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ABSTRACT

Modern recommendation systems, primarily driven by deep-
learning models, depend on fast model inferences to be useful. To
tackle the sparsity in the input space, particularly for categorical
variables, such inferences are made by storing increasingly large
embedding vector (EV) tables in memory. A core challenge is that
the inference operation has an all-or-nothing property: each infer-
ence requires multiple EV table lookups, but if any memory access
is slow, the whole inference request is slow. In our paper, we de-
sign, implement and evaluate EVSTORE, a 3-layer EV table lookup
system that harnesses both structural regularity in inference oper-
ations and domain-specific approximations to provide optimized
caching, yielding up to 23% and 27% reduction on the average and
p90 latency while quadrupling throughput at 0.2% loss in accuracy.
Finally, we show that at a minor cost of accuracy, EVSTORE can re-
duce the Deep Recommendation System (DRS) memory usage by
up to 94%, yielding potentially enormous savings for these costly,
pervasive systems.
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1 INTRODUCTION

Recommendation systems are used prominently across modern on-
line services to help people make decisions. They capture user be-
havior and preferences to display personalized advertisements [29,
30], rank news [10, 24], and recommend products [69]. The impact
of recommendation systems on user engagement is tremendous.
Recent studies show that a significant amount of content—30% of
all traffic on Amazon’s website, 60% of the videos on YouTube, and
75% of the viewed movies on Netflix came from suggestions made
by recommendation algorithms [7, 8, 62, 74].

In the age of Deep Learning, Deep Recommendation Systems
(DRSs) are widely used to deliver high-quality recommendations
[30, 78], but tackling categorical (“sparse”) input features is their
Achilles’ heel. Modern DRSs, such as Facebook’s post recommen-
dation systems [30], often contain hundreds or thousands of cat-
egorical features (e.g., users, posts, or pages), each of which can
contain millions or even tens of billions of possible categories. To
make the complexity of the deep neural network (DNN) tractable,
sparse categorical data is usually converted to (“dense”) vectors of
numbers before being fed to the model. The most popular conver-
sion is via embedding vector tables, or “EV tables” for short (§2).

By reducing the DNN complexity, EV tables sacrifice space for
faster computation, and thus require significant memory. Conse-
quently, the space management of EV tables becomes challenging:
many real-world EV tables contain billions of embedding vectors
[31, 69] that require tens of TBs of memory capacity. Such DRAM-
heavy architectures account for significant operational costs for
DRS users measured in millions of dollars—nearly 80% of all Al-
related deployment in Facebook’s data centers in 2020 directly sup-
ported DRSs [30]. Additionally, industry’s insatiable appetite for
improved recommendation accuracy is driving the rapid growth of
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EV tables in DRS. As users become more reliant on these systems,
they expect higher quality recommendations that are tailored to
their individual preferences. To meet this demand, recommenda-
tion systems must be able to encode richer semantic relationships,
which requires larger EV tables. This has led to a tripling of EV
table sizes every two years (1.5X annual growth) [16, 38].

Unfortunately, the state-of-the-art DRSs are simply not
equipped to handle the exponential growth of EV table sizes. Open-
source DRSs platforms like Facebook’s DLRM [54] and Google’s
DCN [70, 71], for example, store the full EV tables in DRAM and
lack support for responding to lookups from backend storage when
memory is exhausted. This brings several downsides. When the
entire memory is mostly occupied by EV tables of a specific DRS
model, the server is not able to run other DRSs concurrently, po-
tentially reducing resource utilization of the server and the overall
throughput of the recommendation service. Furthermore, storing
the entire EV tables in memory is costly as the price of DRAM
keeps increasing, especially due to shortages in global supply [13].
A natural solution to this problem is by moving the large EV tables
to the backend storage (SSDs or HDDs). There are recent publica-
tions in this space that focus on optimizing the backend storage
for EV table lookups but not that many [28, 68, 72]. While exist-
ing storage solutions advance the state of the art, their adoption is
limited due to the need of customized devices (e.g., custom SSDs
or FPGA implementations).

In this paper, we take a different approach: How should we revisit
this problem from the context of the DRS platform itself? Can we
add a novel caching layer within the DRS platform (that works on
commodity storage backend)? Can the caching layer be optimized
specifically for EV access patterns? To address these questions, we
built EVSTORE: a novel EV table caching layer in DRS inference
pipelines that exploits available DRAM and the structure of EV
lookups to optimize end-to-end DRS inference latency. EVSTORE’s
main contributions lie in EVSTORE’s 3-layer “L1-to-L3” caching de-
sign (EVCache, EVMix, and EVProx):

(L1) EVCache: We built a caching layer (EVCache) where EV
tables are stored as key-values in the DRS memory and backend
storage. We harness an all-or-nothing EV access property: an in-
ference will query a set of keys to all of the EV tables, hence a
cache miss on just one of the keys will make the entire inference
slow. State-of-the-art cache replacement algorithms do not fit this
lookup pattern. Hence, we introduce the concept of groupability
and extend existing algorithms with “group scores” to rank keys
that are likely accessed together and retain them in the cache, in
turn increases the chances of getting a “perfect-hit” where all of
them simultaneously can be found in memory.

(L2) EVMix: To accommodate diverse latency and accuracy
tradeoffs, we delegate some space from the L1 into an “L2” seg-
ment that stores lower precision (16, 8, or 4 bits instead of 32-bit
floating point) embedding values. For instance, whereas the first
layer stores 32-bit floating point values (£p32), the second layer
can store lower precisions (e.g., in 16, 8, or 4 bits). We call this com-
bination of L1 and L2 as EVMix, a mixed-precision caching. This
brings several advantages: allowing more key-value pairs to be
cached, increasing hit rates, accelerating inferences, and boosting
throughput in trade for a minor loss of accuracy.
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Figure 1: DRS and EV Tables (§2). EV tables are used to ac-
curately translate the sparse categorical data into dense vec-
tors of numbers by revealing hidden relationships between
input features. These dense vectors can then be combined
with other dense features before being fed into the DNN
model to obtain the inference result.

[ 0100010111001
...... 1100101110
Dense Features

(L3) EVProx: Finally, we leverage another unique characteris-
tic of embedding values: The value for a key that is not in the cache
can be replaced by a surrogate key whose value is “approximately
similar” to the original key’s value. We add a key-to-key caching
layer (L3) that maps each key to a surrogate key with a similar em-
bedding value. Furthermore, we choose surrogates that are likely
to reside in the L1/L2 cache to help alleviate accesses to the back-
end storage. To the best of our knowledge, the closeness of embed-
ding keys, computed using well-established statistical methods for
similarity analysis [26, 48, 59], has not been previously used for
DRS performance optimization.

We have fully integrated EVSTORE within Facebook (Meta)’s
DLRM [54], including various implementation-level optimizations
and offline supporting tools (9 KLOC) that are released publicly
[1]. Our evaluation based on real production DRS traces shows that
EVSTORE can reduce the average and p90 latency by up to 23% and
27% respectively, while increasing the throughput by 4x at only
0.2% accuracy reduction. Collectively, fully optimized EVSTORE im-
plementation can achieve a 94% reduction of the DRS memory foot-
print. These memory savings correspond to hundreds of millions
of dollars for a large cloud provider [47].

