simultaneous ordered spectral decomposition, meaning that there exists 

U ∈ O
n(X) ∩ O

n(Y) such that
X � UΛ(X)U⊤ and Y � UΛ(Y)U⊤, 

where Λ(X) � Diag (λ(X)) and Λ(Y) � Diag (λ(Y)).
Proof. It follows from Borwein and Lewis [4, corollary 5.2.3] that θ ◦λ�is lsc and convex if and only if θ�is lsc and 
convex. The claimed equivalence then results from Borwein and Lewis [4, theorem 5.2.4]. w

Given a matrix X ∈ S
n with r distinct eigenvalues and the index sets αm, m � 1, : : : , r, from (7), recall that 

∪r
m�1 αm � {1, : : : , n}. In what follows, we partition a vector p ∈ R

n into (pα1
, : : : , pαr

), where pαm
∈ R

|αm | for any 
m � 1, : : : , r.

Theorem 1 (Subderivatives of Spectral Functions). Let θ : R
n → R be a symmetric function and let X ∈ S

n with (θ ◦λ)(X)
finite. If θ�is either lsc and convex with ∂θ(λ(X)) ≠ ∅ or locally Lipschitz continuous around λ(X) relative to its domain, 
then for all H ∈ S

n, we have
d(θ ◦λ)(X)(H) � dθ(λ(X))(λ′(X;H)): (26) 

Proof. Pick any H ∈ S
n and deduce from Proposition 1 that λ′(X; :) is a Lipschitz-continuous and positively 

homogeneous function. Moreover, we have λ′(X;E) +O(t2‖E‖2)=t → λ′(X;H) as t ↓ 0 and E → H. This and the 
definition of subderivative give us the relationships

d(θ ◦λ)(X)(H) � lim inf
t ↓ 0

E → H

θ(λ(X+ tE))�θ(λ(X))
t

� lim inf
t ↓ 0

E → H

θ(λ(X) + tλ′(X;E) +O(t2‖E‖2))�θ(λ(X))
t

� lim inf
t ↓ 0

E → H

θ(λ(X) + t[λ′(X;E) +O(t2‖E‖2)=t])�θ(λ(X))
t

≥ dθ(λ(X))(λ′(X;H)), (27) 
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which verify the inequality “≥” in (26). To justify the opposite inequality in (27), observe that if dθ(λ(X))
(λ′(X;H)) � ∞, the latter inequality clearly holds. Thus, assume that dθ(λ(X))(λ′(X;H)) < ∞. If θ�is lsc and con-
vex, θ ◦λ�is lsc and convex due to Borwein and Lewis [4, corollary 5.2.3]. Moreover, it follows from Lewis [18, 
theorem 6] and ∂θ(λ(X)) ≠ ∅ that ∂(θ ◦λ)(X) ≠ ∅. Thus, it follows from Rockafellar and Wets [25, theorem 8.30] 
that d(θ ◦λ)(X)(H) � supY∈∂(θ◦λ)(X)〈Y, H〉. Let ε > 0 and choose Y ∈ ∂(θ ◦λ)(X) such that

d(θ ◦λ)(X)(H) ≤ ε+ 〈Y, H〉:
Because Y ∈ ∂(θ ◦λ)(X), it follows from Proposition 6 that there is U ∈ O

n(X) ∩ O
n(Y) such that λ(Y) ∈ ∂θ(λ(X)). 

Set Λ(Y) :� U⊤YU and use Fan’s inequality to conclude

d(θ ◦λ)(X)(H) ≤ ε+ 〈Y, H〉 � ε+ 〈Λ(Y), UTHU〉 � ε+
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm

HUαm
〉

≤ ε+
Xr

m�1

〈λ(Y)αm
,λ(U⊤

αm
HUαm

)〉

� ε+ 〈λ(Y),λ′(X;H)〉
≤ ε+dθ(λ(X))(λ′(X;H)), 

where the last inequality results from the fact that θ�is convex and λ(Y) ∈ ∂θ(λ(X)). Letting ε ↓ 0, we get the 
opposite inequality in (27), which proves (26) in this case. Suppose now that θ�is locally Lipschitz continuous 
around λ(X) relative to its domain. To prove the opposite inequality in (27), by definition, there exist sequences 
tk ↓ 0 and vk → λ′(X;H) such that

dθ(λ(X))(λ′(X;H)) � lim
k→∞

θ(λ(X) + tkvk)�θ(λ(X))
tk

: (28) 

Because dθ(λ(X))(λ′(X;H)) < ∞, we can assume without loss of generality that λ(X) + tkvk ∈ dom θ�for all k ∈ N. 
Take the function g from (1) and appeal to (3) to get

dist(X+ tkH, dom g) � dist(λ(X + tkH), dom θ), k ∈ N, 

which, in turn, brings us to the relationships

dist H,
dom g�X

tk

� �
� 1

tk
dist(λ(X) + tkλ

′(X, H) +O(t2
k), dom θ)

≤ 1

tk
‖λ(X) + tkλ

′(X, H) +O(t2
k)�λ(X)� tkvk‖

�
�����

�����λ
′(X;H)� vk +

O(t2
k)

tk

�����

����� for all k ∈ N:

So, for each k ∈ N, we find a matrix Ek ∈ S
n such that X + tkEk ∈ dom g and

‖H �Ek‖ <

�����

�����λ
′(X;H)� vk +

O(t2
k)

tk

�����

�����+
1

k
, 

which, in turn, yields Ek → H as k →∞. Combining these with (28) and (11), we arrive at

dθ(λ(X))(λ′(X;H)) � lim
k→∞

g(X + tkEk)� g(X)
tk

+θ(λ(X) + tkvk)�θ(λ(X+ tkEk))
tk

� �

≥ lim inf
k→∞

g(X + tkEk)� g(X)
tk

� κ lim
k→∞

�����

�����
λ(X + tkEk)�λ(X)

tk
� vk

�����

�����

≥ dg(X)(H)� κ lim
k→∞

�����

�����λ
′(X;Ek) +

O(t2
k)

tk
� vk

�����

����� � dg(X)(H), 

where κ ≥ 0 is a Lipschitz constant of θ�around λ(X) relative to its domain. This verifies the inequality “≤” in 
(26) and completes the proof of the theorem. w

As an immediate conclusion of Theorem 1, we obtain a simple representation of tangent cones to spectral sets.
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Corollary 2 (Tangent Cone to the Spectral Sets). Let C be a spectral set represented by (20). Then, for any X ∈ C, we have

TC(X) � {H ∈ S
n |λ′(X;H) ∈ TΘ(λ(X))}:

Proof. Taking the symmetric set Θ�from (20), we can apply Theorem 1 for the symmetric function δΘ. The 
claimed representation of the tangent cone to C at X follows from the facts that dδΘ(X) � δTC(X) and 
dδΘ(λ(X)) � δTΘ(λ(X)). w

Example 1 (Tangent Cone to Sn
�

). Suppose that Sn
�

stands for the cone of all n × n symmetric and negative semide-
finite matrices. This cone is a spectral set, and

S
n
�

� {X ∈ S
n |λ(X) ∈ R

n
�

}:

Take X ∈ S
n
�

and assume that µ1 >⋯> µr are its distinct eigenvalues. If µ1 < 0, then we clearly have λ(X) ∈
int R

n
�

and, hence, TR
n
�

(λ(X)) � R
n. Using this, together with Corollary 2, we get TS

n
�

(X) � S
n. If µ1 � 0, then we 

obtain TR
n
�

(λ(X)) � R
|α1 |
�

× R
n� |α1 | , where α1 is defined by (7). Appealing to Corollary 2 tells us that

TS
n
�

(X) � {H ∈ S
n |λ1(U⊤

α1
HUα1

) ≤ 0}, (29) 

where U is taken from (4).
The tangent cone description for the set Sn

�

in (29) can be alternatively obtained by Bonnans and Shapiro [3, 
proposition 2.61]. Indeed, it is easy to see that S

n
�

� {X ∈ S
n |λ1(X) ≤ 0}, in which λ1 is known to be a convex 

function (cf. Rockafellar and Wets [25, exercise 2.54]). Obviously, we can find X ∈ S
n with λ1(X) < 0, a condition 

known as the Slater condition and assumed in Bonnans and Shapiro [3, proposition 2.61]. In contrast, our 
approach relies upon the metric subregularity, automatically satisfied for spectral sets. This allows us to calculate 
the tangent cone of spectral sets, even if the Slater condition fails therein, as the following example demonstrates.

Example 2 (Failure of the Slater Condition in Spectral Sets). Assume that k ∈ N and consider the set

C � X ∈ S
n
+

�����
Xn

i�1

λk
i (X) � 1

( )
: (30) 

This is clearly a spectral subset of Sn. When k � 1, the set C is called spectahedron. Note that C can be represented 
in the form of (20) with the symmetric set Θ�defined by

Θ � (z1, : : : , zn) ∈ R
n

�����
Xn

i�1

zk
i � 1, zi ≥ 0 for all i ∈ {1, : : : , n}

( )
: (31) 

Set Φ(z) � (Pn
i�1 zk

i � 1, z1, : : : , zn) with z � (z1, : : : , zn) and D � {0} × R
n
+ and observe that

Θ � {z ∈ R
n |Φ(z) ∈ D}: (32) 

We claim now that

ND(Φ(z)) ∩ ker ∇Φ(z)∗ � {0}, (33) 

for any z ∈Θ. To justify it, pick z � (z1, : : : , zn) ∈Θ�and assume that (b0, : : : , bn) ∈ ND(Φ(z)) ∩ ker ∇Φ(z)∗. This 
implies that bizi � 0 and kzk�1

i b0 + bi � 0 for any i � 1, : : : , n. It is not hard to see that these conditions lead us to 
bi � 0 for any i � 0, : : : , n, which proves our claim. Take X ∈ C and define the active index set I(λ(X)) � {i ∈ {1, : : : , n}
|λi(X) � 0}. It follows from Rockafellar and Wets [25, theorem 6.14] and (33) that the tangent cone to Θ�at λ(X) can 
be calculated as

TΘ(λ(X)) � (w1, : : : , wn) ∈ R
n

�����
Xn

i�1

wiλ
k�1
i (X) � 0, wi ≥ 0 for all i ∈ I(λ(X))

( )
:

Appealing to Corollary 2 tells us that

TC(X) � H ∈ S
n

�����
Xn

i�1

λ′i (X;H)λk�1
i (X) � 0, λ′i (X;H) ≥ 0 for all i ∈ I(λ(X))

( )
: (34) 

Note that, due to the presence of the equality constraint, the Slater condition fails for C, and, thus, Bonnans and 
Shapiro [3, proposition 2.61] can’t be applied.
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4. Parabolic Epi-Differentiability of Spectral Functions
The main objective of this section is to provide a systematic study of two important second-order variational 
properties of spectral sets and functions: (1) parabolic derivability; and (2) a chain rule for parabolic subderiva-
tives. To achieve these goals, we begin with justifying that certain second-order approximations of spectral sets 
enjoy an outer Lipschitzian property, which is central to our developments in this section. Suppose that C ⊂ S

n is 
a spectral set with the representation in (20) and that X ∈ C and H ∈ TC(X). Define the set-valued mapping SH :

R
n

⇉ S
n via the second-order tangent set to the symmetric set Θ�in (20) by

SH(p) :� {W ∈ S
n |λ′′(X;H, W) + p ∈ T2

Θ
(λ(X),λ′(X;H))}: (35) 

For any parameter p ∈ R
n, the set-valued mapping SH(p) presents a second-order tangential approximation of the 

Spectral Set (20) at X for H. Note that by Corollary 2, the condition H ∈ TC(X) amounts to λ′(X;H) ∈ TΘ(λ(X)), 
which is required in the definition of the second-order tangent set to Θ�at λ(X) in (35); see (18). Note also that 
reducing the Estimate (3), which was stated for the spectral function in (1), to the spectral set C in (20) gives us 
the estimate

dist(X, C) � dist(λ(X),Θ) for all X ∈ S
n, (36) 

which will be utilized broadly in this section.

