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1. Introduction

This paper aims to study second-order variational properties, including parabolic regularity and twice epi-
differentiability, of spectral functions. These are functions ¢:S" — R :=[—00, 0], where S" stands for the real
vector space of n X n symmetric matrices, that are orthogonally invariant; namely, for any n X n symmetric
matrix X and any n X n orthogonal matrix U, we have

g(X) =g(UXu.

It is well-known (cf. Lewis [18, proposition 4]) that any spectral function g can be equivalently expressed in a
composite form

§(X)=(00N)(X), Xe§", M

where 6 : R" — R is a permutation-invariant function on R”, called symmetric, and A is a function, which assigns
to each matrix X € S" its eigenvalue vector (11(X), ..., A,(X)) arranged in nonincreasing order.

Davis [9] showed that convexity of the permutation-invariant function 6 in (1) is inherited by the spectral func-
tion g. A similar observation was made by Lewis [17] about differentiability and strict differentiability and by
Lewis and Sendov [19] about twice differentiability. It was shown in Lewis [17], Lewis [18], and Daniilidis et al. [8],
respectively, that the calculation of different notions of subdifferentials of spectral functions and prox-regularity,
which plays an important role in second-order variational analysis, enjoys this striking pattern as well.

The main question that we are trying to answer in this paper is whether such a striking pattern can be
extended for other important second-order variational properties, including parabolic regularity (see Definition 1)
and twice epi-differentiability. Although the former was first introduced more than two decades ago in Rockafel-
lar and Wets [25, definition 13.69], its persuasive role in second-order variational analysis was revealed quite
recently in Mohammadi et al. [21] and Mohammadi and Sarabi [20], where it was shown for the first time that
any parabolic regular function is twice epi-differentiable at any points in the graph of its subgradient mapping.
This observation provided a systematic approach for the study of twice epi-differentiability of extended-real-
valued functions, which has important applications in understanding various second-order variational concepts,
such as proto-differentiability of subgradient mappings (cf. Mohammadi and Sarabi [20, corollary 3.9]), twice
epi-differentiability of the augmented Lagrangian functions associated with composite and constrained
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optimization problems (cf. Mohammadi et al. [21, theorem 8.3]), and the characterization of the quadratic growth
condition for this class of functions (cf. Hang and Sarabi [16, theorem 4.1]). Moreover, parabolic regularity was
utilized in Mohammadi et al. [21] and Mohammadi and Sarabi [20] to obtain the exact chain rule for the second
subderivative of certain composite functions, commonly seen in different classes optimization problems. Such a
chain rule has an important application in finding second-order necessary and sufficient optimality conditions
for optimization problems.

It was demonstrated in Mohammadi and Sarabi [20] that important second-order variational properties of a
composite function ¢ o F, where ¢ : X — (—00,00] is convex and F:X — Y is twice differentiable with X and Y
being finite-dimensional Hilbert spaces, can be established at any X € dom (¢ o F), provided that 1) is paraboli-
cally regular and that the following metric subregularity constraint qualification is satisfied (cf. Mohammadi and
Sarabi [20, definition 4.2]): There exists a constant k¥ > 0, such that the estimate

dist(x, dom (i) o F)) < « dist(F(x), dom v), 2)

holds for all x sufficiently close to X. Thus, it is natural to ask whether a similar approach can be utilized for the
composite representation in (1) of spectral functions. To do so, two major obstacles seem to hinder proceeding
with the approach in Mohammadi and Sarabi [20]: (1) the lack of twice differentiability of the inner function A(-)
in (1); and (2) the validity of a constraint qualification similar to the aforementioned condition for the Composite
Form (1). Given the Composite Representation (1), it follows from Daniilidis et al. [8, proposition 2.3] that for any
X € §", the equality

dist(X, dom g) = dist(A(X), dom 0), (3)

always holds. This simple, but important, observation from Daniilidis et al. [8] tells us that the required con-
straint qualification for dealing with the Composite Form (1) is automatically satisfied. Moreover, looking closer
into the established theory in Mohammadi et al. [21] and Mohammadi and Sarabi [20] tells us that twice differen-
tiability of the inner function was not required. Indeed, a quadratic expansion will suffice to proceed in both
these publications. Such a quadratic expansion, which is of a parabolic type, is already achieved in Torki [27] for
eigenvalue functions. These open the door for using the approach from Mohammadi et al. [21] and Mohammadi
and Sarabi [20] to study second-order variational properties of spectral functions.

The outline of the paper is as follows. Section 2 recalls important notation and concepts related to the eigen-
value function. In Section 3, we begin with establishing a chain rule for subderivative of the spectral function in
(1). Section 4 is devoted to the study of the parabolic drivability of spectral sets. We will obtain a chain rule for
the parabolic subderivative, which plays a central role in the study of parabolic regularity of spectral functions. It
is also shown that the parabolic subderivative is a symmetric function with respect to a subset of the space of
orthogonal matrices. In Section 5, we demonstrate that the spectral function g in (1) is parabolically regular if and
only if the symmetric function 0 in (1) enjoys this property. As a consequence, we are going to calculate the sec-
ond subderivative of spectral functions when the symmetric functions associated with them are convex. This
allows us to find second-order optimality conditions for a class of matrix optimization problems.

2. Notation
In what follows, X and Y are finite-dimensional Hilbert spaces. By B, we denote the closed unit ball in the space
in question, and by B,(x) := x + B, the closed ball centered at x with radius r > 0. For any set C C X, its indicator
function is defined by 6c(x) =0 for x € C and d¢(x) = co otherwise. We denote by dist(x, C) the distance between
x € X and a set C. For v € X, the subspace {w € X|(w,v) = 0} is denoted by [0]*. We denote by R, (respectively,
R_) the set of nonnegative (respectively, nonpositive) real numbers. Given an n X n matrix Z and index sets
I,] € {1,...,n}, denote by Zj; the submatrix of Z obtained by removing all the rows of Z not in I and all the col-
umns of Z not in J. The matrix Z; is the submatrix of Z with columns specified by I. Particularly, Z; is the i-th col-
umn of Z, and Zj; is the entry of Z at (i, j) position. Denote by Z' the Moore-Penrose generalized inverse of Z.
Finally, the cardinality of the set I € N, where N stands for the set of natural numbers, is denoted by |I|.
Throughout this paper, we denote by R the space of all real n x m matrices and by S" the space of all real
n X n symmetric matrices equipped with the inner product

(X,Yy=tr (XY), X, YeS".

The induced Frobenius norm of X € S" is defined via the trace inner product by ||X]| = \/tr (X?). Given X € S", its
eigenvalues, in nonincreasing order, are denoted by

M(X) = (X)) == A,(X).
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For any vector x = (x1,...,x,) € R", denote by Diag (x), the diagonal matrix whose i-th diagonal entry is x; for any
i=1,...,n. The set of all real n X n orthogonal matrices is denoted by O". It is known that for any X € S”, there
exists an orthogonal matrix U, for which we have

X = U Diag (AX)UT with A(X) := (A1(X), ..., A4(X)). )

For a given matrix X € S”, the set of such orthogonal matrices U is denoted by O"(X). We say that two matrices
X,Y €S" admit a simultaneous spectral decomposition if there exists U € O" such that UTXU and UTYU are
diagonal matrices. The matrices X and Y are said to have a simultaneous ordered spectral decomposition if there
exists U € O" such that U XU = Diag (A(X)) and U" YU = Diag (A(Y)). It is well-known that for any two matrices
X,Y € S", the estimate

IAX) =AWl < [IX =Y, ©)

always holds. Moreover, equality in this estimate amounts to X and Y admitting a simultaneous ordered spectral
decomposition. It is not hard to see that the estimate in (5) amounts to the trace inequality, known as Fan’s
inequality,

(X,Y) < (AX),AY)), X YeS™ (6)
Assume that pi,(X) > ---> p,(X) are distinct eigenvalues of X € S" and define then the index sets
apy={ie{l,... n}Ai(X)=p,(X)} forall m=1,...,r. 7)

Moreover, define ¢;(X) for any i € {1,...,n} to be the number of eigenvalues of X that are equal to A;(X), but are
ranked before A;(X), including A;(X). This integer allows us to locate A;(X) in the group of the eigenvalues of X
as follows:

MX) =2 A > Aimg a1 (X) == Ai(X) 2+ 2 A,(X). 8)

Note that the index sets a,,, present a partition of {1,...,n}, meaning that {1,...,n} =U/, _; a,,. In what follows, we
often drop X from ¢;(X) when the dependence of ¢; on X can be seen clearly from the context. Given an n X n
matrix W, it is not hard to see that for any U € O" and any m =1,...,r, we always have

u;Yrm UWUT uam = W“mam . (9)

This simple observation will often be utilized in Section 5.
The following estimates are an easy consequence of Torki [27, proposition 1.4] (cf. see the proof of Torki [27,
theorem 1.5]) and play a major role in our second-order variational analysis of eigenvalue functions in this

paper.
Proposition 1 (First-Order Expansion of Eigenvalue Functions). Assume that X € S" has the Eigenvalue Decomposition (4)

for some U € O"(X). Let 1, >---> u, be distinct eigenvalues of X. Then, for any H € S" that H— 0 and any i€ {1,...,n},
the estimates

A(X +H) = M(X) + A (U] HU,, + U] H(u, I - X)"HU,,) + O(HIP), (10)
and

M(X +H) = Mi(X) + A (U HU,, ) + O(|H|[*), (11)

Qm
hold, where me {1,...,r} withi € ay,.
Note that the Estimate (11) clearly tells us that the eigenvalue function A,(), i € {1,...,n}, is directionally differ-
entiable at X at any direction H € S”, and its directional derivative A/(X; H) can be calculated by
/\I(X + tH) — /\,(X)
t

M(XH) = ltilr(r)l =Aq (U HU,,), (12)

where m € {1,...,r} with i € a,,. In other words, we have
N(XH) = (AU], HU,,), ..., MU HU,,),
where A(U; HU,,) € R for any m=1,...,r. This observation indicates that both estimates in (10) and (11) are,

indeed, a first-order estimate of eigenvalue function A;(-). To obtain a second-order estimate, we need to repeat a
similar argument for each of the symmetric matrices U; HU,,, for any m € {1,...,r}. To this end, fix m € {1,...,7}
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and observe that U, HU,, € S'*!. Thus, we find Q,, € 0'*!(U] HU,, ) such that
Uz, HUe, = QuA(Uy, HU,, )Q,- (13)
Denote by 5" >--- > . the distinct eigenvalues of U; HU,,, . Similar to (7), define the index sets
i ={ief{l,..., law |} AUy HU,,) = n'} forall j=1,...,p,,. (14)

To state the promised second-order estimate for eigenvalue functions, we need to clarify some of the indices,
appeared therein. To do so, pick i € {1,...,n}, and observe that there is m € {1,...,r} such that i € a,, and that
ti(X) e{1,..., |an|}, where £;(X) is defined by (8). Furthermore, we find j € {1,...,p, } such that £;(X) € ﬁ]m Define
now the integer ¢;(X, H) by

€(X,H) = ly0(UL HU,,),

which, in fact, signifies the number of eigenvalues of U; HU,, that are equal to As,x)(U; HU,,), but are ranked
before Ay, x) (U, HU,,), including A, (U; HU,,). As before, we often drop X and H from ¢;(X,H) when the
dependence of ¢; on X and H can be seen clearly from the context. In summary, for any i € {1,...,n}, there are
me{l,...,r}andje{l,...,p,}, for which we have, respectively,

i€ea, and {;(X)e [3]’” (15)

The following second-order estimate of eigenvalue functions was established in Torki [27, proposition 2.2] and
has important consequences for second-order variational analysis of eigenvalue functions; see also Zhang et al.
[28, proposition 2.1].

Proposition 2 (Second-Order Expansion of Eigenvalue Functions). Assume that X € S" has the Eigenvalue Decomposition
(4) for some U € O"(X) and that H,W € S". Let y, >---> u, be distinct eigenvalues of X. Then, for any t > 0 sufficiently
small and any i€ {1,...,n}, we have

Ai(Y(t) = Mi(X) + tA, (U HU,, )+ %FM Ry " (U (W+2H(u,,I - X)" H)Uy, )Roj) +0(1),

Ay

where Y () := X +tH + 3 *W +o(t?) € 8", and Ryyj := (Qu)gr with Q,, and p;" taken from (13) and (15), respectively, and
where the indices m and j come from (15). /

In the framework of Proposition 2, we can conclude from (12) that for any i € {1, ...,n}, the parabolic second-
order directional derivative of the eigenvalue function A,(-) at X for H with respect to W, denoted A/ (X; H, W),
exists. Recall that the latter concept is defined by
Ai(X+tH +32W) — A(X) — tAU(X; H)

1 ’
2

AY(X; H,W) = lim
tl0

According to Proposition 2, we can conclude further that
AY(XGH, W) = Ap(Ryy " (U (W +2H(p,, I — X)*H)Uam)Rm]«). (16)

Combining these with (12) brings us to the following estimate for the eigenvalue function A(-) from (4), important
for our development in this paper.

Corollary 1. Assume that X € S" has the Eigenvalue Decomposition (4) for some U € O"(X) and that H,W € S". Then, for
any t > 0 sufficiently small, we have

A (X +tH +%t2W + 0(t2)> = A(X) +tA(X;H) + %tz/\”(X; H, W) +o(?). (17)

We proceed with recalling some concepts utilized extensively in this paper. Given a nonempty set C C X with
x € C, the tangent cone T¢(¥) to C at X is defined by

Te(X)={weX|3t |0, wy > w as k — oo with X + fywy € C}.