2 BACKGROUND AND MOTIVATION

Consider a system asked to make product recommendations re-
lated to the query “food that kitty likes”. After processing
the natural language string with standard NLP methods like tok-
enization and stemming [39, 67], the system is provided with a set
of sparse (categorical) and dense (numerical) input features. These
features include high-dimensional representations of the words in
the sentence from the NLP engine, as well as supplemental infor-
mation, such as user attributes and location (Figure 1).

Deep recommendation systems (DRS) are recommendation
engines that leverage deep neural networks (DNNs). Unfortu-
nately, sparse categorical data, in particular those resulting from
processing text data, are a poor match for the DNNs due to the
unwieldy space and time complexity they impose during training.
Instead, input data is usually condensed before being consumed by
the DNNs—sparse text data, for instance, undergoes word embed-
ding into lower-dimensional vector space.

Embedding vectors (EV) are the most popular method for
densifying sparse input features for the DRS, effectively translat-
ing sparse categorical data into dense vectors of numbers [18].
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EV Table A  l°°kup(Ay, By, Cg, . . Zg)
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Figure 2: EV table structure and lookup (§2). An example
of EV tables A-Z in a DRS. Each EV table represents the con-
version for a single type of categorical feature. A lookup in-
volves finding a key in each of the N tables (N = 26 if the
DRS model has 26 categorical features which correspond to
EV table A-Z7).

Internally, the translation is done by means of an EV table in
memory that simply returns the appropriate vector value, say
(0.7,-0.1,0.3), corresponding to a given key, say 'kitty’, as illus-
trated in Figure 2. By reducing the dimensionality of the data, EV
tables also reveal hidden relationships between inputs. For exam-
ple, note that “kitty” and “cat” are practically synonyms in EV
table A in Figure 2 because of the proximity of the corresponding
embedding vectors. The DNN itself need not recognize the syn-
onymy of “kitty” and “cat”: since similar words cluster together
in the embedding space, the queries “food that kitty likes”
and “food that cat likes” will produce comparable results.

EV tables are crucial components of a DRS, so let us consider
their structure and anatomy in more detail. Internally, each row
in an EV table consists of a “key” index and a number of columns
of floating point values representing the embedding vector corre-
sponding to the key. Under NLP word embedding, for instance, the
key may be a dictionary word like “cat”. The key could also rep-
resent a more complex category, such as the hash of a compound
string. The embedding vector columns are the values for latent
features or dimensions. Each cell is typically a 32-bit floating point
number (£p32). The cells are initialized as random values and grad-
ually updated via backward propagation during training towards
higher fidelity embedding vectors. The number of latent features is
a design decision: more dimensions increase the lookup precision
at the expense of larger tables.

A DRS lookup is the top-level inference query. Because each
EV table represents the conversion for a single type of categorical
feature, such as word-embedding within an NLP model, a single
inference may involve dozens of different EV tables, each with po-
tentially millions of rows [46, 52, 82]. In Figure 2, for example, 26
different EV tables must be consulted for a single inference. We
denote DRS lookups by:

lookup(A;,B4,Cq,..,29),
where the number in the subscript represents a key in the table.
For instance, B4 refers to key number 4 in Table B.

EV tables are large and growing. Today’s recommendation
models have enormous feature sets to capture complex user be-
havior and preferences [23, 24, 30, 81, 83, 84]. Each categorical fea-
ture could assume 107-1010 different possible values [31, 58, 78],
implying that billions of embedding vectors are needed in prac-
tice to represent every unique feature. A billion embedding vec-
tors (rows) with 400 dimensions (columns) [46, 52, 82] of £p32
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Figure 3: EVSTORE design overview (§3). EVSTORE is
composed of EVCache (L1), an EV table caching layer with
various cache replacement options (§3.1+§4); L2, a second
caching layer which stores lower precision embedding such
as £p8 to enables EVMix, (§3.2+§5); and EVProx (L3), an em-
bedding approximation layer that caches mapping to surro-
gate keys (§3.3+§6). The Lookup(A; ,B4,Cs, - . ,Z9) will lead to B,
hit in L1, C¢ hit in L2, Z; “hit” in L3 as it is replaced with the
value from a surrogate key A;, and A; miss that will incur a
disk access.

type (cell size) would easily occupy 1.5TB of memory. Further-
more, industry’s insatiable appetite for improved recommendation
accuracy demands more rows, extra columns, and larger vectors
(cells) to encode richer semantic relationships. Thus, the models
are growing rapidly—the sizes are tripling every two years (1.5X
annual growth), following Moore’s Law [16, 38], while the under-
lying DRAM-hungry DRS implementations already weigh heavily
in company budgets [30].

DRS pipelines are up against a scaling wall. Crucially, all
trends point to the continued burgeoning of DRS system sizes.
Recent projections predict that EV table sizes will imminently be
dozens of TB for some companies [16], flirting with the limits of
even the greatest memory capacity cloud instances available!. To
continue scaling DRS, a different approach is required.

3 EVSTORE DESIGN OVERVIEW

We present EVSTORE, a rethinking of DRS pipelines to accommo-
date large EV tables. With EVSTORE, EV tables are no longer re-
quired to completely fit in memory, allowing operators to grow
their DRSs or improve inference throughput by packing multiple
DRS pipelines among machines without running into rigid mem-
ory size constraints of individual machines. To the best of our
knowledge, EVSTORE is the first system that adds powerful caching
capabilities within a real-world DRS pipeline, including various
implementation-level optimizations. There are three key compo-
nents to the EVSTORE design, depicted in Figure 3:

a. EVCache provides the first level of caching (“L1”) with various
cache replacement options that are specifically tailored to han-
dle EV lookup patterns.

b. EVMix adds support for multi-tier caching layer (“L1+L2”) with
mixed precisions (e.g., 32, 16, 8, and 4 bit) across different layers
to provide better performance.

1At the time of writing, high-memory instances top out at 24 TiB (AWS), and 12TiB
(Azure/Google Cloud).
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c. EVProx accelerates lookups via a novel “L3” layer that caches
approximate embedding to opportunistically replace a missing
key with a surrogate key that is likely to reside in L1 or L2.

3.1 EVCache

By adding a caching layer for EV lookups to the DRS pipeline,
the cache replacement policy begins to dominate the performance
of the lookup workload. Cache replacement algorithms have pri-
marily been designed for items with independent request patterns
(such as key-value stores), or where accesses concern ranges of
consecutive memory (such as virtual memory and storage sys-
tems). Unlike traditional caches, however, DRS lookups exhibit the
aforementioned “all-or-nothing” property when accessing cached
EV tables. That is, for every inference request, the key-value
lookup must be done across all constituent EV tables at the same
time, e.g. Lookup(4A; ,By,Cs, . . ,Z9) —a cache miss for just one of the
keys (e.g., A1) will make the entire inference slow. This uncompro-
mising attribute stems from the neural network (NN) architecture:
the output value from each EV table is a portion of the input vector
into the NN, without which the NN yields ill-defined results.

We evaluated both popular and state-of-the-art caching algo-
rithms (LRU, LFU, ARC, CAR, Cacheus, ClockPro [19, 44, 50, 60])
against DRS workloads with the all-or-nothing property and found
their performance to leave an opportunity for improvement (§4.1).
We noticed that existing cache algorithms could be infused with
a novel notion of “groupability”. That is, EV-friendly algorithms
ought to consider the fact that keys are accessed as a group in EV
lookups. In a departure from ordinary caching systems, the input
into our EVCache layer involves multiple keys at once as a group,
rather than just a single key. With grouped keys, the objective of
our caching system is then to maximize the chance of getting a
“perfect hit” where all of the keys are found in the cache (§4.2).
We then also speak of perfect hit rate instead of just hit rate for
single key lookups.

