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ABSTRACT: Highly tunable properties make Mn(Bi,Sb)2Te4 a
rich playground for exploring the interplay between band topology
and magnetism: On one end, MnBi2Te4 is an antiferromagnetic
topological insulator, while the magnetic structure of MnSb2Te4
(MST) can be tuned between antiferromagnetic and ferrimagnetic.
Motivated to control electronic properties through real-space
magnetic textures, we use magnetic force microscopy (MFM) to
image the domains of ferrimagnetic MST. We find that magnetic
field tunes between stripe and bubble domain morphologies,
raising the possibility of topological spin textures. Moreover, we
combine in situ transport with domain manipulation and imaging
to both write MST device properties and directly measure the
scaling of the Hall response with the domain area. This work
demonstrates measurement of the local anomalous Hall response using MFM and opens the door to reconfigurable domain-based
devices in the M(B,S)T family.
KEYWORDS: magnetic topological materials, magnetic force microscopy, anomalous Hall effect, 2D materials, magnetic domains

The recent discovery of MnBi2Te4 (MBT)1−5 was a
breakthrough to realize the quantum anomalous Hall

effect in a stoichiometric crystal, avoiding the need for disorder-
inducing magnetic dopants.6−9 In addition, crystals are
exfoliatable down to few layer thicknesses enabling integration
into Van der Waals heterostructures with well developed
fabrication techniques.1,10−12 This discovery was rapidly
followed by work extending MBT into a family of materials
with highly tunable properties via crystallographic and chemical
paradigms.4,5,13−21 Substituting Sb for Bi changes the doping
from n-type to p-type.16,22 However, surprisingly, within MST,
the magnetic order can also be tuned (via the concentration of
magnetic defects) from A-type antiferromagnetic seen in MBT,
where planes of Mn moments are aligned ferromagnetically
(antiferromagnetically) within the plane (between planes), to
ferrimagnetic with net out of planemagnetization.19,21,23−25 The
ability to tune the effective interplane coupling from
antiferromagnetic to ferromagnetic strongly suggests the
presence of magnetic frustration in M(B,S)T, raising the
possibility of stabilizing other interesting magnetic orders.26,27

The ability to tune magnetic order in the M(B,S)T family
opens more conventional applications of magnetic materials,
where intense efforts have gone into developing materials
structures with interdependent magnetic and electronic proper-
ties for control of charge and spin transport (e.g., magnetic data
storage and spintronics). Growing evidence suggests that, while
there are multiple proposals for band topology of
MST3,16,19,22,28,29 (work from some of us finds ferrimagnetic

MST to be a Weyl semimetal30), the low energy bands of MST
are nonetheless sensitive to the details of magnetic
order,3,19,24,28,29,31 but we do not yet have a detailed under-
standing of the correlation between electronic properties and
real-space magnetic textures in MST. So far, the use of
magnetism to control electronic properties in magnetic
topological materials has been explored primarily in terms of
topological phase transitions (e.g., refs 10, 12, 31, and 32) and
manipulating chiral edge modes of the quantum anomalous Hall
effect.11,33,34 Edge mode manipulation has been demonstrated
via magnetic domains in Cr-doped (Bi,Sb)2Te3

33,34 and via
layer-dependent magnetization in antiferromagnetic MBT.11 In
magnetic materials more generally, domain manipulation and
control has long been demonstrated using a variety of
techniques including electrical currents, magnetic field gra-
dients, and local magnetic fields, e.g., refs 33−41. However, to
the best of our knowledge, the ability to write arbitrary-shaped
domains in ferrimagnetic M(B,S)T compounds has yet to be
investigated. In this work, we therefore set out to investigate
what magnetic textures can be realized in MST and the
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prospects for manipulating the local magnetization to create
configurable devices. Specifically, we use the domain imaging
and writing capabilities of magnetic force microscopy (MFM)
combined with in situ transport to directly measure the device
response to local changes in magnetization.
Our interdependent transport and magnetic measurements

were performed on an exfoliated flake of ferrimagnetic MST
(Figure 1a) with average thickness 84 nm and±10 nm variations
(Supporting Information SII). Four gold contacts were used to
measure the longitudinal Rxx and Hall Rxy resistance.
Immediately after device fabrication, Rxx showed a peak at 27
K on cooling, consistent with typical Curie temperatures seen in
MST. At 2 K, the hysteretic loop in Rxy and peaks in Rxx as a
function of the magnetic field showed a coercive field near 10
mT (Supporting Information SIV). Refer to Supporting
Information SI for additional details on sample fabrication and
characterization.
To characterize the magnetic domains in MST, we performed

