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ABSTRACT: Zirconium-based metal−organic polyhedra
(ZrMOPs) are attractive due to their high stabilities, low-cost
building blocks, and solubilities relative to their metal−organic
framework analogues (e.g., UiO-66); although these sorts of self-
assembled cages often form single thermodynamic products, ZrMOP
architectures are typically plagued by the formation of both V4L6
“tetrahedra” and V2L3 “lanterns” (V = vertex, L = ligand) as
coproducts of their syntheses. In this work, we demonstrate a ligand-
exchange strategy to isolate previously inaccessible phase-pure
ZrMOPs using two different dicarboxylate donors. We also describe
characterization methods that can be used to discriminate between
the two architectures to confirm our approach provides synthetic
selectivity. The phase-pure materials were found to have drastically different Brunauer−Emmett−Teller (BET) areas, with lanterns
exhibiting significantly smaller surface areas (4−20 m2/g) than the tetrahedral architectures (393−605 m2/g), irrespective of
counterions or bridging dicarboxylates. By obviating mixed-phase products of synthesis, our generalizable ligand-exchange pathway
to phase-pure ZrMOPs enables systematic fundamental studies and will advance the functional use of these materials.

■ INTRODUCTION
Self-assembly is commonly used to make porous inorganic
materials.1 In many cases, the final architecture can be
predicted from the structure of the molecular starting
materials, or the “building blocks”.2,3 Because this process is
modular, chemists have explored porous materials using self-
assembly as both extended coordination polymers (e.g.,
metal−organic frameworks, MOFs) and discrete molecules
(e.g., metal−organic polyhedra, MOPs). Generally, this
modular assembly makes MOFs and MOPs tunable by simply
changing to different donor or acceptor moieties, which
imparts new functionality and material properties, such as
changes to surface area and porosity. These features underpin
applications in gas separation,4−7 catalysis,8−10 water purifica-
tion,11−14 biomedicine,15−18 and energy storage.19,20

Although metal−organic materials are tunable and may
exhibit high surface areas, many suffer from hydrolytic and/or
thermal instability.21−23 Zirconium-based MOPs are notable
among these materials for their high stabilities, high-yielding
syntheses, and low-cost building blocks. In addition, research
into MOPs is often motivated by their higher solubilities
relative to MOFs because they are molecular in nature.24,25

ZrMOPs have shown stability in both basic and acidic media
and at temperatures up to 300 °C.26,27 The synthesis of
ZrMOPs can be done under atmospheric conditions and
requires only zirconocene dichloride with a simple dicarbox-

ylate ligand in addition to the solvent, making the process both
easy and inexpensive.28 For these reasons, ZrMOPs have been
studied to address a wide range of applications including
sensing,29−31 catalysis,32−36 biomedicine,37−39 guest cap-
ture,29,40 and gas separation/storage.41−45

Despite their promise, traditional syntheses of ZrMOPs
often yield a mixture of tetrahedral and so-called cigar or
lantern type architectures. In 2020, the Bloch group explored
how ligand geometry influences the presence of tetrahedron/
lantern or a mixture thereof.46 For approximately half of the
ligands used, mixed-phase products were isolated. In some
cases, the chemistry of these materials is developed with the
mixtures or focuses on a smaller library of ligands under
traditional synthetic conditions (Figure 1).47,48 Accessing
phase-pure ZrMOPs is crucial to properly attribute the
properties of tetrahedra versus lantern architectures. This is
particularly important for applications where the surface area,
pore size, and stability are factors in materials design. There is
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an outstanding need for methods that deliver phase-control
over the ZrMOP synthesis.
Ligand exchange is a synthetic method commonly employed

in the MOF community to correct defects within frameworks,
to add surface functionality to nanoparticles, and to make
cross-linked composite materials.49−52 UiO-66, a Zr-based
MOF,53 is shown to undergo postsynthetic ligand exchange at
room temperature,54−56 yet ligand exchange has not been
explored for ZrMOPs as a synthetic route or a postsynthetic
modification method.
The traditional synthesis of ZrMOPs has two steps occurring