To demonstrate the flexibility of the groupability notion, we ex-
tended three popular algorithms (LFU, CAR, and ARC) into EV-
LFU, EV-CAR, and EV-ARC, respectively (§4.3). These three EV-
Cache variants have different implementations and characteristics
that offer adaptability and choices in handling a variety of DRS
workloads. For example, EV-CAR and EV-ARC both adapt well to
EV-based and classical individual lookups in that it bolsters per-
fect hit rates without sacrificing the individual hit rates, whereas
EV-LFU is highly optimized for DRS workloads at the expense of
lower individual hit rates. Maximizing the perfect hit rate poses
an interesting algorithmic question: what simple online heuristics
can factor in groupability without undue computational overhead?
We detail our approach in Section 4.2.

3.2 EVMix: Mixed-Precision Caching

Another family of approaches for increasing cache performance,
besides improving the replacement policy, is to conduct domain-
specific packing, either through lossless or lossy compression of
values [14, 34, 64]. To balance EVSTORE’s all-important latency
goal with recommendation accuracy, we delegate some space from
the L1 into an “L2” segment that stores lower precision embedding
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values. We call this combination of L1 and L2 as EVMix, a mixed-
precision caching. Moreover, the two cache tiers will have different
sizes and data precision but run the same cache replacement pol-
icy. Recalling that EV are stored as 32-bit floating point values
(£p32), there is an opportunity to lower the resolution of the float-
ing point value to 4, 8, or 16 bits—allowing the cache to keep more
values in memory in exchange for a minor reduction in accuracy.
For instance, whereas the first layer (L1) stores 32-bit floating point
values (£p32), the second layer (L2) can store lower precisions (e.g.,
in 16, 8, or 4 bits). Users can adjust the resolution and size to bal-
ance the desired accuracy and performance. EVMix uses fast cod-
ing optimizations that harness the specifics of embedding vector
management, detailed in Section 5.

3.3 EVProx: Approximate Embedding

Another unique characteristic of embeddings that differentiates
them from typical key-value data: embedding vectors reside in rela-
tively smooth (high-dimensional) metric spaces with well-defined
distances between vectors. Thus, building on ideas from nearest-
neighbor clustering, the original value of a key may be approxi-
mated by the “similar” value of a nearby neighbor. That the neigh-
bors have comparable values stem from an empirical smoothness
property called the embedding value similarity [33]. While such
clustering techniques are popular for analyzing and reducing the
complexity of high-dimensional data, we are not aware of any
work that exploits them explicitly for performance optimization.

Using these ideas, we propose another layer, EVProx, that al-
lows a key-value cache miss to be replaced by a surrogate key
whose value is likely to be cached in L1/L2, hence avoiding a
lookup to the backend storage. Without this L3, if a key is not avail-
able in L1 and L2, slow disk access would be needed. Accordingly,
L3 can be viewed as a key-to-key caching layer that maps a key to
a surrogate key with a similar embedding value. For example, in
Figure 3, the key Zy is a miss on L1 and L2. Before going to the
disk, we check L3 and find that A; is the surrogate key of Z,. Since
A7 is already stored in L1, the disk access is prevented. Further-
more, since having a key-to-key caching requires much less space
compared to caching the whole embedding value, EVProx needs
minimal space and will only occupy a small percentage (< 5%) of
the total cache size. Section 6 further describes the challenges of
implementing the L3. For instance, for every key, how do we estab-
lish the appropriate surrogate keys? Also, which key is more likely
to reside in L1/L2?

3.4 Implementation and Integration

Our final contribution is in the implementation and integration of
EVSTORE in a real DRS platform, specifically the Facebook DLRM
framework [54]. We explored various implementations along sev-
eral dimensions including supporting various storage backends
(RocksDBJ[3], SQLite[9], CORTX [12], and UNIX files [65]). We
then embedded a new caching layer inside the DLRM through two
approaches: via the tensor library and via the EVCache layer with
our optimized data structures. We also migrated our Python imple-
mentation to C++ to better support mixed precision, harness multi-
threading, and optimize data reuse with the help of dynamic mem-
ory allocation and pointer manipulations. We added ~7 KLOC to
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Figure 4: Individual vs. perfect hit rates (§4.1). Existing
algorithms have high individual hit rates (solid bars), but
relatively low perfect hit rates (striped bars) across various
cache sizes.

the Facebook DLRM and ~2 KLOC of offline tools for benchmark-
ing EVCache algorithms and EVProx approximate embeddings.

4 EVCACHE (L1)

In this section, we evaluate the performance of different caching
algorithms on EV lookup workloads (§4.1), describe how we ap-
ply our groupability principle to improve the perfect hit rates of
these algorithms (§4.2), and demonstrate how the principle can be
adopted across various caching policies (§4.3).

4.1 The Importance of Perfect Hits

The caching literature is replete with algorithms, from the basic
policies (such as LRU, CLOCK, and LFU [25, 44, 55, 65]) to the
more dynamic/adaptive variants (such as LIRS [37], CAR [19], ARC
[50], ClockLIRS [37], and ClockPro [36]), and finally the machine-
learning based ones (such as Cacheus [60] and LeCAR [66]). To un-
derstand how they relate to our problem domain, we evaluate the
performance of these algorithms on EV lookup workloads. Recall
that to serve a single inference request with N sparse features, the
DRS must convert those sparse features to N dense features by do-
ing EV lookups to N different EV tables. Any cache miss on one of
the EV tables requires access to the backend storage (e.g., SSD and
HDD) which generally is orders of magnitude slower than memory
access, thus slowing down the entire inference.

To quantify caching performance, we use two metrics. First,
the individual hit rate, the typical metric used when evaluating
caching algorithms, concerns the ratio of key-value lookups that
are found in memory, regardless of how many embedding tables
are used in a single inference. Next, the perfect hit rate is the ratio
of how often all N keys (from a single inference request) are found
in the memory, a scenario where no data needs to be fetched from
the disk before running pass forward phase in DRS pipeline.

Figure 4 shows the results when we have N = 26 using the
Criteo dataset [6] (details in the evaluation section). Here we only
show 5 algorithms for readability. For the individual hit rate (solid
bars), as expected, the algorithms can reach 60-90% hit rate (verti-
cal axis) when the cache size is 0.5-20% of the size of all the tables
(horizontal axis). However, the perfect hit rate is significantly lower,
ranging only from 1% to 50% (the striped bars), mainly because exist-
ing algorithms do not take into account the group-based access pat-
tern. Moreover, as the cache size increases, the individual hit rate
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tends to increase in a lower rate than the perfect hit. This demon-
strates that while current algorithms may be effective at finding
individual items in the cache, they are less effective at finding all
items in a set.

4.2 Replacement Policy Extension

While traditional cache lookups rely on one key per lookup, EV-
Cache operates on multiple keys for every single inference (we
call them “grouped keys”). Fortunately, in a DRS the cardinality
of the group is fixed (e.g., 26 keys whose values will be supplied
to a constant number of features in the neural network model).
EVCache introduces the concept of “groupability” into embedding
cache management by adding a scoring metric groupScore for ev-
ery key in the cache. Keys with high scores will remain in the cache
while those with lower scores will likely be evicted. Therefore, we
need a caching algorithm that prioritizes embeddings with high
group scores over the ones with low group scores, hence increas-
ing the perfect hit. Below we describe how EVCache works from
the perspectives of four fundamental caching operations: cache
lookup, state update, insertion, and eviction.