MFM in a cryogenic atomic force microscope (AFM) with a
variable magnetic field Bext normal to the sample surface. Figure
1c-i shows an MFM image of the zero-field cooled (ZFC)
sample at 5 K. Because the coercive field of MST is so low, we
quenched the superconducting magnet prior to cooling the
sample to ensure a true ZFC with no trapped flux. The MFM
image is a measurement of Δf, the resonance frequency shift of
the AFM cantilever due to the interaction of the sample’s stray
fields with the cantilever’s magnetic tip, so we expect images to
primarily detect the domain structure of the ferromagnetically
aligned components of MST’s ferrimagnetic ordering.42,43

Correspondingly, the ZFC image shows disordered maze-like
stripe domains (Figure 1) consistent with ferromagnetic
ordering in the out of plane direction, similar to domain images
in bulk single crystals from Ge et al.25 Applying magnetic field
Bext normal to the sample surface polarizes the sample (c-i to iv),
increasing the area of the domains aligned with the field until, at
50 mT, only a single domain remains, giving a uniform MFM
signal. In situ transport measurements show an associated

increase in Rxy from 0.04 to 1.42 Ω. Over this range of Bext, the
contribution to Rxy from the linear Hall effect is negligible, so the
change in Rxy is primarily due to the anomalous Hall effect
(AHE)44 (Supporting Information SVII).
Reversing the magnetic field (Figure 1c-iv to vi), we observe

the reformation of stripe domains at −20 mT as Rxy drops and
changes sign, indicating the reversal of the magnetization. These
field-reversed domains are significantly less disordered than the
ZFC domains. To quantify the difference, we examined the
Fourier transforms (FTs) of the ZFC and −20 mT images,
shown in Figure 1d. Both exhibit a ring shape, or a peak in the
angular-averaged FT (Figure 1e), indicating the domains have a
characteristic length scale, as expected from the energetics of
domain formation.45,46 The peak occurs at wavevector |k| = 6.3
μm−1 with standard deviation σ = 4.8 μm−1 for the ZFC domains
and |k| = 5.7 μm−1 with σ = 2.1 μm−1 for the −20 mT domains.
The broader peak associated with the ZFC domains indicates
that, during cooling, the domains form features with a wider
range of length scales compared to during magnetization
reversal at low temperature.
To further explore how an external field can tune the domain

morphology, we cooled the MST device from 35 K below Tc
under |Bext| as large as 15 mT (Figure 2). With |Bext| larger than
10 mT, a single domain forms across the entire MST flake.
However, when we nominally zero the magnet’s current such
that a small Bext ≈ 0 exists only from trapped flux, we see circular
features in the MFM rather than stripe domains. MST is thus
remarkably sensitive to small magnetic fields. As we discuss in
Supporting Information SXII, without drawing conclusions
about the mechanistic origin and the topology of the circular
domains, we refer to these circular objects as bubble domains. At
intermediate |Bext| (10 mT), the domains formed are not
uniform in size and shape, and it is not clear whether they are
intrinsically bubbles or stripes. We now focus on Bext ≈ 0, where
bubbles are clearly observed.
The bubble domains are highly disordered (Figure 2e). The