Proposition 7 (Uniform Outer Lipschitzian Property of SH). Assume that C ⊂ S
n is a spectral set with the Representation 

(20) and that X ∈ C and H ∈ TC(X). Then, the mapping SH in (35) enjoys the following uniform outer Lipschitzian property 
at the origin:

SH(p) ⊂ SH(0) + ‖p‖B for all p ∈ R
n: (37) 

Proof. Let p ∈ R
n and pick then W ∈ SH(p). It follows from (35) that λ′′(X;H, W) + p ∈ T2

Θ
(λ(X),λ′(X;H)). By (18), 

there exists a sequence tk ↓ 0 such that

λ(X) + tkλ
′(X;H) + 1

2
t2
kλ

′′(X;H, W) + 1

2
t2
kp+ o(t2

k) ∈Θ for all k ∈ N:

For any k sufficiently large, we conclude from (17) that

λ X + tkH + 1

2
t2
kW

� �
� λ(X) + tkλ

′(X;H) + 1

2
t2
kλ

′′(X;H, W) + o(t2
k), 

which, in turn, implies via (36) that

dist X + tkH + 1

2
t2
kW, C

� �
� dist λ X + tkH + 1

2
t2
kW

� �
,Θ

� �
≤ 1

2
t2
k‖p‖ + o(t2

k):

This ensures the existence of a matrix Yk ∈ C such that

‖Dk‖ ≤ 1

2
‖p‖ + o(t2

k)
t2
k

 !
with Dk :�

X + tkH + 1
2t

2
kW �Yk

t2
k

:

Passing to a subsequence, if necessary, ensures the existence of D ∈ S
n such that Dk → D as k →∞. This yields 

the estimate

‖D‖ ≤ 1

2
‖p‖: (38) 

It follows from X + tkH + 1
2 t2

kW � t2
kDk � Yk ∈ C and (20) that λ X + tkH + 1

2 t2
kW � t2

kDk

� �
∈Θ. Taking into account 

(17), we get for any k ∈ N sufficiently large that

λ X + tkH + 1

2
t2
kW � t2

kDk

� �
� λ(X) + tkλ

′(X;H) + 1

2
t2
kλ

′′(X;H, W � 2D) + o(t2
k) ∈Θ:

By the definition of the second-order tangent set, we arrive at

λ′′(X;H, W � 2D) ∈ T2
Θ
(λ(X),λ(X;H)), 

which yields W � 2D ∈ SH(0). This, combined with (38), justifies the claimed inclusion in (37) and thus completes 
the proof. w
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The outer Lipschitzian property for second-order tangential approximations appeared first in Mohammadi 
et al. [21, theorem 4.3] for sets C as the one in (20) with the eigenvalue function λ(·) replaced with a twice differ-
entiable function, under an adaptation of the Constraint Qualification (2) for this setting. Proposition 7 demon-
strates that the latter result can be achieved without the assumed twice differentiability in Mohammadi et al. [21] 
when we still have a second-order expansion for functions in our settings.

Next, we are going to achieve a chain rule for second-order tangent sets of spectral sets, which heavily relies 
upon Proposition 7. First, we recall Mohammadi et al. [21, theorem 4.5], where a similar result was proven for 
constraint systems in finite dimensional Hilbert spaces.

Proposition 8. Let D be a closed subset of Y and let Ω � {x ∈ X |Φ(x) ∈ D}, where Φ : X → Y is a twice differentiable func-
tion between two Euclidean spaces, and x ∈Ω. Suppose further that there are κ ≥ 0 and ε > 0 such that the estimate

dist(x,Ω) ≤ κ dist(Φ(x), D) for all x ∈ Bε(x), (39) 

holds. Then, for all w ∈ TΩ(x), we have

T2
Ω(x, w) � {u ∈ X |∇Φ(x)u+∇2

Φ(x)(w, w) ∈ T2
D(Φ(x),∇Φ(x)w)}: (40) 

If, furthermore, the set D is parabolically derivable at Φ(x) for ∇Φ(x)w, then the constraint set Ω is parabolically derivable 
at x for w.

Proof. The equality in (40) was justified in Mohammadi et al. [21, theorem 4.5] under an extra assumption that the 
set D is regular in the sense of Rockafellar and Wets [25, definition 6.4]; see Gfrerer et al. [15, proposition 5] for an 
extension of Mohammadi et al. [21, theorem 4.5] without the regularity assumption on D. Note that the directional 
metric subregularity used in Gfrerer et al. [15, proposition 5] is weaker than (39) in general. However, it was shown 
in Gfrerer and Outrata [14, lemma 2.8(ii)] that metric subregularity at any direction is equivalent to (39).

To prove parabolic derivability of Ω at x for w, pick u ∈ T2
Ω(x, w). It follows from the proof of Gfrerer et al. [15, 

proposition 5] that there is a positive constant ℓ�such that

dist u,
Ω� x � tw

1
2t

2

 !
≤ ℓ dist ∇Φ(x)u+∇2

Φ(x)(w, w), D�Φ(x)� t∇Φ(x)w
1
2t

2

 !
+ o(t2)

t2
, (41) 

for any t sufficiently small that t ↓ 0. Because u ∈ T2
Ω(x, w), we conclude from (40) that ∇Φ(x)u+∇2

Φ(x)(w, w) ∈
T2

D(Φ(x),∇Φ(x)w), which together with parabolic derivability of D at Φ(x) for ∇Φ(x)w implies via Rockafellar and 
Wets [25, corollary 4.7] that

dist ∇Φ(x)u+∇2
Φ(x)(w, w), D�Φ(x)� t∇Φ(x)w

1
2t

2

 !
→ 0 and t ↓ 0:

This, coupled with (41), confirms that for any sufficiently small t, there exists u(t) ∈ (Ω� x � tw)= 1
2 t2 such that 

u(t) → u as t ↓ 0. Define the arc ξ(t) :��x + tw+ 1
2 t2u(t) and observe that ξ(0) � x, ξ′+(0) � w, and ξ′′+(0) � u. To fin-

ish the proof, we need to show that T2
Ω(x, w) ≠ ∅, which was already established in Gfrerer et al. [15, corollary 1] 

under the metric subregularity condition in (39). Combining these confirms that Ω is parabolically derivable at x 
for w and, hence, completes the proof. w

Theorem 2 (Second-Order Tangent Sets of Spectral Sets). Assume that C ⊂ S
n is a spectral set with the representation in 

(20) and that X ∈ C and H ∈ TC(X). Then, we have

T2
C(X, H) � {W ∈ S

n |λ′′(X;H, W) ∈ T2
Θ
(λ(X),λ′(X;H))}, (42) 

where Θ�is taken from (20). Moreover, the following properties are satisfied. 
a. If the symmetric set Θ�is parabolically derivable at λ(X) for λ′(X;H), then C is parabolically derivable at X for H.
b. If the symmetric set C is parabolically derivable at X for any H ∈ TC(X), then Θ�is parabolically derivable at λ(X) for 

any v ∈ TΘ(λ(X)).
Proof. First note from Corollary 2 that the condition H ∈ TC(X) amounts to λ′(X;H) ∈ TΘ(λ(X)). Let W ∈ S

n. 
Employing (36) and (17) tells us that for any t > 0 sufficiently small, we have

dist X + tH + 1

2
t2W, C

� �
� dist λ X + tH + 1

2
t2W

� �
,Θ

� �

� dist λ(X) + tλ′(X;H) + 1

2
t2λ′′(X;H, W) + o(t2),Θ

� �
: (43) 

Mohammadi and Sarabi: Parabolic Regularity of Spectral Functions 
Mathematics of Operations Research, Articles in Advance, pp. 1–30, © 2024 INFORMS 11 



Take W ∈ T2
C(X, H). By (18), there exists a sequence tk ↓ 0 such that X + tkH + 1

2 t2
kW + o(t2

k) ∈ C. By (43), we get 
λ(X) + tkλ

′(X;H) + 1
2 t2

kλ
′′(X;H, W) + o(t2

k) ∈Θ, which clearly demonstrates that λ′′(X;H, W) ∈ T2
Θ
(λ(X),λ′(X;H))

and thus proves the inclusion “⊂” in (42). The opposite inclusion in (42) can be established via a similar argu-
ment and (43), which proves the claimed representation of the second-order tangent set to C in (42).

To prove (a), suppose that the symmetric set Θ�is parabolically derivable at λ(X) for λ′(X;H). To justify the 
same property for C at X for H, pick W ∈ T2

C(X, H). By (42), we obtain λ′′(X;H, W) ∈ T2
Θ
(λ(X),λ′(X;H)). Because Θ�

is parabolically derivable at λ(X) for λ′(X;H), we conclude from Proposition 3 that there exists ε > 0 such that for 
all t ∈ [0,ε], we have

λ(X) + tλ′(X;H) + 1

2
t2λ′′(X;H, W) + o(t2) ∈Θ:

Reducing ε > 0 if necessary, pick t ∈ [0,ε] and conclude from (43) that X + tH + 1
2 t2W + o(t2) ∈ C. Defining the arc 

ξ : [0,ε] → C by ξ(t) � X+ tH + 1
2 t2W + o(t2) for t ∈ [0,ε], we can readily see that ξ(0) � X, ξ′+(0) � H, and 

ξ′′+(0) � W. To finish the proof of parabolic derivability of C at X for H, it remains to show that T2
C(X, H) ≠ ∅. To 

this end, pick Z ∈ S
n and y ∈ T2

Θ
(λ(X),λ′(X;H)). In fact, such y exists because Θ�is parabolic derivable at λ(X) for 

λ′(X;H). Therefore, we have

λ′′(X;H, Z) + p ∈ T2
Θ
(λ(X),λ′(X;H)) with p :� y�λ′′(X;H, Z), 

which can be equivalently expressed as Z ∈ SH(p) via the mapping SH in (35). Appealing to Proposition 7 and the 
established outer Lipschitzian property in (37), we find a matrix W ∈ SH(0) such that ‖Z�W‖ ≤ ‖p‖. This tells us that

λ′′(X;H, W) ∈ T2
Θ
(λ(X),λ′(X;H)):

Using the Chain Rule (42) leads us to W ∈ T2
C(X, H), and thus T2

C(X, H) ≠ ∅. This shows that C is parabolically 
derivable at X for H, and thus proves (a).

Turning into the proof of (b), observe first that Θ�can be represented as the Constraint System (21). Adapting 
the estimate in (23) for the latter constraint system gives us the estimate

dist(x,Θ) � dist(Diag (x), C) for all x ∈ R
n:

This, together with twice differentiability of the mapping x ⊢→ Diag (x) with x ∈ R
n, allows us to conclude from 

(40) that for any v ∈ TΘ(λ(X)), we always have

w ∈ T2
Θ
(λ(X), v)�Diag (w) ∈ T2

C(Diag (λ(X)), Diag (v)):
To justify (b), pick v ∈ TΘ(λ(X)). We are going to show that Θ�is parabolically derivable at λ(X) for v. According 
to Proposition 8, this will be ensured, provided that C is parabolically derivable at Diag (λ(X)) for Diag (v). 
Because C is a spectral set, it is easy to see that

W ∈ T2
C(Diag (λ(X)), Diag (v))�UWU⊤ ∈ T2

C(X, U Diag (v)U⊤), (44) 

where U is taken from (4). Moreover, it follows from v ∈ TΘ(λ(X)) and Proposition 5 that Diag (v) ∈ TC 

(Diag (λ(X))), which tells us that U Diag (v)U⊤ ∈ TC(X). By assumption, we know that C is parabolically deriv-
able at X for U Diag (v)U⊤. This, combined with (44), confirms that C is parabolically derivable at Diag (λ(X)) for 
Diag (v). To justify this claim, take W ∈ T2

C(Diag (λ(X)), Diag (v)). By (44), parabolic derivability of C at X for 
UWU⊤, and Proposition 3, we find ε > 0 such that for all t ∈ [0,ε], the inclusion

X + tU Diag (v)U⊤ + 1

2
t2UWU⊤ + o(t2) ∈ C, 

is satisfied. It follows from C being a spectral set and the latter inclusion that

Diag (λ(X)) + t Diag (v) + 1

2
t2W + o(t2) � U⊤XU + t Diag (v) + 1

2
t2W + o(t2) ∈ C for all t ∈ [0,ε]:

Because W ∈ T2
C(Diag (λ(X)), Diag (v)) was taken arbitrarily, we conclude from Proposition 3 that C is paraboli-

cally derivable at Diag (λ(X)) for Diag (v). Employing now Proposition 8 proves that Θ�is parabolically derivable 
at λ(X) for v and, hence, completes the proof. w

Example 3 (Second-Order Tangent Set to S
n
�

). In the framework of Example 1, we are going to calculate the 
second-order tangent set to Sn

�

at X ∈ S
n
�

for any H ∈ TS
n
�

(X). To this end, we deduce from Theorem 2 that

T2
S

n
�

(X, H) � {W ∈ S
n |λ′′(X;H, W) ∈ T2

R
n
�

(λ(X),λ′(X;H))}:
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It follows from Rockafellar and Wets [25, proposition 13.12] that R
n
�

is parabolically derivable at λ(X) for 
λ′(X;H), which together with Theorem 2 implies that S

n
�

enjoys the same property at X for H. Moreover, we 
deduce from Rockafellar and Wets [25, proposition 13.12] that

T2
R

n
�

(λ(X),λ′(X;H)) � TTRn
�

(λ(X))(λ′(X;H)): (45) 

If µ1 < 0, we have λ(X) ∈ int R
n
�

. This implies that TR
n
�

(λ(X)) � R
n, which together with (45) yields T2

R
n
�

(λ(X), 
λ′(X;H)) � R

n and thus T2
S

n
�

(X, H) � S
n. Now, assume that µ1 � 0. According to Example 1, we have TR

n
�

(λ(X)) �
R

|α1 |
�

× R
n� |α1 | , where α1 is defined by (7). To proceed, because H ∈ TS

n
�

(X), we need by (29) to consider two 
cases: (1) λ1(U⊤

α1
HUα1) < 0; and (2) λ1(U⊤

α1
HUα1) � 0. If the former holds, we obtain

TTRn
�

(λ(X))(λ′(X;H)) � T
R

| α1 |
�

×R
n� | α1 | (λ′(X;H)) � R

n, 

which together with (45) brings us again to T2
R

n
�

(λ(X),λ′(X;H)) � R
n and, thus, T2

S
n
�

(X, H) � S
n. If the latter holds, 

denote by η1
1 >⋯> η1

ρ1 
the distinct eigenvalues of U⊤

α1
HUα1 

and take the index set β1
1 from (14). Recall that 

|β1
1 | ≤ |α1 | . Using this, we obtain

TTRn
�

(λ(X))(λ′(X;H)) � T
R

| α1 |
�

×R
n� | α1 | (λ′(X;H)) � R

|β1
1 |

�

× R
n� |β1

1 | :

This, combined with (16) and (45), leads us to

T2
S

n
�

(X, H) � {W ∈ S
n | λ′′(X;H, W) ∈ R

|β1
1 |

�

× R
n� |β1

1 | }
� {W ∈ S

n | λ1(R11
⊤(U⊤

α1
(W � 2HX†H)Uα1

)R11) ≤ 0}, 

where R11 � (Q1)β1
1 

is taken from Proposition 2. We should point out that the second-order tangent set to Sn
�

was 
calculated by finding the parabolic second-order directional derivative of the maximum eigenvalue function in 
Bonnans and Shapiro [3, p. 474]; see also Zhang et al. [28, p. 583] for a different derivation of this object.

