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Self-Similar Surfaces: Involutions and Perfection

Justin Malestein & J ing Tao

Abstract. We investigate the problem of when big mapping class
groups are generated by involutions. Restricting our attention to the
class of self-similar surfaces, which are surfaces with self-similar ends
spaces, as defined by Mann and Rafi, and with 0 or infinite genus, we
show that when the set of maximal ends is infinite, then the mapping
class groups of these surfaces are generated by involutions, normally
generated by a single involution, and uniformly perfect. In fact, we
derive this statement as a corollary of the corresponding statement
for the homeomorphism groups of these surfaces. On the other hand,
among self-similar surfaces with one maximal end, we produce in-
finitely many examples in which their big mapping class groups are
neither perfect nor generated by torsion elements. These groups also
do not have the automatic continuity property.

1. Introduction

Consider a connected and oriented surface �. We distinguish two types of sur-
faces, those of finite type, that is, a closed surface minus finitely many points, or
of infinite type otherwise. Let G(�) be either the group Homeo+(�) of orienta-
tion preserving self-homeomorphisms of � or the mapping class group MCG(�)

of �. We are interested in the algebraic structure of G(�), especially when � has
infinite type.

As a topological group, equipped with the compact open topology,
Homeo+(�) is a nonlocally-compact Polish group. MCG(�), being a quotient
of Homeo+(�), inherits a topology. When � has finite type, this topology is dis-
crete, and MCG(�) is finitely presented. When � has infinite type, then MCG(�)

is also a nonlocally-compact Polish group, similar to the homeomorphism group.
In particular, MCG(�) is not countably generated, justifying the nomenclature of
big mapping class group in the literature.

An obvious group-theoretic problem is to identify canonical generating sets for
G(�). For any group, a natural choice is its set of involutions or, more broadly, its
set of torsion elements. This leads us to ask if G(�) is generated by involutions
(or torsion elements). (The set of Dehn twists, being countable, can never generate
a big mapping class group; and often, they do not even topologically generate
[2].) For finite type surfaces, this question is well studied for their mapping class
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groups; see [19; 16; 4; 12; 14; 15; 23] and the references within for the story on
generating by involutions. The goal of this paper is to explore this question for
surfaces of infinite type.

To answer this question for all surfaces of infinite type should be challenging,
as G(�) is as complicated as the homeomorphism group of the ends space of
�. In trying to tame the world of surfaces of infinite type, Mann and Rafi [18]
introduced a preorder on an ends space and showed that the induced partial order
always has maximal elements. They also introduced the notion of self-similar
ends spaces. We call a surface self-similar if it has a self-similar ends space and
0 or infinite genus. Among these, we identity a subclass, called uniformly self-
similar, which are self-similar with infinitely many maximal ends. This subclass,
which is uncountable, exhibits additional symmetry, to which the sphere minus a
Cantor set belongs. It was observed by Calegari [5] that the mapping class group
of the sphere minus a Cantor set is uniformly perfect. We extend this result to all
uniformly self-similar surfaces, along with answering the generation problem by
involutions for these surfaces. Our main theorem is the following.

Theorem A. Let � be a uniformly self-similar surface, and let G(�) be either
Homeo+(�) orMCG(�). Then G(�) is generated by involutions, normally gen-
erated by a single involution, and uniformly perfect. Moreover, each element of
G(�) is a product of at most 3 commutators and 12 involutions.

Note that the case of MCG(�) follows immediately from that of Homeo+(�).
For the latter case, we use a method akin to fragmentation, a well known tool in
the study of homeomorphism groups. In more detail, we first observe that a uni-
formly self-similar ends space E behaves very much like a Cantor set. Namely,
any clopen subset U ⊂ E containing a proper subset of the maximal ends is home-
omorphic to its complement Uc. This gives rise to the notion of a half-space in
a uniformly self-similar surface �, which is a subsurface H ⊂ � with a single
connected, compact boundary component, such that Hc is also a half-space and
homeomorphic to H . (The exact definition is different and appears as Defini-
tion 3.2.) We then find an H -translation, that is, a homeomorphism φ such that
{φn(H)}n∈Z are all disjoint. This is a key step in the proof and requires putting
the surface � into a particular form that reflects its symmetry. By our construc-
tion the H -translation φ is a product of two conjugate involutions. Then, using a
standard trick, we write every f ∈ Homeo(H, ∂H) as a commutator of the form
f = [f̂ , φ] for some f̂ . The final step is to show that Homeo+(�) is the nor-
mal closure of Homeo(H, ∂H), and so it is normally generated by φ and hence
by a single involution. The other statements are achieved by keeping track of the
number of commutators or involutions needed at each step.

Many of our steps above carry over to the case of equipping � with a marked
point ∗. The key difference is now that we can find a curve α ⊂ � that is not
contained in any half-space H of �. Thus it is no longer immediate that the Dehn
twist about α can be generated by elements supported on H and their conjugates.
To deal with this issue, we invoke the lantern relation. Using self-similarity, we
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can find an appropriate lantern, that is, a four-holed sphere bounding α with the
other boundary components lying in half-spaces. Once we get all Dehn twists,
then combining our previous method together with the fact that mapping class
groups of compact surfaces are generated by Dehn twists, we obtain the following
theorem.

TheoremB. Let� be a uniformly self-similar surface with a marked point ∗ ∈ �.
ThenMCG(�,∗) is perfect, generated by involutions, and normally generated by
a single involution.

Because we used the lantern relation, our proof does not apply to the homeomor-
phism group. For a different argument that the mapping class group of the marked
sphere minus a Cantor set is perfect, see [22]. Theorem B is sharp in the sense that
we cannot expect a statement about uniform perfection or a bound on the number
of involutions, due to the fact that the marked sphere minus a Cantor set provides
a counterexample, by [3].

It is not possible for all big mapping class groups to be generated by torsion
elements or be perfect, even among the class of self-similar surfaces. One coun-
terexample is the infinite genus surface with one end. This is a self-similar surface,
but, by Domat and Dickmann [7], the abelianization of its mapping class group
contains

⊕
2ℵ0 Q as a summand.

Using their results and a covering trick, we can show that the mapping class
group of the surface R2 \N has similarly large abelianization. Note that this sur-
face is also self-similar but not uniformly. On the other hand, using a method
similar to our proof of Theorem A, we can also show that MCG(R2 \N) is topo-
logically generated by involutions. Since any homomorphism from a Polish group
to Z is always continuous, this makes its first cohomology group vanish, in con-
trast with homology.

Theorem C. The group MCG(R2 \N) surjects onto
⊕

2ℵ0 Q. In particular, it is
not perfect or generated by torsion elements. On the other hand, MCG(R2 \N) is
topologically generated by involutions, so H1(MCG(R \N),Z) = 0.

The statement of topological generation by involutions also extends to the map-
ping class group of the one-ended infinite genus surface �L. Additionally, we can
get infinitely many examples of surfaces whose mapping class groups have simi-
larly large abelianization by considering appropriate maps to �L or R2 \N. Many
of these examples are self-similar but not uniformly.

Another application of our result beyond the ones mentioned is the automatic
continuity property. Recall that a Polish group G has the automatic continuity
property if every homomorphism from G to a separable topological group is nec-
essarily continuous. The family of surfaces we construct also gives rise to a large
family of homeomorphism groups or big mapping class groups that do not have
this property. This gives some progress toward answering [17, Question 2.4]. We
highlight the following examples and refer to Theorem 5.3 and Corollary 5.6 for
the full technical statement.
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Theorem D. Let � = S2 \ E, where S2 is the 2-sphere and E is a countable
closed subset of the Cantor set homeomorphic to the ordinal ωα + 1, where α is a
countable successor ordinal. Let G(�) be either Homeo+(�) orMCG(�). Then
G(�) is not perfect, is not generated by torsion elements, and does not have the
automatic continuity property.

