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A B S T R A C T

Method development in comprehensive two-dimensional liquid chromatography (LC×LC) is a challenging
process. The interdependencies between the two dimensions and the possibility of incorporating complex
gradient profiles, such as multi-segmented gradients or shifting gradients, make trial-and-error method
development time-consuming and highly dependent on user experience. Retention modeling and Bayesian
optimization (BO) have been proposed as solutions to mitigate these issues. However, both approaches have
their strengths and weaknesses. On the one hand, retention modeling, which approximates true retention
behavior, depends on effective peak tracking and accurate retention time and width predictions, which are
increasingly challenging for complex samples and advanced gradient assemblies. On the other hand, Bayesian
optimization may require many experiments when dealing with many adjustable parameters, as in LC×LC.
Therefore, in this work, we investigate the use of multi-task Bayesian optimization (MTBO), a method that can
combine information from both retention modeling and experimental measurements. The algorithm was first
tested and compared with BO using a synthetic retention modeling test case, where it was shown that MTBO
finds better optima with fewer method-development iterations than conventional BO. Next, the algorithm was
tested on the optimization of a method for a pesticide sample and we found that the algorithm was able
to improve upon the initial scanning experiments. Multi-task Bayesian optimization is a promising technique
in situations where modeling retention is challenging, and the high number of adjustable parameters and/or
limited optimization budget makes traditional Bayesian optimization impractical.
1. Introduction

Comprehensive two-dimensional liquid chromatography (LC×LC) is
powerful technique for separating complex mixtures. When applied
dequately, introducing a second dimension can substantially enhance
eak capacity and resolution [1,2]. Therefore, LC×LC methods are
eveloped for analyzing diverse samples, such as small molecules,
olymers, proteins, oils, and bioactive compounds, among others [3–9].
he continual advancements in the LC×LC domain, providing enhanced
apabilities for analyzing increasingly complex samples, contribute to
he growing challenge of method development. To begin, analysts
ust select an appropriate retention mechanism for the first dimension

1D) separation and then identify a complementary second dimension
2D) retention mechanism. Once these and other system parameters
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have been set, the method can be refined using different gradient
programs [10]. However, optimizing gradient settings through a ‘‘trial
& error’’ method can be time-consuming.

Therefore, research has focused on computational methods to accel-
erate these design steps. Here, a distinction can be made between two
kinds of optimization that we will refer to as direct and simulation-
aided optimization. In direct optimization, an objective function is
directly applied to an experimental measurement, and then black-box
optimization techniques such as simplex methods [11,12], evolutionary
algorithms [13,14], reinforcement learning [15], and Bayesian opti-
mization [16,17] can be used to guide optimization. However, these
methods generally require an increasing number of iterations as the
vailable online 3 May 2024
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number of adjustable parameters increases, and experimental measure-
ments are both time-consuming and costly. Therefore, these approaches
have generally been restricted to one-dimensional LC and/or GC with
a handful of adjustable parameters.

In simulation-aided approaches, first, a set of experiments is per-
formed based on scanning gradients [18–20] or on the Design of
Experiment strategies (DoE) [21]. Next, the chromatographic peaks are
detected and each unique compound is tracked over these measure-
ments [22]. Then using this tracking information, regression models
can be built. These models can be as flexible as neural networks [21], or
can have a lower-dimensional fixed functional form where for instance
only 2–3 parameters describe the retention behavior as a function of
the mobile phase composition [23–26]. Here the latter approaches
generally require significantly fewer initial experiments to build a
reliable retention model.

Once this retention model is built, it can be used to simulate the
separation under a broad range of conditions to optimize a predefined
separation objective in silico using, for instance, a grid search [27], evo-
utionary algorithms [28,29], Bayesian optimization [16], or gradient
escent-based methods [30]. If fully automated, this can then result in
bilevel optimization loop, where the optimal separation conditions
ound in the retention model can be performed as a real experiment,
hen with data from this new experiment, the retention model can be
pdated and optimized again, etc. By utilizing the retention model,
atisfactory optima can generally be found with fewer experiments
han in direct optimization settings. Therefore, these approaches are
enerally more suitable in situations where there are many adjustable
arameters.
Although retention modeling has been successfully applied in both

C [28,30,31] and LC×LC [32], several challenges persist. The first
hallenge is peak-tracking; any inaccuracies in this step could lead
o incorrectly predicted retention times. Also, compounds that have
ot been successfully resolved in the initial experiments might not be
racked and hence might be missing from the retention model.
Another challenge is to accurately predict the retention times and

eak widths using the retention model itself. This is especially true
n LC×LC when advanced gradient assemblies (e.g., shifting gradients)
re used in the second dimension, as the typically slow speed of
D separation compared to 1D peak widths results in a much lower
umber of data points in the first dimension compared to the second
imension. A prediction error in the 1D retention time could lead to
redicting the 2D retention time in a wrongly assigned modulation,
hereby propagating the error even further. In addition, as 2D gradients
re generally fast, gradient deformation may occur which can lead to
ess accurate retention time predictions [33,34]. This has been observed
n LC×LC [32], where for a complex antibody sample (tryptic digest
f a monoclonal antibody) the mean absolute percentage error in the
etention time predictions were in the range of 5%–15% in the first
imension and 12%–35% in the second dimension, where the error
ecreased with more iterations. Mean absolute percentage errors of the
eak widths were around 40% in the first dimension and 40%–60%
n the second dimension. The combination of incorrectly tracked peaks
nd prediction errors in the retention times and peak widths introduces
bias in the retention model, where an optimum in the retention model
ay not necessarily lead to an optimum in the experimental separation.
espite the simulator bias, the proposed optimum of the retention
odel represents a significant improvement over initial experiments,
s highlighted in [30,32]; however, there could be potential for further
mprovements.
Biased or lower fidelity simulators find widespread use throughout

cience and industry. In materials science for instance, proposed materi-
ls can be simulated with relatively inexpensive computer simulations
e.g., molecular dynamics) compared to significantly more expensive
ynthesis and characterization in a laboratory. Although these simu-
ations are generally approximate, they still manage to significantly
2

arrow down the search space of potential materials [35]. Likewise, (
when tuning internet services (e.g., adding a new feature, or testing a
new ranking model), offline simulators can provide estimates of human
interactions and offer higher throughput than deploying and testing all
designs online [36]. Another example is automated machine learning,
where the goal is to tune the hyperparameters of a model by minimizing
the validation error after training on a large training set. While training
on the full dataset can be costly, model performance could be estimated
with lower fidelity on a subset of the training set, or by terminating
training earlier, thereby finding optimal hyperparameters faster and/or
at a reduced cost [37].