In the next example, we obtain the second-order tangent set to the spectral set defined in (30). Note again that 
whereas obtaining such result by Bonnans and Shapiro [3, proposition 3.92] requires the Slater condition, our 
approach shows that no constraint qualification is needed for this purpose.

Example 4. Let C be the spectral set in (30) and X ∈ C. Given H ∈ TC(X), we aim to determine T2
C(X, H) using The-

orem 2. We know from Example 2 that C has the spectral representation in (20) with the symmetric set Θ�defined 
by (31). Moreover, we showed that Θ�can be equivalently described as the constraint set in (32) with Φ(z) �
(Pn

i�1 zk
i � 1, z) for all z � (z1, : : : , zn) ∈ R

n. We deduce from Rockafellar and Wets [25, proposition 13.13] that w ∈
T2
Θ
(λ(X),λ′(X;H)) if and only if we have

∇Φ(λ(X))w+∇2
Φ(λ(X))(λ′(X;H),λ′(X;H)) ∈ T2

{0}×R
n
+
(Φ(λ(X)),∇Φ(λ(X))(λ′(X;H))): (46) 

Using the index set I(λ(X)) taken from Example 2, define the index set

I(λ(X),λ′(X;H)) :� {i ∈ I(λ(X)) |λ′i (X;H) � 0}, 
and conclude then from Rockafellar and Wets [25, proposition 13.12] that

T2
{0}×R

n
+
(Φ(λ(X)),∇Φ(λ(X))(λ′(X;H))) � TT{0}×Rn

+
(Φ(λ(X)))(∇Φ(λ(X))(λ′(X;H)))

� {(w0, : : : , wn) | w0 � 0, wi ≥ 0 for all i ∈ I(λ(X),λ′(X;H))}:
This, coupled with (46), yields (w1, : : : , wn) ∈ T2

Θ
(λ(X),λ′(X;H)) if and only if wi ≥ 0 for all i ∈ I(λ(X),λ′(X;H)) and

Xn

i�1

λi(X)k�1wi + (k� 1)
Xn

i�1

λi(X)k�2λ′i (X;H)2 � 0:

Appealing now to Theorem 2, we conclude that C is parabolically derivable at X for H and that W ∈ T2
C(X, H) if 

and only if λ′′i (X;H, W) ≥ 0 for all i ∈ I(λ(X),λ′(X;H)) and

Xn

i�1

λi(X)k�1λ′′i (X;H, W) + (k� 1)
Xn

i�1

λi(X)k�2λ′i (X;H)2 � 0:

Note that when k � 1 for which C reduces to the spectahedron, the above equation simplifies as 
Pn

i�1λ
′′
i (X;

H, W) � 0.
We proceed with characterizing parabolic epi-differentiability of spectral functions. We begin with recalling 

the concept of the parabolic subderivative, introduced by Ben-Tal and Zowe [2]. Let f : X → R and let x ∈ X with 
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f (x) finite and w ∈ X with df (x)(w) finite. The parabolic subderivative of f at x for w with respect to z is defined by

d2f (x)(w |z) :� lim inf
t ↓ 0

z′ → z

f x + tw+ 1
2t

2z′
� �

� f (x)� tdf (x)(w)
1
2t

2
:

Recall from Rockafellar and Wets [25, definition 13.59] that f is called parabolically epi-differentiable at x for w if

dom d2f (x)(w | ·) � {z ∈ X |d2f (x)(w |z) < ∞} ≠ ∅, 

and for every z ∈ X and every sequence tk ↓ 0 there exists a sequences zk → z such that

d2f (x)(w |z) � lim
k→∞

f x + tkw+ 1
2t

2
kzk

� �
� f (x)� tkdf (x)(w)

1
2t

2
k

: (47) 

We say that f is parabolically epi-differentiable at x if it satisfies this condition at x for any w ∈ X where df (x)(w)
is finite. Note that the inclusion dom df (x) ⊂ Tdom f (x) always holds, and equality happens when, in addition, f is 
locally Lipschitz continuous around x relative to its domain; see Mohammadi and Sarabi [20, proposition 2.2]. A 
list of important functions, appearing in different classes of constrained and composite optimization problems, 
that are parabolically epi-differentiable at any points of their domains can be found in Mohammadi and Sarabi 
[20, example 4.7]. By definition, it is not hard to see that the inclusion

dom d2f (x)(w | ·) ⊂ T2
dom f (x, w), (48) 

always holds for any w ∈ Tdom f (x). The following result, taken from Mohammadi and Sarabi [20, propositions 2.1 
and 4.1], presents conditions under which we can ensure equality in the latter inclusion.

Proposition 9 (Properties of Parabolic Subderivatives). Let f : X → R be finite at x, locally Lipschitz continuous around x 
relative to its domain, and parabolic epi-differentiable at x for w ∈ Tdom f (x). Then, the following properties hold. 

a. dom df (x) � Tdom f (x) and dom d2f (x)(w | :) � T2
dom f (x, w).

b. dom f is parabolically derivable at x for w.

The next result presents sufficient conditions under which spectral functions are parabolically epi-differentiable. 
Moreover, it achieves a useful formula for parabolic subderivatives of this class of functions.

Theorem 3 (Parabolic Subderivatives of Spectral Function). Let θ : R
n → R be a symmetric function, which is locally 

Lipschitz continuous relative to its domain. Let X ∈ S
n with (θ ◦λ)(X) finite. Then, the following properties hold. 

a. If H ∈ Tdom (θ◦λ)(X) and θ�is parabolically epi-differentiable at λ(X) for λ′(X;H), then θ ◦λ�is parabolically epi-differentiable 
at X for H, and its parabolic subderivative at X for H and its domain can be calculated, respectively, by

d2(θ ◦λ)(X)(H |W) � d2θ(λ(X))(λ′(X;H) |λ′′(X;H, W)), (49) 

and

dom d2(θ ◦λ)(X)(H | :) � T2
dom (θ◦λ)(X, H): (50) 

Moreover, if θ�is lsc and convex, the parabolic subderivative W ⊢→ d2(θ ◦λ)(X)(H |W) is a convex function.
b. If θ ◦λ�is parabolically epi-differentiable at X, then θ�is parabolically epi-differentiable at λ(X).

Proof. To justify (a), we proceed concurrently to show that θ ◦λ�is parabolically epi-differentiable at X for H and 
that (49) and (47) hold for θ ◦λ. To this end, set g :� θ ◦λ�and pick W ∈ S

n and proceed with considering two 
cases. Assume first that W ∉ T2

domg(X, H). Employing the inclusion in (48) for g, we get d2g(X)(H |W) � ∞. On the 

other hand, by (22) and Theorem 2, we obtain

T2
dom g(X, H) � {W ∈ S

n |λ′′(X;H, W) ∈ T2
domθ(λ(X),λ′(X;H))}: (51) 

This, combined with W ∉ T2
domg(X, H), yields λ′′(X;H, W) ∉ T2

domθ(λ(X),λ′(X;H)). Observe from Corollary 2 and 
(22) that H ∈ Tdomg(X) amounts to λ′(X;H) ∈ Tdomθ(λ(X)). By Proposition 9(a), we arrive at

dom d2θ(λ(X))(λ(X;H) | ·) � T2
domθ(λ(X),λ′(X;H)): (52) 

Combining these tells us that d2θ(λ(X))(λ′(X;H) |λ′′(X;H, W)) � ∞, which, in turn, justifies (49) for every 
W ∉ T2

domg(X, H). To verify (47) for g in this case, consider an arbitrary sequence tk ↓ 0, set Wk :� W for all k ∈ N, 
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and observe that

∞� d2g(X)(H |W) ≤ lim inf
k→∞

g X + tkH + 1
2t

2
kWk

� �
� g(X)� tkdg(X)(W)

1
2t

2
k

:

This clearly justifies (47) for all W ∉ T2
domg(X, H).

Turning now to the case W ∈ T2
dom g(X, H), we observe that because θ�is parabolically epi-differentiable at λ(X)

for λ′(X;H), Proposition 9(b) tells us that dom θ�is parabolically derivable at λ(X) for λ′(X;H). We conclude from 
Theorem 2(a) that dom g is parabolically derivable at X for H. In particular, we have

T2
dom g(X, H) ≠ ∅: (53) 

Pick now W ∈ T2
dom g(X, H) and consider then an arbitrary sequence tk ↓ 0. Thus, by the definition of parabolic 

derivability, we find a sequence Wk → W as k →∞ such that

Xk :� X + tkH + 1

2
t2
kWk � X + tkH + 1

2
t2
kW + o(t2

k) ∈ dom g for all k ∈ N: (54) 

Moreover, because θ�is parabolically epi-differentiable at λ(X) for λ′(X;H), we find a sequence wk → w :�
λ′′(X;H, W) such that

d2θ(λ(X))(λ′(X;H) |w) � lim
k→∞

θ(λ(X) + tkλ
′(X;H) + 1

2 t2
kwk)�θ(λ(X))� tkdθ(λ(X))(λ′(X;H))

1
2 t2

k

:

It follows from (51) and W ∈ T2
dom g(X, H) that w ∈ T2

domθ(λ(X),λ′(X;H)). Combining this with (52) tells us that 
d2θ(λ(X))(λ′(X;H) |w) < ∞. This implies that yk :� λ(X) + tkλ

′(X;H) + 1
2 t2

kwk ∈ dom θ�for all k sufficiently large. 
Using this together with (26), (54), and (17), we obtain

d2g(X)(H |W) ≤ lim inf
k→∞

g X + tkH + 1
2 t2

kWk

� �
� g(X)� tkdg(X)(H)

1
2 t2

k

≤ lim sup
k→∞

g X + tkH + 1
2 t2

kWk

� �
� g(X)� tkdg(X)(H)

1
2 t2

k

� lim sup
k→∞

θ(λ(Xk))�θ(λ(X))� tkdθ(λ(X))(λ′(X;H))
1
2 t2

k

≤ lim sup
k→∞

θ(yk)�θ(λ(X))� tkdθ(λ(X))(λ′(X;H))
1
2 t2

k

+ lim sup
k→∞

θ(λ(Xk))�θ(yk)
1
2 t2

k

≤ d2θ(λ(X))(λ′(X;H) |w) + lim sup
k→∞

ℓ

�����

�����λ
′′(X;H, W)�wk +

o(t2
k)

t2
k

�����

�����

� d2θ(λ(X))(λ′(X;H) |w), (55) 

where ℓ ≥ 0 is a Lipschitz constant of θ�around λ(X) relative to its domain. On the other hand, for any sequence 
tk ↓ 0 and any sequence Wk → W, we can always conclude from (17) and (26) that

lim inf
k→∞

g X + tkH + 1
2 t2

kWk

� �
� g(X)� tkdg(X)(H)

1
2 t2

k

� lim inf
k→∞

θ λ(X) + tkλ
′(X;H) + 1

2 t2
kλ

′′(X;H, W) + o(t2
k)

� �
�θ(λ(X))� tkdθ(λ(X))(λ′(X;H))

1
2 t2

k

≥ lim inf
t ↓ 0

w′ → w

θ λ(X) + tλ′(X;H) + 1
2 t2w′� �

�θ(λ(X))� tdθ(λ(X))(λ′(X;H))
1
2 t2

� d2θ(λ(X))(λ′(X;H) |w):
This clearly yields the inequality

d2θ(λ(X))(λ′(X;H) |w) ≤ d2g(X)(H |W) with w � λ′′(X;H, W):
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Combining this and (55) implies that

d2g(X)(H |W) � d2θ(λ(X))(λ′(X;H) |w), (56) 

and that

d2g(X)(H |W) � lim
k→∞

g X + tkH + 1
2t

2
kWk

� �
� g(X) � tkdg(X)(H)

1
2t

2
k

, 

which, in turn, prove both (49) and (47) for any W ∈ T2
dom g(X, H). As argued above, we also have d2θ(λ(X))

(λ′(X;H) |w) < ∞, which, together with (56), tells us that d2g(X)(H |W) < ∞. This brings us to the inclusion

T2
domg(X, H) ⊂ dom d2g(X)(H | ·):

Because the opposite inclusion always holds (see (48)), we arrive at (50). Combining this and (53) indicates that 
dom d2g(X)(H | ·) ≠ ∅ and, hence, shows that g is parabolically epi-differentiable at X for H. Finally, assume that θ�
is lsc and convex. By Borwein and Lewis [4, corollary 5.2.3], the spectral function g � θ ◦λ�is convex. According 
to Rockafellar and Wets [25, example 13.62], parabolic epi-differentiability of g at X for H amounts to parabolic 
derivability of epi g at (X, g(X)) for (H, dg(X)(H)) and

epi d2g(X)(H | :) � T2
epig((X, g(X)), (H, dg(X)(H))):

Because g is convex, it follows from parabolic derivability of epi g at (X, g(X)) for (H, dg(X)(H)) that T2
epig((X, 

g(X)), (H, dg(X)(H))) is a convex set. The above equality then confirms that W ⊢→ d2(θ ◦λ)(X)(H |W) is a convex 
function and, hence, completes the proof of (a).