One may wonder what happens in the case of positive genus, rather than 0 or
infinite genus. Our methods do not extend to these surfaces. However, for a sur-
face � obtained by removing a Cantor set from a surface of finite type, Calegari
and Chen [6] showed various results for MCG(�), including that it is generated
by torsion. Additionally, Mann [17] showed G(�) has the automatic continuity
property. It would be interesting to know if their techniques extend to uniformly
self-similar ends spaces. We refer to their papers for more detail.

One may also wonder whether our results extend to other surfaces of infi-
nite type. Using very similar methods that were developed independently and
concurrently, Field, Patel, and Rasmussen [10] proved analogues of some of the
above results for other classes of surfaces. Specifically, for their class of surfaces,
which are required to have locally CB mapping class group and infinitely many
maximal ends among other minor conditions, they show that the commutator
lengths of elements in the commutator subgroup are uniformly bounded above
and H1(MCG(�),Z) is finitely generated. See [10] for precise statements.

As many cases still remain open, we invite the reader to explore other classes
of surfaces of infinite type that may verify the properties in Theorem A or admit
an obstruction. It would also be interesting to find other natural generating sets
for big mapping class groups or homeomorphism groups. Similar questions can
also be asked for the homeomorphism groups of ends spaces.

Here is a brief outline of the paper. In Section 2, we introduce ends spaces
and the classification of surfaces of infinite type. Following [18], we define self-
similar ends spaces and surfaces and a partial order on ends spaces. We also ob-
serve some nice properties about self-similar ends spaces that lead to the definition
of half-spaces in uniformly self-similar surfaces. The proof of Theorem A is con-
tained in Section 3, and the proof of Theorem B in Section 4. The two parts of
Theorem C appear in Section 5 as Proposition 5.1 and Theorem 5.8. Theorem D
follows from Corollary 5.6 as a special case.

2. Preliminaries

2.1. Partial Order on Ends Spaces

An ends space is a pair (E,F ), where E is a totally disconnected, compact,
metrizable space, and F ⊂ E is a (possibly empty) closed subspace. For simplic-
ity, we will often suppress the notation F , but by convention all homeomorphisms
of E will be relative to F . For instance, to say C ⊂ E is homeomorphic to D ⊂ E

means there is a homeomorphism from (C,C ∩ F) to (D,D ∩ F). We denote by
Homeo(E,F ) the group of homeomorphisms of E preserving F .
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The assumptions on E imply that it is homeomorphic to a closed subspace of
the standard Cantor set (see [21, Proposition 5]). We will often view E as this
subspace (and F as a further closed subspace).

Definition 2.1. An ends space (E,F ) is called self-similar if for any decompo-
sition of E = E1 � E2 � · · · � En into pairwise disjoint clopen sets, there exists
some clopen set D contained in some Ei such that (D,D ∩ F) is homeomorphic
to (E,F ).

Following [18], given an ends space (E,F ), define a preorder � on E where for
x, y ∈ E, we say x � y if every neighborhood U of y contains some homeomor-
phic copy of a neighborhood V of x. Here and throughout the paper, a neighbor-
hood in an end space will always be a clopen neighborhood. We say that x and
y are equivalent and write x ∼ y if x � y and y � x. This defines an equivalence
relation on E. For x ∈ E, denote by E(x) the equivalence class of x, and denote
by [E] the set of equivalence classes. From this we get a partial order ≺ on [E]
defined by E(x) ≺ E(y) if x � y and x � y. Note that by definition, if x � y, then
y is either locally homeomorphic to x or an accumulation point of homeomorphic
images of x under Homeo(E,F ). One easily verifies that since F ⊂ E is closed,
either E(x) ∩ F = ∅ or E(x) ∩ F = E(x). Note additionally that if there is a
homeomorphism (E,F ) → (E,F ) that maps x 
→ y, then x ∼ y. Consequently,
self-homeomorphisms of (E,F ) preserve each equivalence class.

We say that a point x ∈ E is maximal if E(x) is maximal with respect to ≺.
Denote by M(E) the set of maximal elements in E.

Proposition 2.2 ([18]). Let (E,F ) be an ends space. The following statements
hold.

• The set M(E) of maximal elements under the partial order ≺ is nonempty.
• For every x ∈ M(E), its equivalence class E(x) is either finite or homeomor-
phic to a Cantor set.

• If (E,F ) is self-similar, then M(E) is a single equivalence class E(x), and
E(x) is either a singleton or homeomorphic to a Cantor set.

Observe that when M(E) is a single equivalence class E(x) and F �= ∅, then
E(x) ∩ F = E(x).

2.2. Classification of Infinite-Type Surfaces

By a surface we always mean a connected orientable 2-manifold. A surface has
finite type if its fundamental group is finitely generated; otherwise, it has infinite
type. In this paper, we are primarily interested in surfaces of infinite type. We
refer to [21] for details.

The collection of compact sets on a surface � forms a directed set by inclusion.
The space of ends of � is

E(�) = lim←− π0(� \ K),
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where the inverse limit is taken over the collection of compact subsets K ⊂ �.
Equip each π0(� \ K) with the discrete topology. Then the limit topology on
E(�) is a totally disconnected, compact, and metrizable. An element of E(�) is
called an end of �.

An end e ∈ E(�) is accumulated by genus if all subsurfaces S ⊂ � with
e ∈ E(S) have infinite genus; otherwise, e is called planar. Let Eg(�) be the
subset of E(�) consisting of ends accumulated by genus. This is always a closed
subset of E(�), with E(�) = ∅ if and only if � has finite genus. Hence the
pair (E(�),Eg(�)) forms an ends space. Conversely, by [21, Theorem 2] every
ends space (E,F ) can be realized as the space of ends of some surface � with
(E,F ) = (E(�),Eg(�)).

Infinite-type surfaces are completely classified by the following data: the
genus (possibly infinite) and the homeomorphism type of the ends space
(E(�),Eg(�)). More precisely:

Theorem 2.3 ([13] [21, Theorem 1]). Suppose � and �′ are boundaryless sur-
faces. Then � and �′ are homeomorphic if and only if they have the same (pos-
sibly infinite) genus and there is a homeomorphism between (E(�),Eg(�)) and
(E(�′),Eg(�′)).

We remark that although Richards’ classification of infinite-type surfaces is only
stated for boundaryless surfaces, it easily extends to surfaces with finitely many
compact boundary components; that is, two surfaces with the same genus, same
number of (finitely many) compact boundary components, and homeomorphic
end space pairs (E,Eg) are in fact homeomorphic.

Fix an orientation on a surface � and set (E,F ) = (E(�),Eg(�)). Let
Homeo+(�) be the group of orientation-preserving homeomorphisms of �. This
is a topological group equipped with the compact open topology, and moreover
it is a Polish group. The connected component of the identity is a closed normal
subgroup Homeo0(�) comprised of homeomorphisms isotopic to the identity.
The quotient group

MCG(�) =Homeo+(S)/Homeo0(S)

is called the mapping class group of �. When � has finite type, MCG(�) is dis-
crete and finitely presented. When � has infinite type, MCG(�) is a nonlocally-
compact Polish group.

Every homeomorphism of � induces a homeomorphism of its ends space
(E,F ), and two homotopic homeomorphisms of � induce the same map on
(E,F ). This gives a continuous homomorphism � : Homeo+(�) → Homeo(E,

F ) that factors through MCG(�). By [21] the map � is also surjective.
As noted in [18, Section 4], we also know that the preorder � on E is equiv-

alent to: x � y if and only if for every neighborhood U of y, there is a neighbor-
hood V of x and f ∈ Homeo+(�) such that �(f )(V ) ⊂ U .