We say a tangent vector w € T¢(X) is derivable if there exist a constant ¢ >0 and an arc &:[0,¢] — C such that
&(0) =% and &, (0) = w, where &, (0) := limyo[£(t) — £(0)]/¢ signifies the right derivative of & at 0. The set C is
called geometrically derivable at X if every tangent vector w to C at X is derivable. The geometric derivability of C
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at X can be equivalently described by the sets [C — X]/t converging to Tc(X) as ¢ | 0 in the sense of the Painlevé-
Kuratowski set convergence (cf. Rockafellar and Wets [25, definition 4.1]).

Given a function f : X — R, its domain is defined by dom f = {x € X|f(x) < co}. The function f is called locally
Lipschitz continuous around ¥ relative to C C dom f with constant £ > 0 if ¥ € C with f(¥) finite, and there exists a
neighborhood U of ¥ such that

If(x) —f(y)| < {llx—yll forall x,yelUNC.

Such a function is called locally Lipschitz continuous relative to C if it is locally Lipschitz continuous around
every X € C relative to C. Piecewise linear-quadratic functions (not necessarily convex) and an indicator function
of a nonempty set are important examples of functions that are locally Lipschitz continuous relative to their
domains. The subderivative function of f at X, denoted by df(x) : X — R, is defined by

df(0)(@) = lim inf JM

w—wW

When f is convey, its subdifferential at ¥ with f(X) finite, denoted by Jf(x), is understood in the sense of convex
analysis, namely, v € Jf (¥) if f(x) > f(X) + (v,x — X) for any x € X. Given a nonempty convex set C C X, its normal
cones to C at X € C is defined by N¢(¥) = doc(¥). The second-order tangent set to C ¢ X at X € C for a tangent vec-
tor w € Tc(x) is given by

1
TZ(X, w) = {uexmtkw, U —u as k— oo with f+tkw+§t,’§‘ukec}. (18)

A set C is called parabolically derivable at ¥ for w if T2(X,w) is nonempty, and for each u € T2(x,w), there are ¢ > 0
and an arc & : [0,¢] — C with £(0) =%, &,(0) = w, and &7(0) = u, where &7(0) := limyo[&(F) — £(0) — & (0)] /5. Tt is
known that if C is convex and parabolically derivable at ¥ for w, then the second-order tangent set TA(¥,w) is a
nonempty convex set in X (cf. Bonnans and Shapiro [3, p. 163]). Below, we record a simple characterization of para-
bolic derivability of a set, used extensively in our paper.

Proposition 3. Assume that C ¢ X, X € C, and w € T¢(X). Then, the following are equivalent:
a. Cis parabolically derivable at X for w;
b. Forany u € TA(X, w), we find ¢ > 0 such that

Y+tw+%t2u+o(tz) eC forall te[0,e].

Proof. If (b) is satisfied, one can define &(t) =X + tw + 3 2u + o(t?) for any ¢ € [0, €] with ¢ taken from (b). It is easy
to see that £(0) =%, &,(0) = w, and &7/ (0) = u, which confirm (a). Suppose that (a) holds and then pick u € T2(X, w).
Because C is parabolic drivable at X for w, we find ¢ > 0 and an arc & : [0,e] — C such that £(0) =¥, &, (0) = w, and
&7(0) = u. Set u(t) = (&(t) — &(0) — t&,(0))/ 312 for any t € [0, €]. It follows from &7(0) = u that u(t) —» u as t | 0. By
the definition of £/(0), we get

E0)+ ££1,0) + 5 Pult) = £ € C.
One other hand, one can express £(t) equivalently as
&(t) = &(0) +££,.(0) +%t2u +o(t) with o(t) := %tz(u(t) —u).
Clearly, we have o(t) = o(t?), which proves (b) and, hence, completes the proof. [

3. Subderivatives of Spectral Functions

In this section, we present two important results about the spectral functions, central to our developments in this
paper. The first one presents a counterpart of the estimate in (3) for symmetric functions in Proposition 4. The
second one presents a chain rule for the subderivative of spectral functions in Theorem 1. To state the former
about symmetric functions, recall that a function 0 : R" — R is called symmetric if for every x € R" and every n X n
permutation matrix Q, we have 6(Qx) = 6(x). Recall also that Q is a permutation matrix if all its components are
either 0 or 1 and each row and each column has exactly one nonzero element. We denote by P" the set of all n X n
permutation matrices. As pointed out before, for any spectral function ¢ : S — R, there exists a symmetric function
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0:R" — R satisfying (1). Indeed, O can be chosen as the restriction of g to diagonal matrices, namely,
O(x) = g(Diag (x)) forall xeR". (19)

A set C c S" is called a spectral set if ¢ is a spectral function. Likewise, ©® c R" is called a symmetric set if dg is a
symmetric function. Similar to (1), it is easy to see that for any spectral set C C S”, there exists a symmetric set

® c R” such that
C={XeS"AX) e®}, (20)

where © can be chosen as
® = {x e R"|Diag (x) € C}. (21)
The Composite Forms (1) and (19) readily imply, respectively, that
dom ¢ ={X € S"|A(X) edom 6} and dom 6 = {x € R"|Diag (x) € dom g}. (22)

Next, we are going to justify a similar estimate as (3) for domains of symmetric functions, which allows us to
show via the established theory for composite functions in Mohammadi and Sarabi [20] that second-order varia-
tional properties of spectral functions are inherited by symmetric functions.

Proposition 4. Let ¢: S" — R be a spectral function, represented by (1). Then, for any x € R", we have
dist(x, dom 60) = dist(Diag (x), dom g), (23)
where O is taken by (1).

Proof. For any x € R", we know that there exist a permutation matrix P € O" such that A(Diag (x)) = Px. Because
0 is a symmetric function, dom 0 is a symmetric set. Thus, for any X € dom g, we have PTA(X) € dom 6. This,
coupled with (5), leads us to

[Diag (x) — X]| = [[A(Diag (x)) = A = [[Px = AX)|
=|lx — PTA(X)|| > dist(x, dom 0),
for all X € dom g, which, in turn, brings us to
dist(x, dom 0) < dist(Diag (x), dom g).
To prove the opposite inequality, pick any y € dom 6. By (22), we get Diag (y) € dom g, which implies that
|lx — y|l = ||Diag (x) — Diag (y)|| > dist(Diag (x), dom g).
Combining these clearly justifies (23). O

Note that the identity in (3) allows us to show that second-order variational properties of a symmetric function
0 from (1) are disseminated to the spectral function g. Appealing to (23), we will show in the coming sections
that those variational properties of the spectral function g are inherited by the symmetric function 6 from (1).
This will be achieved by using the second-order variational theory in Mohammadi and Sarabi [20] for the Com-
posite Form (19). Note also that the results in Mohammadi and Sarabi [20] were proven under a constraint quali-
fication, which is similar to (2). According to (23), such a constraint qualification automatically holds for the
Composite Form (19). Moreover, the inner mapping x + Diag (x) in this composite form is twice continuously
differentiable, which allows us to exploit the results in Mohammadi and Sarabi [20] and Mohammadi et al. [22].

Proposition 5. Let ¢: S" — R be a spectral function, represented by (1), and let the symmetric function 0, taken from (1),
be locally Lipschitz continuous relative to its domain. Then, for any X € S" with g(X) finite and any v € R", we have

dO(A(X))(v) = dg(Diag (A(X)))(Diag (v)). (24)
In particular, if § = 6c, where C C S" is a spectral set, then we get for any X € C that
Te(A(X)) = {v € R"|Diag (v) € Tc(Diag (A(X))}, (25)
where © is taken from (20).

Proof. It follows from (1) that the symmetric function 0 satisfies (19), which means that & can be represented as a
composite function of g and the linear mapping x — Diag (x) with x € R". We also deduce from the imposed
assumption on 0 and the inequality in (5) that g is locally Lipschitz continuous relative to its domain. This,
together with (23) and Mohammadi et al. [22, theorem 3.4], justifies (24). To justify (25), recall the representation
© from (21), which can be equivalently expressed as dg(x) = 0c(Diag (x)) for any x € R". The claim equality in
(25) results from (24) and the fact that dO(A(X)) = 67,(1(x)) and dg(Diag (A(X))) = 1 Diag(1(x))- T
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Remark 1 (Symmetric Property of Subderivatives). If 6: R" — R is a symmetric function and X € §" with 6(A(X))
finite, one may wonder whether the subderivative d9(A(X)) is a symmetric function. This can be easily disproven
by taking 0 =0g» and X €S" such that all its eigenvalues are not the same; see Example 1 for more details.
Although this may seem disappointing, we can show that dO(A(X)) is a symmetric function with respect to a sub-
set of P". Indeed, assume that P is the set of all n X n block diagonal matrices in the form Q = Diag (P4, ...,P;),
where P, € R!®XIanl js 3 permutation matrix for any m =1,...,r with a,, taken from (7) and r being the number
of distinct eigenvalues of X. It is clear that P} c P" and that if Q € P}, then we have QA(X) = A(X). Moreover, for
any v € R" and Q € P}, we get

dO(A(X))(0) = lim ionfGWX) + ) — O(A(X))

t
i inf O(A(X) +tQv") — O(A(X))
S0, !
> lirtnl %nf OA) + tu;) — X)) _ dO(A(X))(Qo).
w— Qu

Because Q! =Diag (P;},...,P, 1), we can show similarly that d6(A(X))(v) < dO(A(X))(Qu) for any v e R" and
Q € P}, which leads us to

dOA(X))(0) = dOA(X))(Qu) forall veR", Qe P,

demonstrating that d9(A(X)) is a symmetric function with respect to P%.
We proceed by proving a chain rule for subderivatives of spectral functions. We begin with recalling a useful
characterization of the subdifferential of the spectral functions.

Proposition 6. Assume that 0 : R" — R is a proper, lower semicontinuous (Isc), convex, and symmetric function. Then,
the following properties are equivalent:
a. Yed(0oA)X);
b. A(Y) € dO(A(X)) and the matrices X and Y have simultaneous ordered spectral decomposition, meaning that there exists
U e O"(X) N O"(Y) such that
X=UAX)U" and Y=UAMUT,

where A(X) = Diag (A(X)) and A(Y) = Diag (A(Y)).

Proof. It follows from Borwein and Lewis [4, corollary 5.2.3] that 0 o A is Isc and convex if and only if 0 is Isc and
convex. The claimed equivalence then results from Borwein and Lewis [4, theorem 5.2.4]. O

Given a matrix X € S" with r distinct eigenvalues and the index sets a,,, m=1,...,r, from (7), recall that
U @y ={1,...,n}. In what follows, we partition a vector p € R" into (p,,,...,Ps,), where p,, € Rl for any
m=1,...,r.

Theorem 1 (Subderivatives of Spectral Functions). Let O : R" — R be a symmetric function and let X € S" with (6 o A)(X)
finite. If O is either Isc and convex with dO(A(X)) # 0 or locally Lipschitz continuous around A(X) relative to its domain,

then for all H € S", we have
d(6 0 A)(X)(H) = dO(AX))(A'(X; H)). (26)

Proof. Pick any H € S" and deduce from Proposition 1 that A’(X;.) is a Lipschitz-continuous and positively
homogeneous function. Moreover, we have A'(X;E) + O(P||E|*)/t = A'(X;H) as t | 0 and E — H. This and the
definition of subderivative give us the relationships
O(AMX +tE)) — O(A(X))

t

d(0 0 MYX)(H) = lim inf
E—H

O(A(X) + A (XGE) + O(P|EIP)) — O(A(X))

= lim inf
tL0 t
E—H
1. 2
<l 2AC0 O+ OFER) 1)~ 0000

E—H

> dO(A(X))(A'(X; H)), (27)
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which verify the inequality “>" in (26). To justify the opposite inequality in (27), observe that if dO(A(X))
(A (X;H)) = oo, the latter inequality clearly holds. Thus, assume that dO(A(X))(A"(X; H)) < oco. If 0 is Isc and con-
vex, 0o A is Isc and convex due to Borwein and Lewis [4, corollary 5.2.3]. Moreover, it follows from Lewis [18,
theorem 6] and d0(A(X)) # 0 that (6 o A)(X) # 0. Thus, it follows from Rockafellar and Wets [25, theorem 8.30]
that d(6 o A)(X)(H) = supyygonx)(Y,H)- Let ¢ > 0 and choose Y € d(6 o A)(X) such that

d(6 0 V) (X)(H) < e+(Y,H).

Because Y € J(0 o A)(X), it follows from Proposition 6 that there is U € O"(X) N O"(Y) such that A(Y) € d0(A(X)).
Set A(Y) := UTYU and use Fan's inequality to conclude

d(@ o N)X)(H) < e +(Y,H) = e +{(A(Y),U'HU) = ¢ + Xr:(A(Y)

m=1

U, HUa,)

Qo Q7

< e+ (A, AU HU,,))

m=1
= ¢+ {(A(Y), N (X;H))
< e +dOAX)) (V' (X; H)),

where the last inequality results from the fact that 0 is convex and A(Y) € dO(A(X)). Letting ¢ | 0, we get the
opposite inequality in (27), which proves (26) in this case. Suppose now that 0 is locally Lipschitz continuous
around A(X) relative to its domain. To prove the opposite inequality in (27), by definition, there exist sequences
tr | 0 and vy — A’ (X; H) such that

OMX) + tvg) — O(A(X))

t '
Because dO(A(X))(A'(X; H)) < co, we can assume without loss of generality that A(X) + t;v € dom O for all k € N.
Take the function g from (1) and appeal to (3) to get

dist(X + tyH, dom g) = dist(A(X + #,H), dom 6), keN,

dOAX)(V'(X; H)) = lim (28)

which, in turn, brings us to the relationships

dist (H d"mtg_x> - tl dist(A(X) + (A’ (X, H) + O(t2), dom 0)
k k

1 ,
< IA(X) + tA (X, H) + O(£7) — A(X) — tivl

2

O(t
N(XGH) — o + Ek) for all keN.
k

So, for each k € N, we find a matrix E; € S” such that X + t;E; € dom g and
O(t2)
tr

1

|IH — Eil| < ||A(X;H) — vy + i

which, in turn, yields Ex — H as k — co. Combining these with (28) and (11), we arrive at

8(X +tHEy) — g(X) N OA(X) + o) — O(AMX + tkEk))]
ty fr

dOAX)(NV (X; H)) = lim

> lim infg(X i) =X K lim AKX+ BE) = AX) ka
k—0c0 tk k—o0 tk
Al o(t)
> dg(X)(H) —  Jim | ' (:EQ) + 1) — oy = dg(0)(H),
—00 k

where x >0 is a Lipschitz constant of 0 around A(X) relative to its domain. This verifies the inequality “<” in
(26) and completes the proof of the theorem. O

As an immediate conclusion of Theorem 1, we obtain a simple representation of tangent cones to spectral sets.
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Corollary 2 (Tangent Cone to the Spectral Sets). Let C be a spectral set represented by (20). Then, for any X € C, we have
Tc(X) ={H € S"|A(X; H) € Te(A(X))}.