Turning into the proof of (b), we conclude from (1) that the symmetric function θ�satisfies (19), which means 
that θ�can be represented as a composite function of g and the linear mapping x ⊢→ Diag (x) with x ∈ R

n. We also 
deduce from the imposed assumption on θ�and the inequality in (5) that g is locally Lipschitz continuous relative 
to its domain. Pick v ∈ dom dθ(λ(X)) � Tdomθ(λ(X)) and apply the chain rule in (25) to the representation (22) of 
dom θ�to obtain Diag (v) ∈ Tdom g(Diag (λ(X))). To justify the parabolic epi-differentiability of θ�at λ(X) for v, we 
are going to use Mohammadi and Sarabi [20, theorem 4.4(iii)] by showing that g is parabolically epi- 
differentiable at Diag (λ(X)) for Diag (v). To this end, it is not hard to see for any U ∈ O

n(X) that

dg(Diag (λ(X)))(Diag (v)) � dg(X)(U Diag (v)U⊤): (57) 

Indeed, because g is orthogonally invariant, we get for any U ∈ O
n(X) that

dg(X)(U Diag (v)U⊤) � lim inf
t ↓ 0

W → U Diag (v)U⊤

g(X + tW)�θ(X))
t

� lim inf
t ↓ 0

U⊤WU → Diag (v)

g(Diag (λ(X)) + tU⊤WU)�θ(Diag (λ(X)))
t

≥ dg(Diag (λ(X)))(Diag (v)):

A similar argument leads us to dg(Diag (λ(X)))(Diag (v)) ≤ dg(X)(U Diag (v)U⊤) and, thus, proves (57). Simi-
larly, we can show that

d2g(Diag (λ(X)))(Diag (v) |W) � d2g(X)(U Diag (v)U⊤ |UWU⊤), W ∈ S
n: (58) 

Because g is a spectral function, dom g is a spectral set. This and Diag (v) ∈ Tdom g(Diag (λ(X))) tell us that 
U Diag (v)U⊤ ∈ Tdom g(X). Because g is parabolically epi-differentiable at X for U Diag (v)U⊤, the equality in (58) 
confirms that g enjoys the same property at Diag (λ(X)) for Diag (v). Combining this, (23), and Mohammadi and 
Sarabi [20, theorem 4.4(iii)] shows that θ�is parabolically epi-differentiable at λ(X) for v and, hence, completes the 
proof. w

We close this section by revealing that the parabolic subderivative of spectral functions is symmetric with 
respect to a subset of Pn, the set of all n × n permutation matrices. This plays a central role in the next section, 
when we are going to study parabolic regularity of spectral functions. To this end, recall from Remark 1 that if 
θ : R

n → R is a symmetric function and X ∈ S
n with θ(λ(X)) finite, the subderivative function dθ(λ(X)) is a sym-

metric function with respect to Pn
X, which is a subset of Pn consisting of all n × n block diagonal matrices in the 

form Q � Diag (P1, : : : , Pr), where Pm ∈ R
|αm | × |αm | , m � 1, : : : , r is a permutation matrix with αm taken from (7) and 
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r being the number of distinct eigenvalues of X. Consider now H ∈ S
n with dθ(λ(X))(λ′(X;H)) finite. Take the 

orthogonal matrix U from (4) and m ∈ {1, : : : , r}. Suppose that ρm is the number of distinct eigenvalues of 
U⊤
αm

HUαm 
and pick then the index sets βm

j for j � 1, : : : ,ρm from (14). Denote by Pn
X, H a subset of Pn

X consisting of 
all n × n matrices with representation Diag (P1, : : : , Pr) such that for each m � 1, : : : , r, the |αm | × |αm | permutation 
matrix Pm has a block diagonal representation Pm � Diag (Bm

1 , : : : , Bm
ρm
), where Bm

j ∈ R
|βm

j | × |βm
j | is a permutation 

matrix for any j � 1, : : : ,ρm. It is not hard to see that

Qλ(X) � λ(X) and Qλ′(X;H) � λ′(X;H) for any Q ∈ P
n
X, H: (59) 

Proposition 10. Assume that θ : R
n → R is a symmetric function and X ∈ S

n with θ(λ(X)) finite and that H ∈ S
n with 

dθ(λ(X))(λ′(X;H)) finite. Then, for any w ∈ R
n and any permutation matrix Q ∈ P

n
X, H, we have

d2θ(λ(X))(λ′(X;H) |Qw) � d2θ(λ(X))(λ′(X;H) |w), 
which means that the parabolic subderivative w ⊢→ d2θ(λ(X))(λ′(X;H) |w) is symmetric with respect to Pn

X, H.

Proof. Pick w ∈ R
n and Q ∈ P

n
X, H. Because θ�is symmetric, it follows from (59) that

d2θ(λ(X))(λ′(X;H) |w)

� lim inf
t ↓ 0

w′ → w

θ λ(X) + tλ′(X;H) + 1
2 t2w′� �

�θ(λ(X))� tdθ(λ(X))(λ′(X;H))
1
2 t2

� lim inf
t ↓ 0

w′ → w

θ λ(X) + tλ′(X;H) + 1
2 t2Qw′� �

�θ(λ(X))� tdθ(λ(X))(λ′(X;H))
1
2 t2

≥ lim inf
t ↓ 0

v → Qw

θ λ(X) + tλ′(X;H) + 1
2 t2v

� �
�θ(λ(X))� tdθ(λ(X))(λ′(X;H))

1
2 t2

� d2θ(λ(X))(λ′(X;H) |Qw):
Similarly, using (59) for the matrix Q�1 � Diag (P�1

1 , : : : , P�1
r ) ∈ P

n
X, H, one can conclude that d2θ(λ(X))(λ′(X;H) |w)

≤ d2θ(λ(X))(λ′(X;H) |Qw), which justifies the claimed equality and, hence, ends the proof. w

5. Parabolic Regularity of Spectral Functions
This section is devoted to the study of parabolic regularity of spectral functions, whose central role in second- 
order variational analysis was revealed recently in Mohammadi et al. [21]. As demonstrated in Mohammadi et al. 
[21], parabolic regularity can be viewed as an important second-order regularity with remarkable consequences, 
among which we should highlight twice epi-differentiability of extended-real-valued functions. We begin with 
recalling the concepts of the second subderivative and parabolic regularity for functions, respectively. Given a 
function f : X → R and x ∈ X with f (x) finite, define the parametric family of second-order difference quotients 
for f at x for v ∈ X by

∆2
t f (x, v)(w) � f (x + tw)� f (x)� t〈v, w〉

1
2t

2
with w ∈ X, t > 0:

The second subderivative of f at x for v is defined by

d2f (x, v)(w) � lim inf
t ↓ 0

w′ → w

∆2
t f (x, v)(w′), w ∈ X:

The importance of the second subderivative resides in the fact that it can characterize the quadratic growth con-
dition for optimization problems; see Rockafellar and Wets [25, theorem 13.24]. So, it is crucial for many applica-
tions to calculate it in terms of the initial data of an optimization problem. This task was carried out for major 
classes of functions, including the convex piecewise linear-quadratic functions in the sense of Rockafellar and 
Wets [25, definition 10.20] in Rockafellar and Wets [25, proposition 13.9], the second-order/ice-cream cone in 
Mohammadi et al. [21, example 5.8], the cone of positive semidefinite symmetric matrices in Mohammadi and 
Sarabi [20, example 3.7], and the augmented Lagrangian of constrained optimization problems in Mohammadi 
et al. [21, theorem 8.3]. We are going to calculate it for the spectral function g in (1) when the symmetric function 
θ�therein is convex.
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Definition 1 (Parabolic Regularity). A convex function f : X → R is parabolically regular at x for v ∈ ∂f (x) if for any 

w such that d2f (x, v)(w) < ∞, there exist, among the sequences tk ↓ 0 and wk → w with ∆2
tk

f (x, v)(wk) →
d2f (x, v)(w), those with the additional property that lim supk→∞‖wk �w‖=tk < ∞: We say that f is parabolically 
regular at x if it is parabolically regular at x for every v ∈ ∂f (x). A nonempty convex set C ⊂ X is said to be para-
bolically regular at x if the indicator function δC is parabolically regular at x.

Parabolic regularity was introduced in Rockafellar and Wets [25, definition 13.65] for extended-real-valued 
functions, but was not scrutinized therein. It was shown in Mohammadi et al. [21] and Mohammadi and Sarabi 
[20] that polyhedral convex sets, the second-order/ice-cream cone, the cone of positive semidefinite symmetric 
matrices are parabolically regular. One can also find in Rockafellar and Wets [25, corollary 13.68] that convex 
piecewise linear-quadratic functions are parabolically regular. Recall that the critical cone of a convex function f :
X → R at x for v ∈ ∂f (x) is defined by

Kf (x, v) � {w ∈ X |df (x)(w) � 〈v, w〉}:

When f � δC, where C is a nonempty convex subset of X, the critical cone of δC at x for v is denoted by 
KC(x, v). In this case, the above definition of the critical cone of a function boils down to the well-known concept of 
the critical cone of a set (see Dontchev and Rockafellar [12, p. 109]), namely, KC(x, v) � TC(x) ∩ [v]⊥ because 
dδC(x) � δTC(x).

The following result is a special case of a more general characterization of parabolic regularity from Moham-
madi and Sarabi [20, proposition 3.6] and will be utilized in our approach in this section.

Proposition 11 (Characterization of Parabolic Regularity). Assume that f : X → R is convex, finite at x ∈ X, and v ∈ ∂f (x). 
Then, the following properties are equivalent. 

a. f is parabolically regular at x for v.
b. For any w ∈ Kf (x, v).

d2f (x, v)(w) � inf
z∈X

{d2f (x)(w |z)� 〈z, v〉}: (60) 

c. For any w ∈ dom d2f (x, v), there exists a z ∈ dom d2f (x)(w | ·) such that

d2f (x, v)(w) � d2f (x)(w |z)� 〈z, v〉:

Proof. The equivalence of (a) and (b) and the implication (a)⇒(c) were taken from Mohammadi and Sarabi [20, 
proposition 3.6]. To prove (c)⇒(b), take w ∈ Kf (x, v). It follows from Rockafellar and Wets [25, proposition 13.64] 
that the inequality “≤” in (60) is always satisfied. To prove the opposite inequality, deduce first from the con-
vexity of f that d2f (x, v) is proper due to d2f (x, v)(0) � 0. By Rockafellar and Wets [25, proposition 13.5], the 
inclusion dom d2f (x, v) ⊂ Kf (x, v) is satisfied. If d2f (x, v)(w) � ∞, the inequality “≥” in (60) trivially holds. Other-
wise, w ∈ dom d2f (x, v), which, together with (c), proves the inequality “≥” in (60) and, hence, completes the 
proof. w

Our results so far required that the symmetric function θ�in (1) be locally Lipschitz continuous with respect to 
its domain. In what follows, we need to assume further that θ�is an lsc convex function. This assumption allows 
us to use the characterization of the subgradients of the spectral function g in (1), recorded in Proposition 6. We 
begin our analysis of the second subderivative of spectral functions by finding a lower estimate for it.