Definition 2.4. A surface � is called self-similar if its space of ends (E(�),

Eg(�)) is self-similar and � has genus 0 or infinite genus.
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Note that when � is self-similar and has infinite genus, each maximal end of
E(�) must be accumulated by genus.

Remark 2.5. We point out that our definition of self-similar surfaces is equivalent
to another notion. First, following [18], a subset A of a surface � is called nondis-
placeable if f (A)∩A �= ∅ for every f ∈ Homeo(S). Then � is self-similar if and
only if � has self-similar ends space and no nondisplaceable compact subsur-
faces. One direction is clear: if � has finite positive genus, then � has a compact
nondisplaceable subsurface. The other direction is observed by [1, Lemmas 5.9
and 5.13].

2.3. Stable Neighborhoods of Ends and Self-Similarity

We now collect some facts about self-similar ends spaces. The key take away of
this section is that self-similar ends spaces with infinitely many maximal ends
behave very much like a Cantor set.

Definition 2.6. Given x ∈ E, a neighborhood U of x is called stable if any
smaller neighborhood V ⊂ U contains a homeomorphic copy of U . (Recall that
this means that (V ,V ∩ F) contains a homeomorphic copy of (U,U ∩ F).)

Lemma 2.7 ([1, Lemma 5.4]). If (E,F ) is self-similar, then for all maximal ele-
ments x ∈ E, the set E is a stable neighborhood of x.

The following statement is reminiscent of the statement of [18, Lemma 4.17] but
stronger than what the latter implies, though our proof is modeled after theirs.

Lemma 2.8. Suppose (E,F ) is self-similar. Then for all maximal points x, y ∈
M(E) and all clopen neighborhoods U,V , respectively, of x, y, there exists a
homeomorphism ϕ : (U,U ∩ F) → (V ,V ∩ F) such that ϕ(x) = y.

Proof. The proof follows a back-and-forth argument. As usual, we will suppress
F , so all maps below are maps of pairs relative to F .

Let U0 = U and V0 = V . We define the homeomorphism from U to V induc-
tively on clopen subsets exhausting U \ {x},V \ {y}. For convenience, we choose
some metric on E. We choose U1 ⊆ U0 to be a proper neighborhood of x of di-
ameter less than 1. Since E is a stable neighborhood of y by Lemma 2.7, and
U0 \ U1 is clopen, there is a continuous map

f0 : U0 \ U1 → V0

that is a homeomorphism onto a clopen image. We can choose f0 such that
im(f0) ⊆ V0 \ {y} for the following reasons. If M(E) = {y}, then this is auto-
matic. If M(E) is a Cantor set, then V0 \ {y} contains some z0 ∈ M(E), and
Lemma 2.7 ensures we can map U0 \ U1 homeomorphically into a sufficiently
small neighborhood of z0 that avoids y. Since im(f0) is clopen, we can choose a
proper clopen subset V1 ⊆ V0 \ im(f0) of y, of diameter less than 1. By the same
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token we can find a map

g0 : V0 \ (V1 ∪ im(f0)) → U1 \ {x}
that is a homeomorphism onto a proper clopen image. We similarly define a
proper clopen neighborhood U2 ⊆ U1 \ im(g0) of x, of diameter less than 1

2 .
Inductively, suppose U0, . . . ,Un+1,V0, . . . , Vn have been constructed along

with maps that are homeomorphic onto their image

fi : Ui \ (Ui+1 ∪ im(gi−1)) → Vi \ Vi+1,

gi : Vi \ (Vi+1 ∪ im(fi)) → Ui+1 \ Ui+2

for 0 ≤ i ≤ n − 1. Using Lemma 2.7 as above, we then define a map which is a
homeomorphism onto its image

fn : Un \ (Un+1 ∪ im(gn−1)) → Vn \ {y}
and choose a proper clopen neighborhood Vn+1 ⊆ Vn \ im(fn) of y, of diameter
less than 1

n+1 . Similarly, we define a map that is a homeomorphism onto its image,

gn : Vn \ (Vn+1 ∪ im(fn)) → Un+1 \ {x},
and choose a proper clopen neighborhood Un+2 ⊆ Un+1 \ im(gn) of x, of diam-
eter less than 1

n+2 . We thereby inductively construct such a sequence of maps
f0, f1, . . . and g0, g1, . . . .

Now restrict target spaces of fi, gi to their images. Then by construction the
domains and images of the fi and g−1

i are disjoint, and their respective unions are
U \{x} and V \{y}. Thus by taking the union of fi and g−1

i we obtain a continuous
bijection ψ : U \ {x} → V \ {y} since their domains are open subsets. Similarly,
we can define the continuous inverse of ψ with the f −1

i and gi . Moreover, we can
extend ψ to a homeomorphism ϕ : U → V by mapping x to y. �

3. Generation of the Homeomorphism Group

Our proof of Theorem A in the case of an unmarked surface proceeds via the
following steps. First, we define the notion of a half-space of � and show that
the normal closure of a single involution contains an H -translation for some half-
space H . Formally, if H is a half-space, then we say that a homeomorphism ϕ is
an H -translation if {ϕn(H)}n∈Z are all pairwise disjoint. We then show that the
normal closure of such ϕ contains all homeomorphisms supported on H and that
half-space supported homeomorphisms generate Homeo+(�).

Definition 3.1. A self-similar ends space (E,F ) is uniformly self-similar if
M(E) is one equivalence class homeomorphic to a Cantor set. A surface � is
called uniformly self-similar if (E(�),Eg(�)) is uniformly self-similar and �

has genus 0 or infinity.

Definition 3.2. For a uniformly self-similar surface �, we will define a half-
space to be a subsurface H ⊂ � such that

(i) H is a closed subset of �;
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Figure 1 The surface S.

(ii) H has a single connected, compact boundary component;
(iii) E(H) and E(Hc) both contain a maximal end of E(�).

We state the following useful lemma.

Lemma 3.3 (Lemma 2.1 [9]). Let � be a surface. Every clopen set U of E(�)

is induced by a connected subsurface of � with a single boundary circle. Conse-
quently, if � is uniformly self-similar, and both U,Uc contain maximal ends, then
this subsurface is a half-space.

The following corollary follows easily from the above lemma and the fact that
E(�) is a subspace of a Cantor set.

Corollary 3.4. Let � be a uniformly self-similar surface, and let x ∈ M(E).
There exists a sequence of nested half-spaces S1 ⊇ S2 ⊇ . . . such that {x} =⋂

i E(Si) and ∂Si is compact and connected for all i.

Lemma 3.5. Let � be a uniformly self-similar surface. Then there exist a half-
space H ⊆ �, an involution τ , and ϕ ∈ Homeo+(�) such that {ϕn(H)}n∈Z are
all pairwise disjoint and ϕ ∈ 〈〈τ 〉〉.Moreover, ϕ is a product of two conjugates of
τ , and we can choose τ and ϕ to fix some point in the complement of

⋃
n∈Z ϕn(H).

Proof. We first construct a somewhat explicit surface homeomorphic to �. Let
E = E(�) and M = M(E). Let y, z ∈ M be distinct points. Since E is home-
omorphic to a subspace of the Cantor set, we can find disjoint clopen subsets
{Ui | i ∈ Z} such that
• Ui ∩ M �= ∅,
• E = {y, z} ∪ ⋃

i Ui , and
• y is an accumulation point of {Ui | i ≤ 0} but not of {Ui | i ≥ 0}, and z is an
accumulation point of {Ui | i ≥ 0} but not of {Ui | i ≤ 0}.
By Lemma 3.3, there is a half-space �0 ⊆ � where E(�0) = U0. Let Si be

a copy of �0 for each i ∈ Z, and let S be the (oriented) infinite cylinder with
countably many disjoint open discs removed in a periodic fashion. (We make
sure to choose discs with disjoint closures.) See Figure 1. Let {Ci | i ∈ Z} be the
boundary components of S. Let S be the surface obtained by gluing Ci to ∂Si via
some homeomorphism ψi : Ci → ∂Si that respects orientation of the surfaces.