Proof. Taking the symmetric set ® from (20), we can apply Theorem 1 for the symmetric function dg. The
claimed representation of the tangent cone to C at X follows from the facts that doe(X)= 07 (x) and

doe(MX)) = 0rg(i(x)- O

Example 1 (Tangent Cone to S"). Suppose that S” stands for the cone of all n X n symmetric and negative semide-
finite matrices. This cone is a spectral set, and

S" = {X e S"|A(X) €eR"}.

Take X €8" and assume that p; >---> p, are its distinct eigenvalues. If y; < 0, then we clearly have A(X) €
int R" and, hence, Tr: (A(X)) = R". Using this, together with Corollary 2, we get Tg: (X) = S". If u, =0, then we
obtain Tgr (A(X)) = RI*l x R"~1%1/, where a; is defined by (7). Appealing to Corollary 2 tells us that

Ts (X) = {H € S"|\(U], HU,,) < 0}, (29)

where U is taken from (4).

The tangent cone description for the set 8" in (29) can be alternatively obtained by Bonnans and Shapiro [3,
proposition 2.61]. Indeed, it is easy to see that §” = {X € §"|11(X) < 0}, in which A; is known to be a convex
function (cf. Rockafellar and Wets [25, exercise 2.54]). Obviously, we can find X € §" with A;(X) < 0, a condition
known as the Slater condition and assumed in Bonnans and Shapiro [3, proposition 2.61]. In contrast, our
approach relies upon the metric subregularity, automatically satisfied for spectral sets. This allows us to calculate
the tangent cone of spectral sets, even if the Slater condition fails therein, as the following example demonstrates.

Example 2 (Failure of the Slater Condition in Spectral Sets). Assume that k € N and consider the set

Xn: X)) =1 } (30)
i=1

This is clearly a spectral subset of S”. When k = 1, the set C is called spectahedron. Note that C can be represented
in the form of (20) with the symmetric set © defined by

Cz{XeSZ

0= {(zl,...,zn)eRn

szzl,ziZOforall ie{l,...,n}}. (31)

i=1
Set d(z) = (>, zf —1,z1,...,zy) withz = (z1,...,2z,) and D = {0} X R} and observe that
®={zeR"|D(z) € D}. (32)
We claim now that
Np(®(z)) N ker VO(z)" = {0}, (33)

for any z€®. To justify it, pick z=(z1,...,2,) €O and assume that (by,...,b,) € Np(D(z)) Nker VO(z)". This
implies that b;z; =0 and sz.‘*lbo +b; =0 for any i=1,...,n. It is not hard to see that these conditions lead us to
b;=0foranyi=0,...,n, which proves our claim. Take X € C and define the active index set [(A(X)) ={ie {1,...,n}
|Ai(X) = 0}. It follows from Rockafellar and Wets [25, theorem 6.14] and (33) that the tangent cone to © at A(X) can
be calculated as

To(A(X)) = {(wl,...,wn) eR"

n
> wAlN(X)=0, w2 0forallie I(/\(X))}.

i=1

Appealing to Corollary 2 tells us that

Te(X) = {H €s”

z”: A(GH)ARY(X) =0, AU(X;H) 2 0 forall i € I(/\(X))}. (34)

i=1

Note that, due to the presence of the equality constraint, the Slater condition fails for C, and, thus, Bonnans and
Shapiro [3, proposition 2.61] can’t be applied.
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4. Parabolic Epi-Differentiability of Spectral Functions

The main objective of this section is to provide a systematic study of two important second-order variational
properties of spectral sets and functions: (1) parabolic derivability; and (2) a chain rule for parabolic subderiva-
tives. To achieve these goals, we begin with justifying that certain second-order approximations of spectral sets
enjoy an outer Lipschitzian property, which is central to our developments in this section. Suppose that C € " is
a spectral set with the representation in (20) and that X € C and H € T¢(X). Define the set-valued mapping Sy :
R" = S" via the second-order tangent set to the symmetric set © in (20) by

Su(p) :=={W € S"|A"(X;H,W) +p € TA(A(X),A'(X; H))}. (35)

For any parameter p € R”, the set-valued mapping Sp(p) presents a second-order tangential approximation of the
Spectral Set (20) at X for H. Note that by Corollary 2, the condition H € T¢(X) amounts to A'(X; H) € Te(A(X)),
which is required in the definition of the second-order tangent set to ® at A(X) in (35); see (18). Note also that
reducing the Estimate (3), which was stated for the spectral function in (1), to the spectral set C in (20) gives us
the estimate

dist(X, C) = dist(A(X),®) forall XeS", (36)
which will be utilized broadly in this section.

Proposition 7 (Uniform Outer Lipschitzian Property of Sy;). Assume that C C S" is a spectral set with the Representation
(20) and that X € C and H € Tc(X). Then, the mapping Sy in (35) enjoys the following uniform outer Lipschitzian property
at the origin:

Su(p) € Su(0) +||pl|B forall p e R". (37)

Proof. Let p € R" and pick then W € Sy(p). It follows from (35) that A”(X; H, W) +p € T3(A(X),A'(X; H)). By (18),
there exists a sequence #; | 0 such that

AX) + A (X H) + = tk/\”(X H,W)+= t Zp+o(t7) €® forall keN.
For any k sufficiently large, we conclude from (17) that

/\(X+ tkH+%t2 > AX) + A (X H) + - tz)\”(X H, W) +o(t2),
which, in turn, implies via (36) that

dist <X +tH+ %tﬁw, C> = dist ()\ (X +HH + %tiW),@) E|pll + o(t3).

l\JlH

This ensures the existence of a matrix Y} € C such that

o(t 2) . X+HH+5 t2W Yk
1Dl < <||P||+ 2 ) with Dy := t2

k

Passing to a subsequence, if necessary, ensures the existence of D € §" such that Dy — D as k — co. This yields
the estimate

1
IDIF < 5 lipll (38)

It follows from X + tH +382W — 2D = Y € C and (20) that A (X + tH +38W — £2Dy) € ©. Taking into account
(17), we get for any k € N sufficiently large that

1 1
A <X +HH + Etiw = tka) =AX) +HA (X, H) + Eti)\"(x,- H,W —2D)+0(t) € ®.
By the definition of the second-order tangent set, we arrive at

A(X; H,W — 2D) € TA(A(X), A(X; H)),

which yields W — 2D € Sy(0). This, combined with (38), justifies the claimed inclusion in (37) and thus completes
the proof. O
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The outer Lipschitzian property for second-order tangential approximations appeared first in Mohammadi
et al. [21, theorem 4.3] for sets C as the one in (20) with the eigenvalue function A(-) replaced with a twice differ-
entiable function, under an adaptation of the Constraint Qualification (2) for this setting. Proposition 7 demon-
strates that the latter result can be achieved without the assumed twice differentiability in Mohammadi et al. [21]
when we still have a second-order expansion for functions in our settings.

Next, we are going to achieve a chain rule for second-order tangent sets of spectral sets, which heavily relies
upon Proposition 7. First, we recall Mohammadi et al. [21, theorem 4.5], where a similar result was proven for
constraint systems in finite dimensional Hilbert spaces.

Proposition 8. Let D be a closed subset of Y and let QO = {x € X|D(x) € D}, where ® : X —Y is a twice differentiable func-
tion between two Euclidean spaces, and X € Q). Suppose further that there are x > 0 and & > 0 such that the estimate

dist(x, Q) < x dist(P(x), D) forall x € B.(X), (39)
holds. Then, for all w € Tq(X), we have

T2 (%, w) = {u € X|VO(X)u + V2O(X)(w,w) € T3 (P(X), VO(X)w)}. (40)

If, furthermore, the set D is parabolically derivable at ®(X) for VO(X)w, then the constraint set Q) is parabolically derivable
at X for w.

Proof. The equality in (40) was justified in Mohammadi et al. [21, theorem 4.5] under an extra assumption that the
set D is regular in the sense of Rockafellar and Wets [25, definition 6.4]; see Gfrerer et al. [15, proposition 5] for an
extension of Mohammadi et al. [21, theorem 4.5] without the regularity assumption on D. Note that the directional
metric subregularity used in Gfrerer et al. [15, proposition 5] is weaker than (39) in general. However, it was shown
in Gfrerer and Outrata [14, lemma 2.8(ii)] that metric subregularity at any direction is equivalent to (39).

To prove parabolic derivability of Q at X for w, pick u € T2 (X, w). It follows from the proof of Gfrerer et al. [15,
proposition 5] that there is a positive constant ¢ such that

- (41)

dist <u, m) < ¢ dist <VCD(x)u +V20() (w0, w), 2= D) = N‘D(Y)w> L)
2

1 2 7
1p t

for any t sufficiently small that t | 0. Because u € T2 (¥,w), we conclude from (40) that V®(x)u + V*®(x)(w, w) €
T2(P(X), VO(X)w), which together with parabolic derivability of D at ®(¥) for VO(X)w implies via Rockafellar and
Wets [25, corollary 4.7] that

D — ®(F) — (VDE)w
ot?

dist (V(D(Y)u + V2O(X)(w, w), > —0 and t|0.

This, coupled with (41), confirms that for any sufficiently small ¢, there exists u(t) € (Q — X — tw)/ %tZ such that
u(t) > uast | 0. Define the arc &(t) := —X + tw + 1 2u(t) and observe that &(0) =%, &, (0) = w, and &7(0) = u. To fin-
ish the proof, we need to show that T2 (X, w) # 0, which was already established in Gfrerer et al. [15, corollary 1]
under the metric subregularity condition in (39). Combining these confirms that (2 is parabolically derivable at X
for w and, hence, completes the proof. O

Theorem 2 (Second-Order Tangent Sets of Spectral Sets). Assume that C C S" is a spectral set with the representation in
(20) and that X € C and H € Tc(X). Then, we have

TA(X,H) ={W e S"|\"(X; H,W) € T5(A(X), \'(X; H))}, (42)

where © is taken from (20). Moreover, the following properties are satisfied.

a. If the symmetric set © is parabolically derivable at A(X) for A’ (X; H), then C is parabolically derivable at X for H.

b. If the symmetric set C is parabolically derivable at X for any H € Tc(X), then © is parabolically derivable at A(X) for
any v € Te(A(X)).

Proof. First note from Corollary 2 that the condition H € T¢(X) amounts to A'(X;H) € To(A(X)). Let We S".
Employing (36) and (17) tells us that for any ¢ > 0 sufficiently small, we have

dist (X +tH + %tZW, c) = dist </\ <X +tH + ;tZW>,®>

= dist (/\(X) +tA (X;H) + % A (X;H, W)+ o(t?), @) . (43)
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Take W € TA(X,H). By (18), there exists a sequence f | 0 such that X+ tH +32W +0(£}) € C. By (43), we get
AX) + A (X H) +381(X; H, W) +0(£2) € ©, which clearly demonstrates that A”(X;H, W) € TA(A(X), A'(X; H))
and thus proves the inclusion “C” in (42). The opposite inclusion in (42) can be established via a similar argu-
ment and (43), which proves the claimed representation of the second-order tangent set to C in (42).

To prove (a), suppose that the symmetric set © is parabolically derivable at A(X) for A"(X; H). To justify the
same property for C at X for H, pick W € T4(X, H). By (42), we obtain A" (X; H, W) € T3 (A(X), A’(X; H)). Because ©
is parabolically derivable at A(X) for A’(X; H), we conclude from Proposition 3 that there exists ¢ > 0 such that for
all t € [0, €], we have

1
AMX) +tA (X H) + Etz)\"(X;H, W) +0(t*) € ©.
Reducing ¢ > 0 if necessary, pick t € [0, ¢] and conclude from (43) that X + tH + *W + o(t?) € C. Defining the arc
&:[0,e] > C by &(t)=X+tH+IPW+o(t?) for te[0,e], we can readily see that &(0)=X, &, (0)=H, and
&7(0) = W. To finish the proof of parabolic derivability of C at X for H, it remains to show that TA(X, H) # 0. To

this end, pick Z € S" and y € T3 (A(X), A'(X; H)). In fact, such y exists because © is parabolic derivable at A(X) for
A (X; H). Therefore, we have

N(X;H,Z)+p e TAAMX), N (X;H) with p:=y—A"(X;H,Z),
which can be equivalently expressed as Z € Sy(p) via the mapping Sy in (35). Appealing to Proposition 7 and the
established outer Lipschitzian property in (37), we find a matrix W € Sy(0) such that ||Z — W|| < ||p||. This tells us that
N'(X;H, W) € TE(A(X), A (X; H)).
Using the Chain Rule (42) leads us to W € TA(X, H), and thus T%(X, H) # 0. This shows that C is parabolically
derivable at X for H, and thus proves (a).