Cache lookup: An inference will trigger a grouped-keys
lookup, e.g. lookup(4;,Bs, . .,Z9). EVCache will calculate the to-
tal cache hits among the 26 individual key lookups. Let’s suppose,
20 out of the 26 are cache hits. EVCache will memorize the group
score of 20 and use it in the next caching operations.

Cache state update: For every key with a cache hit, e.g. By, its
value stored in the cache will be read and prepared to be supplied
to the neural network. EVCache will then update the B,’s group
score in the cache with the max of the current and the new score.
For example, if key By is a hit and its current group score is 15, then
EVCache will update B4’s score to 20 (the memorized score). The
detail on the “max-based” group scoring and other scoring methods
are covered at the end of this section.

Cache insertion: For every key with a cache miss, EVCache
looks up the value from the backend storage and inserts the key-
value to the cache with a score value of 20 (the memorized score).
If the cache is full, EVCache needs to evict some key-values from
the cache, even if they have higher scores than the scores of the
to-be-inserted keys. This is because decades of caching research
have shown that recency (introduced by the newly inserted keys)
is an important factor in caching performance [25, 36, 37, 55].

Cache eviction: The key-values in the cache are sorted based
on the group scores. EVCache by default evicts keys with the lowest
group scores. Note that within one group score, there could be any
arbitrary number of keys. Since eviction will happen frequently,
we must use the appropriate data structure to avoid any bottle-
neck and minimize the overhead. Thus, we pick an unordered_set
data structure to store those keys efficiently. Specifically, there is
one unordered_set per group score. This data structure gives min-
imum overhead during eviction because it has an O(1) runtime.

Summary: We keep our “max-based” group scoring method rel-
atively simple for two reasons: it is computationally cheap while
giving the best perfect-hit rate improvement compared to other
scoring methods we tried, including average, sum, median, static,
and dynamic-based ones. Score calculation based on average, sum,
and median will not only increase the metadata size but also the
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computational cost. We also tried an incremental update with a
static increase of x (e.g., x = 1) but struggled to define an optimal
value of x in a dynamic workload. Furthermore, since every newly
inserted key has the same value of x, highly groupable keys may
readily be evicted soon after they are inserted. Defining a dynamic
value of x likely requires a more complex implementation—some
of the approaches we tried decreased the perfect hit rate by 50%
despite being 30% slower.

Overall, our groupability concept targets the relationships be-
tween cached embedding data that were requested at the same
time. Harnessing relationships between items have been exten-
sively explored in the cache literature, ranging from long-standing
observations about the relative recency of requested data [22,
25], tenuring highly-frequent items [44], exploiting other data
attributes [20-22], and even learning request histories through
non-linear machine-learning approaches [63]. To the best of our
knowledge, the systems literature has not before considered caches
where requests arrive together as a set of items. Under such a
model, the relationship between items in the same set adds a di-
mension to the analysis that transcends the traditional dynamical
notions of frequency and recency that abound in the cache liter-
ature. Our intuition is to strongly inform cache eviction by pro-
viding fate sharing of friends through a scoring function-to have
items that are accessed together reinforce, or abate, the scores of
one another. The next section shows how we integrated the scor-
ing extension (as part of the groupability concept) into popular
cache replacement policies.

4.3 EVCache Variants

To show generality, we implemented our extension to three popu-
lar (base) algorithms: LFU [44], CAR [19], and ARC [50]. Our three
EVCache variants (EV-LFU, EV-CAR, and EV-ARC) have differ-
ent implementations and characteristics. The main differentiator
is how the base algorithms could accommodate group scores into
their data positioning mechanism which also influences their evic-
tion policy. In the interest of space, we will not describe the base
algorithms in detail (interested readers can refer to our code [1]).

1. EV-LFU: This algorithm is the modified version of the Least
Frequently Used (LFU) cache replacement policy. We replace the
default frequency counter in LFU [44] with a group score. This
means that upon a cache miss, EV-LFU will evict the cached item
with the lowest group score. If there are multiple items with the
same group score, EV-LFU will evict the least recently inserted
item. The group score used in EV-LFU has a maximum value (e.g.,
26 in our main experiment), which ensures that the scores of items
in the cache do not become too large over time. When most of the
cached items reach the maximum score, recently cached keys with
lower group scores start to face higher eviction pressure. To avoid
class imbalance, EV-LFU implements a flushing mechanism with a
tunable knob. Specifically, if the number of maxScoreKey (key with
maximum group score) is higher than the “maxScoreKeyCapacity”
(e.g., 20%), EV-LFU will reduce the population of the maxScoreKey
by X% (where X can be adjusted dynamically).

Furthermore, both LFU and EV-LFU are categorized as stack al-
gorithms which makes them free of Belady anomaly. Specifically,
in a stack algorithm, the items evicted by a larger cache will be
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a subset of those evicted by a smaller cache if both were to see
the same request sequence—a property known as cache inclusion—
independently of those cache sizes. Conveniently, the hit rate of
stack algorithms increases monotonically with cache size [61],
which provides a further degree of robustness to EV-LFU in prac-
tical settings.

2. EV-ARC: ARC [50] is an adaptive algorithm designed to rec-
ognize access recency and frequency by dividing the cache into
two lists: R-1ist (recency-based) and F-list (frequency-based).
R-list holds items accessed once while F-1list keeps items ac-
cessed more than once since admission. To dynamically adjust the
size of the probationary segment (R-1ist) and the protected seg-
ment (F-1ist), ARC uses information about recently evicted cache
items (stored as R-ghost and F-ghost lists). For EV-ARC, we add
group score as a metadata to every cached item. We then modify
the F-list to use EV-LFU’s counting, eviction policy, and flush-
ing mechanisms. The difference is that cached items flushed from
the F-1ist will be transferred to the tail of the R-1ist. The ghost
cache size will be adjusted so that the number of the cached pages
in R-list and R-ghost is equal to the number of the cached page
in the F-list and F-ghost.

3. EV-CAR: CAR [19] is an algorithm that combines ARC and
the popular CLOCK second-chance algorithm. For EV-CAR, we
modify the reference bit, R variable, so that it will store the group
score instead of just storing 0 or 1. During the eviction phase, the
CLOCK hand will only evict the cached item that has R = 0, oth-
erwise, it will be challenged by the incoming key. If the incoming
key’s group score is larger than the current item (pointed by the
CLOCK hand), EV-CAR will not evict that item, but give a second
chance to the current item by setting its R to 0. EV-CAR also mod-
ifies the CLOCK mechanism by introducing a “progressive decre-
ment” method which allows the R value to be decreased regard-
less of the group score of that item. This method guarantees the
CLOCK hand to find an item to evict within a single rotation (O(n)
complexity where n is the number of items in the cache). In a cache
hit, EV-CAR applies max-based scoring (§4.2) which replaces the
current group score if the new score is bigger.

5 EVMIX (L2)

To make our caching layer more versatile in addressing various
latency and accuracy tradeoffs, we introduce EVMix, a multi-tier
mixed-precision EV caching system. In this section, we first de-
scribe the advantages of EVMix (§5.1), its design (§5.2), and the bit
coding optimizations (§5.3).