We first claim that S ∼= �. By Theorem 2.3 we need only prove that S and �

have the same genus and that there is a homeomorphism of end spaces mapping
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Eg(S) to Eg(�). We will implicitly use some results from [21] without referenc-
ing them. Recall that � has genus 0 or ∞, and in the latter case, a maximal end
must be accumulated by genus. Thus Si and S have infinite genus if and only if �

does. By Lemma 2.8 we have that E(Si) ∼= U0 ∼= Ui (respecting genus accumula-
tion). By construction of S, all of E(Si) are clopen subsets of E(S). Moreover, for
i ∈ Z, let Di be disjoint curves in the cylinder S such that they are all translates of
each other, separate the two ends of the cylinder, and the two sides of Di contain
{Cj | j < i} and {Cj | j ≥ i}. See Figure 1. Let P +

i and P −
i be the subsurfaces of

S on either side of Di . Then P +
i for i ≥ 0 (resp., P −

i for i ≤ 0) defines an end z′
(resp., y′) of S. Then, for n ∈N,

E(S) = E(P −−n) ∪ E(P +
n ) ∪

n−1⋃
i=−n

E(Si),

and since only y′, z′ are in all E(P −−n) and E(P +
n ), respectively, we have E(S) =

{y′, z′} ∪ ⋃
i E(Si). Moreover, it is clear that E(Si) accumulate to y′ but not z′ as

i → −∞ and E(Si) accumulates to z′ but not y′ as i → ∞. Therefore we may
define a homeomorphism E(S) → E(�) mapping E(Si) → Ui and {y′, z′} →
{y, z}.

Recall that the homeomorphism E(Si) ∼= Ui maps ends accumulated by genus
to ends accumulated by genus. If S has infinite genus, then every Si has infinite
genus, and so y′, z′ are accumulated by genus (as must y, z as they are maximal
in E(�)). Consequently, E(S) ∼= E(�) maps Eg(S) to Eg(�) and only Eg(S)

to Eg(�). Consequently, S ∼= �.
We now construct an explicit involution τ of S that normally generates the de-

sired ϕ. First, we define an involution τ on S. We simply take the “rotation” about
an axis piercing D0 and interchanging the ends y′, z′. This induces a homeomor-
phism between pairs of curves Ci and Cj , where j ≥ 0 and i = −(j + 1). For
such a pair i < j related by τ(Ci) = Cj , define a homeomorphism τi,j : Si → Sj

such that

τi,j |∂Si
= ψj ◦ τ ◦ ψ−1

i .

For the same pair, define τj,i : Sj → Si as the inverse of τi,j . Note that

τj,i |∂Sj
= ψi ◦ τ−1 ◦ ψ−1

j = ψi ◦ τ ◦ ψ−1
j

since τ has order 2. Thus the τi,j agree on the overlap with τ , and so we extend τ

to a homeomorphism τ on all of S via the τi,j . It is clear that τ has order 2.
We can similarly define an involution σ that is a “rotation” with axis piercing

D1. Then σ(τ(Si)) = Si+2, that is, ϕ = σ ◦ τ is the desired H -translation where
H = S0. This establishes the lemma.

To show that we can choose τ and ϕ to also fix a point outside the Si , we do
the following. We homotope D0 and D1 within S toward each other until they
meet tangentially at one point. We can choose an involution τ that permutes the
Ci in the same manner as above, maps D0 to itself, and fixes the common point
of D0 ∩ D1. Similarly, σ may be chosen to map D1 to itself and fix the common
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point of D0 ∩D1. Since the new τ and σ both permute the Ci in the same manner
as before, the rest of the argument goes through, and ϕ will fix the same point. �

Remark 3.6. Note that in the above proof, the translation ϕ (in the version with-
out a fixed point) verifies that a surface � with uniformly self-similar ends space
with 0 or infinite genus has no nondisplaceable surfaces. This also follows from
[1, Lemmas 5.9 and 5.13], which prove it in the case where E(�) is merely self-
similar, but our construction gives a different perspective.

We now show that an H -translation normally generates Homeo(H, ∂H) <

Homeo+(�) for some half-space H . The proof technique is sometimes referred
to as a “swindle”.

Lemma 3.7. Let � be uniformly self-similar, and let ϕ have the properties de-
scribed in Lemma 3.5. Then 〈〈ϕ〉〉 contains Homeo(H, ∂H).Moreover, every ele-
ment of Homeo(H, ∂H) is a product of ϕ and a conjugate of ϕ−1.

Proof. Let f ∈ Homeo(H, ∂H) ⊆ Homeo+(�). We let f̂ = ∏∞
i=0 ϕ−if ϕi . This

is well-defined since ϕ−if ϕi is supported on ϕ−i (H), and these are pairwise
disjoint for all i ≥ 0 by assumption. Then we have the following computation,
which again is valid because of disjoint supports:

[f̂ , ϕ−1] = f̂ ϕ−1f̂ −1ϕ =
( ∞∏

i=0

ϕ−if ϕi

)
ϕ−1

( ∞∏
i=0

ϕ−if −1ϕi

)
ϕ

=
( ∞∏

i=0

ϕ−if ϕi

)( ∞∏
i=1

ϕ−if −1ϕi

)
= f.

�

3.1. Half-Space Homeomorphisms Generate

Our proof that homeomorphisms of half-spaces generate Homeo+(�) relies on
a few key facts about half-spaces in uniformly self-similar surfaces. We record
these as lemmas, which we will prove below.

Lemma 3.8. Let H1,H2 ⊂ � be two half-spaces. Then one of H1 ∩ Hc
2 and Hc

1 ∩
Hc

2 contains a half-space.

Lemma 3.9. If H1 and H2 are two distinct half-spaces contained in a third distinct
half-space H3 and both are disjoint from a fourth half-space H4 ⊂ H3, then there
exists ϕ ∈ Homeo+(�) supported on H3 such that ϕ(H1) = H2.

Lemma 3.10. If H ⊆ � is a half-space, then so is Hc . All half-spaces are home-
omorphic via an ambient homeomorphism of �. Every half-space contains two
disjoint half-spaces.

Using these three lemmas, we can prove one of our main results, namely, that
half-space homeomorphisms generate Homeo+(�).
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Theorem 3.11. Let � be a uniformly self-similar surface, and let H ⊆ �

be a half-space. Then Homeo+(�) is the normal closure of the subgroup
Homeo(H, ∂H). Furthermore, every element of Homeo+(�) is a product of
at most three homeomorphisms, each of which is conjugate to an element of
Homeo(H, ∂H).

Proof. Let f ∈ Homeo+(�). First, note that by Lemma 3.10 any half-space sup-
ported homeomorphism is conjugate into Homeo(H, ∂H). Thus it suffices to
show that f is a product of at most three half-space supported homeomorphisms.

Let H1 = H and H2 = f (H). We now apply Lemma 3.8, and first consider the
case where Hc

1 ∩ Hc
2 contains a half-space. By Lemma 3.10, Hc

1 ∩ Hc
2 contains

two disjoint half-spaces H3 and H4. Applying Lemma 3.9 to H1,H2,H
c
3 , and H4,

we see that there is a homeomorphism ϕ1, supported on Hc
3 , such that ϕ1(H2) =

ϕ1(f (H1)) = H1. By further composing by some ϕ2 supported on H1 we can
ensure that ϕ2 ◦ ϕ1 ◦ f restricts to the identity on H1. Finally, composing by an
appropriate third homeomorphism ϕ3 supported on Hc

1 , we obtain ϕ3 ◦ ϕ2 ◦ ϕ1 ◦
f = Id. Note that ϕ2 ◦ ϕ1 is supported on Hc

3 , so in this case, we only require two
half-space supported homeomorphisms.