Proposition 12 (Lower Estimate for Second Subderivatives). Assume that g : S
n → R has the spectral representation in (1) 

and is lsc and convex and that Y ∈ ∂g(X). Let µ1 >⋯> µr be the distinct eigenvalues of X and U ∈ O
n(X) ∩ O

n(Y). Then, 
for any H ∈ S

n, we have

d2g(X, Y)(H) ≥ d2θ(λ(X),λ(Y))(λ′(X;H)) + 2
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm

H(µmI �X)†HUαm
〉, (61) 

where αm, m � 1, : : : , r, are defined in (7).
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Proof. Let H ∈ S
n and pick sequences Hk → H and tk ↓ 0. Setting ∆tk

λ(X)(Hk) :� (λ(X + tkHk)�λ(X))=tk, we get

∆
2
tk

g(X, Y)(Hk) �
θ(λ(X + tkHk))�θ(λ(X))� tk〈Y, Hk〉

1
2 t2

k

� θ(λ(X) + tk∆tk
λ(X)(Hk))�θ(λ(X))� tk〈λ(Y),∆tk

λ(X)(Hk)〉
1
2 t2

k

+ 〈λ(Y),∆tk
λ(X)(Hk)〉� 〈Y, Hk〉

1
2 tk

� ∆2
tk
θ(λ(X),λ(Y))(∆tk

λ(X)(Hk)) +
〈λ(Y),∆tk

λ(X)(Hk)〉� 〈Y, Hk〉
1
2 tk

:

It follows from Y � UΛ(Y)U⊤ that

〈Y, Hk〉 � 〈UΛ(Y)U⊤, Hk〉 � 〈Λ(Y), U⊤HkU〉 �
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm

HkUαm
〉: (62) 

On the other hand, it results from (10) and Fan’s inequality that

〈λ(Y),∆tk
λ(X)(Hk)〉 �

Xr

m�1

X

j∈αm

λj(Y)(λj(X + tkHk)� λj(X))
tk

�
Xr

m�1

X

j∈αm

λj(Y)λℓj(U⊤
αm

HkUαm
+ tkU⊤

αm
Hk(µmI � X)†HkUαm

) + O(t2
k)

≥
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm

HkUαm
+ tkU⊤

αm
Hk(µmI � X)†HkUαm

〉 + O(t2
k):

Combining this with (62) brings us to

〈λ(Y),∆tk
λ(X)(Hk)〉� 〈Y, Hk〉

1
2tk

≥ 2
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm

Hk(µmI � X)†HkUαm
〉 + O(tk):

This leads us to the estimate

∆2
tk

g(X, Y)(Hk) ≥ ∆2
tk
θ(λ(X),λ(Y))(∆tk

λ(X)(Hk))

+ 2
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm

Hk(µmI � X)†HkUαm
〉 + O(tk), 

which, in turn, clearly justifies the lower estimate in (61) for the second subderivative of g at X for Y because 
∆tk
λ(X)(Hk) → λ′(X;H) as k →∞. w

We proceed with a result about the critical cone of spectral functions.

Proposition 13 (Critical Cone of Spectral Functions). Assume that g : S
n → R has the spectral representation in (1) and is 

lsc and convex and that Y ∈ ∂g(X). Let µ1 >⋯> µr be the distinct eigenvalues of X. Then, we have H ∈ Kg(X, Y) if and 
only if λ′(X;H) ∈ Kθ(λ(X),λ(Y)) and the matrices Λ(Y)αmαm 

and U⊤
αm

HUαm 
have a simultaneous ordered spectral decompo-

sition for any m � 1, : : : , r with αm taken from (7) and U ∈ O
n(X) ∩ O

n(Y).
Proof. By Borwein and Lewis [4, corollary 5.2.3], the symmetric function θ�in (1) is lsc and convex. Thus, we find 
U ∈ O

n(X) ∩ O
n(Y) and get λ(Y) ∈ ∂θ(λ(X)) due to Proposition 6. Pick H ∈ Kg(X, Y) and deduce from the defini-

tion of the critical cone that dg(X)(H) � 〈Y, H〉. We then conclude from Y � UΛ(Y)U⊤ with Λ(Y) � Diag (λ(Y))
and Fan’s inequality that

〈Y, H〉 � 〈Λ(Y), U⊤HU〉 �
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm

HUαm〉

≤
Xr

m�1

〈λ(Y)αm
,λ(U⊤

αm
HUαm

)〉 � 〈λ(Y),λ′(X;H)〉

≤ dθ(λ(X))(λ′(X;H)) � dg(X)(H), (63) 
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where the last inequality results from λ(Y) ∈ ∂θ(λ(X)), Rockafellar and Wets [25, exercise 8.4], and the convexity 
of θ�and where the last equality comes from (26). These relationships clearly imply that dθ(λ(X))(λ′(X;H))
� 〈λ(Y),λ′(X;H)〉, meaning that λ′(X;H) ∈ Kθ(λ(X),λ(Y)), and that 〈Λ(Y)αmαm

, U⊤
αm

HUαm
〉 � 〈λ(Y)αm

,λ(U⊤
αm

HUαm
)〉

for any m � 1, : : : , r. By Fan’s inequality, these equalities are equivalent to saying that the matrices Λ(Y)αmαm 
and 

U⊤
αm

HUαm 
have a simultaneous ordered spectral decomposition for any m � 1, : : : , r.

To prove the opposite claim, assume λ′(X;H) ∈ Kθ(λ(X),λ(Y)) and the matrices Λ(Y)αmαm 
and U⊤

αm
HUαm 

have a 
simultaneous ordered spectral decomposition for any m � 1, : : : , r. The latter tells us via Fan’s inequality that 
〈Λ(Y)αmαm

, U⊤
αm

HUαm
〉 � 〈λ(Y)αm

,λ(U⊤
αm

HUαm
)〉 for any m � 1, : : : , r. Moreover, the former yields dθ(λ(X))(λ′(X;H))

� 〈λ(Y),λ′(X;H)〉. Taking these into account demonstrates that both inequalities in (63) are indeed equalities. 
This leads us to dg(X)(H) � 〈Y, H〉, which implies that H ∈ Kg(X, Y). w

The characterization of the critical cone of spectral functions, obtained above, is a generalization of a similar 
result, established recently in Cui and Ding [6, proposition 4] for the spectral function g from (1) when the sym-
metric function θ�therein is a polyhedral function, meaning a function that its epigraph is a polyhedral convex 
set. To obtain a full characterization of the critical cone of spectral functions, we should know when the matrices 
Λ(Y)αmαm 

and U⊤
αm

HUαm 
in Proposition 13 have a simultaneous ordered spectral decomposition because the criti-

cal cone Kθ(λ(X),λ(Y)) can often be calculated rather easily. Although this remains an open question for now 
and will be a subject of our future research, we show by an example below the possible role that the condition on 
Λ(Y)αmαm 

and U⊤
αm

HUαm 
is playing in the calculation of the critical cone of spectral functions. Indeed, if the matri-

ces Λ(Y)αmαm 
and U⊤

αm
HUαm 

have a simultaneous ordered spectral decomposition, it is possible to show that the 
matrix U⊤

αm
HUαm has a block diagonal structure; see (68) below and the discussion afterward to see why this can 

happen in the case g � δS
n
+
.

Example 5. Set g � δS
n
+
. Clearly, g is a spectral function satisfying (1) with θ � δR

n
+ . Take Y ∈ NS

n
+
(X) and observe 

from Proposition 6 that Y � U Diag (λ(Y))U⊤, where λ(Y) ∈ NR
n
+(λ(X)) and U ∈ O

n(X) ∩ O
n(Y). Our goal is to cal-

culate KS
n
+
(X, Y) using the characterization of this cone from Proposition 13. Take H ∈ KS

n
+
(X, Y), assume that µ1 >

⋯> µr are the distinct eigenvalues of X, and pick the constants αm for any m � 1, : : : , r from (7). By Proposition 13, 

we conclude that λ′(X;H) ∈ KR
n
+ (λ(X),λ(Y)) and that the matrices Λ(Y)αmαm 

and U⊤
αm

HUαm 
have a simultaneous 

ordered spectral decomposition for any m � 1, : : : , r. The former is equivalent to the conditions

w ∈ TR
n
+(λ(X)) and 〈λ(Y), w〉 � 0 with w � (w1, : : : , wn) :� λ′(X;H): (64) 

Moreover, the inclusion λ(Y) ∈ NR
n
+ (λ(X)) amounts to

Xn

i�1

λi(X)λi(Y) � 0, λ(X) � (λ1(X), : : : ,λn(X)) ∈ R
n
+, λ(Y) � (λ1(Y), : : : ,λn(Y)) ∈ R

n
�

: (65) 

Define the index sets

κX :� {i ∈ {1, : : : , n} |λi(X) > 0} and τX :� {i ∈ {1, : : : , n} |λi(X) � 0}, 
and

κY :� {i ∈ {1, : : : , n} |λi(Y) � 0} and τY :� {i ∈ {1, : : : , n} |λi(Y) < 0}:
It is easy to see from the definition of the index set αr in (7) that τX � αr and from (65) that

κX ⊂ κY and τY ⊂ τX, (66) 

and to conclude from (64) and (65) that

wi ∈
R if i ∈ κX,
R+ if i ∈ τX \ τY,
{0} if i ∈ τY:

8
<

: (67) 

Take m ∈ {1, : : : , r� 1} and observe from the first inclusion in (66) that Λ(Y)αmαm
� 0. In this case, we will not bene-

fit further from the fact that the matrices Λ(Y)αmαm 
and U⊤

αm
HUαm 

have a simultaneous ordered spectral decompo-
sition. It remains to take a closer look into the case m � r. Because Λ(Y)αrαr 

and U⊤
αr

HUαr 
have a simultaneous 

ordered spectral decomposition, we find an orthogonal matrix Qr ∈ O
|αr | such that

Λ(Y)αrαr
� QrΛ(Y)αrαr

Q⊤
r and U⊤

αr
HUαr

� QrΛ(U⊤
αr

HUαr
)Q⊤

r : (68) 
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Similar to (7), define the index sets {ρνr}
ℓ
ν�1, where ℓ�in the number of distinct eigenvalues of Λ(Y)αrαr

, by

λi(Y) � λj(Y) if i, j ∈ ρνr
λi(Y) > λj(Y) if i ∈ ρνr , j ∈ ρk

r with ν < k:

�

Thus, because ρ
j
r ⊂ αr � τX for any j ∈ {1, : : : ,ℓ}, we deduce from the third condition in (65) that

ρ1
r � τX ∩ κY and

[ℓ

j�2

ρj
r � τX ∩ τY � τY: (69) 

It is not hard to see from the first equality in (68) (see Ding [10, proposition 2.4] for more detail) that Qr has a 
block diagonal representation as

Qr � Diag (Q1
r , : : : , Qℓr) �

Q1
r 0 0

0 Q2
r

Qℓ�1
r 0

0 0 Qℓr

0
BBBB@

1
CCCCA

with Qj
r ∈ O

|ρj
r | , j � 1, : : : ,ℓ:

This, coupled with the second equality in (68), implies that U⊤
αr

HUαr 
has a similar block diagonal representation 

as

U⊤
αr

HUαr
� Diag (H1

r , : : : , Hℓr ) �

H1
r 0 0

0 H2
r

Hℓ�1
r 0

0 0 Hℓr

0
BBBB@

1
CCCCA

with Hj
r ∈ S

|ρj
r | , j � 1, : : : ,ℓ:

A direct calculation shows that H
j
r � U⊤

ρ
j
r

HU
ρ

j
r 

for any j � 1, : : : , ℓ. Moreover, it follows from (67), (69), and the defi-
nition of wi from (64) that

U⊤
ρ1

r
HUρ1

r
∈ S

|ρ1
r |

+ and U⊤
ρ

j
r
HU

ρ
j
r
� 0 for any j � 2, : : : ,ℓ, 

which, in turn, leads us to the representation

U⊤
αr

HUαr
�

U⊤
ρ1

r
HUρ1

r
0

0 0

0
@

1
A: (70) 

This gives us the inclusion

KS
n
+
(X, Y) ⊂ {H ∈ S

n |U⊤
ρ1

r
HUρ1

r
∈ S

|ρ1
r |

+ , U⊤
τY

HUτY
� 0, U⊤

ρ1
r
HUτY

� 0}: (71) 

We claim now that the inclusion above becomes equality. To prove it, take a matrix H from the right-hand side 
of the above inclusion. To justify H ∈ KS

n
+
(X, Y), we first show that λ′(X;H) ∈ KR

n
+ (λ(X),λ(Y)), which is equivalent 

to proving (64). By the selection of H, the components of the vector w � λ′(X;H) enjoy the properties in (67), 
because αr � τX and ρ1

r � τX ∩ κY � τX \ τY due to (66). Now, it is not hard to see that w satisfies all the conditions 
in (64), confirming the inclusion λ′(X;H) ∈ KR

n
+(λ(X),λ(Y)). To finish the proof, it suffices, according to Proposi-

tion 13, to demonstrate that the matrices Λ(Y)αmαm 
and U⊤

αm
HUαm 

have a simultaneous ordered spectral decompo-
sition for any m � 1, : : : , r. Take m ∈ {1, : : : , r� 1} and observe that if i ∈ αm ⊂ κX, it follows from the first inclusion 
in (66) that λi(Y) � 0. This implies that Λ(Y)αmαm

� 0 for any such an m, which, in turn, tells us that Λ(Y)αmαm 
and 

U⊤
αm

HUαm 
have a simultaneous ordered spectral decomposition. It remains to consider the case m � r. We know 

from the selection of H that U⊤
αr

HUαr has the representation in (70). According to (69), the diagonal matrix 
Λ(Y)αrαr 

has a similar block structure as (70), given by

Λ(Y)αrαr
�

0 0

0 Λ(Y)γγ

0
@

1
A with γ :� αr \ ρ1

r :

Taking into account this representation and (70) tells us that Λ(Y)αrαr 
and U⊤

αr
HUαr have a simultaneous ordered 

spectral decomposition and, hence, finishes the proof of the opposite inclusion in (71). We should add here that 
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the same description as (71) for KS
n
+
(X, Y) was obtained in Chan and Sun [5] using a different approach and with-

out appealing to a characterization of the latter cone obtained in Proposition 13.
Note that the analysis above for the case of δS

n
+

clearly illustrates the essential role that the simultaneous 
ordered spectral decompositions of Λ(Y)αmαm 

and U⊤
αm

HUαm 
play in finding the critical cone of spectral functions. 