Turning into the proof of (b), observe first that ® can be represented as the Constraint System (21). Adapting
the estimate in (23) for the latter constraint system gives us the estimate

dist(x, ®) = dist(Diag (x),C) for all x € R".

This, together with twice differentiability of the mapping x +— Diag (x) with x € R", allows us to conclude from
(40) that for any v € Tg(A(X)), we always have

w € T3 (A(X),v) = Diag (w) € TA(Diag (A(X)), Diag (v)).

To justify (b), pick v € Te(A(X)). We are going to show that © is parabolically derivable at A(X) for v. According
to Proposition 8, this will be ensured, provided that C is parabolically derivable at Diag (A(X)) for Diag (v).
Because C is a spectral set, it is easy to see that

W € T%(Diag (A(X)), Diag (v)) = UWU" € TA(X, U Diag (v)U"), (44)

where U is taken from (4). Moreover, it follows from v € Te(A(X)) and Proposition 5 that Diag (v) € Tc
(Diag (A(X))), which tells us that U Diag (v)U" € T¢(X). By assumption, we know that C is parabolically deriv-
able at X for U Diag (v)U". This, combined with (44), confirms that C is parabolically derivable at Diag (1(X)) for
Diag (v). To justify this claim, take W € TA(Diag (A(X)), Diag (v)). By (44), parabolic derivability of C at X for
UWUT, and Proposition 3, we find ¢ > 0 such that for all t € [0, ¢], the inclusion

1
X + tU Diag (0)U" + §t2UWUT +o(f?) eC,

is satisfied. It follows from C being a spectral set and the latter inclusion that
Diag (A(X)) +t Diag (v) + %tZW +0(t*) = UT XU + t Diag (v) + %tzw +o(t?)eC forall te[0,¢].

Because W € T%(Diag (A(X)), Diag (v)) was taken arbitrarily, we conclude from Proposition 3 that C is paraboli-
cally derivable at Diag (A(X)) for Diag (v). Employing now Proposition 8 proves that © is parabolically derivable
at A(X) for v and, hence, completes the proof. O

Example 3 (Second-Order Tangent Set to S"). In the framework of Example 1, we are going to calculate the
second-order tangent set to S” at X € S" for any H € Tg (X). To this end, we deduce from Theorem 2 that

Tg: (X, H) ={W € S"|A”(X; H,W) € Tg: (A(X), A" (X; H))}.
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It follows from Rockafellar and Wets [25, proposition 13.12] that R" is parabolically derivable at A(X) for
A (X; H), which together with Theorem 2 implies that S” enjoys the same property at X for H. Moreover, we
deduce from Rockafellar and Wets [25, proposition 13.12] that

Tre (AX), N (X; H)) = Try (0 (A (X H)). (45)

If u, <0, we have A(X) €int R". This implies that Tg: (A(X)) = R", which together with (45) yields T%. (A(X),
AN (X;H)) =R" and thus Té,, (X,H) = S". Now, assume that i, =0. According to Example 1, we have Tr: (A(X)) =
R!4l x R"™ 141 where o is defined by (7). To proceed, because H € T (X), we need by (29) to consider two

cases: (1) /\1(UT HU,,) < 0;and (2) A1(U,; HU,,) = 0. If the former holds, we obtain
T (1) (A (G H)) = Ty o101 (A (X; H)) = R”,
which together with (45) brings us again to Ta. (A(X), A'(X; H)) = R" and, thus, Té,, (X, H) S". If the latter holds,

denote by 1)1 > > r] the distinct elgenvalues of U] HU,, and take the index set ﬁl from (14). Recall that
| [31| < |aq]. Usmg thls, we obtain

Tty 1) (A G H)) = Tgien iy 101 (A (G H)) = RIBTx R 1AL
This, combined with (16) and (45), leads us to
T% (X, H) = {W € §"| A" (X; H,W) € RIFil x R~ 111}
={W € S"| A(Ryy " (U, (W — 2HX"H)U,,)Ry1) < 0},

where Ry; = (Ql)ﬁl is taken from Proposition 2. We should point out that the second-order tangent set to S” was
calculated by finding the parabolic second-order directional derivative of the maximum eigenvalue function in
Bonnans and Shapiro [3, p. 474]; see also Zhang et al. [28, p. 583] for a different derivation of this object.

In the next example, we obtain the second-order tangent set to the spectral set defined in (30). Note again that

whereas obtaining such result by Bonnans and Shapiro [3, proposition 3.92] requires the Slater condition, our
approach shows that no constraint qualification is needed for this purpose.

Example 4. Let C be the spectral set in (30) and X € C. Given H € T¢(X), we aim to determine TA(X, H) using The-
orem 2. We know from Example 2 that C has the spectral representation in (20) with the symmetric set © defined
by (31). Moreover, we showed that ® can be equivalently described as the constraint set in (32) with ®(z) =
0y zi-‘ —1,z) for all z=(zy,...,z,) € R". We deduce from Rockafellar and Wets [25, proposition 13.13] that w
T2(A(X), A’ (X;H)) if and only if we have

VO(AX))w + VO(AX))(A'(X; H), A’ (X; H)) € Tigpge (PAX)), VO(AX))(A'(X; H))). (46)
Using the index set I(A(X)) taken from Example 2, define the index set
I(A(X), V(X H)) := {i € (A(X))|A{(X; H) = 0},
and conclude then from Rockafellar and Wets [25, proposition 13.12] that
Tfopars (PAX)), VO (X; H))) = T,y @20 (VR(AX)(A' (X; H)))
={(wo,...,wy)|wy=0,w; >0 forall iel(AX),A(X;H))}
This, coupled with (46), yields (w1, . .., w,) € T3(A(X), A'(X; H)) if and only if w; > 0 for all i € I(A(X), A"(X; H)) and

ZH: A0 w; + (k— 1)zn: L(X)F2AUX;H) = 0.
i=1 i=1

Appealing now to Theorem 2, we conclude that C is parabolically derivable at X for H and that W € TA(X, H) if
and only if A}(X; H,W) > 0 for all i € [(A(X), A"(X; H)) and

n n
S ATIAYCGH, W) + (k= 1)) (X0 PAUXHY =0.
i=1 i=1
Note that when k = 1 for which C reduces to the spectahedron, the above equation simplifies as > ; A7 (X;
H,W)=0.
We proceed with characterizing parabolic epi-differentiability of spectral functions. We begin with recalling
the concept of the parabolic subderivative, introduced by Ben-Tal and Zowe [2]. Let f : X — R and let ¥ € X with
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f(¥) finite and w € X with df (x)(w) finite. The parabolic subderivative of f at X for w with respect to z is defined by
f(x +tw+322) — f(X) — tdf (%) (w)

1
ot

d*f(®@)(w|z) == nrﬂ 5nf

’

zZ =z

Recall from Rockafellar and Wets [25, definition 13.59] that fis called parabolically epi-differentiable at X for w if
dom d*f(x)(w|) = {z € X|d*f (X)(w|2) < oo} %0,
and for every z € X and every sequence #; | 0 there exists a sequences z; — z such that

f(X +bw +3t7zi) —f(X) — bdf (%) (w)
ot '

d*f (@) (w|z) = lim (47)
We say that f is parabolically epi-differentiable at ¥ if it satisfies this condition at X for any w € X where df (x)(w)
is finite. Note that the inclusion dom df(x) C Tqomf(X) always holds, and equality happens when, in addition, fis
locally Lipschitz continuous around X relative to its domain; see Mohammadi and Sarabi [20, proposition 2.2]. A
list of important functions, appearing in different classes of constrained and composite optimization problems,
that are parabolically epi-differentiable at any points of their domains can be found in Mohammadi and Sarabi
[20, example 4.7]. By definition, it is not hard to see that the inclusion

dom d* (®)(w|-) € T3, ,.+(X, w), (48)

omf

always holds for any w € Tqomf(X). The following result, taken from Mohammadi and Sarabi [20, propositions 2.1
and 4.1], presents conditions under which we can ensure equality in the latter inclusion.

Proposition 9 (Properties of Parabolic Subderivatives). Let f : X — R be finite at X, locally Lipschitz continuous around X
relative to its domain, and parabolic epi- ;ﬁerentiuble at X for w € Tyomf(X). Then, the following properties hold.

a. dom df(x) = Tgoms(¥) and dom df (x)(w|.) = bemf(f, w).

b. dom f is parabolically derivable at X for w.

The next result presents sufficient conditions under which spectral functions are parabolically epi-differentiable.
Moreover, it achieves a useful formula for parabolic subderivatives of this class of functions.

Theorem 3 (Parabolic Subderivatives of Spectral Function). Let 6 : R" — R be a symmetric function, which is locally
Lipschitz continuous relative to its domain. Let X € S" with (0 o A)(X) finite. Then, the following properties hold.
a. IfH € Tyom (900)(X) and O is parabolically epi-differentiable at A(X) for A’ (X; H), then O o A is parabolically epi-differentiable
at X for H, and its parabolic subderivative at X for H and its domain can be calculated, respectively, by
d*(0 0 MX)(H|W) = d0A))A (X H) A" (X; H, W), (49)
and

dom d*(6 0 A)(X)(H|.) = Tiom o) (X, H). (50)

Moreover, if O is Isc and convex, the parabolic subderivative W +— d?(6 0 A)(X)(H|W) is a convex function.
b. If 0 o A is parabolically epi-differentiable at X, then O is parabolically epi-differentiable at A(X).

Proof. To justify (a), we proceed concurrently to show that 0 o A is parabolically epi-differentiable at X for H and
that (49) and (47) hold for 6o A. To this end, set ¢:= 60 A and pick W e S" and proceed with considering two
cases. Assume first that W ¢ T3 g(X, H). Employing the inclusion in (48) for g, we get dzg(X) (H|W) = c0. On the
other hand, by (22) and Theorem 2, we obtain

Tiomg X, H) = {W € S"| A" (X; H, W) € T3, (A(X), ' (X; H))}. (51)

This, combined with W& T3 g(X, H), yields A" (X;H,W) & T3 ,,s(A(X), A"(X; H)). Observe from Corollary 2 and
(22) that H € Tgomg(X) amounts to A’ (X; H) € Tqomo(A(X)). By Proposition 9(a), we arrive at

dom d*6(A(X))(A(X; H)|-) = Tiom o(A(X), A’ (X; H)). (52)

Combining these tells us that d*0(A(X))(A"(X;H)|A”(X; H,W)) = co, which, in turn, justifies (49) for every
W e T3 (X, H). To verify (47) for g in this case, consider an arbitrary sequence t; | 0, set Wy := W for all k€ N,

omg
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and observe that

(X + teH + 55 We) — 8(X) — tdg ()W)

0 = dg(X)(H|W) < lim ionfg >

This clearly justifies (47) for all W & T3 (X H).

Turning now to the case W e T g(X H) we observe that because 6 is parabolically epi-differentiable at A(X)
for A’(X; H), Proposition 9(b) tells us that dom 6 is parabolically derivable at A(X) for A’(X; H). We conclude from
Theorem 2(a) that dom g is parabolically derivable at X for H. In particular, we have

domg(X H) # 0. (53)
Pick now W e T3 . (X,H) and consider then an arbitrary sequence f; | 0. Thus, by the definition of parabolic
derivability, we find a sequence Wy — W as k — oo such that

X=X+ HH+ %tiwk =X+HH+ %tgw +o(tf)edomg forall keN. (54)

Moreover, because 0 is parabolically epi-differentiable at A(X) for A'(X;H), we find a sequence wy — w:=
A(X; H, W) such that

d*OAX)(N (X H) |w) =

G(A(X) + 1A (X;H) + 3 tzwk) — 0(A(X)) — tdOA(X))(A'(X; H))
. 1t2

It follows from (51) and We T3 (X H) that we T3, o(A(X), A" (X; H)) Combining this with (52) tells us that
d?O(A(X)) (A (X;H)|w) < co. This 1mphes that v := A(X) + 4A'(X; H) + 3 2w € dom O for all k sufficiently large.
Using this together with (26), (54), and (17), we obtain

d2g(O(HIW) < lim ingS B+ 35 Wi) — 800 — tedg (X (H)

o i
- h; sup g(X+tH+ %fiwkz)l]:; 2(X) — tdg(X)(H)
_ hn:: O(A(Xk)) — O(A(X)) :tide(A(X))(A (X;H))
< h;;p O(yx) — O(M(X)) — ik;@(A(X))(A (XGH)) imsup G(A(szz— 6(yx)
< d?OAX))(A (X; H) |w) +nr}is;1p LA (X H, W) — +0(:§)
= d*0(AX)(A' (G H) w), (55)

where ¢ > 0 is a Lipschitz constant of 0 around A(X) relative to its domain. On the other hand, for any sequence
tr | 0 and any sequence Wy — W, we can always conclude from (17) and (26) that

lim ing8 X+ b+ %tiwk)l;g (X) — tdg(X)(H)
e 2
. O(AX) + A CGH) + 1217 (G H, W) +0(£2)) — O(A(X)) — tdOA(X)) (A (X; H))
= hirlionf o
2%k
> hrtnlénf "
' > w 2

= d*0(A(X)) (X' (X; H) [w).
This clearly yields the inequality
d*0AX)(V (X; H)|w) < d*¢(X)(H|W) with w = A"(X;H, W).
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Combining this and (55) implies that
d*g(X)(H|W) = d6(AX)(X(X; H)[w), (56)
and that

g(X + tH + %f%W]J —g(X) — t,dg(X)(H)
12 4
2"k

d*g(X)(H|W) = khm

which, in turn, prove both (49) and (47) for any We T3 _ (X, H). As argued above, we also have d*6(A(X))

domg

(A'(X;H)|w) < oo, which, together with (56), tells us that dzg(X)(H |W) < oo. This brings us to the inclusion
Tiomg(X, H) C dom d*¢(X)(H|").