Now suppose we are in the case where H1 ∩ Hc
2 contains a half-space. By

Lemma 3.10 we can assume that H1 ∩ Hc
2 contains three disjoint half-spaces

H3,H4,H5. By Lemma 3.9 applied to H2,H4,H
c
3 , and H5 there exists a home-

omorphism ψ supported on Hc
3 such that ψ(H2) = H5. Since H5 ⊂ H1, the sub-

surface Hc
1 ∩ ψ(f (H1))

c = Hc
1 contains a half-space, and we are reduced to the

previous case. In this case, we see that f is a product of three half-space supported
homeomorphisms. �

We now prove the required lemmas.

Proof of Lemma 3.8. By definition, E(Hc
2 ) contains some maximal end x. By

Corollary 3.4 there exist nested half-spaces S1 ⊃ S2 ⊃ . . . such that
⋂

i E(Si) =
{x}. Since these half-spaces leave every compact set, eventually some Si does
not intersect ∂H1 ∪ ∂H2. Since x ∈ E(Hc

2 ) and the Si are connected, either
Si ⊆ H1 ∩ Hc

2 or Si ⊆ Hc
1 ∩ Hc

2 . �

Proof of Lemma 3.10. The first statement follows immediately from the defini-
tion of half-space. Since a half-space has a maximal end of �, it has the same
genus as �. Thus by the classification of surfaces and Lemma 2.8 any two half-
spaces are homeomorphic. Since the (closures of) the complements are half-
spaces too, we can map the complement to the complement and extend the home-
omorphism to all of �.

By assumption, E(H) has some maximal end x of E(�). Since E(H) is a
clopen in E(�) and the set of maximal ends is a Cantor set, E(H) contains an-
other distinct maximal end y. Applying Corollary 3.4 to both x and y individually
and using the compactness of the boundaries of half-spaces, we can easily deduce
the existence of the required half-spaces. �
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Proof of Lemma 3.9. The presence of the half-space H4 guarantees that
E(H3 \ H1) and E(H3 \ H2) both contain a maximal end. Thus, by Lemma 2.8,

(E(H3 \ H1),E
g(H3 \ H1)) ∼= (E(H3 \ H2),E

g(H3 \ H2)).

Clearly, the two subsurfaces have the same genus and finite number of boundary
components, and so H3 \ H1 ∼= H3 \ H2. Similarly, by Lemma 3.10, H1 ∼= H2.
By arranging the homeomorphisms to be identical on the overlapping boundary
component we produce a homeomorphism H3 → H3 mapping H1 → H2 and
H3 \ H1 → H3 \ H2. �

Theorem 3.12. If � is uniformly self-similar, then Homeo+(�)

• is normally generated by a single involution,
• is normally generated by an H -translation, and
• is uniformly perfect.

Moreover, each element of Homeo+(�) is a product of at most 3 commutators,
6 H -translations, and 12 involutions.

Proof. Combine Lemma 3.5, Lemma 3.7, and Theorem 3.11. �

By considering quotients of Homeo+(�) onto the mapping class group MCG(�)

and the homeomorphism group of its ends space (E(�),Eg(�)) we also derive
the following corollaries. Note that for a half-space H ⊂ �, E(H) is a clopen set
containing a nonempty proper subset of M(E(�)).

Corollary 3.13. If � is uniformly self-similar, then the statements of Theo-
rem 3.12 also hold for MCG(�).

Corollary 3.14. If (E,F ) is uniformly self-similar, then the statements of The-
orem 3.12 also hold for Homeo(E,F ), where a half-space H ⊂ E is a clopen set
containing a nonempty proper subset of M(E).

Proof. By [21, Theorem 2], there is a surface � such that (E(�),Eg(�)) ∼=
(E,F ) and its genus is 0 if F = ∅ and infinite if F �= ∅. Thus � is uniformly
self-similar when (E,F ) is. The corollary then follows from Theorem 3.12 and
surjectivity of Homeo+(�) →Homeo(E(�),Eg(�)). �

4. Surfaces with a Marked Point

The proof in the case of a marked surface is very similar to that in the unmarked
case, and we will use some of the same lemmas. Let � be a uniformly self-similar
surface with a fixed basepoint ∗ ∈ �. We define half-spaces exactly as before but
distinguish between marked half-spaces, which contain ∗, and unmarked half-
spaces, which do not. The main new lemma we require is the following.

Lemma 4.1. Let � be a uniformly self-similar surface with a marked point ∗ ∈ �.
Let H ⊆ � be an unmarked half-space. Then every Dehn twist in MCG(�,∗) is
contained in the normal closure of MCG(H, ∂H).
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Remark 4.2. For convenience and simplicity, we will conflate half-spaces and
simple closed curves with their ambient isotopy classes rel ∗ throughout this sec-
tion.

Proof. Let Tγ ∈ MCG(�,∗) be the Dehn twist about a simple closed curve γ

(which avoids ∗). First, we consider the case where γ is nonseparating. Then �

has infinite genus. Since γ is compact, Corollary 3.4 implies that γ is contained
in some half-space (or the closure of its complement, which is also a half-space),
which we denote by H . This case is concluded if H is unmarked. Suppose instead
that H is marked. Then, since γ is nonseparating, we can find a path from ∂H

to ∗ that avoids γ . Deleting some small regular neighborhood of this path from
H , we obtain an unmarked half-space containing γ .

Now, suppose γ is a separating curve, and let S1, S2 ⊆ � be the two surfaces
on either side of γ . If both E(S1),E(S2) contain a maximal end of �, then they
are both half-spaces whose mapping class groups contain Tγ , and one must be
unmarked. Suppose, without loss of generality, that E(S1) contains no maximal
ends. If S1 is also unmarked, then we can connect it by some strip (avoiding ∗)

to an unmarked half-space in S2 to create a new unmarked half-space H ′ that
contains S1. Then Homeo(H ′, ∂H ′) contains Tγ .

The difficult case is where S1 contains no maximal ends but is marked. Us-
ing Corollary 3.4 repeatedly, we can find three disjoint half-spaces H1,H2,H3
contained in S2. Since half-spaces have connected boundary, the complement of
H1 ∪ H2 ∪ H3 ∪ S1 is connected, and we may choose disjoint paths α1, α2 in
this complement connecting γ = ∂S1 to ∂H1, ∂H2, respectively. Let L be a reg-
ular neighborhood of γ ∪ ∂H1 ∪ ∂H2 ∪ α1 ∪ α2 in this complement. Then L is
a sphere with 4 boundary components, that is, a lantern, where three boundary
curves are γ, ∂H1, and ∂H2, and the fourth is some simple closed curve β bound-
ing a half-space H4 containing H3.

We seek to use the lantern relation to show that f is a product of homeomor-
phisms supported on an unmarked half-space. The lantern relation implies that Tγ

is equal to a word in the Dehn twists about ∂H1, ∂H2, β and three other simple
closed curves δ1, δ2, δ3 each of which separates L into two three-holed spheres.
Thus for all i = 1,2,3, each side of δi must contain at least one of H1,H2,H3,
i.e. each δi separates � into one marked and one unmarked half-space, and thus
δi lies in an unmarked half-space. Consequently, the twists about ∂H1, ∂H2, β ,
and the δi are all supported on an unmarked half-space. The lemma follows. �

In the unmarked case, we replace Lemma 3.9 with the following.