5.1 Advantages of Mixed Precisions

An embedding vector is stored as floating point values. In most
systems such as DLRM [54] and DCN [70], the default precision
is £p32 (32 bits). However, EVMix caching layer can store those
values in a lower precision format such as in 16, 8, or even 4 bits
depending on the target accuracy.

EVMix can bring several advantages. (a) Faster inference latency.
By accessing smaller bit representations, we can improve the av-
erage EV lookup latency by 15%, which is significant because EV
lookup can cover 40% of the end-to-end inference latency. (b) More
cached items and higher cache hits. With lower precisions, we can
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cache more embeddings (e.g., 8x more cached items when the 32 bit
EV is converted to 4 bit), and by implication, the cache hits will be
higher, which in turn increases the throughput of the caching layer.
(¢) Configurability via multiple layers. With multi-tier caching, one
can adjust the size and the precision of the first level cache and
the second level cache based on the latency-accuracy tradeoffs to
make caching more versatile. (more in the evaluation section).

5.2 Multi-Tier, Mixed-Precision Design

As shown earlier in Figure 3, EVMix is the combination of L1 and
L2 which collectively forms a mixed-precision caching. Each tier
runs the same cache replacement policy. L1 stores high or medium
precision data (e.g., 32 or 16 bit) and L2 stores lower precision data
relative to L1’s. (e.g., 4 bit). Users can adjust the precision of L1 and
L2 and their sizes based on the performance-accuracy tradeoffs.
The size proportion of L1/L2 is fully adjustable. If L1 and L2 have
the same memory size, the L2 can carry at least 2X more items
(due to the lower precision storage). Upon a cache miss on L1, we
try to get a lower-precision data from L2. If we also get a miss
in L2, we will fetch the raw data from the backend storage and
put their representations to either L1 or L2 based on the group
score. To minimize the accuracy loss associated with using EVMix,
the popular items are stored in L1 while the less popular ones are
packed in L2. Our L1/L2 placement algorithm also ensures that the
items are not redundantly stored.

Furthermore, to maximize performance, we implement EVMix
in C++ which utilizes multithreading capabilities to parallelize any
atomic operations in both layers. To simplify the logic and to re-
duce the context switching, we design the thread organization in
such a way that the task for L2’s threads is triggered and managed
by L1’s thread. In addition, we only implement event-driven par-
adigm on specific tasks that require heavy I/O and computation
such as reading from files and binary decoding operations. Finally,
we utilize a confined memory sharing to capture the results from
all threads concurrently with minimum blocking.

5.3 Bit Coding Optimization

As part of the process above, EVMix stores the embedding data in
an encoded format (4, 8, 16, or 32 bit) and continuously decodes
the cached data on every cache hit. The decoded data will be fed
to the neural network model in the subsequent phase of the DRS
pipeline. To further improve the performance of EVMix, the de-
coding process must be optimized, especially for the 16, 8, and 4
bit format since there is no default (standardized) floating-point
binary format for them.

As EVSTORE is built specifically for caching embedding vector
data, it exploits the fact that the values of these vectors range
only from -1 to 1, rather than an arbitrary range of values. More-
over, the typical value distribution is a Gaussian bell-shaped curve
where the occurrence/frequency is most highly concentrated near
0. Therefore, to make the most efficient use of each bit, we design
the coding procedure to better represent this “dense region” of val-
ues. We design the coding procedure for simplicity to ensure that
decoding remains computationally cheap and does not become a
bottleneck in our caching systems.
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The scheme works as follows. (a) 16 bit: We store the value as
an unsigned short. The mapping is straightforward, the smallest-
positive EV value will be mapped to 0, while the biggest-positive
EV value to 65534. We utilize the last digit as our sign bit to cheaply
differentiate the positive and negative embedding. Specifically, if
the last digit is odd, the value is considered negative, and if the last
digit is even, the value is considered positive. The decoding phase
will convert each value into a corresponding floating-point value
proportionally. (b) 8 bit: In this case, we can only store values rang-
ing from 0 to 255. Similar to the 16 bit, we map the embedding value
linearly. The -1 is mapped to 0; the +1 is mapped to 254; and, every-
thing that falls in between will be mapped proportionally (e.g., 0.23
is mapped to 156). As a result, we use 255 values out of 256 which
consists of 127 values covering the negative EV, another 127 cov-
ering the positive EV, and 1 value that is mapped into 0. (c) 4 bit:
Although 4 bit can represent 16 values, but we only use 15 values
(7 positives, 7 negatives, and a zero mapped value) to cover the EV
range. Most of the value mappings are focused near 0. Specifically,
we pick -0.0625 to 0.0625 as the dense region range in a manner
similar to Posit’s [57] 4-bit mapping. Overall, our encoding mecha-
nism only uses static dictionary mapping and basic operators (XOR
and mod) which result in a negligible (<1%) CPU overhead.

We further explored Posits library (C++) which is specifically de-
signed to encode embedding values and quantize machine learning
weights for lower precision. Despite having a well-researched en-
coding design that better preserves near-zero values, the library
induces costly overhead due to its custom binary operations—
compared to our encoding design, the Posit library is 3X slower.
Given that the decoding operation will be done on every single
value retrieval, we decided to use our simple encoding design as
described above.

6 EVPROX (L3)

Recall from §3.3 that our caching capabilities are built from the
unique characteristics of EV lookup workloads. In EV lookup work-
loads, a value of a key can be replaced by a surrogate key’s value
that is “approximately similar” to the original key’s value. The em-
bedding value similarity [33] is calculated through cosine and Eu-
clidean vector distances [26, 48, 59]. These well-established sta-
tistical methods are popular for analyzing and reducing the com-
plexity of high-dimensional data. However, we are not aware of
works leveraging them explicitly for performance optimization.
Thus, we adopt the approximate embedding concept in our last
caching layer, EVProx, allowing a key-value cache miss to be re-
placed by another similar (and popular) surrogate key whose value
is likely to reside in L1/L2, thus preventing a lookup to the backend
storage. Furthermore, we populate the L3 with the downgraded
keys from both L1 and L2 in order to better retain the warm keys
in the cache.

Our design ensures heavy non-blocking tasks, especially I/O,
are conducted in parallel at massive performance savings. When in-
serting a new key to L3, we enqueue the incoming keys and batch
insertions into the L3. L3 uses dedicated I/O threads to fetch all
missing values in parallel. Once all key mappings data are in mem-
ory, they are inserted to the L3 sequentially. To best prolong hot
items in the L3, we add a reference (R) bit to every cached item in
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L3 that is similar to CLOCK policy’s implementation of the second-
chance eviction mechanism (§4.3).

6.1 L3 Dataflow

Looking at Figure 3, suppose we perform lookup(A;,Bs,Zo) and
Zy is the only key not being cached in L1/L2. Before adding L3, we
need to read Zy and its value from the disk. Now we consult L3, a
key-to-key caching layer that will tell us whether there is another
key (say A7) that has a “similar” embedding value to Zy. The 4; is
called a surrogate key to Zo, and may come from different embed-
ding table. Note that there can be many other keys whose values
are similar to the missing key Zo. In that case, L3 will pick the most
popular key (as a surrogate) measured based on its group score. In
this example, L3 keeps a mapping between Cs—A; because of 4;’s
high group score, hence increasing the likelihood that 4; will be
found in L1/L2.