in situ. First, zirconocene dichloride undergoes hydrolysis to
form a Zr oxo cluster. Second, dicarboxylates bridge these
clusters to deliver polyhedral products. We investigated how
ligand exchange may be used to synthesize ZrMOPs, wherein
the first hydrolysis step is decoupled from the self-assembly
step. A ZrCluster was synthesized with benzoate capping
ligands.57 This ZrCluster was then mixed with stoichiometric
equivalents of dicarboxylic acids. Ligand exchange of the
benzoic acid caps for the dicarboxylates resulted in the
formation of phase-pure ZrMOPs (Scheme 1). This ligand-
exchange process was explored for both chloride and triflate
counterions and with 1,4-benzenedicarboxylate and biphenyl-
4,4′-dicarboxylate ligands.
Separating the cluster formation from the self-assembly

enabled optimization of self-assembly conditions and isolation
of phase-pure materials. Herein, we report the ligand-exchange
conditions and characterization of the phase-pure materials
using 1H/19F/DOSY NMR and mass spectrometry. Brunauer−
Emmett−Teller (BET) areas were measured to compare the
tetrahedral ZrMOPs to their lantern analogues. We show that
tetrahedra have significantly larger surface areas than lanterns,
and this general trend was shown to be independent of the
counterion (Cl−/OTf−) and bridging ligand.

■ EXPERIMENTAL SECTION
Materials. Zirconocene dichloride (Cp2ZrCl2) and silver trifluoro-

methanesulfonate (AgOTf) were purchased from Strem Chemicals.
Benzoic acid, acetone, and dichloromethane were purchased from
Fisher Scientific. 1,4-Benzenedicarboxylic acid (terephthalic acid/1,4-
bdc) was purchased from TCI. Biphenyl-4,4′-dicarboxylic acid was
purchased from Matrix Scientific. N,N-Dimethylformamide (DMF)
and methanol were purchased from Macron Fine Chemicals.
Hydrochloric acid and diethyl ether were purchased from Sigma-
Aldrich. All chemicals were used as received without further drying or
purification, unless otherwise noted.

Methods. 1H and 19F{1H} nuclear magnetic resonance (NMR)
spectra were acquired in 32 scans using a Bruker AVANCE NEO 500
spectrometer in DMSO-d6. Chemical shifts (δ) are reported in parts
per million (ppm) referenced using the residual proton solvent peaks.
Multiplicities are indicated as singlets (s), doublets (d), triplets (t), or
multiplets (m). Fourier transform infrared (FTIR) spectra were
acquired with a PerkinElmer 1760 FTIR spectrometer with horizontal
attenuated total reflectance (ATR) and baseline correction on neat
powders. All mass spectrometry samples were prepared in methanol.
For ESI high-resolution mass spectrometry (HRMS), samples were
directly infused to a Thermo Scientific LTQ-OrbitrapXL using an
onboard syringe pump, and data were accumulated using the FTMS
(orbitrap) at a resolution of 100000. Full spectra can be found in the
Supporting Information.

ZrClusters. [ZrCluster]Cl. Synthesis was adapted from a literature
reported procedure.57 Benzoic acid (1.67 g, 13.7 mmol, 1 equiv) was
mixed with H2O (68 mL) in a 100 mL round-bottom flask (RBF).
Sodium hydroxide (602 mg, 15.1 mmol, 1.1 equiv) was added, and
the mixture was stirred until all solid had dissolved. The pH was
adjusted by adding concentrated HCl dropwise to the solution, where
a final pH of 6−7 was indicated by a white precipitate that persisted.
In a separate 500 mL RBF, zirconocene dichloride (4.00 g, 13.7
mmol, 1 equiv) was dissolved in dichloromethane (205 mL). The
aqueous suspension was added to the zirconocene dichloride solution
over the course of 5 min, with vigorous stirring. The biphasic mixture
was allowed to stir vigorously at room temperature for 30 min.
Subsequently, the stir bar was removed, and the mixture was left
undisturbed for 24 h. The mixture was filtered through a 350 mL fine
sintered glass funnel to collect the white precipitate, which was
washed in triplicate with fresh dichloromethane. The solid was dried
under reduced pressure at room temperature for 1 h before use. Yield
= 3.353 g (79%). 1H NMR (500 MHz, DMSO-d6, 25 °C): δ (ppm) =
10.36 (s, μ-OH, 3H), 7.89 (d, benzoate CH, 6H), 7.51 (t, benzoate
CH, 3H), 7.37 (t, benzoate CH, 6H), 6.63 (s, Cp, 15H). FTIR (ν,
cm−1): 3606, 3168, 1596, 1543, 1495, 1420, 1175, 1018, 815, 716,
614. LTQ-Orbitrap-MS, experimental (calcd) m/z, [M] =