Because the opposite inclusion always holds (see (48)), we arrive at (50). Combining this and (53) indicates that
dom d2g(X)(H |-) # 0 and, hence, shows that g is parabolically epi-differentiable at X for H. Finally, assume that 6
is Isc and convex. By Borwein and Lewis [4, corollary 5.2.3], the spectral function g = 0 o A is convex. According
to Rockafellar and Wets [25, example 13.62], parabolic epi-differentiability of g at X for H amounts to parabolic
derivability of epi g at (X, g(X)) for (H,dg(X)(H)) and

epi d*¢(X)(H|.) = T2, (X, (X)), (H, dg(X)(H))).

Because g is convex, it follows from parabolic derivability of epi g at (X, g(X)) for (H,dg(X)(H)) that Tgpi g((X,
8(X)),(H,dg(X)(H))) is a convex set. The above equality then confirms that W +— d?(6 0 V) (X)(H|W) is a convex
function and, hence, completes the proof of (a).

Turning into the proof of (b), we conclude from (1) that the symmetric function 0 satisfies (19), which means
that 6 can be represented as a composite function of g and the linear mapping x > Diag (x) with x € R". We also
deduce from the imposed assumption on 6 and the inequality in (5) that g is locally Lipschitz continuous relative
to its domain. Pick v € dom dO(A(X)) = T4ome(A(X)) and apply the chain rule in (25) to the representation (22) of
dom 6 to obtain Diag (v) € Taomg(Diag (A(X))). To justify the parabolic epi-differentiability of 6 at A(X) for v, we
are going to use Mohammadi and Sarabi [20, theorem 4.4(iii)] by showing that g is parabolically epi-
differentiable at Diag (A(X)) for Diag (v). To this end, it is not hard to see for any U € O"(X) that

dg(Diag (A(X)))(Diag (0)) = dg(X)(U Diag (o)U"). (7)
Indeed, because g is orthogonally invariant, we get for any U € O"(X) that

§(X+tW) — 6(X))
t

dg(X)(U Diag (v)U") = lim inf
W — th]%i(a)g (o)u™
¢(Diag (A(X)) + tUTWU) — 6(Diag (A(X)))
t

= lim (i)nf
t
UTWU — Diag(v)
> dg(Diag (A(X)))(Diag (0)).

A similar argument leads us to dg(Diag (A(X)))(Diag (v)) < dg(X)(U Diag (v)U") and, thus, proves (57). Simi-
larly, we can show that

d?¢(Diag (A(X)))(Diag (v)|W) = d*¢(X)(U Diag (o)U" [UWUT), WeS". (58)

Because ¢ is a spectral function, dom g is a spectral set. This and Diag (v) € Tqomg(Diag (A(X))) tell us that
U Diag (v)U" € Tyomg(X). Because g is parabolically epi-differentiable at X for U Diag (v)UT, the equality in (58)
confirms that g enjoys the same property at Diag (A(X)) for Diag (v). Combining this, (23), and Mohammadi and
Sarabi [20, theorem 4.4(iii)] shows that 6 is parabolically epi-differentiable at A(X) for v and, hence, completes the
proof. O

We close this section by revealing that the parabolic subderivative of spectral functions is symmetric with
respect to a subset of P", the set of all n X n permutation matrices. This plays a central role in the next section,
when we are going to study parabolic regularity of spectral functions. To this end, recall from Remark 1 that if
0:R" — R is a symmetric function and X € S" with 6(A(X)) finite, the subderivative function d6(A(X)) is a sym-
metric function with respect to Py, which is a subset of P" consisting of all n X n block diagonal matrices in the
form Q = Diag (Py,...,P,), where P,, € RlanXlanl =1, risa permutation matrix with a,, taken from (7) and
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r being the number of distinct eigenvalues of X. Consider now H € §" with dO(A(X))(A'(X; H)) finite. Take the
orthogonal matrix U from (4) and m € {1,...,r}. Suppose that p,, is the number of distinct eigenvalues of
U, HU,, and pick then the index sets g forj=1,...,p,, from (14). Denote by Py ,; a subset of Py consisting of
all n X n matrices with representation Diag (Ps, ..., P,) such that foreachm =1,...,7, the |a;| X |y, | permutation

i

matrix Py, has a block diagonal representation Py, = Diag (BY',..., By ), where BJ" € RIFTIFT s a permutation
matrix foranyj=1,...,p,,. Itis not hard to see that
QAX)=A(X) and QAN(X;H)=A(X;H) forany Qe Py . (59)

Proposition 10. Assume that 6 : R" — R is a symmetric function and X € S" with O(A(X)) finite and that H € S" with
dO(A(X))(A'(X; H)) finite. Then, for any w € R" and any permutation matrix Q € Py, we have

d*0(A X)) (X; H) | Qw) = d*0(A(X)(N' (X; H) [w),
which means that the parabolic subderivative w +— d2OA (X)) (A (X; H) |w) is symmetric with respect to Py ;.
Proof. Pick w € R" and Q € Py ;. Because 6 is symmetric, it follows from (59) that
d*0(A X)) (X; H)w)

o G(A(X) +tA(X;H) + %tzw’) — O(A(X)) — tdO(A(X))(A'(X; H))
=lim inf

10 15
w —w

o G(A(X) +tA(X;H) + %tzQw’) — O0(A(X)) —tdO(A(X))(A'(X; H))
= lim inf

) i
w —w

i ing EAK) + V(X H) + 320) — O(A(X)) — tdOAX)(V (X; H))

142
t10 st
U—)le 2

= d*6(A(X))(\' (X; H) | Qu).

Similarly, using (59) for the matrix Q' = Diag (P;,...,P; ') € P} ;;, one can conclude that d2OA(X)) (A (X; H) |w)
< d*0(AM(X))(A'(X; H)|Qw), which justifies the claimed equality and, hence, ends the proof. O

5. Parabolic Regularity of Spectral Functions

This section is devoted to the study of parabolic regularity of spectral functions, whose central role in second-
order variational analysis was revealed recently in Mohammadi et al. [21]. As demonstrated in Mohammadi et al.
[21], parabolic regularity can be viewed as an important second-order regularity with remarkable consequences,
among which we should highlight twice epi-differentiability of extended-real-valued functions. We begin with
recalling the concepts of the second subderivative and parabolic regularity for functions, respectively. Given a
function f : X — R and ¥ € X with f(¥) finite, define the parametric family of second-order difference quotients
for fat x for v € X by

) @+ w) — f() — Ko, w)

AN, 0)(w T

with weX, t>0.

The second subderivative of f at X for v is defined by

d* (%, 7)(w) = “1}5 %nf N (%,7)(W'), weX.

w > w

The importance of the second subderivative resides in the fact that it can characterize the quadratic growth con-
dition for optimization problems; see Rockafellar and Wets [25, theorem 13.24]. So, it is crucial for many applica-
tions to calculate it in terms of the initial data of an optimization problem. This task was carried out for major
classes of functions, including the convex piecewise linear-quadratic functions in the sense of Rockafellar and
Wets [25, definition 10.20] in Rockafellar and Wets [25, proposition 13.9], the second-order/ice-cream cone in
Mohammadi et al. [21, example 5.8], the cone of positive semidefinite symmetric matrices in Mohammadi and
Sarabi [20, example 3.7], and the augmented Lagrangian of constrained optimization problems in Mohammadi
et al. [21, theorem 8.3]. We are going to calculate it for the spectral function g in (1) when the symmetric function
0 therein is convex.
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Definition 1 (Parabolic Regularity). A convex function f : X — R is parabolically regular at X for 7 € Bf () if for any
w such that dzf (¥, 7)(w) < oo, there exist, among the sequences f; |0 and wy — w with A f(x,0)(wy) —
d*f(x,7)(w), those with the additional property that lim sup,_,_|[w; — w||/t; < co. We say that f is parabolically
regular at x if it is parabolically regular at X for every v € Jf(x). A nonempty convex set C C X is said to be para-
bolically regular at ¥ if the indicator function 0¢ is parabolically regular at x.

Parabolic regularity was introduced in Rockafellar and Wets [25, definition 13.65] for extended-real-valued
functions, but was not scrutinized therein. It was shown in Mohammadi et al. [21] and Mohammadi and Sarabi
[20] that polyhedral convex sets, the second-order/ice-cream cone, the cone of positive semidefinite symmetric
matrices are parabolically regular. One can also find in Rockafellar and Wets [25, corollary 13.68] that convex
piecewise linear-quadratic functions are parabolically regular. Recall that the critical cone of a convex function f :
X — R at ¥ for T € 9f(¥) is defined by

Ks(x,0) = {w € X|df (x)(w) = (7, w)}.

When f =6c, where C is a nonempty convex subset of X, the critical cone of 6c at X for 7 is denoted by
Ke(x,). In this case, the above definition of the critical cone of a function boils down to the well-known concept of
the critical cone of a set (see Dontchev and Rockafellar [12, p. 109]), namely, Kc(x,7) = Tc(¥) N [0]" because
doc(¥) = Or )

The following result is a special case of a more general characterization of parabolic regularity from Moham-
madi and Sarabi [20, proposition 3.6] and will be utilized in our approach in this section.

Proposition 11 (Characterization of Parabolic Regularity). Assume that f : X — R is convex, finite at X € X, and T € 9f (%).
Then, the following properties are equivalent.

a. fis parabolically reqular at X for v.

b. Forany w € K¢(x,0).

&*f (%,9)(w) = ;g{{dzf @)(wlz) - (z,7)}. (60)

c. Forany w € dom d*f(X,), there exists a Z € dom d*f(¥)(w|-) such that
d*f(x,0)(w) = *f(X)(w|2) — (Z,0).

Proof. The equivalence of (a) and (b) and the implication (a)=(c) were taken from Mohammadi and Sarabi [20,
proposition 3.6]. To prove (c)=(b), take w € K¢(x,7). It follows from Rockafellar and Wets [25, proposition 13.64]
that the inequality “<” in (60) is always satisfied. To prove the opposite inequality, deduce first from the con-
vexity of f that d f(f,ﬁ) is proper due to dzf (x,7)(0) =0. By Rockafellar and Wets [25, proposition 13.5], the
inclusion dom d 2f (x,7) C K¢(x,7) is satisfied. If dzf (¥, 7)(w) = oo, the inequality “>" in (60) trivially holds. Other-
wise, w € dom d°f(x,v), which, together with (c), proves the inequality “>" in (60) and, hence, completes the
proof. O

Our results so far required that the symmetric function 6 in (1) be locally Lipschitz continuous with respect to
its domain. In what follows, we need to assume further that 0 is an Isc convex function. This assumption allows
us to use the characterization of the subgradients of the spectral function g in (1), recorded in Proposition 6. We
begin our analysis of the second subderivative of spectral functions by finding a lower estimate for it.

Proposition 12 (Lower Estimate for Second Subderivatives). Assume that g : S" — R has the spectral representation in (1)
and is Isc and convex and that Y € 9g(X). Let y, >---> 1 be the distinct eigenvalues of X and U € O"(X) N O"(Y). Then,
forany H € S", we have

(X, Y)(H) 2 (LX), AV (X;H) + 23" (AY)

m=1

u; Hw, I - X)'HU,, ), (61)

A Q7

where a,,, m=1,...,r, are defined in (7).
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Proof. Let H € S" and pick sequences Hy — H and #; | 0. Setting Ay, M(X)(Hy) := (A(X + tHy) — A(X)) /i, we get
O(AX + teHy)) — O(A(X)) — 1Y, Hy)

Afkg(X, Y)(Hk) =

I
_ O + A AK)(H) — B(X)) — t(AY), A AK)(HY)
ltZ
A, AAH) (¥, Hy)
1 tk
= 4300100, A0) A1) + XD =G
It follows from Y = UA(Y)UT that
(Y, He) = (UAOUT, He) = (A, U Hll) = 3 (AY) 0 UL Hilli, ). ©
m=1

On the other hand, it results from (10) and Fan’s inequality that
A (Y)(A(X + tcHy) — A4(X))
fr

A, AA)HD) = 3

m=1jea,

=> > ANAg(U; Hilla,, + by He(p,, ] — X)'Hila,,) + O(8)

m=1jeay,
r
> > (A gy Us, Hella,, + teU;, Hi(u, I — X) HiU,,, ) + O(8).
m=1
Combining this with (62) brings us to

(AY), A AX)(Hy)) — (Y, Hy)
ltk
2

22 " (AY) g0 Un Hipt, ] = X) Hill,, ) + O(t).

m=1
This leads us to the estimate
A7 8(X, Y)(Hy) 2 A7 O(AX), A())(Ar AX)(Hy))
+ 2Z<A(Y)amam Uy He(p,,] — X)'Hilly,) + O(ty),
o
which, in turn, clearly justifies the lower estimate in (61) for the second subderivative of g at X for Y because
A AX)(Hy) > A'(X;H)ask — o0, O
We proceed with a result about the critical cone of spectral functions.