A technique that can combine information between these lower-
fidelity simulators and the real problem at hand is multi-task Bayesian
optimization (MTBO). Here the underlying idea is that if performance
on various tasks (for instance the objective in the retention model
and the real system) is correlated as a function of the optimizable pa-
rameters, we may accelerate optimization by transferring information
between tasks [35,36,38]. At the heart of this method is a multi-task
Gaussian process (MTGP) which can model the response surface jointly
across tasks, and can be fitted to a variable number of data points
on each task. This allows the MTGP to be fit on larger amounts of
lower fidelity data than data on the expensive task at hand, or on
historical data that enables a ‘‘warm start’’ to the optimization problem
rather than starting from scratch. Because of this, MTBO generally is
more scalable to a higher number of optimizable parameters and is
more sample-efficient than conventional BO when tasks are correlated,
making it a potentially suitable approach for method optimization in
LC×LC. Especially given the fact that retention models generally are
less accurate, and the number of adjustable parameters and timescale
of measurements might make conventional BO unpractical.

Therefore, in this work, we explore the applicability of multi-task
Bayesian optimization (MTBO) for tuning 1D and 2D gradient parame-
ers in LC×LC with 2D shifting gradients. We describe the experimental
etails and theory regarding the methods in Sections 2, and 3. In
Section 4.1 we first set up a simulation framework using retention
modeling to test our MTBO framework and benchmark it with single-
task BO by optimizing a simulated 12-parameter problem containing
retention parameters for 187 compounds determined from an IgG1
monoclonal antibody [39]. Code related to this section is shared open-
source. Finally, in Section 4.2, we apply our BO and MTBO framework
in the real world to the optimization of a LC×LC method for analysis of
a complex pesticide sample by optimizing seven gradient parameters in
a closed-loop, automated, and unsupervised fashion and show signifi-
cant improvements over the initial experiments in under 20 method
development iterations (MDIs).

2. Experimental

2.1. Chemicals

Acetonitrile was obtained from Sigma Aldrich (St. Louis, MO).
Formic acid was supplied by Honeywell Research chemical (Muskegon,
MI). HPLC-grade water was obtained from an in-house Milli-Q sys-
tem (Burlington, MA). The studied sample was prepared from LC
Multiresidue Pesticide Standard #4 (63 components) obtained from
Restek. The standard was diluted from 100 μg mL−1 to 10 μg mL−1 with
cetonitrile (ACN) and held at −20 ◦C until the time of analysis. The
nalytical sample was prepared by diluting a portion of the frozen
tandard to 1 μg mL−1 with 50:50 water:ethanol.

.2. Chromatographic system

.2.1. LC×LC-MS
The LC instrument used in the study was the Agilent Infinity

I two-dimensional (2D)-LC system, consisting of two binary pumps

G7120A) with Jet Weaver V35 mixers (G7120-68135), an autosampler
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Fig. 1. Outline of the adjustable parameters of our 2D-LC setup (A-C). (A) Example of a gradient program in the first dimension consisting of two gradient steps. (B) Example of
a 2D shifting gradient. (C) Example of the gradient program of a single modulation in the second dimension. In every modulation, there is a fixed isocratic hold at the start and
end of the program.
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(G4226A), and two column ovens (G7116B, and G1316A). To con-
nect the two dimensions, the active solvent modulation (ASM) valve
interface (part number: 5067–4266) was configured with two 40 μL
sample loops and a restriction capillary (170 × 0.12 mm, 1.9 μL),
achieving an ASM factor of 3. Dwell volumes were estimated to be
0.225 mL in the first dimension and 0.070 mL plus the loop volume
of 0.040 mL in the second dimension. Control of the 2D-LC instru-
ment was performed using Agilent OpenLab CDS ChemStation Edition
(C.01.10 [287]) with a 2D-LC add-on (rev. A.01.04 [033]). The mass
spectrometer utilized was the Agilent Technologies quadrupole time-
of-flight (Q-TOF) instrument (G6545XT) equipped with a Dual Agilent
Jet Stream Electrospray Ionization (AJS ESI) source. Mass analyzer
calibration was achieved using a standard tuning compound mixture
(Agilent, part number: G1969-85000). A reference mass compound,
hexakis (1H,1H,3H-perfluoropropoxy) phosphazene (mass-to-charge-
ratio (m/z) 922.0098), was continuously sprayed into the electrospray
source through a secondary reference nebulizer. Control of the Q-TOF
was conducted using Agilent MassHunter Workstation Data Acquisition
version 11.

2.2.2. LC columns
In the first dimension, an Agilent Zorbax Bonus-RP (2.1 × 100 mm,

.5 μm) was used, whereas in the second dimension, we used an Agilent
orbax SB-C18 (2.1 × 30 mm, 3.5 μm). The column dead volumes
ere estimated to be 0.243 mL in the first dimension and 0.069 mL in
he second dimension, based on a total porosity of 0.7 and respective
olumn dimensions.

.3. Chromatographic conditions

.3.1. First dimension
Gradient elution was performed using 0.1% formic acid in water

Solvent A) and ACN (Solvent B). Four scanning gradients were em-
loyed, with a linear gradient profile of 2%–100% B. However, the
radient time (𝑡G) varied across three different durations: 30 min,
40 min, 50 min, and 60 min. The temperature of the 1D column was set
to 40 ◦C, and the flow rate in the first dimension was 0.08mL min−1.
ach analysis involved injecting 4 μL of pesticide mix at a concentration
f 1 μg mL−1.