To shed more light into the role of the later condition, consider the case n � 3, X � Diag (1, 0, 0) and Y � Diag (0, 0, �1). 
In this case, we get r � 2, α1 � {1}, and α2 � {2, 3}. Moreover, we have κX � {1}, τX � {2, 3}, κY � {1, 2}, τY � {3}, 
and ρ1

r � {2}. According to (71), the symmetric matrix H belongs to KS
n
+
(X, Y) if and only if it has a representation 

of the form

? ? ?
? a 0
? 0 0

0
@

1
A, 

where a ∈ R+ and the ? positions can be filled with any real number. This shows the matrix

H �
1 0 0
0 1=2 �1=2
0 �1=2 0

0
@

1
A, 

doesn’t belong to K
S

3
+
(X, Y) because H23 and H32 are not zero. To elaborate more on why this happens, observe 

first that U :� I ∈ O
3(X) ∩ O

3(Y). Thus, we have

λ′(X;H) � (λ(U⊤
α1

HUα1
),λ(U⊤

α2
HUα2)) � (λ(Hα1α1

),λ(Hα2α2)) � 1,
1+

ffiffiffi
5

√

4
,

1�
ffiffiffi
5

√

4

 !
, 

which clearly belongs to K
R

3
+
(λ(X),λ(Y)). This can be justified via the equivalent description of K

R
3
+
(λ(X),λ(Y)) in 

(64). However, it is possible to demonstrate that Λ(Y)α2α2 
and U⊤

α2
HUα2 

don’t have a simultaneous ordered spec-

tral decomposition by showing that

〈Λ(Y)α2α2
, U⊤
α2

HUα2
〉 ≠ 〈λ(Λ(Y)α2α2

),λ(U⊤
α2

HUα2
)〉: (72) 

This, indeed, results from the fact that Fan’s inequality in (6) becomes equality if and only if the matrices therein 
have a simultaneous ordered spectral decomposition. To prove (72), we deduce from Λ(Y)α2α2

� Diag (0, �1) and 
U⊤
α2

HUα2 � Hα2α2 that

〈Λ(Y)α2α2
, U⊤
α2

HUα2
〉 � tr

0 0

0 �1

 !
1=2 �1=2
�1=2 0

� � !
� 0:

On the other hand, we have

〈λ(Λ(Y)α2α2
),λ(U⊤

α2
HUα2

)〉 �
ffiffiffi
5

√
� 1

4
, 

which confirms (72) and, hence, tells us that the main reason for H ∉ K
S

3
+
(X, Y) is the failure of ensuring a simulta-

neous ordered spectral decomposition for Λ(Y)α2α2 
and U⊤

α2
HUα2

.

As mentioned before, we can partition any vector p ∈ R
n into (pα1

, : : : , pαr
) with αm, m � 1, : : : , r, taken from (7). 

Pick m ∈ {1, : : : , r} and recall from (14) that the index set αm �∪ρm

i�1 β
m
i . This allows us to partition further pαm into 

(yβm
1
, : : : , yβm

ρm
), where yβm

i
∈ R

|βm
i | for any i � 1, : : : ,ρm. In summary, we can equivalently write p as

(yβ1
1
, : : : , yβ1

ρ1

, : : : , yβr
1
, : : : , yβr

ρr
), (73) 

where r, taken from (7), and ρm, taken from (14), stand for the number of distinct eigenvalues of X and U⊤
αm

HUαm
, 

respectively. Thus, the representation of p in (73) is associated with the permutation matrices in Pn
X, H, defined 

prior to Proposition 10, as a subset of Pn. In fact, any permutation matrix Q ∈ P
n
X, H has a representation of the 

form Diag (B1
1, : : : , B1

ρ1
, : : : , Br

1, : : : , Br
ρr
), where Bm

j ∈ R
|βm

j | × |βm
j | is a permutation matrix for any j ∈ {1, : : : ,ρm} and 

m ∈ {1, : : : , r}. Denote by Rn
↓ the set of all vectors (x1, : : : , xn) such that x1 ≥⋯≥ xn.

Proposition 14. Assume that the spectral function g � θ ◦λ�in (1) is lsc and convex and that Y ∈ ∂g(X) and 
H ∈ Kg(X, Y). If θ�is parabolically regular at λ(X) for λ(Y), then the following properties hold. 
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a. There exists z ∈ R
n, which has a representation in the form in (73) with yβm

i
∈ R

|βm
i |

↓ for any i ∈ {1, : : : ,ρm} and 
m ∈ {1, : : : , r}, satisfying

d2θ(λ(X),λ(Y))(λ′(X;H)) � d2θ(λ(X))(λ′(X;H) |z)� 〈λ(Y), z〉: (74) 

b. There exists a matrix cW ∈ S
n such that λ′′(X;H, cW) � z, where z comes from (a).

Proof. We deduce from Y ∈ ∂g(X) and Proposition 6 that λ(Y) ∈ ∂θ(λ(X)). Also, it follows from H ∈ Kg(X, Y) and 
Proposition 13 that λ′(X;H) ∈ Kθ(λ(X),λ(Y)). Employing now Proposition 11 ensures the existence of p ∈ R

n satis-
fying (74). As explained above, any such a vector p has a representation in the form of (73) with yβm

i
∈ R

|βm
i | for 

any i ∈ {1, : : : ,ρm} and m ∈ {1, : : : , r}. We are going to show that we can find a vector p with the representation in 
(73) such that yβm

i
∈ R

|βm
i |

↓ for any i ∈ {1, : : : ,ρm} and m ∈ {1, : : : , r}, meaning the components of each yβm
i 

have non-
increasing order. To this end, pick m ∈ {1, : : : , r} and i ∈ {1, : : : ,ρm} and choose then a |βm

i | × |βm
i | permutation 

matrix Bm
i such that qβm

i
:� Bm

i yβm
i
∈ R

|βm
i |

↓ . Set Q :� Diag (B1
1, : : : , B1

ρ1
, : : : , Br

1, : : : , Br
ρr
) and observe that Q ∈ P

n
X, H. 

Moreover, let
z :� (qβ1

1
, : : : , qβ1

ρ1

, : : : , qβr
1
, : : : , qβr

ρr
): (75) 

Clearly, we have z � Qp. It follows from Proposition 10 that

d2θ(λ(X))(λ′(X;H) |z) � d2θ(λ(X))(λ′(X;H) |p):
We claim now that 〈λ(Y), p〉 ≤ 〈λ(Y), z〉. To justify it, suppose that

(λ(Y)β1
1
, : : : ,λ(Y)β1

ρ1

, : : : ,λ(Y)βr
1
, : : : ,λ(Y)βr

ρr

), 

is a partition of the vector λ(Y) corresponding to (73). Note that λ(Y)βm
i
∈ R

|βm
i |

↓ for any i ∈ {1, : : : ,ρm} and 
m ∈ {1, : : : , r}. Thus, we get

〈λ(Y), p〉 �
Xr

m�1

Xρm

i�1

〈λ(Y)βm
i
, yβm

i
〉 ≤

Xr

m�1

Xρm

i�1

〈λ(Y)βm
i
, qβm

i
〉 � 〈λ(Y), z〉, 

where the inequality is a consequence of the Hardy-Littlewood-Pólya inequality (cf. Borwein and Lewis [4, prop-
osition 1.2.4]). Set φ(x) � d2θ(λ(X))(λ′(X;H) |x)� 〈λ(Y), x〉 for any x ∈ R

n and observe from Proposition 11 that p 
is a minimizer of φ. But we showed above that φ(z) ≤ φ(p), which tells us that z is also a minimizer of φ. Thus, 
we arrive at φ(z) � φ(p), which implies that (74) holds for z. This proves (a).

Turning now to the proof of (b), pick the vector z from (75). We can equivalently write via the index sets αm, 
m � 1, : : : , r, from (7) that

z � (zα1
, : : : , zαr

) with zαm
� (qβm

1
, : : : , qβm

ρm
) ∈ R

|αm | for all m ∈ {1, : : : , r}: (76) 

Take the |αm | × |αm | matrix Qm, m � 1, : : : , r, from (13) and consider the n × n block diagonal matrix

A � Diag (Q1 Diag (zα1
)Q⊤

1 , : : : , Qr Diag (zαr
)Q⊤

r ): (77) 

We claim that there exists a matrix cW ∈ S
n such that for any m � 1, : : : , r the relationship

U⊤
αm

cWUαm
� U⊤

αm
(2H(X�µmI)†H +UAU⊤)Uαm

, (78) 

holds, where µ1 >⋯> µr are the distinct eigenvalues of X and U ∈ O
n(X). Indeed, to find such a matrix cW , let 

W ∈ S
n and set cW � UWU⊤ in the above equality. This, coupled with (9), leads us to

Wαmαm � U⊤
αm

UWU⊤Uαm � U⊤
αm

cWUαm � U⊤
αm
(2H(X�µmI)†H +UAU⊤)Uαm , 

for all m � 1, : : : , r. Define the matrix W as the block diagonal matrix Diag (Wα1α1
, : : : , Wαrαr), from which we can 

obtain the claimed matrix cW . Suppose now that i ∈ {1, : : : , n}. By (15), there are m ∈ {1, : : : , r} and j ∈ {1, : : : ,ρm}
such that i ∈ αm and ℓi ∈ βm

j . According to (16), we have

λ′′i (X;H,cW) � λℓ′i ((Qm)⊤βm
j
(U⊤
αm
(cW + 2H(µmI �X)†H)Uαm

)(Qm)βm
j
)

� λℓ′i ((Qm)⊤βm
j
(U⊤
αm

UAU⊤Uαm)(Qm)βm
j
)

� λℓ′i ((Qm)⊤βm
j
Qm Diag (zαm

)Q⊤
m(Qm)βm

j
)

� λℓ′i (Diag (qβm
j
)), (79) 
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where the last two equalities result from (9). Consider now a partition of λ′′(X;H, cW) corresponding to (75) as

(ηβ1
1
, : : : ,ηβ1

ρ1

, : : : ,ηβr
1
, : : : ,ηβr

ρr

):

Thus, it follows from (79) and the definition ℓ′i that

ηβm
j
� λ(Diag (qβm

j
)) � qβm

j
, 

for any j ∈ {1, : : : ,ρm} and m ∈ {1, : : : , r} because qβm
j
∈ R

|βm
j |

↓ . This confirms that λ′′(X;H, cW) � z and, hence, com-
pletes the proof of (b). w

We are now ready to characterize parabolic regularity of spectral functions. We begin with the following 
result, in which we provide a sufficient condition to calculate the domain of the second subderivative of spectral 
functions.

Proposition 15. Assume that the spectral function g � θ ◦λ�in (1) is convex and that Y ∈ ∂g(X). Then, we have 
dom d2g(X, Y) ⊂ Kg(X, Y). Equality holds if, in addition, g is parabolically epi-differentiable at X for any H ∈ Kg(X, Y).
Proof. The claimed inclusion results from Mohammadi and Sarabi [20, proposition 2.1(ii)–(iii)]. To establish the 
second claim, it follows from parabolic epi-differentiability of g at X for any H ∈ Kg(X, Y) that dom d2g(X)
(H | :) ≠ ∅. This, coupled with Mohammadi and Sarabi [20, proposition 3.4], confirms that dom d2g(X, Y) � Kg(X, Y)
and hence completes the proof. w

Note that the assumption of parabolic epi-differentiability of g in the result above can be ensured via Theorem 3(a)
by parabolic epi-differentiability of θ. An important class of functions for which this assumption automatically is satis-
fied is polyhedral functions; see Rockafellar and Wets [25, exercise 13.61]. This class of functions allows us to cover 
many examples of spectral functions, which are important for applications. We should add that polyhedral functions 
that are symmetric were characterized in Cui and Ding [6, proposition 1].

Our next result presents a characterization of parabolic regularity of spectral functions.