Proposition 13 (Critical Cone of Spectral Functions). Assume that g : S" — R has the spectral representation in (1) and is
Isc and convex and that Y € dg(X). Let y, >---> u, be the distinct eigenvalues of X. Then, we have H € K¢(X,Y) if and
only if N'(X;H) € Kg(/\(X) A(Y)) and the matrices A(Y),, o, and U; HU,, have a simultaneous ordered spectml decompo-
sition forany m =1,...,r with a,, taken from (7) and U € O”(X) N O"(Y)

Proof. By Borwein and Lewis [4, corollary 5.2.3], the symmetric function 0 in (1) is Isc and convex. Thus, we find
U e 0"(X)Nn0O"(Y) and get A(Y) € JO(A(X)) due to Proposition 6. Pick H € K¢(X,Y) and deduce from the defini-
tion of the critical cone that dg(X)(H) = (Y,H). We then conclude from Y = UA(Y)UT with A(Y) = Diag (A(Y))
and Fan’s inequality that

(Y,H)=(A(Y),U"HU) = zr:(A(Y)am wr Uy AUy, )

m=1

< Y (AY),,, AUT HU,,)) = (A(Y), A'(X; H))

< dOAX) (V' (X; H)) = dg(X)(H), (63)
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where the last inequality results from A(Y) € d0(A(X)), Rockafellar and Wets [25, exercise 8.4], and the convexity
of 0 and where the last equality comes from (26). These relationships clearly imply that dO(A(X))(A'(X; H))
= (A(Y), V' (X; H)), meaning that A"(X; H) € Ko(A(X), A(Y)), and that (A(Y),, 4, Us HUy,) = (AY), , AU, HU,,))
for any m=1,...,r. By Fan’s inequality, these equalities are equivalent to saying that the matrices A(Y), , and
U, HU,, have a simultaneous ordered spectral decomposition for any m =1,...,r.

To prove the opposite claim, assume A’(X; H) € Kg(A(X), A(Y)) and the matrices A(Y),, ,, and U; HU,, have a
simultaneous ordered spectral decomposition for any m=1,...,r. The latter tells us via Fan’s inequality that
(AY) apa,, Uy HUg,) = (A(Y),,, AU, HU,,)) for any m =1,...,r. Moreover, the former yields dO(A(X))(A"(X; H))
=(A(Y), AV (X;H)). Taking these into account demonstrates that both inequalities in (63) are indeed equalities.
This leads us to dg(X)(H) = (Y, H), which implies that H € Ko(X,Y). O

The characterization of the critical cone of spectral functions, obtained above, is a generalization of a similar
result, established recently in Cui and Ding [6, proposition 4] for the spectral function g from (1) when the sym-
metric function O therein is a polyhedral function, meaning a function that its epigraph is a polyhedral convex
set. To obtain a full characterization of the critical cone of spectral functions, we should know when the matrices
A(Y) 40, and Uy HU,,, in Proposition 13 have a simultaneous ordered spectral decomposition because the criti-
cal cone KQ(A(X) A(Y)) can often be calculated rather easily. Although this remains an open question for now
and will be a subject of our future research, we show by an example below the possible role that the condition on
A(Y) a0, and U, HU,, is playing in the calculation of the critical cone of spectral functions. Indeed, if the matri-
ces A(Y),, ,, and U, HU,, have a simultaneous ordered spectral decomposition, it is possible to show that the
matrix U; HU,, has a block diagonal structure; see (68) below and the discussion afterward to see why this can
happen in the case g = dg:.

Example 5. Set ¢ = 6g'. Clearly, g is a spectral function satisfying (1) with 0 = 6g:. Take Y € Ng (X) and observe
from Proposition 6 that Y = U Diag (A(Y))U", where A(Y) € Ng: (A(X)) and U € O"(X) N O"(Y). Our goal is to cal-
culate Kgr (X, Y) using the characterization of this cone from Proposition 13. Take H € Kg: (X, Y), assume that p; >
---> u, are the distinct eigenvalues of X, and pick the constants «,, for any m =1,...,7 from (7). By Proposition 13,
we conclude that A'(X;H) € Kg: (A(X),A(Y)) and that the matrices A(Y),, , and U, HU,, have a simultaneous
ordered spectral decomposition for any m =1, ..., r. The former is equivalent to the conditions

w € Tgr(AX)) and (A(Y),w) =0 with w=(wy,...,w,):=A(X;H). (64)
Moreover, the inclusion A(Y) € Ngr (A(X)) amounts to
Z/\i(X)/\i(Y) =0, MX)=M(X),..., (X)) eR], AY)=(A1(Y),..., A.(Y)) eR". (65)
i=1
Define the index sets
kx:={ie{l,...,n}A(X)>0} and tx:={i€{l,...,n}A(X)=0},
and
ky:={ie{l,...,n}A(Y) =0} and 7ty:={ie{l,...,n}A(Y) < O}.

It is easy to see from the definition of the index set «, in (7) that 7x = a, and from (65) that

kx Cky and 7Ty C7Ty, (66)
and to conclude from (64) and (65) that
R if iexy,
€ R+ if iETx\Ty, (67)
{O} if i€y,

Take m€{1,...,r — 1} and observe from the first inclusion in (66) that A(Y),, , = 0. In this case, we will not bene-
fit further from the fact that the matrices A(Y), , and U; HU,, have a simultaneous ordered spectral decompo-
sition. It remains to take a closer look into the case m = r. Because A(Y)a o, and U, HU,, have a simultaneous
ordered spectral decomposition, we find an orthogonal matrix Q, € O'*! such that

Ay, = QAN 0, QF and U] HU,, = Q,A(U] HU,,)Q . (68)
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Similar to (7), define the index sets {p:}szl, where £ in the number of distinct eigenvalues of A(Y), , , by
Ai(Y) = A(Y) if i,jep)
A(Y) > A(Y) if iepy, jept with v <k

Thus, because p]r Ca,=1x foranyje{l,...,{}, we deduce from the third condition in (65) that

t

p:=TxﬂKy and Up£=TXHTy=Ty. (69)
=2

It is not hard to see from the first equality in (68) (see Ding [10, proposition 2.4] for more detail) that Q, has a
block diagonal representation as

Q} 0 :vvveeene 0
e L O~ ith O ol j=
Q,=Diag (Q,,...,Q) =] . . R with Qi eOlrl, j=1,...,¢
: T
Ocovenene 0 Qf

This, coupled with the second equality in (68), implies that U; HU,, has a similar block diagonal representation
as

H} 0 e 0
T : 1 ¢ 0 H " . eglell
U, HU,, =Diag (H,,...,.H;)=| . iy with H eSSl j=1,...,¢
. r
0 0 H¢
A direct calculation shows that H, = U;,- HU o foranyj=1,...,{. Moreover, it follows from (67), (69), and the defi-

nition of w; from (64) that

U HU, €S\ and UTHU, =0 forany j=2,...,¢,

ol

which, in turn, leads us to the representation

Ul Hu,, = ( (70)

This gives us the inclusion
Ksi(X,Y) € {H € S"|U],HU,, € s, ur HUL, =0, U}, HU,, = 0}, 71)

We claim now that the inclusion above becomes equality. To prove it, take a matrix H from the right-hand side
of the above inclusion. To justify H € Kg:(X, Y), we first show that A"(X; H) € Kgr (A(X), A(Y)), which is equivalent
to proving (64). By the selection of H, the components of the vector w = A"(X;H) enjoy the properties in (67),
because a, = Tx and p% =1x Nky =1Tx \ Ty due to (66). Now, it is not hard to see that w satisfies all the conditions
in (64), confirming the inclusion A"(X; H) € Kg: (A(X), A(Y)). To finish the proof, it suffices, according to Proposi-
tion 13, to demonstrate that the matrices A(Y),, ,,, and U, HU,, have a simultaneous ordered spectral decompo-
sition for any m=1,...,r. Take m € {1,...,r — 1} and observe that if i € a,, C Kk, it follows from the first inclusion
in (66) that A;(Y) = 0. This implies that A(Y), , =0 for any such an m, which, in turn, tells us that A(Y), , and
U, HU,, have a simultaneous ordered spectral decomposition. It remains to consider the case m = r. We know
from the selection of H that Uj HU,, has the representation in (70). According to (69), the diagonal matrix
A(Y), .. has a similar block structure as (70), given by

aay

0 0
A(Y) 0, = with y:=a,\pl.
0 A(Y)y)/

Taking into account this representation and (70) tells us that A(Y), , and U;H U,, have a simultaneous ordered
spectral decomposition and, hence, finishes the proof of the opposite inclusion in (71). We should add here that
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the same description as (71) for Kg:(X, Y) was obtained in Chan and Sun [5] using a different approach and with-
out appealing to a characterization of the latter cone obtained in Proposition 13.

Note that the analysis above for the case of ds: clearly illustrates the essential role that the simultaneous
ordered spectral decompositions of A(Y),, ,, and U] HU,, play in finding the critical cone of spectral functions.
To shed more light into the role of the later condition, consider the case n = 3, X = Diag (1,0,0) and Y = Diag (0,0, —1).
In this case, we get r = 2, &y = {1}, and a» = {2,3}. Moreover, we have kx = {1}, tx ={2,3}, xy = {1,2}, v = {3},
and p! = {2}. According to (71), the symmetric matrix H belongs to Kgr(X,Y) if and only if it has a representation

of the form
* Kk X%
* a 0|,
* 0 0
where a € R, and the % positions can be filled with any real number. This shows the matrix

1 0 0
H=(0 172 -1/2|,
(0 ~1/2 0 )

doesn’t belong to Kg; (X, Y) because Ha3 and Hj, are not zero. To elaborate more on why this happens, observe
first that U := I € O3(X) N O3(Y). Thus, we have

N (X;H) = (AU, HUq, ), MUL HUz,)) = (AMHagay ), A(Hose)) = (1, 1+V5 1- \/5>

4 4
which clearly belongs to KRi (AMX), A(Y)). This can be justified via the equivalent description of KRi (AX),A(Y)) in

(64). However, it is possible to demonstrate that A(Y)
tral decomposition by showing that

wa, and U HU,, don’t have a simultaneous ordered spec-
202 a 2

(A gy, U, HUay ) # (AAY) gy0,), MU, HU, ) (72)

aan’

This, indeed, results from the fact that Fan’s inequality in (6) becomes equality if and only if the matrices therein
have a simultaneous ordered spectral decomposition. To prove (72), we deduce from A(Y),,,, = Diag (0, —1) and

U} HU,, = Ha,q, that
0 0 12 -1/2
T — —
(A(Y) gy Uy HU,, ) = tr ((0 _1> <_1/2 0 ) =0.

On the other hand, we have

[25X2%)

<A(A(Y)a2a2)/ /\(U;—ZHU()Q» = \/54_ ! ’

which confirms (72) and, hence, tells us that the main reason for H ¢ K¢ (X, Y) is the failure of ensuring a simulta-
neous ordered spectral decomposition for A(Y),,,, and U HUy,. ’

As mentioned before, we can partition any vector p € R" into (py,, ..., pa,) with a,,, m=1,...,r, taken from (7).
Pick m € {1,...,r} and recall from (14) that the index set a,, =U/", B!". This allows us to partition further p,,, into
(ymz, Y ), where Ypr € RI#'! for anyi=1,...,p,.Insummary, we can equivalently write p as

(yﬁ%""'yﬁilf""yﬁ{""'yﬁ}},)' (73)

where r, taken from (7), and p,,, taken from (14), stand for the number of distinct eigenvalues of X and U;m HU,,,
respectively. Thus, the representation of p in (73) is associated with the permutation matrices in Py };, defined

prior to Proposition 10, as a subset of P". In fact, any permutation matrix Q € Py ,; has a representation of the
form Diag (B%/--'/B})],-~~,B{,.-.,B;r), where BJ" € RIFIXIBT is a permutation matrix for any je{1,...,p, } and

me{l,...,r}. Denote by R’f the set of all vectors (x3,...,x,) such that x; >--- > x,,.

Proposition 14. Assume that the spectral function g=0o0A in (1) is Isc and convex and that Y € dg(X) and
H € Ky(X,Y). If O is parabolically regular at A(X) for A(Y), then the following properties hold.
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a. There exists z € R", which has a representation in the form in (73) with yg € Rlﬁ l for any i€{1,...,p,,} and
me{l,...,r}, satisfying

d*0(A(X), AN (X;H)) = d*0AX)(N (X H) |2) — (A(Y), 2). (74)
b. There exists a matrix W € S" such that A (X;H, W) =z, where z comes from (a).

Proof. We deduce from Y € dg(X) and Proposition 6 that A(Y) € dO(A(X)). Also, it follows from H € K¢(X,Y) and
Proposition 13 that A'(X; H) € Kg(A(X), A(Y)). Employing now Proposition 11 ensures the existence of p € R" satis-
fying (74). As explained above, any such a vector p has a representation in the form of (73) with yg € RI# for
anyi€{l,...,p,} and me{1,...,r}. We are going to show that we can find a vector p with the representation in
(73) such that y, € Rllﬁ 1 for anyi€{l,...,p,} and m€{l,...,r}, meaning the components of each yg» have non-
increasing order. To this end, pick me{1,...,r} and i€{1,...,p, } and choose then a |B"| X |B]"| permutation
matrix B} such that gg» := B]"ygn € Rlﬁ" | Set Q:=Diag (Bi,.. .,B},l, ---,Bi,...,B, ) and observe that Q € Py ;.
Moreover, let

z:= (qﬁ%,...,qﬁ;],...,qﬁg,...,qﬁ;r). (75)
Clearly, we have z = Qp. It follows from Proposition 10 that

d*0(A X)) (X; H) |2) = d*0(A(X)(X' (X; H) | p)-

We claim now that (A(Y),p) < (A(Y),z). To justify it, suppose that

AW A e A A ),

is a partition of the vector A(Y) corresponding to (73). Note that /\(Y)ﬁ;n eRlﬁ 1 for any i€{l,...,p,} and
me{l,...,r}. Thus, we get
" Pm " Pu

APy =D > AW ypr) < DD (AN, ggr) = (A(Y), 2),
m=1 i=1 m=1 i=1

where the inequality is a consequence of the Hardy-Littlewood-Pélya inequality (cf. Borwein and Lewis [4, prop-
osition 1.2.4]). Set @(x) = d*0(A(X))(A' (X; H)|x) — (A(Y),x) for any x € R" and observe from Proposition 11 that p
is a minimizer of ¢. But we showed above that ¢(z) < ¢(p), which tells us that z is also a minimizer of ¢. Thus,
we arrive at ¢(z) = @(p), which implies that (74) holds for z. This proves (a).