.3.2. Second dimension
Gradient elution was performed using 0.1% formic acid in water

Solvent A) and ACN (Solvent B). Four scanning gradients were utilized,
aintaining a constant gradient profile of 2%–100% B. However, the
radient time (𝑡G) was varied across three durations: 9 s, 12 s, 15 s,
nd 19.2 s. At the start of each 2D cycle, the mobile phase was held
t 2% B for 5.4 s to serve as the diluent during ASM [40]. After 25.2 s
he mobile phase was held at 100%B until 27 s, after which the column
3

eequilibrated to 2% B until the end of the modulation time at 30 s. All
ther gradient profiles were computed using the algorithm described
n earlier work [32] and uploaded to the LC×LC system using an in-
ouse C++ script. The temperature of the 2D column was maintained
t 60 ◦C, and the flow rate for the 2D column was set to 2mL min−1. To
chieve the desired split ratio, the 2D flow entering the MS nebulizer
as reduced to approximately 0.3mL min−1 using a simple tee split and
hort, narrow restriction capillaries (75 μm i.d.).

.4. MS instrument and conditions

The Q-TOF mass spectrometer was operated in positive ion mode.
he following MS settings were used: gas temperature, 225 ◦C; drying
gas, 12 L min−1; nebulizer, 35 psi; sheath gas temperature, 350 ◦C;
sheath gas flow, 11 L min−1; VCap, 3500 V; nozzle voltage, 500 V; mass
range, 50 − 1200 m∕z; acquisition rate, 10 spectra s−1.

2.5. Software

2.5.1. In silico case study
In the in silico case study in Section 4.1, we used an in-house

Python (version 3.8.13) implementation of multi-linear gradient reten-
tion modeling using the linear solvent strength (LSS) model that is
described in [17]. For this work, it was extended to support shifting
gradients. It utilizes the peak-compression model of Hao et al. [41]
to predict peak widths. Retention parameters are based on the tryptic
digest of a monoclonal antibody sample used in Molenaar et al. [32],
and can be found in the Supplementary Information, including other
specified modeling parameters. All Bayesian optimization code was
implemented in Ax (version 0.2.5.1) and BoTorch (version 0.6.4) [42]
and was run on Intel(R) Xeon(R) CPU E5-2640 CPUv4 with 64 GB RAM.

2.5.2. Closed-loop platform
For most components we reused earlier developed software de-

scribed in [32] and its details are reiterated where deemed nec-
essary. Peak tracking was performed with previously developed al-
gorithms [22,43]. Multi-linear gradient retention modeling was per-
formed with the LSS model and was written in-house in Matlab
(R2021b). Retention parameters were estimated using the multistart
function in conjunction with fmincon with an optimality tolerance of
10−6 and a maximum of 3000 function evaluation. Retention model
optima were calculated using the ga function. We used an in-house ver-
sion of the peak compression model of Hao et al. [41] to predict peak
widths. Individual plate numbers per compound were estimated using
the fminsearch function. We established overall system interactions
between the MS, LC×LC, and Matlab algorithms via Python (version
3.8.12). The methods applied to the LC×LC were initiated using C++ in
Visual Studio 2022, similar to earlier research [17,30,32]. The Bayesian
optimization framework was implemented in the Python package of

Ax [42] (version 0.6.4). All Bayesian optimization code was run on
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CPU and details related to the hardware can be found in previous
work ([30], system A). Raw MS data were converted to .mz5 format
using ProteoWizard 3.0.22144 64-bit [44], using a threshold count
of 2000. This counts only the 2000 most intense peaks. In addition,
as some consistent background was present, some background masses
were excluded, as described in the Supplementary materials.

3. Theory & methods

3.1. Shifting gradients in two-dimensional chromatography

In conventional LC×LC, the second dimension elution conditions
emain constant throughout the analysis. This is reasonable if the two
eparation mechanisms are orthogonal; however, this is generally not
he case, especially when reversed-phase separations are used in both
imensions. In this situation, the 2D separation might benefit from
n advanced assembly of gradients that shift as a function of the 1D
obile-phase composition program to increase the utilization of the
eparation space [39,45]. Although powerful, this will result in more
omplex method optimization compared to conventional LC×LC and
hus is avoided in some cases [46], leading to an under-optimized
ethod.
Fig. 1 outlines the parameters of the LC×LC gradient program. In

he first dimension (See Fig. 1A), the gradient nodes (𝜑𝑖, 𝑡𝑖), describe
he transition points between consecutive linear segments. Gradient
odes can be added or removed depending on the desired flexibil-
ty/complexity of the 1D program. Throughout this work, we ensure
hrough inequality constraints that 𝜑𝑖 ≤ 𝜑𝑖+1 and 𝑡𝑖 ≤ 𝑡𝑖+1 for all 𝑖 in 
radient nodes. In addition, we kept the start point fixed at 𝜑0 = 0.02
t 𝑡0 = 𝑡init, and the end point fixed at 𝜑𝐼 = 1 at 𝑡𝐼 = 𝑡max, where 𝑡max is
ome pre-specified maximum measurement time. This is done to ensure
hat all analytes elute.
The shifting gradient program in the second dimension, shown in

ig. 1B, is specified by a lower shift bound denoted with 𝜑init,𝑖 and
n upper shift bound denoted by 𝜑final,𝑖 at time points 𝑡shift,𝑖. Each
odulation (shown in Fig. 1C) follows these lower and upper bounds
epending on the 1D time which is programmed in 𝜑start and 𝜑end.
lthough the shifting times of the lower and upper bound do not
ecessarily have to be at the same point in time, we do fix this to
educe the number of adjustable parameters. Therefore, each additional
hifting step introduces at most three additional parameters. Unless
tated otherwise, we keep the time of the start of the lower bound
nd the end of the upper bound of the shifting gradient fixed, so that:
shift,0 = 𝑡init, and 𝑡shift,2 = 𝑡max. In the real-world experiments described
n Section 4.2, we set 𝑡init = 1.44 min, and 𝑡max = 62 min and set
init,1 = 𝜑init,2, and 𝜑final,1 = 𝜑final,2. In addition, we set inequality
onstraints so that consecutive lower and upper bound points and
imepoints are always increasing, i.e, 𝜑init,𝑖 ≤ 𝜑init,𝑖+1, 𝜑final,𝑖 ≤ 𝜑final,𝑖+1
nd 𝑡shift,𝑖 ≤ 𝑡shift,𝑖+1 for all 𝑖 in  shifting steps. Lastly, the lower and
pper bounds are not allowed to cross by ensuring that 𝜑init,𝑖 < 𝜑final,𝑖
or all  shifting steps.
In the experiments in Section 4.2, ASM was used. Therefore, we