Remark that L3 is a special key-to-key caching layer that does
not cache any value (it only caches the keys). Thus, if a lookup of
Z, is a hit in the L3 layer, we can retrieve the surrogate key (in this
case, A;). If A7 is found in L1/L2, an alternative value is found and
no disk access is needed. However, if Zy lookup is a miss in L3 or 4,
is also missing from L1/L2, then we will fetch Zy and its value from
the backend storage and store it in either L1 or L2 as explained in
§5.2 about multi-tier and mixed-precision design.

6.2 Preprocessing Surrogate Keys

In designing EVCache, we encountered the following challenges:
For every key, how do we determine what other keys are “similar”
within the embedding space? Further, among the multiple poten-
tially similar keys, how do we decide which one is most likely to
exist in L1 and L2 cache? Finally, how and when should we popu-
late the L3 cache? To answer these questions, we build the key-to-
key mapping in an offline preprocessing manner in the following
way. Note that we assume throughout that the embedding table
remains static during the inference phase.

To perform similarity analysis, we adopt the statistical measures
of Euclidean and cosine distances [26, 48, 59] that define similar-
ity in terms of vector-distances [53]. This similarity analysis can
be done once and the result can be reused. At the end of this stage,
every key in the embedding table has a list of N most-similar neigh-
boring keys (in our setup, the N=10). To produce the L3 key-to-key
mapping, we simply pick the most popular key among the top-
10 keys. To measure the popularity, we consider the historical ac-
cesses and record the access frequency of every key. By the end,
supposing there are 1 million keys in the embedding table, then
there is a mapping of 1 million keys to another key that is most sim-
ilar and frequently accessed. Next, those mapping will be stored as
a file which will make it easy to perform an online update without
any shutdown. The workload type and the size of L1/L2/L3 will
greatly affect the remapping frequency. If the popularity ranking
is quite stable/static throughout the workload, the remapping can
be avoided. In general, the remapping should be done when L3 hit
rate drops significantly. The analysis of optimum remapping deci-
sions is out of our scope. It can be studied further in future works.
Finally, given that all of these tasks are done in the background,
they will not introduce any bottleneck and latency overhead.
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7 IMPLEMENTATION

EVSTORE is built within the popular Facebook PyTorch-based
DLRM framework [54] that supports both recommendation model
training and inference. The EVSTORE implementation is ~9k LOC
(»4k LOC in C++, #4kLOC in Python/Bash scripts, ~1kLOC in
Java). The source code of EVSTORE, including various experiment
and deployment setups, is publicly available on our GitHub repos-
itory [1]. We believe EVSTORE is the first system to support sub-
stantial caching capabilities for the EV Table lookups in this DRS
framework. The details of each implementation component are ex-
plained below.

Storage backend: We extend the DLRM code to include a cus-
tom EV lookup from various key-value storage systems (RocksDB,
SQLite, CORTX) and Unix files. This extension is written in Python
and is approximately 2KLOC, with the majority of the code be-
ing part of the embedding-storage library. The data are stored as
a stream of binary values which consists of floating point arrays.
To read a specific EV value from a file, we compute the offset of
the data using its key, then use seek() to directly jump to the be-
ginning of the bytestream. The data can then be fetched from the
file using either a memory map (mmap) or direct IO. Additionally,
the data is sent to PyTorch as a bytestream, which eliminates the
need for serialization and reduces overhead. We added a module
in PyTorch to convert the bytestream into a Tensor format.

Caching layer (Python code in DLRM): The next question is
where to implement L1. We first built it inside the storage backends
mentioned above, but later realized that the performance could be
further improved if it was embedded inside the DRS platform. To
find the best place to integrate our caching layer, we must first un-
derstand how DRS systems, such as Facebook DLRM, handle the
sparse-to-dense conversion. In Facebook DLRM, before the pass
forward phase in the inference pipeline, by default the sparse-to-
dense feature transformation reads embedding data via the tensor
library. Thus, we implement L1’s data structure, which mainly uti-
lizes set and hashmap data structures, to replace the default tensor
lookup. Turns out, our own choice of data structures is much faster
as it is a “thinner” layer compared to the complex tensor library.

Optimized layer (in C++) for EVMix: As we support mixed
precisions in L1+L2, we learned that a C++ implementation is eas-
ier to manage and optimize, especially for bitwise operations. Fur-
thermore, most of the arrays in the implementation are stored in a
plain pointer-to-pointer structure, which has better CPU efficiency
than built-in vector data structures.

In the mixed-precision experiment, it is necessary to encode and
decode an unusual size of floating-point data, such as 4, 8, and
16 bit values. By default, C++ aligns floating-point data at 32-bit
boundaries, so we used ushort and uchar to store 16 and 8-bit pre-
cision data, respectively. When it comes to storing 4-bit data, it is
not possible to use the ushort or uchar data types, as these can
only store values up to 16 and 8 bits, respectively. In order to store
4-bit data, we take advantage of the fact that two 4-bit values can be
packed into a single byte of uchar data. This allows us to store and
manipulate 4-bit data efficiently, without wasting any bit spaces.

Managing concurrent accesses to L1/L2 required the use of
multithreading to minimize the overhead of context-switching
and locking. To do this, we stored the results in thread-specific
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Figure 5: Exp. #1 (§8.2): Perfect hit rates across caching al-
gorithms. EVCache algorithms (EV-CAR, EV-ARC, EV-LFU)
have the highest perfect hit rate compared to others.

memory regions, which allowed us to avoid interference between
threads. Additionally, we explored several interfaces to facilitate
the data transfer between DRS and the C++ caching layer, includ-
ing socket [75] and ctypes [42], which we will evaluate later.
Offline tools: Besides changes to the DLRM platform, we also
implemented two offline tools, for cache algorithm benchmark-
ing and approximate embedding (EVProx) preparation. The for-
mer is written in Java and built on top of the Cache2K simulator
[11]. In this platform, we prototyped EVCache algorithms and all
our baseline algorithms including LRU, LFU, LIRS, ARC, CAR, and
ClockPro. For EVProx preprocessing, we developed an embedding-
similarity analysis framework, chiefly written in Python.

8 EVALUATION

To evaluate EVSTORE performance, we subjected it to numerous
experiments to determine the end-to-end performance while con-
ducting microbenchmarks over multiple dimensions, such as vary-
ing the cache algorithms, cache sizes, number of EV tables, work-
loads, and the use of EVMix + EVProx. We structure our evaluation
as a sequence of experimental questions.

8.1 Experimental Environment and Setup

The DRS inference pipeline: (1) A user visits a webpage that has
an advertisement managed by Criteo. (2) When the user interacts
with the ads, it will trigger a request sent to the Criteo’s server that
contains all info about the user, the ads, and the webpage that is
currently visited. (3) Once the inference request arrives, the server
will take the sparse features, look up the EV tables, convert them
to dense features and feed them to the DNN model. (4) By default,
each lookup is for 26 keys to 26 tables. (5) With EVSTORE, if a key-
value is not in the cache, the DRS pipeline will fetch the data from
the raw files in the backend storage. (6) Finally, the inference re-
sult will influence the personalized advertisement of the user when
they open another webpage managed by Criteo.
Datasets/workloads: We primarily use the Criteo CTR (Click-
Through Rate) datasets, the largest open-sourced CTR dataset (up
to 1TiB in size) that could simulate EV lookups at scale. There
are two CTR datasets released by Criteo, the 1TB data (Criteo-
Terabyte) [4] and the Kaggle version (Criteo-Kaggle) [6]. It con-
tains feature values and clicks feedback for millions of display ads.
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Figure 6: Exp. #1 (§8.2): Individual and perfect hit rates

across algorithms. EV-LFU achieves higher perfect hit rate
by sacrificing on individual hits.