Turning now to the proof of (b), pick the vector z from (75). We can equivalently write via the index sets a,,,
m=1,...,r, from (7) that

z2=(2Zay,---,2a,) with z,, = (q}g¥r,...,qﬁ;:n) eRl*! forall me {,...,r}. (76)
Take the |a;,| X |y | matrix Q,,, m=1,...,7, from (13) and consider the n x n block diagonal matrix
A = Diag (Qy Diag (z4,)Q7, ..., Q, Diag (z,,)Q, ). (77)
We claim that there exists a matrix W € " such that for any m =1,...,r the relationship

Ul WU, = U7 H(X —u,)'H+ UAUT)U, (78)

holds, where i, >---> i, are the distinct eigenvalues of X and U € O"(X). Indeed, to find such a matrix W, let
W € S" and set W = UWUT in the above equality. This, coupled with (9), leads us to

Wapan = UL UNUU,, = U WU,, = U] 2H(X -, ))'H+UAUT)U,

for all m=1,...,r. Define the matrix W as the block diagonal matrix Diag (Wa,ay,- - -, Wa,q,), from which we can

m’

obtain the claimed matrix W. Suppose now that i € {1,...,n}. By (15), there are me{1,...,r} and j€{1,...,p,}
such thati€ a,, and ¢; € ﬁ]m According to (16), we have

A7 (X H, W) = A (Qu)n (U, (W + 2H(u,, ] = X) H)Ua, )(Qu)gr)
= A (Qu)pp (U, UAUT Us, )(Qu)gr)
= Al‘,f ((Qm)ﬁt’” Qm Diag (Za,,,)Qr-;(Qm)ﬁ}")

= A (Diag (qg)), (79)
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where the last two equalities result from (9). Consider now a partition of A”(X; H, 17\/\) corresponding to (75) as
(g1, - Mgt s Mgy "nﬁ:,,)'
Thus, it follows from (79) and the definition ¢; that
Mgy = A(Diag (qp)) = qg7

foranyje{l,...,p,} and me{1,...,r} because qpy € Rlﬁfﬂ Il. This confirms that A”(X; H, 17\/\) =z and, hence, com-
pletes the proof of (b). O

We are now ready to characterize parabolic regularity of spectral functions. We begin with the following
result, in which we provide a sufficient condition to calculate the domain of the second subderivative of spectral
functions.

Proposition 15. Assume that the spectral function g=00A in (1) is convex and that Y € dg(X). Then, we have
dom d%¢(X,Y) c Ko(X,Y). Equality holds if, in addition, g is parabolically epi-differentiable at X for any H € Ko(X, Y).

Proof. The claimed inclusion results from Mohammadi and Sarabi [20, proposition 2.1(ii)—(iii)]. To establish the
second claim, it follows from parabolic epi-differentiability of ¢ at X for any H € K¢(X,Y) that dom d*g(X)
(H|.) # 0. This, coupled with Mohammadi and Sarabi [20, proposition 3.4], confirms that dom d2g(X, Y) =Ky(X,Y)
and hence completes the proof. O

Note that the assumption of parabolic epi-differentiability of ¢ in the result above can be ensured via Theorem 3(a)
by parabolic epi-differentiability of 0. An important class of functions for which this assumption automatically is satis-
fied is polyhedral functions; see Rockafellar and Wets [25, exercise 13.61]. This class of functions allows us to cover
many examples of spectral functions, which are important for applications. We should add that polyhedral functions
that are symmetric were characterized in Cui and Ding [6, proposition 1].

Our next result presents a characterization of parabolic regularity of spectral functions.

Theorem 4 (Parabolic Regularity of Spectral Functions). Assume that the spectral function g=0o0A in (1) is locally
Lipschitz continuous with respect to its domain, Isc, and convex. Let 11, > ---> u, be the distinct eigenvalues of X. Then, the
following properties hold.

a. If Y € 9¢9(X) and 6 is parabolically reqular at A(X) for A(Y) and parabolically epi-differentiable at A(X), then g is para-
bolically regular at X for Y, and for any H € Ko(X,Y), we have

d’¢(X, Y)(H) = d*0(A(X), A(N)(A'(X; H)) + 2i (A(Y) gy U, Hu, T = X) HU,, ),

Qm
m=1

where a,,, m=1,...,r, come from (7), U € O"(X) N O"(Y), and A(Y) = Diag (A(Y)).
b. If g is parabolically epi-differentiable and parabolically reqular at X, then 6 is parabolically reqular at A(X).

Proof. We begin with the proof of (a). To justify (a), it suffices by Proposition 11 to show that for any
H € K¢(X,Y), we have

d*g(X, Y)(H) = inf {d*g(X)(HIW) — (¥, W)}. (80)
€ u
To this end, pick H € K¢(X,Y) and deduce from Rockafellar and Wets [25, proposition 13.64] and (49), respec-
tively, that
dg(X, Y)(H) < inf {d*g(X)(H|W) = (Y, W)}

€ n
= Inf {d*OAX))N (X H) A (X H, W) = (Y, W)} (81)

S n
Because H € Ky(X, Y), it results from Proposition 13 that the matrices A(Y),, ,, and U; HU,, have a simultaneous

ordered spectral decomposition for any m=1,...,r. This means that there are matrices Q,, € 0" (A(Y)4,a,)
nOlanl (u; HU,,), m=1,...,r,such that

AY)ga, = OnA(Y), 0. Qr and UT HU,, =0, A(UL HU,,)0,. (82)

Replace the matrices Q,, in the definition of the matrix A in (77) with @m, m=1,...,r, and observe that the same
conclusion can be achieved as the one in Proposition 14(b) for the updated matrix A. In fact, the matrices Q,,
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enjoy all the properties of Q,, together with the relationships in (82), which are important for our argument
below. Because 0 is parabolically regular at A(X) for A(Y), we conclude from Proposition 14(a) that there is z € R"

with a representation in the form in (75) with gg» € Rl’g " for anyi€{l,...,p,} and me{l,...,r}, satisfying (74).

According to Proposition 14(b), there exists a matrix W € S” such that AN'(X;H, W\) = z. Employing now (74) and
(78), and Y = UA(Y)U " and using a similar argument as (62), we arrive at

d*O(A(X)) (X' (X; H) | (X H, W) — (Y, W)
= >0 X)X (X H)2) = Y (AN )y, UL WU, )

an
m=1

= der(A(X), A (X H)) +(A(Y), z)
= (AN, UL QH(X — 1, )'H + UAUT U, )
m=1

= d’0(A(X), AN (X H)) + Zi(A(Y)a,,,am/ uz, (H(u,I - X)'H)Us,)

m=1

+(A(Y),2) = Y (A(Y) g0, UL (UAUT)U,,,). (83)
m=1
By the definition of A in (77), the equality in (9), and the representation of the vector z in (76), we obtain

r r
~ ~T
> (A gy Un, (UAUTUy,) =Y (A(Y) 40,0 Qu Diag (2,)Q,,)
m=1

m=1

= Z<Q\;A(Y)amam @m/ Diag (z4,,))
m=1

=Y (A(Y)y,a, Diag (z4,)) = (A(Y),2),

m=1

where the penultimate equality results from the first relationship in (82) and the last one is a consequence of
A(Y) = Diag (A(Y)). This, coupled with (61), (81), and (83), brings us to

d*0(A(X), AN (X; H)) + 22r:<A(Y)aman,/ Uz, H(u,I - X)'HU,,)

m=1
< d*g(X, Y)(H)
< inf {dg(X)(HIW) — (Y, W)}

< d20(A(X) (XX H) A" (X H, W) — (Y, W)

= d*0(A(X), A(Y)(A (X; H)) + Zi(A(Y)a,,,am/ Uz, Hg, - X)'HU, ).

m=1

These relationships clearly justify (80) and, hence, imply that g is parabolically regular at X for Y. Moreover, they
confirm the claimed formula for the second subderivative of ¢ at X for Y for any H € K(X, Y) and, hence, com-
plete the proof of (a).

Turning into the proof of (b), we need to show that 0 is parabolically regular at A(X) for any v € d0(A(X)). To
justify it, pick v € d0(A(X)) and U € O"(X) and deduce from Lewis [18, theorem 6] that U Diag (v)U" € dg(X).
Because g is convex and orthogonally invariant, the latter yields Diag (v) € dg(A(X)), where A(X) = Diag (A(X)).
We claim that g is parabolically regular at A(X) for Diag (v). To this end, set Z:= U Diag (v)U" and take
H € Ko(A(X), Diag (v)). We conclude from (57) and the definition of the critical cone that UHUT € K¢(X, Z). Thus,
it also follows from parabolic regularity of ¢ at X for Z and Proposition 11 that there is W € S" such that

d?¢(X, Z)(UHUT) = d*¢(X)(UHUT |W) — (Z, W). (84)
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Because g is orthogonally invariant, we get

Lg(X, Z)UHUT) = lim inf SEHH) = 8X) =(Z )

0 142
H’—tilHUT 2
TH’ — — T T/
i jnf SAX)+ UTHU) = g(AK)) = (UTZU, UTH'U)
tL0 §f2
H'—UHUT

> d’g(A(X), Diag (v))(H).

Similarly, we can show that d%¢(X, Z)(UHU") < d*¢(A(X), Diag (v))(H), which leads us to d*¢(X, Z)(UHUT) =
dzg(A(X), Diag (v))(H). It follows from (58) that

d’g(X)(UHUT | W) = d’g(A(X))(H|UTWU).
We also have (Z, W) = (Diag (v), UT WU). Combining these with (84) brings us to
d’g(A(X), Diag (v))(H) = d’g(A(X))(H|UWU) — (Diag (0), U WUI).

Because H € K¢(A(X), Diag (v)) was taken arbitrarily and because dom d’g(A(X), Diag (v)) C K¢ (A(X), Diag (v))
is satisfied because of Proposition 15, we conclude from Proposition 11 that g is parabolically regular at A(X) for
Diag (v). Recall that the symmetric function 6 satisfies (19), which means that 6 can be represented as 6 =goF
with F(x) := Diag (x) for all x € R". We also deduce from the imposed assumption on 6 and (5) that g is locally
Lipschitz continuous relative to its domain. According to Mohammadi et al. [22, theorem 3.6], we get JO(A(X)) =
VF(A(X)) dg(A(X)). It is not hard to see that for any x € R", VF(x) is a linear operator from R" into S", defined by
VE(x)(y) =Y i, yiEii for any y = (y1,...,yn) € R", where E;, i =1,...,n, are the n X n matrix with (i, i) entry equal
to one and elsewhere equal to zero. This tells us that the adjoint operator VF(x)" : 8" — R" has a representation in
the form VF(x)'B = (tr (E;1B), ..., tr (E,;,B)) for any B € S”; see Beck [1, example 1.8] for more details. Remember
that v € dO(A(X)) and Diag (v) € dg(A(X)). Thus, we have VF(A(X))" Diag (v) = v. On the other hand, it follows
from the proof of Theorem 3(b) that parabolic epi-differentiability of ¢ at X for UHU " € dom dg(X) implies that
of g at A(X) for H. Combining these and Mohammadi and Sarabi [20, theorem 5.4] tells us that 0 is parabolically
regular at A(X) for v and, hence, completes the proof of (b). O

Given the spectral function g in (1), it was shown in Cui et al. [7, proposition 10] that if 0 is C?-cone reducible
in the sense of Cui et al. [7, definition 6], then g enjoys the same property. Note that C2-cone reducibility of 0 is
strictly stronger assumption than parabolic regularity of this function, utilized in Theorem 4, as shown in
Mohammadi et al. [21, theorem 6.2 and example 6.4]. Note also we showed in Theorem 4(b) that parabolic regu-
larity of g yields that of 0; such a result was not achieved for C*-cone reducibility in Cui et al. [7].

In many important applications of the spectral function g in (1), the symmetric function 0 is a polyhedral func-
tion. In this case, all the assumptions in Theorem 4 are satisfied automatically. Furthermore, the second subderi-
vative of ¢ has a simple representation as demonstrated below.

Corollary 3. Assume that g:S" — R has the spectral representation in (1) with the symmetric function 6 being polyhe-
dral. If py >---> u, are the distinct eigenvalues of X and Y € dg(X), then g is parabolically regular at X for Y, and for any
H € S", we have

d*g(X, Y)(H) = bk, (H) + 2> (AY) 0, Un H(p, I = X) HU,,,),

m=1
where o, m=1,...,1, come from (7), U € O"(X) N O"(Y), and A(Y) = Diag (A(Y)).

Proof. It follows from Rockafellar and Wets [25, exercise 13.61] and Mohammadi and Sarabi [20, example 3.2],
respectively, that 6 is parabolically epi-differentiable and parabolically regular at A(X). By Theorem 4(a), the spectral
function g is parabolically regular at X for Y. Moreover, we know from Proposition 15 that dom d*g(X, Y) = Ko(X,Y).
Take H € K¢(X, Y) and observe from Proposition 13 that A'(X; H) € Ko(A(X), A(Y)). Thus, we obtain from Rockafellar
and Wets [25, proposition 13.9] that

d*O(A(X), A(Y))(V (X; H)) = S0, 10 (A" (G H)) = 0.
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Employing now Theorem 4(a) tells us that

d’g(X, Y)(H) = 2> " (A(Y)y,a, Us H(u, ] = X)'HU,,) forall H € Ky(X,Y).
m=1
On the other hand, if H ¢ K,(X,Y), we have d*g(X, Y)(H) = oo because dom d’g(X,Y) = K¢(X,Y). This proves the
claimed formula for the second subderivative of g at X for Y. O

Note that the conjugate function of the parabolic subderivative of the spectral function g in (1) with 0 therein
being polyhedral was recently calculated in Cui and Ding [6, propositions 6 and 10] by dividing a polyhedral
function into two parts. In general, such a result gives us an upper bound for the second subderivative (cf. Rock-
afellar and Wets [25, proposition 13.64]). According to Proposition 11, parabolic regularity is, indeed, equivalent
to saying that the latter conjugate function coincides with the second subderivative. We should add that para-
bolic regularity of ¢ was not discussed in Cui and Ding [6], and so Corollary 4 can’t be derived from the afore-
mentioned results in Cui and Ding [6].