Theorem 4 (Parabolic Regularity of Spectral Functions). Assume that the spectral function g � θ ◦λ�in (1) is locally 
Lipschitz continuous with respect to its domain, lsc, and convex. Let µ1 >⋯> µr be the distinct eigenvalues of X. Then, the 
following properties hold. 

a. If Y ∈ ∂g(X) and θ�is parabolically regular at λ(X) for λ(Y) and parabolically epi-differentiable at λ(X), then g is para-
bolically regular at X for Y, and for any H ∈ Kg(X, Y), we have

d2g(X, Y)(H) � d2θ(λ(X),λ(Y))(λ′(X;H)) + 2
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm

H(µmI �X)†HUαm
〉, 

where αm, m � 1, : : : , r, come from (7), U ∈ O
n(X) ∩ O

n(Y), and Λ(Y) � Diag (λ(Y)).
b. If g is parabolically epi-differentiable and parabolically regular at X, then θ�is parabolically regular at λ(X).

Proof. We begin with the proof of (a). To justify (a), it suffices by Proposition 11 to show that for any 
H ∈ Kg(X, Y), we have

d2g(X, Y)(H) � inf
W∈S

n
{d2g(X)(H |W)� 〈Y, W〉}: (80) 

To this end, pick H ∈ Kg(X, Y) and deduce from Rockafellar and Wets [25, proposition 13.64] and (49), respec-
tively, that

d2g(X, Y)(H) ≤ inf
W∈S

n
{d2g(X)(H |W)� 〈Y, W〉}

� inf
W∈S

n
{d2θ(λ(X))(λ′(X;H) |λ′′(X;H, W))� 〈Y, W〉}: (81) 

Because H ∈ Kg(X, Y), it results from Proposition 13 that the matrices Λ(Y)αmαm 
and U⊤

αm
HUαm 

have a simultaneous 
ordered spectral decomposition for any m � 1, : : : , r. This means that there are matrices bQm ∈ O

|αm | (Λ(Y)αmαm
)

∩ O
|αm | (U⊤

αm
HUαm

), m � 1, : : : , r, such that

Λ(Y)αmαm
� bQmΛ(Y)αmαm

bQ
⊤
m and U⊤

αm
HUαm

� bQmΛ(U⊤
αm

HUαm
) bQ⊤

m: (82) 

Replace the matrices Qm in the definition of the matrix A in (77) with bQm, m � 1, : : : , r, and observe that the same 
conclusion can be achieved as the one in Proposition 14(b) for the updated matrix A. In fact, the matrices bQm 
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enjoy all the properties of Qm together with the relationships in (82), which are important for our argument 
below. Because θ�is parabolically regular at λ(X) for λ(Y), we conclude from Proposition 14(a) that there is z ∈ R

n 

with a representation in the form in (75) with qβm
i
∈ R

|βm
i |

↓ for any i ∈ {1, : : : ,ρm} and m ∈ {1, : : : , r}, satisfying (74). 

According to Proposition 14(b), there exists a matrix cW ∈ S
n such that λ′′(X;H, cW) � z. Employing now (74) and 

(78), and Y � UΛ(Y)U⊤ and using a similar argument as (62), we arrive at

d2θ(λ(X))(λ′(X;H) |λ′′(X;H,cW))� 〈Y,cW〉

� d2θ(λ(X))(λ′(X;H) |z)�
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm

cWUαm
〉

� d2θ(λ(X),λ(Y))(λ′(X;H)) + 〈λ(Y), z〉

�

Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm
(2H(X �µmI)†H +UAU⊤)Uαm

〉

� d2θ(λ(X),λ(Y))(λ′(X;H)) + 2
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm
(H(µmI �X)†H)Uαm

〉

+ 〈λ(Y), z〉�
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm
(UAU⊤)Uαm〉: (83) 

By the definition of A in (77), the equality in (9), and the representation of the vector z in (76), we obtain

Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm
(UAU⊤)Uαm

〉 �
Xr

m�1

〈Λ(Y)αmαm
, bQm Diag (zαm

) bQ⊤
m〉

�
Xr

m�1

〈 bQ⊤
mΛ(Y)αmαm

bQm, Diag (zαm
)〉

�
Xr

m�1

〈Λ(Y)αmαm
, Diag (zαm

)〉 � 〈λ(Y), z〉, 

where the penultimate equality results from the first relationship in (82) and the last one is a consequence of 
Λ(Y) � Diag (λ(Y)). This, coupled with (61), (81), and (83), brings us to

d2θ(λ(X),λ(Y))(λ′(X;H)) + 2
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm

H(µmI �X)†HUαm
〉

≤ d2g(X, Y)(H)
≤ inf

W∈S
n
{d2g(X)(H |W)� 〈Y, W〉}

≤ d2θ(λ(X))(λ′(X;H) |λ′′(X;H,cW))� 〈Y,cW〉

� d2θ(λ(X),λ(Y))(λ′(X;H)) + 2
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm

H(µmI �X)†HUαm
〉:

These relationships clearly justify (80) and, hence, imply that g is parabolically regular at X for Y. Moreover, they 
confirm the claimed formula for the second subderivative of g at X for Y for any H ∈ Kg(X, Y) and, hence, com-
plete the proof of (a).

Turning into the proof of (b), we need to show that θ�is parabolically regular at λ(X) for any v ∈ ∂θ(λ(X)). To 
justify it, pick v ∈ ∂θ(λ(X)) and U ∈ O

n(X) and deduce from Lewis [18, theorem 6] that U Diag (v)U⊤ ∈ ∂g(X). 
Because g is convex and orthogonally invariant, the latter yields Diag (v) ∈ ∂g(Λ(X)), where Λ(X) � Diag (λ(X)). 
We claim that g is parabolically regular at Λ(X) for Diag (v). To this end, set Z :� U Diag (v)U⊤ and take 
H ∈ Kg(Λ(X), Diag (v)). We conclude from (57) and the definition of the critical cone that UHU⊤ ∈ Kg(X, Z). Thus, 
it also follows from parabolic regularity of g at X for Z and Proposition 11 that there is W ∈ S

n such that

d2g(X, Z)(UHU⊤) � d2g(X)(UHU⊤ |W)� 〈Z, W〉: (84) 
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Because g is orthogonally invariant, we get

d2g(X, Z)(UHU⊤) � lim inf
t ↓ 0

H′→UHU⊤

g(X + tH′)� g(X) � 〈Z, H′〉
1
2 t2

� lim inf
t ↓ 0

H′→UHU⊤

g(Λ(X) + tU⊤H′U)� g(Λ(X)) � 〈U⊤ZU, U⊤H′U〉
1
2 t2

≥ d2g(Λ(X), Diag (v))(H):
Similarly, we can show that d2g(X, Z)(UHU⊤) ≤ d2g(Λ(X), Diag (v))(H), which leads us to d2g(X, Z)(UHU⊤) �
d2g(Λ(X), Diag (v))(H). It follows from (58) that

d2g(X)(UHU⊤ |W) � d2g(Λ(X))(H |U⊤WU):
We also have 〈Z, W〉 � 〈Diag (v), U⊤WU〉. Combining these with (84) brings us to

d2g(Λ(X), Diag (v))(H) � d2g(Λ(X))(H |U⊤WU)� 〈Diag (v), U⊤WU〉:
Because H ∈ Kg(Λ(X), Diag (v)) was taken arbitrarily and because dom d2g(Λ(X), Diag (v)) ⊂ Kg(Λ(X), Diag (v))
is satisfied because of Proposition 15, we conclude from Proposition 11 that g is parabolically regular at Λ(X) for 
Diag (v). Recall that the symmetric function θ�satisfies (19), which means that θ�can be represented as θ � g ◦ F 
with F(x) :� Diag (x) for all x ∈ R

n. We also deduce from the imposed assumption on θ�and (5) that g is locally 
Lipschitz continuous relative to its domain. According to Mohammadi et al. [22, theorem 3.6], we get ∂θ(λ(X)) �
∇F(λ(X))∗∂g(Λ(X)). It is not hard to see that for any x ∈ R

n, ∇F(x) is a linear operator from Rn into Sn, defined by 
∇F(x)(y) �Pn

i�1 yiEii for any y � (y1, : : : , yn) ∈ R
n, where Eii, i � 1, : : : , n, are the n × n matrix with (i, i) entry equal 

to one and elsewhere equal to zero. This tells us that the adjoint operator ∇F(x)∗ : S
n → R

n has a representation in 
the form ∇F(x)∗B � (tr (E11B), : : : , tr (EnnB)) for any B ∈ S

n; see Beck [1, example 1.8] for more details. Remember 
that v ∈ ∂θ(λ(X)) and Diag (v) ∈ ∂g(Λ(X)). Thus, we have ∇F(λ(X))∗ Diag (v) � v: On the other hand, it follows 
from the proof of Theorem 3(b) that parabolic epi-differentiability of g at X for UHU⊤ ∈ dom dg(X) implies that 
of g at Λ(X) for H. Combining these and Mohammadi and Sarabi [20, theorem 5.4] tells us that θ�is parabolically 
regular at λ(X) for v and, hence, completes the proof of (b). w

Given the spectral function g in (1), it was shown in Cui et al. [7, proposition 10] that if θ�is C2-cone reducible 
in the sense of Cui et al. [7, definition 6], then g enjoys the same property. Note that C2-cone reducibility of θ�is 
strictly stronger assumption than parabolic regularity of this function, utilized in Theorem 4, as shown in 
Mohammadi et al. [21, theorem 6.2 and example 6.4]. Note also we showed in Theorem 4(b) that parabolic regu-
larity of g yields that of θ; such a result was not achieved for C2-cone reducibility in Cui et al. [7].

In many important applications of the spectral function g in (1), the symmetric function θ�is a polyhedral func-
tion. In this case, all the assumptions in Theorem 4 are satisfied automatically. Furthermore, the second subderi-
vative of g has a simple representation as demonstrated below.

Corollary 3. Assume that g : S
n → R has the spectral representation in (1) with the symmetric function θ�being polyhe-

dral. If µ1 >⋯> µr are the distinct eigenvalues of X and Y ∈ ∂g(X), then g is parabolically regular at X for Y, and for any 
H ∈ S

n, we have

d2g(X, Y)(H) � δKg(X, Y)(H) + 2
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm

H(µmI �X)†HUαm
〉, 

where αm, m � 1, : : : , r, come from (7), U ∈ O
n(X) ∩ O

n(Y), and Λ(Y) � Diag (λ(Y)).
Proof. It follows from Rockafellar and Wets [25, exercise 13.61] and Mohammadi and Sarabi [20, example 3.2], 
respectively, that θ�is parabolically epi-differentiable and parabolically regular at λ(X). By Theorem 4(a), the spectral 
function g is parabolically regular at X for Y. Moreover, we know from Proposition 15 that dom d2g(X, Y) � Kg(X, Y). 
Take H ∈ Kg(X, Y) and observe from Proposition 13 that λ′(X;H) ∈ Kθ(λ(X),λ(Y)). Thus, we obtain from Rockafellar 
and Wets [25, proposition 13.9] that

d2θ(λ(X),λ(Y))(λ′(X;H)) � δKθ(λ(X),λ(Y))(λ′(X;H)) � 0:
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Employing now Theorem 4(a) tells us that

d2g(X, Y)(H) � 2
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm

H(µmI � X)†HUαm〉 for all H ∈ Kg(X, Y):

On the other hand, if H ∉ Kg(X, Y), we have d2g(X, Y)(H) � ∞ because dom d2g(X, Y) � Kg(X, Y). This proves the 
claimed formula for the second subderivative of g at X for Y. w

Note that the conjugate function of the parabolic subderivative of the spectral function g in (1) with θ�therein 
being polyhedral was recently calculated in Cui and Ding [6, propositions 6 and 10] by dividing a polyhedral 
function into two parts. In general, such a result gives us an upper bound for the second subderivative (cf. Rock-
afellar and Wets [25, proposition 13.64]). According to Proposition 11, parabolic regularity is, indeed, equivalent 
to saying that the latter conjugate function coincides with the second subderivative. We should add that para-
bolic regularity of g was not discussed in Cui and Ding [6], and so Corollary 4 can’t be derived from the afore-
mentioned results in Cui and Ding [6].

We continue to apply the formula of the second subderivative, obtained in Corollary 3, for two important 
examples of spectral functions and show how one can simplify the established formula for the second subderiva-
tive in these cases.