There are 13 dense integer features and 26 sparse categorical fea-
tures (hence 26 EV tables). All EV tables have the same embed-
ding dimensions of 36. There are a total of 156 billion total (dense)
feature values and over 800 million unique attribute values. In ad-
dition, we also use Avazu’s CTR dataset [5].

Default values: We omit redundant lines and numbers on some
of the graphs for improved readability. These are our default val-
ues (unless otherwise noted): cache size of 5% of the total working
set (the total size of all tables), the Criteo-Kaggle dataset [6] as the
workload, and fp32 as the precision of the embedding values. La-
tency is measured in average latency in milliseconds.

Machine specification: We use Chameleon cloud’s
gpu_rtx6000 and gpu_v100 nodes [2, 41] which have Intel
Xeon Gold CPU @2.60 GHz and 240 GiB Samsung SSD SM&863a
Series. We limit the DRAM using Linux cgroup tools to be small
enough such that the DRS essential functions could run, but not
big enough to store all the EV tables. When evaluating cache size
smaller than the available DRAM, we flush the Operating System
(OS) page cache every 0.25ms to avoid any EV tables being cached
by the OS. The method has been thoroughly tested to ensure there
is no OS cache leak.

8.2 EVCache

We begin with experiments on the first layer of the cache.
Experiment #1: How much does the EVCache algorithm
affect perfect hit rates? Figure 5 shows that EVCache (EV-x)
algorithm extensions improve upon state-of-the-art algorithms
such as LRU [25], CLOCK [55], LeCar [66], LIRS [37], ARC [50],
LFU [44], CAR [19], ClockLIRS [37], Cacheus [60], and ClockPro
[36]. The perfect hit rates are increased by up to 18%, lending
support to the need for groupability for EV-based caches. Figure
6 breaks the result down further to compare the perfect and
individual hit rates (as defined in Section 4.1). Here, EV-CAR and
EV-ARC both improve the perfect hit rates without compromising
on individual hit rates, suggesting that they can be used as a
general caching algorithm too. In contrast, EV-LFU increases the
perfect hit rate while sacrificing the individual hit rate for each of
the tables (which is acceptable since the perfect hit rate is more
significant for DRS).
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Figure 7: Exp. #2 (§8.2): Perfect hit rates across Figure 8:

various cache sizes. Our EV-LFU has the high-
est perfect hit rate compared to other represen-
tative algorithms across various sizes.
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Figure 10: Exp. #5 (§8.2: The most efficient place to imple-
ment the caching layer. An optimum place to deploy EV-
Cache is inside the DLRM framework (e.g., PyTorch) using
our own data structures as opposed to using PyTorch tensor
library or inside the OS or an external dataabase/KV store.

Experiment #2: How does EVCache perform across various
cache sizes? In Figure 7, we vary the cache size from 0.05% to
90% of the total working set (horizontal axis). To reduce clutter,
we show four representative algorithms (LRU as a basic algorithm,
ClockPro as an adaptive one, Cacheus as an ML-based algorithm,
and EV-LFU as EV-Cache variant). Here, the EVCache (specifically
EV-LFU) outperforms others across all cache sizes. Compared to
LRU, EV-LFU significantly increases the perfect hit rate by up to
35% while surpassing both Cacheus and ClockPro by up to 10%.
Experiment #3: How does the number of EV tables affect per-
formance? Figure 8 shows that the perfect hit rate improves with
more EV tables (horizontal axis) when using EV-LFU. As expected,
traditional algorithms, being agnostic to relationships between EV
tables, struggle to achieve a high perfect hit rate when the number
of EV tables grows.

Experiment #4: How does EVCache perform across various
datasets? Figure 9 compares the four representative algorithms
across three different datasets. We find that our algorithm exten-
sions improve upon other algorithms across all the datasets: Avazu
(AV) [5], Criteo-Kaggle (CK) [6], and Criteo-Terabyte (CT) [4].
Experiment #5: Which layer is the best to implement EV-
Cache? When implementing EVCache on Facebook DLRM (in
this case inside PyTorch), we tried various storage backends, in-
cluding key-value (KV) stores (such as SQLite, CORTX-Motr, and

Exp. #3 (§8.2): Perfect hit rates
on different number of EV tables. EV-LFU
shows steeper benefit as the number of EV
tables grows (e.g., 5 to 26).
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Figure 11: Exp. #7 (§8.2): End-to-end DRS inference latency
on various cache sizes. Each bar uses the 1, 25”’, 50”’,
75t", and 99" percentiles. Our EV-LFU delivers lower la-
tency compared to the LRU implementation.

RocksDB) and UNIX files via mmap and read/write APIs. By de-
fault, the EV tables in DLRM are stored as “tensor” data structure.
However, we implement our own data structure of choice (set and
hashmap), as part of EVCache package, to be compared against the
default DLRM’s tensor. In this experiment, we put all EV tables in
the memory, simply to measure the pure cache lookup latency as
if we have enough memory to cache all of the EV tables. For key-
value stores, we cache the tables in their own caching layers. For
UNIX files, we depend on the OS cache. Figure 10 shows that rely-
ing on external caching layers in KV stores or OS cache do not give
the best latency compared to adding our own caching layer inside
the DLRM pipeline (PyTorch in this case). Furthermore, by imple-
menting our own thin caching layer, we get better performance
than using the default PyTorch tensor.

Experiment #6: What EVCache algorithm should be imple-
mented? After deciding the best place for the caching layer, we
need to decide which algorithm to implement (EV-CAR, EV-ARC,
or EV-LFU). For this, we need to port our implementation from the
cache simulator to the Facebook DLRM framework. Among them,
EV-CAR gives the smallest perfect hit rate, and between EV-ARC
and EV-LFU, they provide comparable performance in small cache
sizes but EV-LFU is slightly better at higher (> 50%) cache sizes. In
our cache simulator, Cacheus, ClockPro, EV-ARC, and EV-LFU are
written in 800, 430, 270, and 130 LOC respectively. Thus, EV-LFU
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Figure 12: Exp. #8 (§8.3): Im- Figure 13: Exp. #9 (§8.3): Latency
plementation variants of EV- Vs accuracy trade-off. Reducing
Mix. Python-based imple- the precision from 32 to 4 bits de-
creases the accuracy only slightly
while greatly improves the latency.

mentation improved by a 6-
threads C version with Ctypes.

is more straightforward to implement by having simpler/less code
compared to other algorithms. For this reason, we decided to port
EV-LFU to the DLRM.

Experiment #7: How much does EVCache affect the end-to-
end inference latency? At this point, in Facebook DLRM, we
implemented LRU (as a baseline) and EV-LFU (as a representative
of EVCache algorithms). We choose LRU as our baseline because
it has the fastest lookup and the most implemented policy in the
production systems. While there are more complex policies such
as CAR, LIRS, CLOCKPro, etc., but they are up to 2x slower than
LRU and have higher metadata space overhead. Here is the end-to-
end inference latency break down: initialization (20%), EV lookup
(40%), and the DNN forward propagation (40%). Figure 11 shows a
whisker plot comparing the baseline LRU vs. EV-LFU. The Python-
based EV-LFU implementation delivers lower latency.

8.3 EVMix and EVProx

Next, we evaluate EVMix and EVProx layers of EVSTORE.