Figure 1. Common synthetic route to the ZrMOP mixtures. Blue
lines represent a 180° dicarboxylate ligand, and red circles represent a
Zr3Cp3O(OH)3 node cluster.

Scheme 1. Ligand Exchange between [ZrCluster]+ and 180° Dicarboxylate Ligands Yields Phase-Pure ZrMOPsa

aNodes and ligands are indicated in red and blue, respectively.
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C36H33ClO10Zr3: 1832.815 (1832.816) [2M − Cl−]1+, 898.922
(898.923) [M − Cl−]1+.
[ZrCluster]OTf. Care was taken to set up this reaction with the

exclusion of light. A solution of silver triflate (350 mg, 1.36 mmol, 1
equiv) in methanol (4 mL) was added to a suspension of [ZrCluster]
Cl (1.271 g, 1.36 mmol, 1 equiv) also in methanol (14 mL). The
mixture was stirred (400 rpm) in darkness for 48 h, after which it was
filtered into a 100 mL RBF. Solvent was removed from the filtrate on
a rotary evaporator and/or under dynamic vacuum of a Schlenk line
until ∼2 mL of solvent remained. This was decanted and discarded,
leaving the product as a white crystalline white solid. Yield = 1.329 g
(93%). 1H NMR (500 MHz, DMSO-d6, 25 °C): δ (ppm) = 10.30 (s,
μ-OH, 3H), 7.89 (d, benzoate CH, 6H), 7.51 (t, benzoate CH, 3H),
7.37 (t, benzoate CH, 6H), 6.61 (s, Cp, 15H). 19F{1H} NMR (470
MHz, DMSO-d6, 25 °C): δ (ppm) = −77.74 (s, OTf). FTIR (ν,
cm−1): 3608, 3390, 1594, 1532, 1517, 1404, 1250, 1165, 1019, 808,
720, 610. LTQ-Orbitrap-MS, experimental (calcd) m/z, [M] =
C37H33F3O13SZr3: 1946.799 (1946.800) [2M − CF3O3S−]1+, 898.922
(898.923) [M − CF3O3S−]1+.
ZrMOPs. Tabulated parameters for ZrMOP synthesis can be found

in Table S1.
[tetZrMOP-bdc]Cl4. Terephthalic acid (73.3 mg, 0.441 mmol, 1.65

equiv) was dissolved in DMF (6 mL). The solution was added to a 20
mL vial containing [ZrCluster]Cl (250 mg, 0.267 mmol, 1 equiv)
with a stir bar. An additional 1.5 mL of DMF was used to rinse the
terephthalic acid solution container and was added to the reaction
mixture (7.5 mL total). The mixture was sonicated for 30−60 s until
[ZrCluster]Cl was well suspended. The mixture was stirred (150
rpm) at 60 °C for 22 h, after which it was filtered and washed three
times with DMF and three times with acetone. The white solid was
transferred into a vial and was dried under reduced pressure at room
temperature for 1 h. Yield = 183 mg (84%). 1H NMR (500 MHz,
DMSO-d6, 25 °C): δ (ppm) = 10.53 (s, μ-OH, 11H), 7.95 (s, 1,4-bdc
CH, 24H), 6.63 (s, Cp, 60H). FTIR (ν, cm−1): 3108, 1668, 1659,
1558, 1506, 1397, 1018, 811, 746, 613, 550. LTQ-Orbitrap-MS,
experimental (calcd) m/z, [M] = C108H96Cl4O40Zr12: 1562.701
(1562.699) [M − 4Cl− − 2H+]2+, 1042.135 (1042.135) [M − 4Cl−
− H+]3+, 781.853 (781.853) [M − 4Cl−]4+.
[tetZrMOP-bdc]OTf4. DMF was dried over 3 Å sieves for 24 h