ept an initial hold of 0.09 min at 𝜑 = 0.02 at each 2D modulation
efore starting the programmed shifting gradient from 0.1 to 0.45 min
ollowed by a fixed endpoint at 𝜑 = 1.0, as shown in Fig. 1C. Not
aintaining the isocratic hold during the ASM time caused considerable
eak broadening and less stable retention times.
To do retention modeling with shifting gradients, we follow the

ame approach as in our previous work [32] and refer the reader to the
etailed description there. In short, retention modeling in the second
imension requires the determination of the 1D retention time so that
he 2D modulation number can be determined and accompanying lower
nd upper bounds of the gradient program of that modulation. If the 1D
etention time was predicted to be after 𝑡shift, , the final 2D conditions
ere used.
4

n

.2. Objective function

Many objective functions, or chromatographic response functions
CRFs) have been developed to assess the quality of separation of a
hromatogram in both LC and 2D-LC [47]. However, most CRFs are
esigned to either assess the quality of a separation predicted based
n a retention model or that of an experimental measurement, but not
oth. For example, some CRFs include terms such as the number of
bserved peaks, which is useful for experimental measurements, but not
or retention modeling. As with retention modeling, once the retention
odel is built, the number of compounds in the retention model is
ffectively constant. In some cases, a resolution score is normalized
y the number of observed peaks, which is sensible in the retention
odeling case, but not in the case of experimental measurements, as
he number of observed peaks might fluctuate over measurements, and
ence scores are not comparable over measurements. In our setting,
e need an objective function, or CRF that should be applicable to
oth experimental separations, and separations predicted from reten-
ion models, and should be as correlated as possible. Therefore, as a
eparation criterion, we use the two-dimensional resolution between
wo peaks 𝑖 and 𝑗:

∗
𝑆𝑖,𝑗

=

√

√

√

√

√

√

(𝑡1𝑅,𝑖 − 𝑡1𝑅,𝑗 )
2

[

2
(

𝜎1𝑖 + 𝜎1𝑗
)]2

+
(𝑡2𝑅,𝑖 − 𝑡2𝑅,𝑗 )

2

[

2
(

𝜎2𝑖 + 𝜎2𝑗
)]2

(1)

here 𝑡1𝑅,𝑖 and 𝑡2𝑅,𝑖 are the retention times in the first- and second-
imension. 𝜎1𝑖 , and 𝜎2𝑖 are the corresponding standard deviations of the
eaks. These resolutions are normalized as follows:

𝑠𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑅∗
𝑆𝑖,𝑗
2.0 if 𝑅∗

𝑆𝑖,𝑗
< 2.0

1 if 𝑅∗
𝑆𝑖,𝑗

≥ 2.0
(2)

We then take the sum of the resolution of all nearest neighbor pairs in
the chromatogram as the final objective:
𝑁
∑

𝑖
min
𝑗≠𝑖

𝑅𝑠𝑖,𝑗 (3)

This CRF is designed to be applicable to both simulated and experi-
mental chromatograms. Its emphasis lies in maximizing the number of
resolved peak pairs within the specified separation time.

3.3. Gaussian processes

For single-task Bayesian optimization, we use a Gaussian process
(GP) as the probabilistic regression model due to its proven perfor-
mance in the small data regime [37,48]. A GP is a distribution over
functions, which is parameterized by a mean function 𝜇(𝐱) and a covari-
ance function 𝑘(𝐱, 𝐱′) which generally is called the kernel function. Now
given a regression problem with 𝑁 pairs of observations

{(

𝐱𝑖, 𝑦𝑖
)}𝑁

𝑖=1,
here for simplicity we consider these to be noiseless so that we have
utputs 𝒚 =

[

𝑦(𝐱1), 𝑦(𝐱2),… , 𝑦(𝐱𝑛)
]T, and inputs 𝐗 =

[

𝐱1, 𝐱2,… , 𝐱𝑛
]T, the

aussian process for 𝐲 can be described as:

=

⎡

⎢

⎢

⎢

⎣

𝑦
(

𝐱1
)

⋮

𝑦
(

𝐱𝑁
)

⎤

⎥

⎥

⎥

⎦

∼ 
⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

𝜇
(

𝐱1
)

⋮

𝜇
(

𝐱𝑁
)

⎤

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎣

𝜅
(

𝐱1, 𝐱1
)

… 𝜅
(

𝐱1, 𝐱𝑁
)

⋮ ⋱ ⋮

𝜅
(

𝐱𝑁 , 𝐱1
)

… 𝜅
(

𝐱𝑁 , 𝐱𝑁
)

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

(4)

Or in more compact notation:

∼  (𝝁(𝐗), 𝐾(𝐗,𝐗)) (5)

ere  is the normal distribution, and 𝐾(𝐗,𝐗) is the Gram matrix
i.e., the right-hand side of the normal distribution in Eq. (4)). As we

ormalize the inputs (between 0 and 1), and standardize the outputs
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to zero mean and unit variance, we can set 𝝁(𝐗) = 𝟎 so that the GP is
entirely described by the kernel function.

As a kernel function, we use the Matérn-5/2 kernel with automatic
relevance determination (ARD), which is defined as:

𝑘(𝐱, 𝐱′) = 𝜃0

(

1 +
√

5𝑟 + 5𝑟2
3

)

exp
(

−
√

5𝑟
)

(6)

where 𝑟 is a weighted distance:

𝑟 =

√

√

√

√

√

𝐷
∑

𝑑=1

(

𝑥𝑑 − 𝑥′𝑑
𝜃𝑑

)2

(7)

Here 𝜃0 is a scaling factor controlling the horizontal scale, and 𝜃1,…,𝐷
are length scale parameters that govern the smoothness of the func-
tions.

The parameters 𝜽 can be inferred by maximizing the log marginal
likelihood, which is the probability that the model predicts the training
outputs given the inputs and kernel parameters and is defined as:

ln 𝑝(𝐲 ∣ 𝐗,𝜽) = −1
2
𝐲𝑇 [𝐾(𝐗,𝐗)]−1 𝐲 − 1

2
ln |𝐾(𝐗,𝐗)| − 𝑁

2
ln 2𝜋 (8)

Where the first term is a data-fit term, the second term is a com-
plexity penalty, which favors longer length scales over shorter ones
(i.e., smooth over oscillating functions) and hence regularizes overfit-
ting. The third parameter is a constant originating from the normalizing
constant of the normal distribution.