nearly isotropic Fourier transform (f) shows no evidence of

Figure 1. Evolution of stripe domains under Bext. (a) Optical micrograph of the MST device showing the MST flake with 4 contacts for transport
measurements in a Van der Pauw geometry. The arrows show the scan axes of the MFM images. (b) Magnetic field Bext dependence of the Hall
resistance Rxy measured at 5 K starting from a zero-field cool. Measurements were recorded before (open symbols) and after (filled symbols) MFM
imaging. The light orange lines are guides to the eye, showing the order of data acquisition. (c) Constant height MFMmeasurements of the magnetic
domains at the center of theMST device were recorded at 5 K after zero-field cooling. Measurements were interspersed withRxy and Rxxmeasurements
shown in (b) and in Supporting Information SIV. The arrows indicate the order of data acquisition. The color scale on all images is 1.5 Hz, but the zero
values have been offset. The tip was lifted 300 nm above the SiO2 surface. (d) Amplitude of the Fourier transforms of (c-i) and (c-v) after mean value
subtraction. (e) Angular averaged amplitude of the Fourier transformed MFM data.
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lattice organization, and the distribution of wavevectors
centered at |k| = 11.3 μm−1 with σ = 7 μm−1 is extremely
broad. Correspondingly, the circular MFM features range in size
from below 100 nm to above 300 nm, as shown by the
distribution of full width at half-maximum (fwhm) values
(Figure 2k). The size of the features seen in MFM cannot
directly be interpreted as the size of the domains in the MST.
Approximating the tip as a point dipole with small oscillation
amplitude, the MFM image Δf is proportional to ∂2Bz/∂z2
arising from the sample’s stray field.42,43 To help interpret the
MFM features, we model the stray field for a single cylindrical
bubble domain at a representative height z. As the domain
diameter decreases below z, the spatial peak in ∂2Bz/∂z2
decreases in intensity (Supporting Information SV) and the
fwhm saturates at a lower limit near 150 nm (Figure 2l). The
fwhm does not decrease linearly in the domain diameter for
small bubbles. The finite shape of the tip will cause additional
smearing making features larger in the image than in ∂2Bz/∂z2,
and the 150 nm cuttoff is an underestimate. Returning to the
MFM data, we therefore expect small bubbles may not be
detectable due to weak intensity, and for slightly larger bubbles,
the apparent size in MFM may saturate at a lower limit larger
than the domain diameter. The MFM data, however, show
bubbles with fwhm below the expected 150 nm cutoff, likely
because the width of the low intensity bubbles can be dominated
by the positions of the neighboring bubbles. We therefore
conclude that we observe bubbles down to the smallest sizes
detectable in our MFM measurements, and so, there may be
bubbles with sizes even smaller than represented in the

histogram. Under repeat cooling, we find that some but not all
bubbles form in the same location (Supporting Information
SIX), which along with their disordered organization suggests
preferred nucleation and pinning, either due to crystal
inhomogeneity or extrinsic factors such as strain. While bubble
domains may exist at the corners of the hysteresis loops at the
nucleation or disappearance of the stripes,47,48 a much higher
bubble density is achieved on field cooling.
The above observations are consistent with the well-

understood domain physics of thin ferromagnets with
perpendicular magnetic anisotropy: (1) The sloped sides of
the hysteresis loops correspond to stripe domain growth. (2)
With sufficient magnetic anisotropy, a range of magnetic field
can stabilize bubble domains, as a result of the competition
between the domain wall and stray field energy costs. (3)
Constraints including nucleation can impact disorder in the
domain shapes.45−47,49 Moreover, the observation of bubble
domains raises the possibility of topologically nontrivial spin
textures in MST. Chiral magnetic textures with similar
phenomenology have been well studied in a variety of materials
platforms with a Dyalozhinsky−Moriya interaction
(DMI)38,48,50−55 but also can be stabilized in materials without
a DMI.26,27,56 As we discuss in Supporting Information SXII, our
data cannot determine the topology and potential chirality of the
domains, which therefore remains an interesting avenue for
future work.
So far, we have discussed how the domain morphology can be

controlled with Bext. The magnetic MFM tip has previously been
shown to be a powerful tool to manipulate domains, including