Experiment #8: What implementation architecture best sup-
ports EVMix? Figure 12 shows various implementation efforts
we performed in re-architecting our caching layer in PyTorch and
the resulting end-to-end latency. Originally, we implemented our
caching data structure in Python. However, Python only supports
£p32 precision, thus we adopted a C implementation to enable stor-
ing data in lower resolution (e.g., 16, 8, and 4 bits). “C-socket” refers
to the C implementation that uses sockets for DLRM data transfer,
“C-Ctypes” as the C implementation that uses Ctypes binding to
connect our C caching to DLRM, and “*-N-thd” implies the num-
ber of threads being implemented to reduce cache contention §5.2.
Based on our experiment, the “C-Ctypes-6-thd” delivers the best
performance compared to other implementation choices.

Experiment #9: What are the latency-accuracy tradeoffs in
floating point resolution (32 to 4 bits)? After we finalized
our C-Ctypes-6-thd implementation, we can now evaluate the ac-
curacy/latency tradeoffs when using lower precisions. Figure 13
shows that reducing the precision from 32 bit to 4 bit speeds up the
end-to-end latency (vertical axis) by 15% and only decreases the
“PR-AUC” (horizontal axis) only by 2%. We use “PR-AUC” (Area

Figure 14: Exp. #10 (§8.3): Trade-off between latency
and accuracy across various L1/L2 mixed-precision
caches. We vary the L1 precision (horizontal axis) and
L2 precision (vertical axis) and report the resulting ac-
curacy (left) and end-to-end latency (right).
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Figure 15: Exp. #11 (§8.3): Tail latency improvement with
EVProx. Compared to standalone EVMix, adding L3 (EV-
Prox) layer reduces the 95° h and 99" latency by 27% and 22%.

Under the Precision-Recall Curve) to evaluate the performance of
our classifier to counteract label imbalance such as in our Criteo
dataset, as is standard practice [27, 35]. Intuitively, PR-AUC mea-
sures the extent to which a classifier correctly identifies all positive
labels without mistaking too many others as positive.
Experiment #10: How does latency trade off against accu-
racy in mixed-precision L1+L2 caches? In this experiment, we
divide the total cache size to L1 and L2 equally (i.e., 50-50). Figure
14 shows the accuracy (the cell content of Figure 14a) and aver-
age end-to-end latency (in Figure 14b) of EVMix as we change the
embedding precision in the L1 tier (horizontal axis) and the L2 tier
(vertical axis). For example, if we move from 32-bit L1 and 16-bit L2
to a 32-bit L1 and 4-bit L2 (the top-right and bottom-right corners),
we improve the average latency from 2 ms to 1.89 ms and reduce
the accuracy slightly from 0.582 (best case) to 0.576. Combining
8-bit L1 and 4-bit L2 gives us the best EVMix result as marked by
the dotted rectangles where we reduced the latency by 10% with
only 0.2% loss of accuracy.

Experiment #11: How much is the tail latency improvement
with L3 (EVProx)? InFigure 15, we show the latency CDF of EV-
Prox variants compared to EVMix. The “EVMix + EVProxyy,” gives
the best latency CDF in which we dedicate 4% of the cache size for
L3 (EVProx) key-to-key mapping and split the rest for L1 and L2.
Compared to the pure EVMix, adding the “EVProx4s,” successfully
reduces the 95" and 99*" tail latency by 27% and 22% respectively.
This experiment is conducted on 20% cache size.
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Figure 16: Exp. #12 (§8.4): EVSTORE enables multi-DRS de-
ployment in one node. EVSTORE’s scale-out deployment
quadrupled the throughput while keeping the latency low.

8.4 Putting It All Together

Experiment #12: Does packing multiple DRSs on a machine
improve throughput? As EVSTORE removes the memory re-
quirement, in Figure 16, we show that we can concurrently run
4 DRSs on one machine (limited by the number of 4 GPUs in
Chameleon’s gpu_v100 node) by giving 25% of the memory space
to each DRS. As a result, we quadrupled the throughput (infer-
ences/second) of the DRS. The figure also shows our final EV-
SToRE implementation improves the latency compared to Face-
book’s vanilla DLRM.

Experiment #13: Can we reduce the memory footprint of the
DRS service while meeting typical SLAs? Figure 17 shows
that to meet an SLA of 2 ms average inference latency, the vanilla
DLRM will require 100% of the data to be present in memory. In
contrast, EVSTORE’s most optimum implementation with all fea-
tures enabled (rightmost bar) needs only 6% of data to be in mem-
ory, which is a 94% reduction of memory requirement in trade
for the 0.2% accuracy drop. Finally, the middle bars show how the
range of EVSTORE optimizations and features demand 30% to 80%
of the data to be in memory. These results demonstrate the effec-
tiveness of EVSTORE in reducing the memory footprint of the DRS
service, while still meeting typical SLAs.

9 RELATED WORK

In addition to the studies surveyed throughout the paper, there are
some recent publications on optimizing DRAM cache and GPU-
resident cache utilization during DRS training [51, 56, 73, 76, 79,
80]. The focus, however, is on training rather than inference, and
ignores systems-level nuances of cache policy and optimizations.
Another nascent body of work has extensively studied improv-
ing key-value store performance by exploiting the GPU [32, 77],
NMP (17, 40, 43], SSD characteristics [15, 49], and lookup query
properties [45]. They are orthogonal to EVSTORE in that could help
increase the throughput of key-value store operations, which can
be beneficial for DRS that rely on these stores. For instance, NMP
can help convert the raw EV data into a Tensor format which will
reduce the CPU load. However, these techniques do not address
the specific challenges associated with the growth of EV table sizes,
which is the focus of EVSTORE. Additionally, many papers require
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Figure 17: Exp. #13 (§8.4): Basic to fully optimized EV-
STorRE.  The y-axis shows the minimum memory foot-
print to satisfy SLA target of 2 ms average end-to-end infer-
ence latency. Fully optimized EVSTORE implementation re-
duces 94% of the memory footprint compared to Facebook’s
vanilla DLRM.
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either bespoke hardware modifications or emerging memory tech-
nologies, which make them elusive for commodity hardware de-
ployments. EVSTORE, on the other hand, is designed to be com-
patible with commodity hardware, making it a more practical and
accessible solution for improving the performance of DRS.

10 CONCLUSION

We have introduced EVSTORE: a novel 3-tier EV caching layer to
address the continuous growth of EV tables in deep recommenda-
tion systems. EVSTORE is a practical system that brings several ad-
vantages. DRS designers no longer need to worry about the mem-
ory size limitation of their EV tables since users with low-memory
servers can still run DRSs with large EV tables. Recommenda-
tion services can also run concurrent DRSs to increase through-
put and thus potentially bolster revenue. By dislodging the mono-
lithic DRAM-hungry DRS architectures of today with a scalable
systems-oriented approach, carrying relatively modest downsides,
EVSTORE has the potential to curb the enormous and ballooning
operational costs and expensive resources needed to run a com-
petitive DRS across the industry.

Scientifically, we believe EVSTORE opens several doors for fu-
ture work, including in the realm of EV caching (are there bet-
ter policies?) and cache management (what is the best L1-L2-L3
size arrangement?). In addition, there are many components inside
EVSTORE that can be further improved, such as the bit-encoding
method, the L3 remapping strategies, and the popularity rank-
ing update mechanism. It also spurs questions around the role of
emerging memory technologies and GPU-accelerated caching on
future recommendation systems.
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