To make predictions for unseen test inputs 𝐗∗ we can define the
joint distribution of both the previous observations and the test inputs,
so that:
[

𝐲
𝐲∗

]

∼ 

([

𝝁(𝐗)
𝝁 (𝐗∗)

]

,

[

𝐊(𝐗,𝐗) 𝐊 (𝐗,𝐗∗)

𝐊 (𝐗∗,𝐗) 𝐊 (𝐗∗,𝐗∗)

])

(9)

Then the conditioning properties for Gaussians allow for the computa-
tion of the posterior predictive distribution in closed form:

𝑝
(

𝐲∗ ∣ 𝐗∗,𝐗, 𝐲
)

= 
(

𝐲∗ ∣ 𝝁∗,Σ∗) (10)

with

𝝁∗ = 𝝁
(

𝐗∗) +𝐊(𝐗∗,𝐗)𝑇 [𝐊(𝐗,𝐗)]−1 (𝐲 − 𝝁 (𝐗)) (11)

and

𝜮∗ = 𝐊(𝐗∗,𝐗∗) −𝐊(𝐗∗,𝐗) [𝐊(𝐗,𝐗)]−1 𝐊(𝐗,𝐗∗) (12)

For a more detailed description of GPs we refer the reader to Rasmussen
and Williams [49].

3.4. Multi-task Gaussian processes

In MTGP regression, besides input pairs, we have an output for each
task, so that for 𝑁 inputs 𝐗 =

[

𝐱1, 𝐱2,… , 𝐱𝑛
]T we have a set of responses

for 𝑇 tasks as 𝐲 = (𝑦11,… , 𝑦𝑁1,… , 𝑦12, … , 𝑦𝑁2,… , 𝑦1𝑇 ,… , 𝑦𝑁𝑇 )T,
where 𝑦𝑖,𝑡 is the response for task 𝑡 on input 𝐱𝑖. In the simplest case,
we can treat each task as a separate regression task and can use
an independent GP for each task following the description above.
However, we want to exploit the correlation between each task. This
can be done by introducing a kernel that incorporates both tasks and
inputs, i.e., 𝑘((𝐱, 𝑡), (𝐱′, 𝑡′)). One such approach is the intrinsic model of
coregionalization (ICM), which decouples the task intercorrelation and
the data domain and is defined as follows:

𝑘ICM = 𝑘T(𝑡, 𝑡′)⊗ 𝑘(𝐱, 𝐱′) (13)

where ⊗ is the Kronecker product [50]. Here 𝑘T(𝑡, 𝑡′) can be interpreted
as a 𝑇 ×𝑇 matrix of trainable intertask correlation parameters. Given 𝑁
inputs for both tasks, the resulting Gram matrix will have dimensions
𝑇𝑁 × 𝑇𝑁 , and will thus induce some additional compute over a
conventional GP. Then using 𝑘ICM we again have a similar structure
as a conventional GP and may use the equations above to fit kernel
5

parameters and do predictions.
3.5. Bayesian optimization

In Bayesian Optimization we aim to solve the optimization problem:

𝐱∗ ∈ argmax
𝐱∈

𝑦(𝐱) (14)

where 𝑦(𝐱) is the objective function score we observe via experiments
𝐱. BO utilizes the GP model (or the MTGP model in case of MTGP) and
an acquisition function to guide optimization. The acquisition function
uses the mean prediction and their variance from the GP model to
find points that are likely to improve upon the previously performed
experiments by trading off exploration (high variance predictions) and
exploitation (high mean predictions).

In the context of multi-fidelity BO, the acquisition function can
also incorporate terms regarding the cost of the queried task, where
simulator queries are significantly less expensive than performing an
experiment in the laboratory. In this way, an optimum can be found
at the lowest possible cost by alternating between the simulations and
experiments.

Throughout this work we use the Noisy Expected Improvement
acquisition function (NEI) [36,51] as it handles measurement noise
robustly, and supports batch optimization. Following the approach of
Letham et al. [36], we exclusively apply NEI to the real task of the
MTGP (i.e., the part of the MTGP predicting the objective function for
the real measurement). This enables us to generate a batch of promising
method parameters. Subsequently, we assess these parameters on the
simulator, recording their corresponding CRF scores and refitting the
MTGP with these new observations. Next, we reevaluate the generated
batch on the real task using the updated model, selecting the method
parameters with the highest CRF score to use in a real experiment.
Thus, the real task remains the primary driver of the optimization
process. At the same time, the simulator serves to reduce predictive
uncertainty and aids in filtering out predictions with high variance and
low mean. The entire MTBO loop can be outlined as follows:

1. Fit MTGP to scanning experiments and randomly drawn method
parameters evaluated using the simulator.

2. Generate candidate method parameters using NEI on the real
task.

3. Evaluate method parameters using the simulator and observe
their objective function score.

4. Refit the model with the new simulator observations.
5. Evaluate the generated candidate parameters on the real task
and select the best-performing candidate to use in an experi-
ment.

6. Update the model with the experimental results and repeat from
step 3.

4. Results & discussion

4.1. In silico case study

4.1.1. Setting up a simulator pair
To test and evaluate the MTBO framework and compare it with

single-task BO, we set up a simulator pair that allows us to run many in
silico BO experiments. The simulator pair consists of a ‘‘ground-truth’’
simulator and a ‘‘biased’’ simulator. Here in a real-world setting, the
ground truth simulator would describe the laboratory experiments, and
the biased simulator would use the accompanying retention model. The
ground-truth simulator contains retention parameters for 187 peptides
found in a tryptic digest of an IgG1 monoclonal antibody characterized
using LC×LC [32]. The biased simulator is created by introducing
normally distributed random noise to the predicted retention times and
peak widths and by randomly removing 30 compounds. This approach
attempts to mimic the error that would be encountered in a realistic

setting, where not all compounds can be sufficiently tracked and there
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Fig. 2. Biased simulator observations compared to the ground truth simulator consist-
ing of 400 measurements. Each dot represents a set of parameters that was evaluated
in both simulators. For the biased simulator, the outcome of each parameter set is
stochastic due to the randomly drawn noise and was therefore computed three times,
and the respective standard deviations are shown by the error bars. Although the
biased simulator scores are correlated with the ground truth simulator, using the biased
simulator to optimize the problem directly is challenging.

are prediction errors in the retention model. Details regarding the
added noise and other retention parameters can be found in Section
S1 of the Supplementary Information. We note that we do not include
peaks in the retention model, that are not present in the true system
(i.e., false positives), which could in reality be another source of bias,
we cover this in more detail, along with other bias variations, in Section
S2 of the Supplementary Information.