Example 6.

a. Assume that g : S
n → R is defined by g(X) � λmax(X), where λmax stands for the maximum eigenvalue of X. g 

is a spectral function and satisfies the representation (1) and θ(x) � max{x1, : : : , xn} with x � (x1, : : : , xn) ∈ R
n. Take 

Y ∈ ∂g(X) and observe from Proposition 6 that Y � U Diag (λ(Y))U⊤, where λ(Y) ∈ ∂θ(λ(X)) and U ∈ O
n(X) ∩ O

n(Y). 
Recall from (7) that α1 � {i ∈ {1, : : : , n} |λi(X) � λmax(X)}. It follows from Rockafellar and Wets [25, exercise 8.31] that

∂θ(λ(X)) � (t1, : : : , tn)
�����
Xn

i�1

ti � 1, ti ≥ 0 for all i ∈ α1, ti � 0 otherwise

( )
:

Taking into consideration the formula for the second subderivative from Corollary 3 and the notation therein and 
the description of ∂g(λ(X)), we conclude that Λ(Y)αmαm

� 0 for all m ≥ 2. Moreover, we have

Y � U Diag (λ(Y))U⊤ �
Xn

i�1

λi(Y)UiU
T
i �

X

i∈α1

λi(Y)UiU
T
i � Uα1

Λ(Y)α1α1
U⊤
α1
:

Combining this and Corollary 3, we obtain for any H ∈ S
n that

d2g(X, Y)(H) � δKg(X, Y)(H) + 2〈Λ(Y)α1α1
, U⊤
α1

H(µ1I �X)†HUα1
〉

� δKg(X, Y)(H) + 2〈Y, H(µ1I �X)†H〉:

This is the same formula, obtained in Torki [26, theorem 2.1], for the second subderivative of the first leading eigen-
value of a symmetric matrix. Note that it was proven in Mohammadi and Sarabi [20, example 3.3] that all leading 
eigenvalues of a symmetric matrix is parabolically regular. Also, one can find their second subderivatives in Torki 
[26, theorem 2.1]. Because the leading eigenvalues, except the first one, which is the maximum eigenvalue, are not 
convex, Theorem 4 and Corollary 3 can’t be utilized to cover them. That requires to extend the established theory 
in this section for subdifferentially regular functions in the sense of Rockafellar and Wets [25, definition 7.25], a task 
that we leave for our future research.

b. Suppose that g � δS
n
�

. As shown in Example 1, g is a spectral function satisfying (1) with θ � δR
n
�

. Take Y ∈
NS

n
�

(X) and observe from Proposition 6 that Y � U Diag (λ(Y))U⊤, where λ(Y) ∈ NR
n
�

(λ(X)) and U ∈ O
n(X)

∩ O
n(Y). If µ1 � λ1(X) < 0, it follows from X ∈ int S

n
�

that g is twice differentiable and d2g(X, Y)(H) � 0 for any 
H ∈ S

n. Assume now that µ1 � λ1(X) � 0. Recall from (7) that α1 � {i ∈ {1, : : : , n} |λi(X) � µ1}. Thus, we obtain

NR
n
�

(λ(X)) � {(t1, : : : , tn) | ti ≥ 0 for all i ∈ α1, ti � 0 otherwise}:
Arguing similarly to (a) leads us to

d2δS
n
�

(X, Y)(H) � δKSn
�

(X, Y)(H)� 2〈Y, HX†H〉 for all H ∈ S
n:
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This formula was obtained previously in Mohammadi and Sarabi [20, example 3.7] via a different approach. Sim-
ilarly, we can show that if Y ∈ NS

n
+
(X), the second subderivative of δS

n
+

at X for Y can be calculated by

d2δS
n
+
(X, Y)(H) � δKSn

+
(X, Y)(H)� 2〈Y, HX†H〉 for all H ∈ S

n:

The second subderivative can be utilized to establish second-order optimality conditions for different classes of 
optimization problems. Doing so often requires obtaining a chain rule for the second subderivative, a task carried 
out in Theorem 4 and Corollary 3. Given a twice differentiable function φ : S

n → R and a spectral function g, con-
sider the optimization problem

minimize φ(X) + g(X) subject to X ∈ S
n: (85) 

Below, we present a result in which second-order optimality conditions for this optimization problem are estab-
lished. For simplicity, we are going to assume that g has the assumed representation in Corollary 3, but one can 
easily extend it for any g satisfying the assumptions in Theorem 4.

Theorem 5. Assume that X is a feasible solution to (85), where the spectral function g has the representation (1) with θ�
therein being a polyhedral function. If �∇φ(X) ∈ ∂g(X), then the following second-order optimality conditions for (85) are 
satisfied. 

a. If X is a local minimizer of (85), then the second-order necessary condition

∇2φ(X)(H, H) + 2
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm

H(µmI � X)†HUαm
〉 ≥ 0, 

holds for all H ∈ Kg(X, �∇φ(X)).
b. The validity of the second-order condition

∇2φ(X)(H, H) + 2
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm

H(µmI � X)†HUαm
〉 > 0, 

for all H ∈ Kg(X, �∇φ(X)) amounts to the existence of the constants ℓ ≥ 0 and ε > 0 for which the quadratic growth condi-
tion

φ(X′) + g(X′) ≥ φ(X) + g(X) + ℓ
2
‖X′

�X‖2 for all X′ ∈ Bε(X), 

is satisfied.

Proof. It follows from Rockafellar and Wets [25, exercise 13.18] that

d2(φ + g)(X, 0)(H) � ∇2φ(X)(H, H) + d2g(X, � ∇φ(X))(H), 

for any H ∈ S
n. Both claims in (a) and (b) then result immediately from Rockafellar and Wets [25, theorem 13.24] 

and Corollary 3. w

Our next application is to provide sufficient conditions for twice epi-differentiability of spectral functions, a 
concept with important consequences in second-order variational analysis and parametric optimization. Recall 
from Rockafellar and Wets [25, definition 13.6] that a function f : X → R is said to be twice epi-differentiable at x 
for v ∈ X, with f (x) finite, if the sets epi ∆2

t f (x, v) converge to epi d2f (x, v) as t ↓ 0 in the sense of set convergence 
from Rockafellar and Wets [25, definition 4.1], where “epi ” stands for the epigraph of a function. This can be 
equivalently described via Rockafellar and Wets [25, proposition 7.2] that for every sequence tk ↓ 0 and every 
w ∈ X, there exists a sequence wk → w such that

d2f (x, v)(w) � lim
k→∞

∆2
tk

f (x, v)(wk):

Twice epi-differentiability is a geometric notion of second-order approximation for extended-real-valued func-
tions and was defined by Rockafellar [23]. Its central role in second-order variational analysis, parametric optimi-
zation, and numerical algorithms has been demonstrated in Rockafellar and Wets [25], Mohammadi et al. [21], 
Mohammadi and Sarabi [20], and Hang and Sarabi [16]. It was observed recently in Mohammadi and Sarabi [20, 
corollary 5.5] that parabolic regularity of certain composite functions yields their twice epi-differentiability. A 
similar conclusion can be drawn for spectral functions as demonstrated below.
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Corollary 4 (Twice Epi-Differentiability of Spectral Functions). Assume that the spectral function g � θ ◦λ�in (1) is locally 
Lipschitz continuous with respect to its domain, lsc, and convex. If Y ∈ ∂g(X) and θ�is parabolically regular at λ(X) for 
λ(Y) and parabolically epi-differentiable at λ(X), then g is twice epi-differentiable at X for Y.

Proof. The claimed twice epi-differentiability of g at X for Y results directly from Mohammadi and Sarabi [20, 
theorem 3.8] and Theorem 4. w

Twice epi-differentiability of leading eigenvalues and the sum of largest eigenvalues of a symmetric matrix 
was established in Torki [26, theorem 2.1] using a different approach. Corollary 4 goes far beyond the framework 
in Torki [26] to achieve twice epi-differentiability of spectral functions. We, however, can’t get this property for 
all leading eigenvalues, except the first one, from Corollary 4 because these spectral functions are not convex. As 
explained in Example 6(a), this can be accomplished if the established theory in this section is generalized for 
subdifferentially regular functions. Note also that a characterization of directionally differentiability of the proxi-
mal mapping of spectral functions can be found in Ding et al. [11, theorem 3]. Recall from Beck [1, theorem 7.18] 
that if the spectral function g in (1) is lsc and convex, its proximal mapping can be calculated by

proxg(X) :� arg min
W∈S

n

g(W) + 1

2
‖W � X‖2

� �
� U Diag (proxθ(λ(X)))U⊤, 

where U ∈ O
n(X). It follows from Ding et al. [11, theorem 3] that proxg is directionally differentiable at X if and 

only if proxθ�is directionally differentiable at λ(X). It also follows from Rockafellar and Wets [25, exercise 13.45] 
that twice epi-differentiability of g at X for Y amounts to directional differentiability of proxg at X + Y. Combin-
ing these, we can conclude that g is twice epi-differentiability of g at X for Y if and only if θ�enjoys the same prop-
erty at λ(X) for λ(Y). It is not clear yet to us whether such an equivalence can be achieved via our approach. 
Note that our main result in this section provides the equivalence for parabolic regularity of g and θ. It is worth 
mentioning here that parabolic regularity is strictly stronger than twice epi-differentiability and has no counter-
part for the proximal mapping. Thus, Theorem 4 can’t be derived from Ding et al. [11, theorem 3].

We close this section by establishing a characterization of twice semidifferentiability of the spectral function g 
in (1) when the symmetric function θ�therein is convex. Recall from Rockafellar and Wets [25, exercise 13.7] that 
a function f : R

n → R is called twice semidifferentiable at x if there exists a continuous function h, which is positive 
homogeneous of degree 2, and

f (x) � f (x) +df (x)(x� x) + 1

2
h(x� x) + o(‖x� x‖2):

In this case, h is called the second semiderivative of f at x and is denoted by d2f (x).
Corollary 5. Assume that X ∈ S

n and µ1 >⋯> µr are the distinct eigenvalues of X that θ : R
n → R is a differentiable sym-

metric convex function. Then, θ�is twice semidifferentiable at λ(X) if and only if the spectral function g � θ ◦λ�is twice 
semidifferentiable at X. Moreover, in this case, we have

d2g(X)(H) � d2θ(λ(X))(λ′(X;H)) + 2
Xr

m�1

〈Λ(Y)αmαm
, U⊤
αm

H(µmI �X)†HUαm
〉, 

where αm, m � 1, : : : , r, come from (7), U ∈ O
n(X) ∩ O

n(Y), Λ(Y) � Diag (λ(Y)), and H ∈ S
n.

Proof. Observe first that because θ�is convex and finite-valued, it is locally Lipschitz continuous on Rn. More-
over, because θ�is differentiable, we deduce from Lewis [17, theorem 1.1] that g is differentiable at X. Suppose 
first that θ�is twice semidifferentiable at λ(X). Because θ�is differentiable, it follows from twice semidifferentiabil-
ity of θ�that the second subderivative of θ�coincides with its second semiderivative, namely,

d2θ(λ(X),∇θ(λ(X)))(λ′(X;H)) � d2θ(λ(X))(λ′(X;H)) for all H ∈ S
n:

This, combined with the formula of the second subderivative of g in Theorem 4(a), tells us that for any H ∈ S
n, 

d2g(X,∇g(X))(H) is always finite. By Mohammadi and Sarabi [20, example 4.7(d)], θ�is parabolically epi-differentiable 
and parabolically regular at λ(X) for ∇θ(λ(X)). Thus, it results from Corollary 4 that g is twice epi-differentiable at X 
for ∇g(X). Combining these with Rockafellar [24, theorem 4.3] tells us that g is twice semidifferentiable at X and 

that d2g(X,∇g(X))(H) � d2g(X)(H) for any H ∈ S
n. The latter, coupled with Theorem 4(a), proves the claimed for-

mula for the second semiderivative of g at X. Conversely, assume that g is twice semidifferentiable at X. We know 
from (19) that the symmetric function θ�can be represented as θ � g ◦ F with F(x) :� Diag (x) for all x ∈ R

n. Because 
F is always twice differentiable and g is twice semidifferentiable at X, we conclude from Mohammadi et al. [22, 
proposition 8.2(i)] that θ�is twice semidifferentiable at λ(X), which completes the proof. w
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One can also show similar to the proof of Corollary 5 that θ�has a quadratic expansion at λ(X) if and only if θ ◦λ�
enjoys the same property at X. Note that it was shown in Lewis and Sendov [19, theorem 3.3] (see also Drusvyatskiy 
and Paquette [13] for a simplified proof) that twice differentiability of g and θ�are also equivalent. Whether such a 
result can be derived from our established theory in this section remains an open question for our future research.

6. Conclusion and Future Research
In this paper, we developed a second-order theory of generalized differentiation for spectral functions. Our 
results rely heavily upon the metric subregularity constraint qualification, which automatically holds for this set-
ting. Our main focus was to characterize parabolic regularity of this class of functions when they are convex. 
Moreover, we were able to calculate their second subderivative.

Our results raise several questions for our future search. First and foremost is the extension of our established 
theory for subdifferentially regular spectral functions. This will allow us to provide a unified umbrella, under 
which all the available results for both convex and nonconvex spectral functions can be covered by our approach. 
Also, it is interesting to see whether a similar characterization of parabolic regularity can be achieved for twice 
epi-differentiability of spectral functions. Such a characterization can be obtained from Ding et al. [11, theorem 3] 
for convex spectral functions. However, we can’t use Ding et al. [11] to obtain a similar characterization for non-
convex spectral functions. It is also important to see whether our results can be utilized to characterize twice dif-
ferentiability of spectral functions, which was previously obtained by Lewis and Sendov [19, theorem 3.3].
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