before use to prevent phase separation upon addition to diethyl ether.
Terephthalic acid (65.4 mg, 0.393 mmol, 1.65 equiv) was dissolved in
DMF (3 mL). [ZrCluster]OTf (250 mg, 0.238 mmol, 1 equiv) was
dissolved in DMF (2 mL) in a 20 mL vial with a stir bar. The ligand
solution was added to a 20 mL vial with [ZrCluster]OTf solution. An
additional 2.5 mL of DMF was used to rinse the terephthalic acid
solution container and was added to the reaction mixture (7.5 mL
total). The solution was stirred (150 rpm) at 50 °C for 1 h and 15
min. Subsequently, the reaction solution was cooled to room
temperature before it was added dropwise to stirring, chilled diethyl
ether (60 mL, ∼5 °C), yielding a white precipitate. The mixture was
centrifuged and decanted. The resulting white solid was washed three
times with diethyl ether and dried under reduced pressure at room
temperature for 1 h. Yield = 175 mg (79%). 1H NMR (500 MHz,
DMSO-d6, 25 °C): δ (ppm) = 10.47 (s, μ-OH, 12H), 7.95 (s, 1,4-bdc
CH, 24H), 6.60 (s, Cp, 60H). 19F{1H} NMR (470 MHz, DMSO-d6,
25 °C): δ (ppm) = −77.74 (s, OTf). FTIR (ν, cm−1): 3334, 1652,
1557, 1506, 1398, 1288, 1245, 1160, 1018, 812, 747, 613, 550. LTQ-
Orbitrap-MS, experimental (calcd) m/z, [M] = C112H96O52Zr12S4F12:
1712.695 (1712.659) [M − 2OTf−]2+, 1637.714 (1637.679) [M −
3OTf− − H+]2+, 1562.733 (1562.699) [M − 4OTf− − 2H+]2+,
1092.145 (1092.122) [M − 3OTf−]3+, 1042.157 (1042.135) [M −
4OTf− − H+]3+, 781.869 (781.853) [M − 4OTf−]4+.
[lanZrMOP-bdc]Cl2. Terephthalic acid (73.3 mg, 0.441 mmol, 1.65

equiv) was dissolved in DMF (5 mL). H2O (2.0 mL) was added
dropwise while stirring. The solution was added to a 20 mL vial
containing [ZrCluster]Cl (250 mg, 0.267 mmol, 1 equiv) with a stir
bar. An additional 0.5 mL of DMF was used to rinse the terephthalic
acid solution container and was added to the reaction mixture (7.5
mL total). The mixture was sonicated for 30−60 s until [ZrCluster]Cl
was well suspended. The mixture was stirred (150 rpm) at 60 °C for

22 h, after which it was filtered and washed three times with DMF and
three times with acetone (∼5 mL per wash). The white solid was
transferred into a vial and was dried under reduced pressure at room
temperature for 1 h. Yield = 137 mg (63%). 1H NMR (500 MHz,
DMSO-d6, 25 °C): δ (ppm) = 10.42 (s, μ-OH, 6H), 7.72 (s, 1,4-bdc
CH, 12H), 6.65 (s, Cp, 30H). FTIR (ν, cm−1): 3615, 3190, 1653,
1543, 1532, 1408, 1100, 1018, 810, 748, 604, 593. LTQ-Orbitrap-MS,
experimental (calcd) m/z, [M] = C54H48Cl2O20Zr6: 1599.676
(1599.675) [2M − 2Cl−]2+, 1562.700 (1562.699) [M − 2Cl−−
H+]1+, 781.853 (781.853) [M − 2Cl−]2+.