Lemma 4.3. If H1,H2, and H3 are disjoint unmarked half-spaces, then there is
a homeomorphism ϕ ∈ Homeo(�) supported on some unmarked half-space H4
such that ϕ(H1) = H2.

Proof. By Lemma 3.10, H3 contains two unmarked disjoint half-spaces H ′
3 and

H ′′
3 . Since half-spaces have single boundary components, the complement ofH1∪

H2 ∪ H ′
3 ∪ H ′′

3 is connected, and we can attach H1 to H2 and H ′
3 by two strips
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disjoint from H ′′
3 and the marked point to create a subsurface H4 with a single

boundary circle that contains H1,H2, and H ′
3. Since both E(H4) ⊃ E(H1) and

E(Hc
4 ) ⊃ E(H ′′

3 ) contain a maximal end, H4 is a half-space. We can now apply
Lemma 3.9 to H1,H2,H4, and H ′

3. �

We can now prove the analogous theorem that half-space supported homeomor-
phisms generate MCG(�,∗).

Theorem 4.4. Let � be a uniformly self-similar surface with a marked point
∗ ∈ �, and let H ⊆ � be an unmarked half-space. ThenMCG(�,∗) is generated
by the normal closure of MCG(H, ∂H).

Proof. Let f ∈ MCG(�,∗). All unmarked half-spaces are the same up to
Homeo(�,∗) by an argument nearly identical to that in the proof of Lemma 3.10.
Therefore it suffices to show that f is a product of mapping classes supported on
unmarked half-spaces.

Let H1 be an unmarked half-space, and let C be a simple closed curve such
that C and ∂H1 bound an annulus containing ∗ (in the interior). Let H2 = f (H1).
Then, by Lemma 3.8, either H1 ∩ Hc

2 or Hc
1 ∩ Hc

2 contains a half-space, which
we can choose to be unmarked by passing to a deeper half-space if necessary.

We first show that there is some mapping class g in the normal closure of
MCG(H, ∂H) such that g1(f (H1)) = H1 and g1 ◦ f |H1 = id |H1 . Let us first
consider the case where Hc

1 ∩ Hc
2 contains an unmarked half-space. Then, by

Lemma 3.10, Hc
1 ∩ Hc

2 contains two disjoint unmarked half-spaces H3 and H4.
By Lemma 4.3 there are two mapping classes supported on some unmarked half-
spaces, one that maps H2 to H3 and another that maps H3 to H1. By composing
these maps with some appropriate third mapping class supported on H1 we ob-
tain the desired g1. If instead H1 ∩ Hc

2 contains an unmarked half-space, then
H1 ∩ Hc

2 contains two disjoint unmarked half-spaces H3 and H4. By Lemma 4.3
there is some mapping class h supported on an unmarked half-space such that
h(f (H1)) = h(H2) = H3 ⊆ H1. Thus Hc

1 ∩Hc
3 = Hc

1 contains an unmarked half-
space, the one bounded by C, and we are reduced to the first case.

Let C′ = g1(f (C)). Then C′ and ∂H1 bound an annulus containing ∗. (Note
that C′ need not be C up to ambient isotopy fixing ∗.) Let S ⊆ � be a compact
subsurface with the following properties.

• S contains the annulus bounded by ∂H1 and C and the annulus bounded by
∂H1 and C′;

• S does not intersect the interior of H1;
• No boundary component bounds a disc in �.

Within S, each of C,C′ is a separating curve that bounds an annulus with
∂H1 ⊂ ∂S containing a marked point. Consequently, the genus of the separat-
ing curves C,C′ must be identical, and they partition the boundary of S iden-
tically. Thus there is some mapping class in MCG(S, ∂S ∪ ∗) mapping C′ to
C. Since MCG(S, ∂S ∪ ∗) is generated by Dehn twists, by Lemma 4.1 there is
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some g2 in the normal closure of MCG(H, ∂H) such that g2(g1(f (C)) = C and
g2 ◦ g1 ◦ f |H1 = id |H1 .

Let H0 be the unmarked half-space bounded by C. Clearly, g2(g1(f (H0)) =
H0. Since the mapping class group of the annulus with a marked point between
H0 and H1 is generated by Dehn twists, by Lemma 4.1 we can compose by some
third element g3 in the normal closure of MCG(H, ∂H) such that g3◦g2◦g1◦f =
id. �

We can now easily prove the analogous theorem for the mapping class group of a
marked uniformly self-similar surface. Note that we have no statements about uni-
form perfection, or about a bound on the word length of an element as a product
of involutions, or about the homeomorphism group. The first two are impossible
by a result of Bavard [3] in the case of S2 minus a Cantor set. The proof fails
to show that every element is a word of uniformly bounded length in involutions
and half-space supported homeomorphisms only because of the step where we
map C′ to C. The theorem is only proven for the mapping class group and not
for the homeomorphism group because we use the lantern relation in the proof of
Lemma 4.1.

Theorem 4.5. Let � be a uniformly self-similar surface with a marked point
∗ ∈ �. Then MCG(�,∗) is generated by involutions. Moreover, MCG(�,∗) is
normally generated by a single involution and is a perfect group.

Proof. Let τ and ϕ be as in Lemma 3.5. Lemma 3.7 applies equally to
MCG(�,∗) (with an identical proof), and so 〈〈τ 〉〉 contains MCG(H, ∂H) for
some unmarked half-space, and all elements of MCG(H, ∂H) are a single com-
mutator in MCG(�). Theorem 4.4 finishes the proof. �

5. Self-Similar but Not Uniformly

It is natural to wonder whether surfaces with a self-similar ends space and with
genus 0 or ∞ are generated by involutions, are perfect, etc. It is already known
that the mapping class group of the one-ended, infinite-genus surfaces has abelian-
ization containing an uncountable direct sum of Qs [7]. This surface fits into this
category but perhaps is not a particularly compelling example since the results of
[7] are for pure mapping class groups of infinite-type surfaces, and for the one-
ended infinite-genus surface, the mapping class group happens to coincide with
the pure mapping class group. However, using a covering trick and some of the
results of [7], we can prove that the abelianization of MCG(R2 \ N) is similarly
large.

Proposition 5.1. MCG(R2 \N) surjects onto
⊕

2ℵ0 Q.

For the proof of the proposition, we need the following fact about Abelian groups,
which follows from [11, Theorems 21.3 and 23.1].
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Figure 2 The surface �L admits an involution which gives a degree
2 branched cover of R2 branched at the red points.

Lemma 5.2. Let A be an Abelian group. Suppose A contains
⊕

I Q for some
nonempty set I . Then A surjects onto

⊕
I Q.

Proof of Proposition 5.1. Let �L be the infinite-genus surface with one end. This
admits a twofold branched cover of R2 where R2 = �L/D and D = Z/2Z acts
by an involution. See Figure 2. More formally, we can construct this from gluing
infinitely many copies of a twofold branch cover of an annulus by a two-holed
torus and one copy of a twofold branched cover of a disc by a one-holed torus.
Let �F be R2 with the branch points removed, that is, �F

∼=R2 \N, and let �PL

be �L with the branch points removed. Then �PL → �F is a regular degree 2
cover with deck group D.

