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Abstract—The rise of machine learning (ML) technology
inspires a boom of its applications in electronic design automation
(EDA) and helps improve the degree of automation in chip
designs. However, manually crafting ML models remains a
complex and time-consuming process because it requires exten-
sive human expertise and tremendous engineering efforts to
carefully extract features and design model architectures. In
this work, we leverage automated ML techniques to automate
the ML model development for routability prediction, a well-
established technique that can help to guide cell placement
toward routable solutions. We present an automated feature
selection method to identify suitable features for model inputs. We
develop a neural architecture search method to search for high-
quality neural architectures without human interference. Our
search method supports various operations and highly flexible
connections, leading to architectures significantly different from
all previous human-crafted models. Our experimental results
demonstrate that our automatically generated models clearly
outperform multiple representative manually crafted solutions
with a superior 9.9% improvement. Moreover, compared with
human-crafted models, which easily take weeks or months to
develop, our efficient automated machine learning framework
completes the whole model development process with only 1 day.

Index Terms—Automated machine learning (AutoML), neural
architecture search, physical design.

I. INTRODUCTION

ODERN digital integrate circuit (IC) design consists of

many complicated stages that cannot be decoupled with
each other. Although existing electronic design automation
(EDA) methods have demonstrated their effectiveness, the
current framework lacks of reliable prediction of the quality
of outputs from early stages. This limitation implies that
solutions produced by early steps may yield unsatisfactory
solution qualities in later steps. Thus, designers need to
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EDA.

spend many design iterations to achieve an optimal quality,
which significantly prolongs the overall turnaround time and
development duration.

Machine learning (ML) techniques have been massively
adopted to facilitate the interactions between design steps by
enabling early stage predictions [1], [2], [3], [4], [5], [6]. For
example, ML models are applied to predict whether decisions
at early design steps will lead to satisfactory design objectives
in subsequent steps. With fast feedback from ML models,
a design can be converged to a high-quality solution with
significantly fewer iterations than traditional EDA flows. As a
result, the overall turnaround time can be significantly reduced,
leading to a more efficient design process. Deep learning (DL)
techniques, a subcategory of ML, are also widely applied
to increase the predictability between different design stages
for modern circuits. In existing works, convolutional neural
network (CNN) models [3], [5], [7] and generative adversarial
network (GAN) models [4], [8] are popular choices of the
applied DL models.

ML model development for EDA mainly involves two steps,
feature extraction and model generation, as shown in Fig. I.
For feature extraction, the designer manually designs and
selects features that are expected to benefit the prediction of
the circuit/layout. The selected feature set usually needs to be
modified several times to remove irrelevant ones to prevent
model overfitting. Then, for model generation, the designer
hand-crafts a model architecture that could perform well on
the EDA task. This process also requires multiple trials to

1937-4151 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Duke University. Downloaded on August 20,2024 at 14:50:37 UTC from IEEE Xplore. Restrictions apply.



CHANG et al.: TOWARD FULLY AutoML FOR ROUTABILITY ESTIMATOR DEVELOPMENT 971

guarantee optimal performance. In the works [1], [2], [3],
[4], [5], [6] of ML for EDA, researchers manually select and
extract circuit-related components and features, e.g., the cell-
density map, that are correlated to the prediction objectives.
Also, they all propose different hand-crafted model architec-
tures for training. An experienced developer may easily take
months to complete selecting features and designing a neural
network architecture for such EDA applications. Moreover, the
growing popularity of DL techniques in EDA has led to an
increased complexity of the model development because DL
models are able to handle a large number of features and model
layers that can be constructed with various operations. Thus,
both feature selection and architecture design require extensive
expertise on both ML and EDA and tremendous engineering
efforts. This challenge significantly prolongs the development
cycle of ML-based EDA tools and exacerbates development
cost.