[lanZrMOP-bdc]OTf2. Care was taken to set up this reaction in the
absence of light. A solution of silver triflate (51.8 mg, 0.202 mmol, 2.2
equiv) in methanol (2.0 mL) was added to a suspension of
[lanZrMOP-bdc]Cl2 (150 mg, 0.092 mmol, 1 equiv) in methanol
(5.5 mL). The mixture was stirred (200 rpm) in darkness for 25 h.
The resulting purple suspension was filtered through Celite into a 100
mL RBF. Solvent was removed from the clear, colorless filtrate on a
rotary evaporator and/or under dynamic vacuum of a Schlenk line
leaving the product as a white solid. Yield = 118 mg (69%). 1H NMR
(500 MHz, DMSO-d6, 25 °C): δ (ppm) = 10.37 (s, μ−OH, 6H), 7.72
(s, 1,4-bdc CH, 12H), 6.63 (s, Cp, 30H). 19F{1H} NMR (470 MHz,
DMSO-d6, 25 °C): δ (ppm) = −77.74 (s, OTf). FTIR (ν, cm−1):
3404, 1660, 1547, 1505, 1411, 1258, 1170, 1020, 812, 747, 602. LTQ-
Orbitrap-MS, experimental (calcd) m/z, [M] = 1712.694 (1712.658)
[M − OTf−]1+, 781.869 (781.853) [M − 2OTf−]2+.

[tetZrMOP-biphenyl]OTf4. DMF was dried over 3 Å sieves for 24 h
before use to prevent phase separation upon addition to diethyl ether.
[ZrCluster]OTf (350 mg, 0.334 mmol, 1 equiv) was dissolved in
DMF (5 mL). The solution was added to a 20 mL vial containing
biphenyl-4,4′-dicarboxylic acid (133.4 mg, 0.551 mmol, 1.65 equiv)
suspended in DMF (7 mL) with a stir bar. An additional 2 mL of
DMF was used to rinse the [ZrCluster]OTf solution container and
was added to the reaction mixture (14 mL total). The mixture was
stirred (220 rpm) at 50 °C for 20 min. Subsequently, the reaction
solution was cooled to room temperature before it was added
dropwise to stirring, chilled diethyl ether (90 mL, ∼5 °C), yielding a
white precipitate. The mixture was centrifuged, and the supernatant
was decanted. The resulting white solid (crude product, 278 mg) was
washed once with diethyl ether and dried under reduced pressure at
room temperature for 5 min. The solid was then redissolved in
methanol (30 mL) and added dropwise to room temperature diethyl
ether (75 mL). The mixture was centrifuged, and the supernatant was
decanted. The resulting white solid was washed three times with
diethyl ether and dried under reduced pressure at room temperature
for 30 min. Yield = 193 mg (55%). 1H NMR (500 MHz, DMSO-d6,
25 °C): δ (ppm) = 10.48 (s, μ−OH, 12H), 7.96 (d, biphenyl CH,
24H), 7.88 (d, biphenyl CH, 24H), 6.64 (s, Cp, 60H). 19F{1H} NMR
(470 MHz, DMSO-d6, 25 °C): δ (ppm) = −77.74 (s, OTf). FTIR (ν,
cm−1): 3162, 1660, 1535, 1528, 1410, 1245, 1181, 1019, 812, 770,
676, 612. LTQ-Orbitrap-MS, experimental (calcd) m/z, [M] =
C148H120O52Zr12S4F12: 1866.324 (1866.273) [M − 3OTf− − H+]2+,
1791.340 (1791.294) [M − 4OTf− − 2H+]2+, 1244.553 (1244.518)
[M − 3OTf−]3+, 1194.565 (1194.531) [M − 4OTf− − H+]3+, 896.175
(896.150) [M − 4OTf−]4+.