Choose marked points ∗̃ ∈ �PL and ∗ ∈ �F . We first show that there is a lifting
homomorphism MCG(�F ,∗) →MCG(�PL, ∗̃) defined by lifting representative
homeomorphisms. Since these are mapping class groups fixing marked points, it
is a straightforward consequence of covering space theory that such a homomor-
phism exists and is unique, provided that the action of MCG(�F ,∗) preserves
the subgroup K = ker(π1(�F ,∗) → D). Since the punctures of �F came from
branched points of degree 2, any simple loop in π1(�F ,∗) that encloses a single
puncture does not lift to a closed curve in �PL and so must map to the nontrivial
element of D. We can choose a basis {βn}n∈N of the free group π1(�F ,∗) consist-
ing entirely of simple loops, each enclosing a single puncture. Consequently, K

consists precisely of those even length words in this generating set. For any map-
ping class f ∈MCG(�F ,∗), the set {f (βn)}n∈N is also another generating set of
simple loops enclosing single punctures, and for the same reasons, K consists of
words of even length in these generators. It is clear then that f (K) = K .

We now have a lifting homomorphism MCG(�F ,∗) → MCG(�PL, ∗̃). Since
the points deleted from �L are isolated, MCG(�PL, ∗̃) preserves that set of ends,
and we have a well-defined forgetful map MCG(�PL, ∗̃) → MCG(�L, ∗̃). In [7],
explicit mapping classes are constructed that project to nontrivial elements in the
abelianization of MCG(�L, ∗̃). (See [7, Theorem 6.1].) Specifically, if {γn}n∈N is
a sequence of distinct, pairwise disjoint, separating, simple closed curves where
each γn separates the marked point from the single end of �L, then the subgroup
topologically generated by the twists {Tγn}n∈N projects to a group containing a⊕

2ℵ0 Q. One can easily find such γn that double cover simple closed curves αn

in �F , and so Tγn is the lift of T 2
αn
. (For example, we can choose α1 to be a simple
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closed curve bounding a disc with the marked point and three punctures and then
choose αi,αi+1 to always bound an annulus with two punctures. Then γi are the
preimages of the αi under the covering map.) Thus MCG(�F , ∗̃) maps onto the
same Abelian group (generated by the Tγn ), that is, H1(MCG(�F , ∗̃);Z) has a
quotient A containing

⊕
2ℵ0 Q. By Lemma 5.2, A maps onto

⊕
2ℵ0 Q, so we also

get a surjection ϕ : H1(MCG(�F , ∗̃);Z) → ⊕
2ℵ0 Q.

To pass to MCG(�F ), we borrow a technique from [7]. Consider the Birman
short exact sequence (see [7])

1−→ π1(�F ,∗) −→ MCG(�F , ∗̃) −→MCG(�F ) −→ 1.

Abelianization is right exact, so we get the commutative diagram
⊕

ℵ0
Z

id

H1(MCG(�F , ∗̃);Z)

ϕ

H1(MCG(�F );Z)

ϕ̄

0

⊕
ℵ0

Z
⊕

2ℵ0 Q P 0

The image of
⊕

ℵ0
Z in

⊕
2ℵ0 Q still misses a copy of

⊕
2ℵ0 Q, so the quotient

P still contains a copy of
⊕

2ℵ0 Q. The map ϕ̄ is surjective, so we can conclude
that H1(MCG(�F );Z) surjects onto

⊕
2ℵ0 Q, again by Lemma 5.2. �

We now produce many more classes of examples by building surfaces that natu-
rally map onto the one-ended infinite genus surface �L or �F =R2 \N.
Theorem 5.3. Suppose � is a surface of one of the following two types.

(1) E(�) has exactly one end accumulated by genus.
(2) � has genus 0, and E(�) has one maximal end y such that in the partial or-

der on [E], the class of y has an immediate predecessor E(x) with countably
infinite cardinality.

Then MCG(�) maps onto
⊕

2ℵ0 Q.

Proof. Choose a marked point ∗ on �. Note that by the same trick of using the
Birman short exact sequence

1−→ π1(�,∗) −→MCG(�,∗) −→MCG(�) −→ 1,

it suffices to show that the abelianization of MCG(�,∗) maps onto
⊕

2ℵ0 Q.
The statement for the one-ended infinite-genus surface �L is by [7]. The state-

ment for �F =R2 \N is Proposition 5.1. For all other cases, we will consider an
appropriate map to one of these two surfaces.

On �L, we will say that a sequence of simple closed curves {γn}n∈N is good
if the curves are distinct, pairwise disjoint, separating, and each curve separates
the maximal end of �L from the marked point. On �F , a sequence of curves
{αn}n∈N is good if under the covering map (�L,∗) → (�F ,∗), each αn is double
covered by a curve γn, and the sequence {γn} is good. By [7] and the proof of
Proposition 5.1 the subgroup topologically generated by Dehn twists about a good
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Figure 3 Building � of the first type.

sequence of curves maps onto
⊕

2ℵ0 Q under the map to the abelianization of the
mapping class group.

First, assume that � is of the first type. The proof in the other case will be
similar. The assumption on � means that we have a map (�,∗) → (�L,∗) by
forgetting all but the only end accumulated by genus. This induces a well-defined
map MCG(�,∗) → MCG(�L,∗), since this end is invariant under MCG(�,∗).
By the previous paragraph it suffices to exhibit a sequence of pairwise disjoint
curves {αn}n∈N on� whose image under the forgetful map forms a good sequence
on �L. To do this, we will represent � in an explicit way as described below. We
also refer to Figure 3 for our construction.

Identify S2 =R2∪{∞} with base point ∞. We will construct � from S2 by re-
moving points from R2 ⊂ S2 and attaching handles appropriately. Let K ⊂ [0,1]
be the standard Cantor set. Recall that E(�) is homeomorphic to a closed sub-
set of K . Since the homeomorphism group of K acts transitively, we can realize
E(�) as a closed subset E ⊂ K with the only end accumulated by genus at 0. By
[21] the ends space of S2 − E is homeomorphic to E. It remains to attach han-
dles to R2 − E so that the handles will only accumulate onto the origin. To this
end, choose a sequence {yn}n∈N ⊂ [0,1] − K such that yn → 0 monotonically.
In particular, {yn} ∩ E = ∅. Let dn = yn − yn+1. For each n, let Tn be a torus
with one boundary component. Let zn be the midpoint of [yn+1, yn]. In R2, let
pn = (−zn,0), and let Bn be the open ball of diameter dn/2 centered at pn. Now
remove each Bn fromR2 and attach Tn by gluing ∂Tn to ∂Bn. Let �′ be the result-
ing surface with marked point ∞. By construction the tori accumulate only onto
the origin. It follows then by the classification of surfaces that �′ is homeomor-
phic to �, and we can make this homeomorphism take ∞ to ∗. By filling in all of
E except the origin, we get a marked surface (�′

L,∞) homeomorphic to (�L,∗)

and a representation of the forgetful map (�,∗) → (�L,∗). Using this picture,
it is now easy to find the curves αn, which we take to be the circle of radius yn

centered at the origin. By construction the circles {αn} avoid E, are pairwise dis-
joint, and each separates the origin from ∞. Furthermore, since there is a handle
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between two consecutive circles αn and αn+1, namely Tn+1, these circles remain
topologically distinct after filling in all of E − {0}. This finishes the proof in this
case.