To assess the introduced simulator bias, we evaluate both simulators
on 400 randomly drawn sets of method parameters of a shifting gradi-
ent program with 12 adjustable parameters: 𝐱 = [𝜑1, 𝜑2, 𝑡1, 𝑡2, 𝜑init,1,
init,2, 𝜑init,3, 𝜑final,0, 𝜑final,1, 𝜑final,2, 𝑡shift,2, 𝑡shift,3] describing a two-step
D gradient (as in Fig. 1A) and a two-step 2D shifting gradient (as in
ig. 1B, but with one additional shifting step). A further description of
he parameters is given in Section 3.1. The resulting data are shown
n Fig. 2, with the ground truth results shown on the 𝑥-axis and the
iased results on the 𝑦-axis. It can be seen the introduction of noise
nd removal of compounds led to consistent overconfidence around low
round truth scores, potentially because the biased simulator observes
ore separated peaks that are not separated in the real system due
o the incorporation of more compounds. At high ground truth scores,
he biased simulator is generally underconfident because it is missing
ompounds, leading to a lower number of separated compounds and
lower score. While there still is a clear correlation between the two
imulators, it is clear that an optimum in the biased simulator does not
ecessarily coincide with an optimum in the ground truth simulator.
herefore it provides an interesting test case for our multi-task Bayesian
ptimization framework, but also from a chromatographic method
evelopment standpoint.

.1.2. Bayesian optimization & multi-task Bayesian optimization
BO (described in detail in Section 3.5) relies on two main compo-

ents: a probabilistic model, and an acquisition function. The prob-
bilistic model is trained on the input parameters and the observed
etric of previously performed experiments and then acts as a sur-
ogate model of the real system. We use a GP (described in detail in
ection 3.3) as the probabilistic model due to its proven performance
n the small data regime [48]. In MTBO, the GP model is replaced by
multi-task GP (described in detail in Section 3.4). A multi-task GP
an predict outcomes for several tasks and can learn the correlations
etween different tasks to boost predictive capabilities. In our setting,
he tasks are predicting the performance metric (CRF) of the real
6

xperiment and that of the retention model described in Section 3.2.
To compare the performance of a single-task GP with a multi-
task GP, we perform leave-one-out cross-validation on predicting the
outcome of 24 observations of the ground-truth simulator described in
Section 4.1.1 using the same 12 adjustable parameters. This involves
fitting the model to 23 observations and evaluating the prediction
accuracy for the left-out observation for all possible permutations.
The results for the single-task GP are shown in Fig. 3A, where it is
shown that given the relatively low number of observations and the
relatively high number of adjustable parameters, the GP cannot capture
the response surface accurately. The multi-task GP was also fitted to
120 observations of the biased simulator and then used to do leave-
one-out cross-validation on the 24 observations from the ground-truth
simulator. By incorporating the biased observations, the predictive
accuracy of the multi-task GP (see Fig. 3B) improves dramatically
upon the single-task GP. The accuracy of the probabilistic model is
imperative in Bayesian optimization, and the single-task GP will likely
need more than 24 observations to become accurate.

The second core component of BO, the acquisition function, queries
the GP (or the MTGP in case of MTBO) at new test locations and
makes a trade-off between exploration (high variance predictions of
the GP) or exploitation (high mean predictions of the GP) and finds
the experiment that is most likely to improve upon the previously
performed experiments. We describe details regarding the acquisition
function in Section 3.5.

Given the two core components the conventional BO loop proceeds
by an initial fitting of the GP model to initial experiments, followed by
optimizing the acquisition function to propose new method parameters,
then performing the measurement and retraining the model on the
updated dataset, and is repeated until some convergence criterion or
optimization budget is met.

In our MTBO framework, we draw inspiration from Letham et al.
[36] In this framework, after the initial fitting of the MTGP model, we
optimized the acquisition function on the task describing the ground
truth simulated response surface to find ten promising experiments.
Next, we evaluated these method parameters on the biased simula-
tor and updated the MTGP with these new observations. We then
reevaluated the proposed experiment on the ground truth task of the
updated model, selecting the best-performing candidate to use in a
real experiment, and iteratively repeat. Thus, the ground-truth task
remains the primary driver of the optimization process, while the
biased simulator serves to reduce predictive uncertainty and aids in
filtering out predictions with high variance and low mean that would
not be a good use of resources.

Fig. 4 describes a single- and multi-task BO loop for the setup
discussed in Section 4.1.1 on a 12-parameter optimization problem,
using the CRF described in Section 3.2. Both algorithms were allowed to
do 25 experiments on the ground truth simulator. The MTGP could per-
form four biased simulator experiments per iteration and was initialized
with 30 random biased simulator experiments. Both algorithms were
initialized with five random ground truth experiments. All experiments
were repeated for eight trials. It can be seen that the MTBO found
reasonable optima with far fewer iterations, ascribing its applicability
to the problem setting of LC×LC. We provide additional experiments
with alternative simulator biases, that include a different number of
removed compounds, but also a case where we have added compounds
to resemble bias introduced by the tracking of noise peaks, in Section
S2 of the Supplementary Information. In addition, we provide another
retention modeling example of a synthetic sample comprised of two
distributions in Section S3 of the Supplementary Information and draw
similar conclusions.