Figure 2. Field cooled domain structures. (a−d) Constant height MFM images of the magnetic domains in the MST device under field cooling with
the indicated Bext. The tip was lifted 300 nm above the SiO2 surface. The range and offset of the color scale have been chosen for each image
independently. Color scale range: 3.7 Hz (a), 1.5 Hz (b), 1.4 Hz (c), 1.5 Hz (d). Temperature: 5 K (a), 10 K (b−d). (a) Bext ∼ 0 indicates that a small
unknown residual flux from the superconducting magnet was present. (e) Smaller scale constant height MFM image after cooling under Bext ∼ 0
showing clear bubble shaped domains. Color scale range: 4.4Hz. Temperature: 5 K. The images in (a) and (e) are from separate cooling cycles with the
same Bext. (f) Amplitude of the Fourier transform of (e) after mean value subtraction. (g−i) Zooms of 3 regions in (e) showing a large, medium, and
small size bubble. (j) Profiles through the large, medium, and small size bubbles from (g−i). (k) Histogram of the full-width-at-half-max (fwhm) of the
bubbles imaged via MFM, determined from horizontal and vertical profiles through all resolvable bubbles in (e). The MFM fwhm is not directly
interpretable as the bubble domain size. (l) fwhm of ∂2Bz/∂z2 for the stray magnetic field generated by a bubble domain with diameter d, using sample
thickness t = 81.2 nm and z = 300 nm measured from the bottom of the material.
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controlled writing and moving domains.33,39−41 So we now
investigate the possibility of using the stray field from the tip, Btip,
to locally manipulate the domains in the MST. To reduce the
influence of Btip on the sample, the domain imaging discussed so
far was done with the tip lifted high (roughly 200−230 nm)
above the MST surface. However, when Bext is near the coercive
field, small changes in the magnetic field can have a large
influence on the sample magnetization, and even 200 nm from
the tip, Btip could be on the order of 10 mT,57 comparable to the
coercive field. Correspondingly, small changes in Rxy and Rxx
during MFM imaging (Figure 1b, Supporting Information SIV)
demonstrate that the tip mildly influenced the sample
magnetization. Moreover, tip-induced domain flips are seen in
some images as domains that abruptly disappear partway
through imaging. The AHE is a good sensor for small changes in
magnetization.58−60 So, to quantify the tip’s influence, we
applied an AC current between contacts 2 and 4 and measured
the induced transverse voltageV13 across contacts 1 and 3 during
MFM imaging. We recorded V13 while scanning in order to
image the evolution of V13 with the tip motion, meaning that V13
was recorded during each pixel of a scan in order to generate a
simultaneous V13 image. The MFM image in Figure 3a shows a

domain flip, and the simultaneously acquired V13 image (b,d)
shows an abrupt change by more than 2 nV at the same location,
demonstrating a measurable impact of the domain flip on the
device transport. Interestingly the tip-induced domain flips are
not always in the sense of aligning the domain with the tip,
suggesting that the spatial gradient or time-dependence of Btip
may be equally or more important for overcoming energy
barriers compared to the local Zeeman energy term.
We can harness the tip’s influence to controllably write

domains by bringing the tip close to the MST surface, increasing
Btip, similar to previous works.33,39−41 For this purpose, we first
used Bext to prepare the sample with magnetization antialigned
to the tip (Figure 4c). After zeroing Bext, we then brought the tip

into amplitude-controlled feedback on the MST surface (Btip on
the order of 50 mT57) and moved the tip across the surface to
write a domain aligned with the tip. In Figure 4, we show both
linear (e) and square (h) areas written with the MFM tip,
demonstrating that both narrow 1D-like and 2D domains can be
written. During the write process, the square area formed a
mixed domain state, suggesting that, because the mixed domain
state is energetically favored at Bext = 0, there is a maximum
single-domain area of roughly several μm2 (Supporting
Information SXI) that can be written. Decreasing the temper-
ature to increase the importance of the domain wall nucleation
energy may increase that area.
By inverting the magnetization of a small area locally with our