Now suppose � is of the second type. We first claim that, by forgetting all
but the maximal end of E(�) and the class E(x) of its immediate predeces-
sor, we get a map (�,∗) → (�F ,∗). Taking the same approach as above, re-
alize E(�) as a closed subset E ⊂ K with the maximal end at the origin. By
Richards the surface (S2 \ E,∞) is homeomorphic to (�,∗). We claim that
the origin is the only accumulation point of E(x). Since E(x) has no succes-
sor except the origin, any other accumulation point of E(x) must be equivalent
to x. Then every point in E(x) is an accumulation point of E(x). This makes
E(x) ∪ {0} a closed and perfect subset of K , so it is homeomorphic to K , contra-
dicting our assumption that E(x) has countable cardinality. Thus for any com-
pact interval I ⊂ (0,1], I ∩ E(x) has finite cardinality, so we can enumerate
E(x) as a decreasing sequence {xn}n∈N ⊂ E converging to 0. This shows that
(S2 \ (E(x) ∪ {0}),∞) ∼= (�F ,∗). Since mapping classes induce homeomor-
phisms of the ends space, which, as noted in Section 2, preserve the equivalence
class of each end, we obtain a well-defined map MCG(�,∗) → MCG(�F ,∗).
To finish, take any point yn ∈ [xn+1, xn] such that {yn} ∩ E = ∅. Then the circles
{αn}n∈N of radius yn centered at the origin are pairwise disjoint, and we can ex-
tract from them a subsequence that project to a good sequence of curves on �F .
This finishes the proof. �

Remark 5.4. Note that for � of the second type in Theorem 5.3, we do not need
the maximal end y to have a unique immediate predecessor. This is because the
mapping class group always preserves equivalence classes of ends, so even if y

has other immediate predecessors, the map forgetting all ends except y and E(x)

still induces a well-defined homomorphism on the level of mapping class groups.

Remark 5.5. In our setting above, it seems plausible that the forgetful map from
MCG(�) to either MCG(�L) or MCG(�F ) is surjective, but we will not pursue
that statement here.

We record some consequences of Theorem 5.3.

Corollary 5.6. Suppose � is a surface that satisfies one of the descriptions
in Theorem 5.3. Let ∗ ∈ � be a marked point. Let G be either Homeo+(�),
MCG(�), Homeo+(�,∗), or MCG(�,∗). Then G is not perfect, is not gen-
erated by torsion elements, and does not have the automatic continuity prop-
erty.

Proof. Since a Polish group is separable, it can have at most c = 2ℵ0 continuous
epimorphisms to Q. However,

⊕
2ℵ0 Q has 2c epimorphisms to Q. So, by Theo-

rem 5.3, MCG(�) is not perfect, is not generated by torsion elements, and does
not have the automatic continuity property. These three properties are inherited
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Figure 4 The half-space H in R2 \Z2.

by quotients, so Homeo+(�) also cannot have any of these properties. The same
argument applies to a marked �. �

Remark 5.7. If E is a countable ends space homeomorphic to ωα + 1 for some
countable successor ordinal α, then by [18, Proposition 4.3] � = S2 \ E is a
surface of type 2 of Theorem 5.3. This gives Theorem D of the Introduction.

5.1. Topological Generation by Involutions

Theorem 5.8. Let � be either R2 \ N or the infinite-genus surface with one
end. Then MCG(�) is topologically generated by involutions and is the topo-
logical closure of the normal closure of a single involution. Consequentially,
H1(MCG(�),Z) = 0.

Proof. We first focus on � = R2 \ N. The beginning of the proof is very similar
to that of Theorem 3.12. Note that R2 \ N is homeomorphic to R2 \ Z2. This is
because both surfaces have genus 0, and their ends spaces are homeomorphic.
The advantage of viewing the surface as R2 \Z2 is as follows.

Let τ be the rotation in the plane by angle π centered at the origin, that is,
τ(x + iy) = eiπ (x + iy). We also have the translation φ(x + iy) = (x + 1) + iy.
Both maps preserve Z2, so they induce homeomorphisms of �, where τ has order
2. One checks that [φ, τ ] = φτφ−1τ = φ2.

We define a half-space of � to be a closed subset H ⊂ �, such that ∂H is a
properly embedded simple arc joining infinity to itself, and both H and Hc con-
tain infinitely many punctures (isolated ends) of �. We will consider an explicit
half-space in �. Let h(x) = sec(πx) − 0.5 with domain (−0.5,0.5). The graph
of h(x) is a convex curve that misses all of Z2 and is contained in the vertical
strip {(x, y) : −0.5≤ x ≤ 0.5}. See Figure 4. The set H = {(x, y) ∈ � : y ≥ h(x)}
is a half-space, and φ2 is an H -free translation in the sense that {φ2nH }n∈Z are
pairwise disjoint. Therefore, with the same swindle as before, we obtain

Homeo(H, ∂H) ≤ 〈〈φ2〉〉 ≤ 〈〈τ 〉〉.
Although the swindle still works, the rest of the proof for Theorem 3.12 does (and
should) not work. The only statement that seems to fail is Lemma 3.8 (and so
Theorem 3.11 also fails in this case).
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We now move to the mapping class group. As before, to simplify the discus-
sion, we will conflate half-spaces and simple closed curves with their ambient
isotopy classes. We will keep on denoting their mapping classes by φ and τ .

Consider the short exact sequence

1→ PMCG(�) → MCG(�) → Homeo(E(�)) → 1,

where PMCG(�) is called the pure mapping class group, that is, the subgroup
fixing each end of �. Since � has no genus, by [20], PMCG(�) = PMCGc(�),
where PMCGc(�) is the subgroup of compactly supported mapping classes.
Since Dehn twists generate the pure mapping class group of any compact sur-
face, PMCG(�) is topologically generated by Dehn twists. The goal now is
to show that every Dehn twist in MCG(�) is contained in the normal closure
of MCG(H, ∂H) and that the normal closure of MCG(H, ∂H) surjects onto
Homeo(E(�))

We first deal with the Dehn twists. Let α ⊂ � be any simple closed curve.
Then α bounds a topological disk containing finitely many points of Z2. Choose
a simple closed curve β ⊂ H that bounds an equal number of points of Z2. We
can find a homeomorphism f ∈ Homeo+(�) such that f (α) = β . This is simply
the change-of-coordinate principle made possible by the classification of surfaces.
We now have

Tα = Tf −1(β) = f −1Tβf ∈ 〈〈MCG(H, ∂H)〉〉.
To show that 〈〈MCG(H, ∂H)〉〉 surjects onto Homeo(E(�)), we produce suf-

ficiently many permutations of nonmaximal ends. First note that E(�) has ex-
actly one maximal end, represented by ∞, which must be invariant under any
homeomorphism. Every other end is isolated, so Homeo(E(�)) is nothing but
the permutation group Sym(Z2) on Z2. Within H , pair off infinitely many punc-
tures/ends {(xi,1, xi,2)}i∈I such that xi,2 is directly above xi,1 and all the pairs are
pairwise disjoint. It is clear that MCG(H, ∂H) contains a mapping class f that
transposes all pairs simultaneously. Note that

⋃
i∈I {(xi,1, xi,2)} is both infinite

and co-infinite in E(�). Since by [21], MCG(�) surjects onto Homeo(E(�)) =
Sym(Z2), the image of 〈〈MCG(H, ∂H)〉〉 in Sym(Z2) contains all order 2 per-
mutations supported on infinite, co-infinite subsets. It is straightforward to show
that this set generates Sym(Z2). In summary, we have shown 〈〈MCG(H, ∂H)〉〉
topologically generates PMCG(�) and surjects onto Homeo(E(�)). This yields

MCG(�) = 〈〈MCG(H, ∂H)〉〉 = 〈〈φ2〉〉 = 〈〈τ 〉〉.
To go fromR2 \Z2 to the one-ended infinite-genus surface �L, we observe that

instead of removing the integer lattice points fromR2, we can remove a small disk
from each lattice point and glue on a handle to get a surface �′ homeomorphic
to �L. Furthermore, we can make sure that τ and φ preserve �′. A half-space in
�′ is simply a closed component of a dividing arc that cuts off two component of
infinite genus. The explicit half-space H we defined for R2 \Z2 can also be made
into a half-space here. Then running the same argument as above and observing
that PMCG(�′) =MCG(�′) complete the proof.
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The last statement about the cohomology of these groups follows from the fact
that any homomorphism from a Polish group to Z is automatically continuous
[8]. �
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