We continue to apply the formula of the second subderivative, obtained in Corollary 3, for two important
examples of spectral functions and show how one can simplify the established formula for the second subderiva-
tive in these cases.

Example 6.

a. Assume that ¢: S" — R is defined by g(X) = Amax(X), where Amax stands for the maximum eigenvalue of X. g
is a spectral function and satisfies the representation (1) and 6(x) = max{xy,...,x,} with x = (x3,...,x,) € R". Take
Y € d¢(X) and observe from Proposition 6 that Y = U Diag (A(Y))U ", where A(Y) € d0(A(X)) and U € O"(X) N O"(Y).
Recall from (7) that aq = {i € {1,...,n}|Ai(X) = Apmax(X)}. It follows from Rockafellar and Wets [25, exercise 8.31] that

IOAX)) = {(tl,...,t,,)

n
Zti =1,t;>0foralliea;, ;=0 otherwise}.
=1

Taking into consideration the formula for the second subderivative from Corollary 3 and the notation therein and
the description of dg(A(X)), we conclude that A(Y),, , =0 forallm > 2. Moreover, we have

Y =UDiag AU = > LWNUU = " AMNUU] = U, AXY) 0, U

i=1 i€

Combining this and Corollary 3, we obtain for any H € S” that

dzg(X/ Y)(H) = 6KS(X, Y) (H) + 2<A(Y)a1a1 ’ UEI] H(,ull - X)+Hua1>
= O, (x, 1 (H) + 2(Y, H(u,I — X)'H).

This is the same formula, obtained in Torki [26, theorem 2.1], for the second subderivative of the first leading eigen-
value of a symmetric matrix. Note that it was proven in Mohammadi and Sarabi [20, example 3.3] that all leading
eigenvalues of a symmetric matrix is parabolically regular. Also, one can find their second subderivatives in Torki
[26, theorem 2.1]. Because the leading eigenvalues, except the first one, which is the maximum eigenvalue, are not
convex, Theorem 4 and Corollary 3 can’t be utilized to cover them. That requires to extend the established theory
in this section for subdifferentially regular functions in the sense of Rockafellar and Wets [25, definition 7.25], a task
that we leave for our future research.

b. Suppose that g = 0g". As shown in Example 1, g is a spectral function satisfying (1) with 0 = 6g«. Take Y €
Ng' (X) and observe from Proposition 6 that Y =U Diag (A(Y))UT, where A(Y)€ Ng:(A(X)) and U e O"(X)
NO"(Y). If u; = A1(X) < 0, it follows from X €int S” that g is twice differentiable and dzg(X, Y)(H) =0 for any
H e S". Assume now that u; = A1(X) = 0. Recall from (7) that ay = {i € {1,...,n}|Ai(X) = u; }. Thus, we obtain

Ny (AX)) ={(t1,...,ty)|t; =0 for all i € a1, t; =0 otherwise}.
Arguing similarly to (a) leads us to

d%6g: (X, Y)(H) = 0k, xx.v)(H) — 2(Y, HX'H) for all H € S".



Mohammadi and Sarabi: Parabolic Regularity of Spectral Functions
28 Mathematics of Operations Research, Articles in Advance, pp. 1-30, © 2024 INFORMS

This formula was obtained previously in Mohammadi and Sarabi [20, example 3.7] via a different approach. Sim-
ilarly, we can show that if Y € Ng: (X), the second subderivative of g at X for Y can be calculated by

d*6s (X, Y)(H) = Ok, (x,v)(H) — 2(Y,HX'H) forall HeS".

The second subderivative can be utilized to establish second-order optimality conditions for different classes of
optimization problems. Doing so often requires obtaining a chain rule for the second subderivative, a task carried
out in Theorem 4 and Corollary 3. Given a twice differentiable function ¢ : S” — R and a spectral function g, con-
sider the optimization problem

minimize ¢(X) + g(X) subject to X €S". (85)

Below, we present a result in which second-order optimality conditions for this optimization problem are estab-
lished. For simplicity, we are going to assume that g has the assumed representation in Corollary 3, but one can
easily extend it for any ¢ satisfying the assumptions in Theorem 4.

Theorem 5. Assume that X is a feasible solution to (85), where the spectral function g has the representation (1) with 0
therein being a polyhedral function. If —V@(X) € 99(X), then the following second-order optimality conditions for (85) are
satisfied.

a. If Xis a local minimizer of (85), then the second-order necessary condition

V2p(X)(H, H) + 2> " (A(Y) 0, Us H(u, ] — X) HU,,) > 0,
m=1

holds for all H € Ko(X, — Vp(X)).
b. The validity of the second-order condition

V2p(X)(H,H) +2) (A(Y)y,q,, Uy, H(u, I — X)'HU,,) > 0,

m=1

forall H € Ko(X, — V(X)) amounts to the existence of the constants £ > 0 and & > 0 for which the quadratic growth condi-
tion

PX')+8(X') 2 p(X) +g(X) + S [X ~ XIP forall X' € B.(X),

is satisfied.
Proof. It follows from Rockafellar and Wets [25, exercise 13.18] that
d*(p + (X, 0(H) = V2p(X)(H, H) + d*¢(X, — Vo(X))(H),

for any H € S". Both claims in (a) and (b) then result immediately from Rockafellar and Wets [25, theorem 13.24]
and Corollary 3. O

Our next application is to provide sufficient conditions for twice epi-differentiability of spectral functions, a
concept with important consequences in second-order variational analysis and parametric optimization. Recall
from Rockafellar and Wets [25, definition 13.6] that a function f : X — R is said to be twice epi-differentiable at ¥
for 7 € X, with f(%) finite, if the sets epi A?f(¥,7) converge to epi d*f(¥,7) as t | 0 in the sense of set convergence
from Rockafellar and Wets [25, definition 4.1], where “epi ” stands for the epigraph of a function. This can be
equivalently described via Rockafellar and Wets [25, proposition 7.2] that for every sequence f; | 0 and every
w € X, there exists a sequence wy — w such that

& (¥, 7)(ew) = lim AT f(7,7)(a0y).

Twice epi-differentiability is a geometric notion of second-order approximation for extended-real-valued func-
tions and was defined by Rockafellar [23]. Its central role in second-order variational analysis, parametric optimi-
zation, and numerical algorithms has been demonstrated in Rockafellar and Wets [25], Mohammadi et al. [21],
Mohammadi and Sarabi [20], and Hang and Sarabi [16]. It was observed recently in Mohammadi and Sarabi [20,
corollary 5.5] that parabolic regularity of certain composite functions yields their twice epi-differentiability. A
similar conclusion can be drawn for spectral functions as demonstrated below.
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Corollary 4 (Twice Epi-Differentiability of Spectral Functions). Assume that the spectral function g = 0o A in (1) is locally
Lipschitz continuous with respect to its domain, Isc, and convex. If Y € dg(X) and O is parabolically regqular at A(X) for
AY) and parabolically epi-differentiable at A(X), then g is twice epi-differentiable at X for Y.

Proof. The claimed twice epi-differentiability of g at X for Y results directly from Mohammadi and Sarabi [20,
theorem 3.8] and Theorem 4. O

Twice epi-differentiability of leading eigenvalues and the sum of largest eigenvalues of a symmetric matrix
was established in Torki [26, theorem 2.1] using a different approach. Corollary 4 goes far beyond the framework
in Torki [26] to achieve twice epi-differentiability of spectral functions. We, however, can’t get this property for
all leading eigenvalues, except the first one, from Corollary 4 because these spectral functions are not convex. As
explained in Example 6(a), this can be accomplished if the established theory in this section is generalized for
subdifferentially regular functions. Note also that a characterization of directionally differentiability of the proxi-
mal mapping of spectral functions can be found in Ding et al. [11, theorem 3]. Recall from Beck [1, theorem 7.18]
that if the spectral function g in (1) is Isc and convex, its proximal mapping can be calculated by

proxg(X) = arg min{g(W) +%||W - X||2} = U Diag (prox,(A(X))U',
Wes"

where U € O"(X). It follows from Ding et al. [11, theorem 3] that prox, is directionally differentiable at X if and
only if prox, is directionally differentiable at A(X). It also follows from Rockafellar and Wets [25, exercise 13.45]
that twice epi-differentiability of g at X for Y amounts to directional differentiability of prox, at X + Y. Combin-
ing these, we can conclude that g is twice epi-differentiability of g at X for Y if and only if 6 enjoys the same prop-
erty at A(X) for A(Y). It is not clear yet to us whether such an equivalence can be achieved via our approach.
Note that our main result in this section provides the equivalence for parabolic regularity of ¢ and 6. It is worth
mentioning here that parabolic regularity is strictly stronger than twice epi-differentiability and has no counter-
part for the proximal mapping. Thus, Theorem 4 can’t be derived from Ding et al. [11, theorem 3].

We close this section by establishing a characterization of twice semidifferentiability of the spectral function g
in (1) when the symmetric function 6 therein is convex. Recall from Rockafellar and Wets [25, exercise 13.7] that
a function f : R" — R is called twice semidifferentiable at X if there exists a continuous function &, which is positive
homogeneous of degree 2, and

_ _ 1 _ _
fO) =)+ df(x)(x = %) + 51 = X) + o[ — ).
In this case, 1 is called the second semiderivative of f at ¥ and is denoted by d*f(%).

Corollary 5. Assume that X € S" and 1, >---> u, are the distinct eigenvalues of X that 0 : R" — R is a differentiable sym-
metric convex function. Then, 0 is twice semidifferentiable at A(X) if and only if the spectral function g =60 A is twice
semidifferentiable at X. Moreover, in this case, we have

d*g(X)(H) = d*0(A(X))(A (X; H)) + 2 (A(Y)
m=1

where a,,, m=1,...,r, come from (7), U € O"(X) N O"(Y), A(Y) = Diag (A(Y)), and He S".

u; H(u, I - X)'HU,,),

U Q7

Proof. Observe first that because 6 is convex and finite-valued, it is locally Lipschitz continuous on R". More-
over, because 0 is differentiable, we deduce from Lewis [17, theorem 1.1] that g is differentiable at X. Suppose
first that O is twice semidifferentiable at A(X). Because 0 is differentiable, it follows from twice semidifferentiabil-
ity of O that the second subderivative of 0 coincides with its second semiderivative, namely,

d*O(A(X), VOA(X))) (N (X; H)) = d*O(A(X))(A'(X; H)) forall HeS".

This, combined with the formula of the second subderivative of g in Theorem 4(a), tells us that for any H € S”,
d*g(X, Vg(X))(H) is always finite. By Mohammadi and Sarabi [20, example 4.7(d)], 0 is parabolically epi-differentiable
and parabolically regular at A(X) for VO(A(X)). Thus, it results from Corollary 4 that g is twice epi-differentiable at X
for Vg(X). Combining these with Rockafellar [24, theorem 4.3] tells us that g is twice semidifferentiable at X and
that d? (X, Ve(X))(H) = d? Q(X)(H) for any H € S". The latter, coupled with Theorem 4(a), proves the claimed for-
mula for the second semiderivative of g at X. Conversely, assume that g is twice semidifferentiable at X. We know
from (19) that the symmetric function 6 can be represented as 6 = g o F with F(x) := Diag (x) for all x € R". Because
F is always twice differentiable and g is twice semidifferentiable at X, we conclude from Mohammadi et al. [22,
proposition 8.2(i)] that 6 is twice semidifferentiable at A(X), which completes the proof. O



Mohammadi and Sarabi: Parabolic Regularity of Spectral Functions
30 Mathematics of Operations Research, Articles in Advance, pp. 1-30, © 2024 INFORMS

One can also show similar to the proof of Corollary 5 that 6 has a quadratic expansion at A(X) if and only if 6 0 A
enjoys the same property at X. Note that it was shown in Lewis and Sendov [19, theorem 3.3] (see also Drusvyatskiy
and Paquette [13] for a simplified proof) that twice differentiability of ¢ and O are also equivalent. Whether such a
result can be derived from our established theory in this section remains an open question for our future research.

6. Conclusion and Future Research

In this paper, we developed a second-order theory of generalized differentiation for spectral functions. Our
results rely heavily upon the metric subregularity constraint qualification, which automatically holds for this set-
ting. Our main focus was to characterize parabolic regularity of this class of functions when they are convex.
Moreover, we were able to calculate their second subderivative.

Our results raise several questions for our future search. First and foremost is the extension of our established
theory for subdifferentially regular spectral functions. This will allow us to provide a unified umbrella, under
which all the available results for both convex and nonconvex spectral functions can be covered by our approach.
Also, it is interesting to see whether a similar characterization of parabolic regularity can be achieved for twice
epi-differentiability of spectral functions. Such a characterization can be obtained from Ding et al. [11, theorem 3]
for convex spectral functions. However, we can’t use Ding et al. [11] to obtain a similar characterization for non-
convex spectral functions. It is also important to see whether our results can be utilized to characterize twice dif-
ferentiability of spectral functions, which was previously obtained by Lewis and Sendov [19, theorem 3.3].
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