[lanZrMOP-biphenyl]OTf2. DMF was dried over 3 Å sieves for 24 h
before use to prevent phase separation upon addition to diethyl ether.
[ZrCluster]OTf (250 mg, 0.238 mmol, 1 equiv) was dissolved in
DMF (6 mL). The solution was added to a 20 mL vial containing
biphenyl-4,4′-dicarboxylic acid (95.3 mg, 0.393 mmol, 1.65 equiv)
with a stir bar. An additional 1.5 mL of DMF was used to rinse the
[ZrCluster]OTf solution container and was added to the reaction
mixture (7.5 mL total). The mixture was sonicated for 30−60 s until
biphenyl-4,4′-dicarboxylic acid was well suspended. The mixture was
stirred (220 rpm) at 60 °C for 20 h. Subsequently, the reaction
solution was cooled to room temperature before it was added
dropwise to stirring, chilled diethyl ether (60 mL, ∼5 °C), yielding a
white precipitate. The mixture was centrifuged, and the supernatant
was decanted. The resulting white solid was washed three times with
diethyl ether and dried under reduced pressure at room temperature
for 1 h. Yield = 163 mg (65%). 1H NMR (500 MHz, DMSO-d6, 25
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°C): δ (ppm) = 10.27 (s, μ-OH, 6H), 7.62 (d, biphenyl CH, 12H),
7.36 (d, biphenyl CH, 12H), 6.65 (s, Cp, 30H). 19F{1H} NMR (470
MHz, DMSO-d6, 25 °C): δ (ppm) = −77.74 (s, OTf). FTIR (ν,
cm−1): 3340, 1652, 1575, 1520, 1412, 1256, 1241, 1164, 1030, 811,
769, 609. LTQ-Orbitrap-MS, experimental (calcd) m/z, [M] =
C74H60F6O26S2Zr6: 1940.755 (1940.753) [M − CF3O3S−]1+,
1790.795 (1790.793) [M − 2CF3O3S− − H+]1+, 895.900 (895.900)
[M − 2CF3O3S−]2+.

■ RESULTS AND DISCUSSION
Synthetic Methods. We have established that [ZrClus-

ter]+ can be used as a general precursor for the formation of
architectures containing Cp-capped Zr nodes. This approach
works for both Cl− and OTf− counterions. We found that
subsequent ligand exchange occurred readily under a variety of
conditions, including when both reactants were soluble (e.g.,
[ZrCluster]OTf with 1,4-benzenedicarboxylic acid), when one
of two reactants was soluble (e.g., [ZrCluster]OTf with
biphenyl-4,4′-dicarboxylic acid and [ZrCluster]Cl with 1,4-
benzenedicarboxylic acid), and when both reactants were
poorly soluble (e.g., [ZrCluster]Cl with biphenyl-4,4′-
dicarboxylic acid). In the latter case, though, we were unable
to make a phase-pure material regardless of the reaction time,
temperature, or solvent. Thus, conditions under which one or
both reactants were soluble were explored further.
For [tetZrMOP-bdc]Cl4, high yields of phase-pure tetrahe-

dron were achieved using DMF as a reaction solvent and
allowing the reaction to run for 22 h at 60 °C. With a simple
addition of water to the reaction, leaving all other conditions
unchanged, a complete change in synthetic outcome to
[lanZrMOP-bdc]Cl2 was achieved. Similar conditions were
used to isolate the phase-pure [tetZrMOP-bdc]OTf4. Interest-
ingly, the addition of water does not change the synthetic
outcome when starting with [ZrCluster]OTf, and only
[tetZrMOP-bdc]OTf4 was obtained. However, we are able to
form phase-pure [lanZrMOP-bdc]OTf2 by a postsynthetic
counterion exchange on [lanZrMOP-bdc]Cl2 with no scram-
bling of phase occurring.
Recent work has suggested that ZrMOP tetrahedra are

kinetic products, while lanterns are thermodynamically
favored, in certain conditions.24,48 This feature was exploited
to isolate phase-pure [ZrMOP-biphenyl]OTfX materials, where
[tetZrMOP-biphenyl]OTf4 was isolated with a reaction time of
only 20 min, and lanterns were present with any reaction time
>30 min. To isolate phase-pure [lanZrMOP-biphenyl]OTf2 in
good yields, the reaction was allowed to run for 20 h. The
reason that the addition of water was not used to control phase
purity in this system is that the biphenyl ligand is poorly
soluble even in DMF, and in water/DMF mixtures, the
solubility is even lower to the extent that self-assembly is
hindered.
In the cases of [ZrMOP]ClX products, isolation of the white