MFM tip, we can directly probe that area’s impact on the AHE.
During domain writing, we therefore recorded V13 as a proxy for
Rxy (Supporting Information SVIII). While writing the line
domain, V13 decreased linearly (Figure 4d), matching the area
scaling that one would expect for AHE contributions44 that scale
linearly with the sample average magnetization (assuming
uniform thickness). V13 recorded while writing the square
domain is also consistent with area scaling. Here, V13 forms two
2D images for forward (Figure 4f) and backward scans: To write
the domain, the tip moved up and down along each scan line
before advancing one pixel at a time left to right, so the V13
images display the value of V13 as the tip moved over each point
during either the forward or backward pass. Typically, V13 has a
finite slope on the forward pass (the blue histogram in Figure 4i
is peaked at 0.6 nV/μm), confirming that the tip is writing a
magnetization but not on the backward pass (orange histogram,
peaked at zero). Considering that typically each scan line
advances the domain wall by one pixel width (53 nm), we can
quantify the local AHE: 11 nV/(μm)2. This value is
quantitatively consistent with both: (1) the linear V13 seen
when writing the line domain and (2) the ratio of the change in
V13 from before to after the write step to the domain area imaged
via MFM (Supporting Information SXI). Moreover, the entire
evolution of V13 during the square write can be understood in
detail as a linear decrease (gray dashed line in Figure 4g) from
writing the red domain plus deviations from forming the inner
blue domain, in abrupt steps initially but then more smoothly
near the end of the write. We provide a more detailed discussion
in Supporting Information SXI.
We have therefore demonstrated a direct measurement of the

scaling of the anomalous Hall effect with domain area. We note
that, while previous works, e.g., refs 58 and 60−62, have also
correlated domain area in a thin magnetic material with the size
of the AHE, we have demonstrated that the controlled flipping
of the local magnetization combined with simultaneous
transport measurements directly probes the local contribution
to the AHE. The technique can in principle also measure
deviations from domain area scaling to probe local properties of
inhomogeneous devices (spatially varying magnetization or
Berry curvature). Within homogeneous materials, the area-
scaling contributions and deviations represent bulk and
boundary contributions, meaning that this technique can be
used to probe topological effects such as dissipationless chiral
edge conduction in a Chern insulator (as demonstrated by
Yasuda et al.33) or the topological Hall effect from chiral spin
textures at domain walls. We therefore emphasize the utility of
controlling the relative contributions of bulk and boundary
effects through the area, perimeter, and number of connected
components of magnetic domains.

Figure 3. Impact of a single domain on transport. (a) MFM image
showing a domain flipping during the scan, indicated by the black
arrow. Same as Figure 1c-vi. (b) V13 measured simultaneously with (a),
using a 500 nA amplitude AC source current. The black arrow indicates
the location of the domain flip, identical with the arrow in (a). Inset:
Schematic of the V13 measurement. (c) Zoom of (a) on the area
showing the domain flip. The fast scan direction is vertical. The domain
abruptly disappears from one vertical scan line to the next. (d) V13
averaged vertically along the fast scan direction to show the jump in
value that occurred as the domain flipped. The value from the first scan
line has been subtracted to show the change ΔV13.
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This work opens the door to making programmable magnetic
devices within the ferrimagnetic compounds in the M(B,S)T
family. M(B,S)T could be a platform for writable chiral currents
(e.g., refs 11, 33, and 34) either in a magnetic Weyl semimetal or
Chern insulating state (multiple potential band topologies have
been predicted in MST3,16,19,22,28−30). The ability to tune
magnetic domains in a compound that retains magnetic order
when exfoliated to the few layer limit1,16,32,63 raises the
possibility of using M(B,S)T to introduce programmable
magnetic landscapes (e.g., supperlattices or boundaries made
of magnetic gradients) on length scales of hundreds of
nanometers to micrometers into van derWaals heterostructures.
Generically, the tip writing process allows us to locally move
between different metastable magnetic configurations that are
separated by energetic barriers. So beyond writing individual
domains of uniform magnetization explicitly, the tip influence
could be combined with external fields and temperature to
stabilize and write areas of nonuniform spin textures (just as the
mixed domain state formed in our square area was not uniform)
in order to create functional devices based on boundaries
between magnetic phases.
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