4.2. Case study: Separation of a pesticide mix

To test our framework in a real-world setting, we employed our
single-task and multi-task BO schemes to develop a method for the sep-
aration of a pesticide mix implemented within the automated closed-

loop workflow we developed in earlier work [32]. We considered the
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Fig. 3. Leave-one-out cross-validation predicting the outcome (i.e., the CRF value) of 24 observations in a 12-parameter shifting gradient program. (A) A single-task GP fitted
only to 24 observations of the true simulator. (B) A multi-task GP fit to both the 24 observations of the true simulator and 120 biased simulator observations. Due to the high
dimensionality of the optimization problem and a low number of observations, the single-task model does not describe the observations well enough to make useful predictions.
Incorporating biased simulator observations increases the accuracy of the multi-task model significantly.
Fig. 4. Comparison of the performance of single-task and multi-task Bayesian opti-
mization on the simulated optimization problem of a 12-parameter shifting gradient
program. The mean and standard deviation are reported over 25 trials. It is observed
that MTBO results find better optima at earlier iterations than single-task BO.

development of a two-step 1D gradient program (as in Fig. 1A) with
a fixed starting point at (𝑡0 = 2, 𝜑0 = 0.02) and a fixed end point at
(𝑡2 = 62, 𝜑2 = 1), effectively leading to one adjustable gradient node
(𝑡1, 𝜑1) in the first dimension. In the second dimension, we considered a
shifting gradient program (as in Fig. 1B). This led to the following seven
adjustable parameters: 𝐱 = [𝜑1, 𝑡1, 𝜑init,0, 𝜑init,1, 𝜑final,0, 𝜑final,1, 𝑡shift,1].
ther details regarding bounds and inequality constraints are discussed
n Section 3.1. We used the CRF described in Section 3.2 to guide
ptimization, focusing on having as many separated peak pairs as pos-
ible within the given separation time. For both optimization cases, we
llowed for a budget of 20 laboratory experiments including the four
nitial scanning gradients, which we refer to as method development
terations (MDIs).

.2.1. Multi-task Bayesian optimization
Besides the four initial scanning experiments, the MTBO algorithm

as initialized with 20 random sets of method parameters evaluated
sing the retention model (RM). At each iteration, the MTBO algorithm
roposed 10 candidates which were first tested using the RM, after
hich the MTGP was updated and then the best-performing candidate
n the updated model was carried out in a real laboratory experiment
see Section 3.4 for details regarding the MTBO loop). Fig. 5A shows the
bserved CRF values for each performed measurement (in blue) and the
7

CRF values observed in the retention model (RM) (in orange). Here it is
observed that method parameters are proposed that improve upon the
initial scanning experiments both in terms of the CRF evaluated using
the RM prediction, but also for the laboratory experiment, indicating
successful optimization. Fig. 5B, shows all CRF values of the method
parameters tested with the retention model in blue, with the orange
dots indicating what measurements were then picked to be tested in
a laboratory experiment. Here it is seen that method parameters were
explored that would give low CRF values with the RM model, which
were in turn not picked for use in laboratory experiments, because the
additional data allowed for a reduction of uncertainty in the MTGP,
thereby focusing on interesting areas and preventing poor uses of
precious resources. The dashed line in Fig. 5A shows the optimum in
the retention model which was computed post-hoc using BO and the
retention model with a more exhaustive budget and which was cross-
referenced with the genetic algorithm optimization approach proposed
earlier [32]. Although the RM optimum is not met, within only 214
evaluations of the RM, the highest queried value is close to the RM
optimum and was also selected at MDI 17, and in the process, other
promising method parameters were evaluated, which would not have
been attempted using RM to drive optimization.

Interestingly, although MDI 17 has the highest RM score, it is not
the highest observed score from the real measurements. This is shown
in Fig. 5A where it can be seen that the observed scores based on
the RM and on the real measurement are generally in the same range
but do differ, indicating some bias. Likewise, MDI 7 has the highest
score on the real measurement, but not on the RM score. In terms of
method parameters (shown in Fig. 5C), MDI 7 and MDI 17, both are
improvements upon the longest scanning experiment (MDI 4). Judging
from the chromatogram of MDI 4, shown in Fig. 6A, the method would
benefit from a slightly shallower 1D gradient and a narrower shift,
starting at higher modifier concentrations, as most compounds eluted
at relatively high modifier concentrations in the second dimension. This
is indeed what is proposed in MDI 7 and MDI 17, where in both cases
the 1D program is more shallow than in the scan, with MDI 7 being the
most shallow. In the case of MDI 7, shown in Fig. 6B, this led to more
separation in the first dimension between 20 and 50 min than in MDI
17 (Fig. 6C), but arguably led to more compression around 60–70 min.
In the second dimension, MDI 7 set a slightly reduced lower bound
than MDI 17 and started the upper bound at a lower modifier fraction
(See Fig. 5C), arguably leading to more separation in the second
dimension. Note that there is the fixed isocratic hold of 5.4 s at 2%
modifier in addition to the dwell time (2.1 s) associated with the pump,
column dead time (2.07 s), and gradient delay time associated with the

loop (1.2 s), which is why compounds can only elute under isocratic
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Fig. 5. Panel showing the results of the MTBO run. (A) Overview of observed CRF values for each MDI. The CRF computed on the real measurement is shown in blue, whereas
the CRF computed using the retention model (RM) prediction is shown in orange. The black dashed line corresponds to the best optimum found using the RM model. (B) CRF
scores for all sets of method parameters evaluated using the RM during the MTBO run, the orange points indicate which iterations were carried out using the real system. (C)
Gradient programs used in MDI 4, 7, and 17, which are the encircled points in A, and correspond to the longest scanning experiment, the optimum according to the CRF computed
using the real measurement, and the optimum according to the CRF computed on the retention model (RM) prediction, respectively. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. LC×LC-MS total ion chromatograms (TICs) of MDIs during the MTBO run. Red dots indicate the peaks detected by the peak detection algorithm. (A) Chromatogram of MDI
, which is the longest initial scanning experiment. (B) Chromatogram of MDI 7, which was the best measurement according to the CRF computed using the real measurement.
B) chromatogram of MDI 17, which was the best measurement according to the CRF computed using the RM prediction.
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onditions before ∼10.7 s. Compounds in a modulation can elute during
he combined dwell and dead time (5.28 s) of the next modulation.
t is difficult to make a quantitative determination as to why the CRF
cores determined using the real measurement differ, although it could
e caused by improved separation (for instance around 20 min in the
irst dimension and 20 s in the second dimension). It could also be
ue to detected noise (around 40 min in the first dimension and 5 s
n the second dimension) in MDI 7. In Section S4, we compare the
M prediction of MDI 17 with the true measurement of MDI 17 and
escribe the differences and similarities there.