solid directly from the reaction mixture followed by washes
with DMF/acetone consistently yielded pure products.
Because of the enhanced solubility of the [ZrMOP]OTfX
products, the reaction mixtures were added to diethyl ether
to precipitate the crude products as white solids. In most cases,
this yielded pure product. Otherwise, dissolving in methanol
and reprecipitating into diethyl ether was used to purify
further.
NMR and Mass Spectrometry. For NMR character-

ization (Figures S1−S21), DMSO-d6 is preferred over a protic
solvent (e.g., MeOD) to maintain observable μ-OH resonances

that are useful for discriminating between structures. The use
of protic solvents may result in the loss of valuable information,
especially in the cases of ZrMOP-bdc where a ligand resonance
may be mistaken for residual DMF. Across different bridging
ligands and counterions, the μ-OH and aromatic ligand
resonances of lanterns are consistently shifted upfield of their
tetrahedral analogues in 1H NMR spectra (Figure 2). The
location of the cyclopentadienyl 1H resonance remains largely
unchanged across ZrMOP architectures.

The aromatic peaks of free ligands are within 0.1 ppm of
their analogous resonance as part of a tetrahedron, but the
same resonance is shifted between 0.3 and 0.5 ppm when they
are in a lantern. For example, the 1H NMR of biphenyl-4,4′-
dicarboxylic acid (DMSO-d6, 25 °C) has two doublets at 8.05
and 7.87 ppm, appearing quite similar to the peaks of
[tetZrMOP-biphenyl]OTf4 at 7.96 and 7.88 ppm (Figure
S16). These can be compared to the peaks of [lanZrMOP-
biphenyl]OTf2 at 7.62 and 7.36 ppm (Figure S19), which are
shifted further from the free ligand, and the two protons are
now 0.26 ppm separated rather than 0.08 ppm. This suggests
that the 1H environments of these ligands are more perturbed
in lantern architectures than in tetrahedra.
Two-dimensional diffusion ordered spectroscopy (DOSY)

NMR (Figures S7, S10, S12, S15, S18, and S21) was used to
confirm the phase purity of ZrMOP materials and was
especially useful in cases where 1H NMR alone may be
ambiguous. For example, [lanZrMOP-bdc]Cl2 has a ligand
resonance at 7.72 ppm, along with a peak at 7.95 ppm which
could be either residual DMF or [tetZrMOP-bdc]Cl4 (Figures
S11 and S12). DOSY NMR shows that the peak at 7.95 ppm
diffuses as a solvent, and this is further supported by the 1H
NMR integrations of the three DMF resonances (7.95, 2.89,
and 2.73 ppm), confirming that [lanZrMOP-bdc]Cl2 is phase-
pure. Furthermore, DOSY diffusion coefficients were used to
compare hydrodynamic radii of tetrahedra and lanterns
through the Stokes−Einstein equation.58 Diffusion coefficients
of μ-OH resonances were not considered because residual
H2O enables proton exchange, resulting in skewed diffusion
coefficients. Tetrahedra consistently had hydrodynamic radii
0.5 nm larger than their lantern analogues (Tables S2 and S3),
establishing DOSY is a useful technique to determine phase-

Figure 2. 1H NMR spectra of [ZrMOP-bdc]OTfX and [ZrMOP-
biphenyl]OTfX, where X = 2 for lanterns and 4 for tetrahedra. Shifts in
μ-OH and ligand resonances between the two architectures are
emphasized with arrows.
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purity of ZrMOP mixtures and distinguish tetrahedra from
lanterns.
Mass spectrometry also proved to be useful in discriminating

between tetrahedra and lanterns (Figures S22−S29). Although
the 4+ and 2+ m/z values of tetrahedra are common with the
2+ and 1+, respectively, of lanterns, the lack of a 3+ peak is
strong evidence that a phase-pure lantern is present (Figure 3).

The presence of a 3+ peak, though, is not enough to confirm
phase-pure tetrahedra because a mixture may be present. The
peak spacing and isotopic distribution of the 4+/2+ peaks was
used for this, as any lantern present as a mixture will result in
diagnostic changes to the relative peak intensities.
Brunauer−Emmett−Teller (BET) Areas and Materials

Characterization. Nitrogen sorption isotherms were col-
lected for all samples at 77 K after activating them at 60 °C
under vacuum (Figures S39−S44A). Powder X-ray diffraction
(PXRD) patterns collected before activation and after nitrogen
sorption measurements indicated that the selected activation
conditions and the adsorption measurements did not alter the
cage packing of the sample (Figure S48). Brunauer−Emmett−
Teller (BET) areas for the ZrMOPs were calculated using the
adsorption isotherms based on the consistency criteria
reported by Rouquerol et al.59 BET areas calculated for the
tetrahedral geometries are orders of magnitude higher than the
ones calculated for the lanterns (Table 1). Interestingly, this

trend is observed with all six MOPs irrespective of the ligand
or the counterion. BET plots and Rouquerol plots for all
MOPs are provided (Figures S39−S44). The lower BET areas
of the lanterns is attributed to the absence of any significant
internal cavity as these architectures have three parallel
dicarboxylate donors. The small internal volume that may be
present is inaccessible to the carrier gas. This explanation is
further supported by pore size distribution (PSD) measure-
ments. Pore sizes on the order of what may be expected for the
intrinsic porosity of MOPs were observed only for the
tetrahedral structures (Figures S45−S47). PXRD data show
sharp crystalline peaks for the lanterns in contrast to the more
amorphous peak pattern shown by the tetrahedra (Figure
S48). The TGA curves for all phase-pure materials are
provided in Figures S31−S38.

■ CONCLUSIONS
Benzoate-capped ZrClusters with both chloride and triflate
counterions were shown to undergo ligand exchange with 1,4-
benzenedicarboxylate and 4,4′-biphenyldicarboxylate ligands
to form ZrMOPs. Phase-pure materials were obtained by
modifying reaction conditions, including solvent, reaction time,
and reaction temperature. This new approach to ZrMOP
synthesis where node formation is separated from the self-
assembly step is an important tool to generate single
architectures, especially because traditional methods often
result in inseparable mixtures. Furthermore, this approach can
also enable the use of ligands that are incompatible with
common ZrMOP self-assembly conditions, for example,
ligands that react with the water required to form the Zr
nodes or ligands that will react with the exogenous
cyclopentadiene that is formed as a side product. The resulting
lanterns and tetrahedra were fully characterized and shown to
have unique 1H/DOSY NMR and mass spectra, establishing
that these techinques can be used to assess phase purity.
This new route to phase-pure ZrMOPs maintains the

attractive tunability of these materials where a broad library of
ligands may be used and enhances studies of structure−
function relationships by eliminating the complexities
associated with analyzing mixtures. We demonstrate this
using surface area measurements, where the high surface area
of the material is attributed to only a single phase. Specifically,
tetrahedra have significantly larger surface areas than lanterns,
and this general trend was shown to be independent of the
counterion and ligand. Because many applications of MOPs
are predicated on their permanent porosity, establishing
general routes to phase-pure materials with unique phys-
icochemical properties will enhance their use as stand-alone
materials or as components of hybrids or composites.

■ ASSOCIATED CONTENT
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The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.chemmater.3c02775.

Figure 3. Top: full mass spectra of [ZrMOP-bdc]ClX as a tetrahedron
(X = 4) and a lantern (X = 2). The lack of a 3+ peak in the lantern
architecture is highlighted (dashed box). Bottom: the 4+ and 2+
peaks shown in detail so the unique peak spacing can be observed.

Table 1. BET Areas of Tetrahedral and Lantern ZrMOPs (X
= 4 for Tetrahedra and X = 2 for Lanterns)

BET area (m2/g)

MOP type tetrahedron lantern

[ZrMOP-bdc]ClX 462.5 12.9
[ZrMOP-bdc]OTfX 392.8 20.0
[ZrMOP-biphenyl]OTfX 605.2 4.2
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