.2.2. Single-task Bayesian optimization
Fig. 7A describes the optimization campaign of the single-task BO

oop. Unfortunately, these measurements were performed at a different
oint in time and MS detector sensitivity was lower, indicated by the
RF scores of MTBO (dashed green line), and the CRF scores of BO
blue line) of MDI 1–4, which are the same initial scanning measure-
ents and have consistently lower scores. This is also supported by
he RM scores (orange lines), which were computed post hoc at the
easured method parameters, using the retention model developed
n Section 4.2.1, which are consistently higher than the CRF scores
f the real measurements. This unfortunately does not allow for a
uantitative comparison of the MTBO and BO runs. However, despite
he lowered sensitivity, the BO algorithm is seen to provide method
arameters that improve upon the scanning experiments. Here MDI 11
8

s the best measurement according to the CRF evaluated using the real
easurement, and MDI 6 is best according to the RM, which are both
hown in Fig. 8. Note that the BO algorithm did not use the RM to guide
ptimization, and this is solely used for discussion.
The method parameters for MDI 6 and MDI 11 are shown in Fig. 7B,

here it is seen that both MDIs, similar to those from the MTBO, have
shallower 1D gradient that increases the separation in the first di-
ension. However, the 2D parameters are not varied as much as in the
TBO run. This is especially true for MDI 6, where the 2D parameters
re the same as in the scanning experiments. Note, however, that this
eads to a score that is close to the optimum in the RM, indicating
hat much improvement can be gained from tuning the 1D parameters,
ccording to the retention model. This is also supported by Section S4,
here it is seen that 2D peak widths are generally overpredicted, and
herefore these peaks are hard to effectively separate in the second
imensions according to the RM. MDI 11, slightly lowers the upper
ound of the shifting gradient but leaves the lower bound of the shifting
radient untouched compared to the scanning gradients. While this
eads to less separation than was proposed in the MTBO run, it does
ead to a better separation of the cluster of peaks eluting around 60 min,
hich was not observed in the MTBO run. However, from a qualitative
erspective, the MTBO obtained more reasonable method parameters
han what was found in the BO run, and BO will likely need more MDIs
o find better optima, which was also demonstrated more broadly in the
n silico experiments in Section 4.1.2 and in sections S2 and S3 of the
Supplementary Information.
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Fig. 7. Panel showing the results of the BO run. (A) Overview of observed CRF values as a function of MDIs. The CRF computed using the real measurement is shown in blue,
whereas the CRF computed using the RM prediction is shown in orange; note that this is not used during the optimization. The black dashed line corresponds to the best optimum
found using the RM model. The dashed green line shows the MTBO values shown in Figure 5 for comparison. (B) Gradient programs used in MDI 6 and 11, which are the
encircled measurements in A, and correspond to the optimum according to the CRF computed on the RM prediction, and the optimum according to the CRF computed on the real
measurement, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. LC×LC-MS TICs of MDIs during the BO run. Red dots indicate the peaks detected by the peak detection algorithm. (A) Chromatogram of MDI 6, which was the best
easurement according to the CRF computed using the RM model. (B) Chromatogram of MDI 11, which was the best measurement according to the CRF computed using the real
easurement.
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. Conclusion

We developed and investigated the use of multi-task Bayesian op-
imization (MTBO) applied to the development of methods for com-
rehensive two-dimensional liquid chromatography (LC×LC) separa-
ions. We first compared the performance of MTBO with conventional
ayesian optimization (BO) in an in silico test case and showed that
TBO, with its ability to incorporate information from both retention
odeling and real experimental data, finds better optima in fewer
terations than conventional BO. This was also demonstrated in a
eal test case where we compared the performance of MTBO and
O for optimizing a method developed for separation of a complex
esticide sample. Here it was shown that although both methods im-
roved upon the performance of initial scanning experiments, from
chromatographers perspective, MTBO made better use of both the
irst- and second-dimension parameters than BO. This makes MTBO
promising method for method development over conventional BO
hen retention modeling is challenging, and the number of adjustable
arameters and/or limited optimization budget makes conventional BO
mpractical. We note that this is not necessarily only the case in LC×LC,
ut MTBO could also be used in challenging applications in LC, GC,
C×GC, and other separation techniques where the true objective to
9

e optimized is costly, and there is access to a cheaper, less accurate
ource of data.
It remains an open question as to when and where MTBO should be

sed over retention modeling. When retention modeling can accurately
redict retention times and peak widths for most compounds in the
ample under study, it is arguably more sensible to directly use the
etention model to guide optimization. However, one only finds out if
his is the case during the optimization process itself. If the retention
odel is too biased to effectively guide optimization, from that point
n the MTBO could be initialized with the previously acquired data
nd could take over optimization from there. In addition, there may be
se cases where only some of the adjustable parameters are described
y a retention model or other sources of information, and others are
ot; in these cases, MTBO could still use this information and provide
‘‘warm start’’ to the optimization, rather than starting from scratch
ith conventional BO. This could be a promising area for MTBO.
Since the MTBO framework required an objective that was both

omputable and applicable to both real measurements and predictions
ade using a retention model, we utilized a resolution-based CRF
hat focused on maximizing the sum of the resolution between closest
eighbor pairs. This is a relatively uncommon scenario, and we did
ot investigate whether other CRFs could potentially work better;
his could be investigated in future work. Another vital component
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for successfully building an accurate retention model, but also for
robustly assessing the CRF for a real measurement is the signal process-
ing pipeline, from background correction to peak detection and peak
tracking. The performance of the algorithm is likely to improve with
improvements in this pipeline. For instance, background correction
artifacts could introduce anomalies in the retention model, but could
also lead to over/underconfident CRF scores for the real measurement,
impacting the algorithm’s performance. This is equally true for the peak
detection and tracking. Future work could focus on improving and/or
benchmarking these methods, but could also focus on CRFs that are
more robust to these anomalies.

Finally, in the MTBO framework, some design decisions had to be
made. For instance, the number of times the retention model can be
queried before a real measurement is made was set to 4–10 times in this
study. Since a retention model prediction (order of seconds) and real
measurements (order of hours) occur on very different time scales, this
number could potentially be much higher, which could provide benefits
but could also introduce higher MTGP fitting costs or instabilities; this
could also be further optimized in future work. Another interesting
future research direction could focus on using data from other (simi-
lar) separations to initialize the MTGP which might further boost its
performance and reduce the overall number of experimental iterations
required, thereby enhancing the efficiency of the optimization process.
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