Automated machine learning (AutoML) [9] enables design
automation of ML model development, including automated
feature selection and neural architecture search (NAS), without
(or with minimum) human interventions. Based on the raw
feature space, automated feature selection efficiently con-
structs an effective feature subset to form the dataset. Based
on the target dataset, NAS identifies an architecture search
space and then applies certain search strategies, such as
reinforcement-learning-based [10] methods or evolutionary-
guided [11] methods, to judiciously discover promising
architectures. Additionally, neural network architectures pro-
vided by NAS [12] have shown to outperform state-of-the-art
manual designs with significantly improved model accuracy
in other domain applications, e.g., computer vision. AutoML
techniques have demonstrated its ability to generate high-
quality ML models without burdensome manual development
process. As some ML applications for EDA [3], [4], [6] can
be represented and processed like computer vision tasks, it is
natural to leverage AutoML techniques to automate the ML
model development for EDA.

In this work, we propose an AutoML framework, including
an automated feature selection process and an NAS method,
to reduce the time and effort of developing ML models for
EDA while improving the model performance. The flow of
our AutoML framework is sketched in Fig. 1. Our automated
feature selection process provides an intelligent manner to
efficiently select useful raw features for model inputs. In
addition, our NAS search space is abstracted as graphs that
enable rich and flexible feature interactions to better capture
congestion patterns. We can identify high-quality models by
adopting graph propagation as our search strategy. Therefore,
we can efficiently obtain ML models that deliver superior
performance. To demonstrate the concept, we apply our
AutoML framework on a well-known research topic, routabil-
ity prediction [3], [4], [6]. Routability prediction estimates the
routability of design solutions at the placement stage [13]
with the following application scenario: design rule checking
(DRC) hotspot detection. DRC hotspot detection identifies
the locations of design rule violations (DRVs) after detailed
routing stage. This routability application can be used to guide
DRC violation mitigation techniques. In this case study, our
goal is to efficiently and effectively select features and design

model architectures for DRC hotspot detection. In the mean
time, our framework can provide a standard raw feature set
and some high-performing model architectures to facilitate
routability prediction development.

Our main contributions are summarized as follows.

1) We propose an AutoML framework that consists of auto-
mated feature selection and NAS to develop routability
estimators with minimum human interference. To the
best of our knowledge, this is the first exploration of a
comprehensive AutoML framework for EDA.

2) We propose an automated ML-based feature selection
method that efficiently and effectively selects features to
improve the model accuracy and the search efficiency of
our NAS method.

3) We develop a graph-based search space that supports
various operations and flexible connections and a graph
propagation search strategy to guide the search process
toward high-quality architectures.

4) The model crafted by our AutoML framework outper-
forms two representative routablity estimators [3], [6]
with a superior 9.9% higher area under the receiver oper-
ating characteristic (ROC-AUC). The entire AutoML
flow can be completed in 1 day, demonstrating high
efficiency of our framework.

5) We provide a thorough analysis of our search outputs,
i.e., the extracted features and NAS-crafted models,
to provide insights for the future routablity estimator
development.

Through this article, we demonstrate the potential of AutoML
techniques to facilitate the effectiveness and efficiency of ML
development for EDA. In addition, our framework is open-
sourced to encourage future studies in this area.

The remainder of this article is organized as follows.
Section II details the preliminaries, including the definition of
DRC hotspot, the prior exploration for routability prediction,
and the concepts of automated feature extraction and NAS.
Section III formulates our AutoML problem for routability
prediction. Section IV introduces our AutoML framework
with two main components: 1) automated feature extraction in
Section I'V-A and 2) NAS in Section IV-B. Section V presents
the experimental results. Section VI gives the analysis of
our AutoML-crafted features and models. Finally, Section VII
concludes this article.

II. PRELIMINARIES

In this section, we first give a brief introduction to the
DRC hotspot, a metric used to evaluate the routability of a
routing result. Then, we discuss the current research progress
on routability prediction, including features and model archi-
tectures, used in the prior literatures. Finally, we introduce the
concepts of automatic feature selection and NAS, which are
the two key stages in our AutoML framework.

A. DRC Hotspot

DRC hotspot is a 2-D map that pinpoints DRV positions
of the detailed routing result. Thus, DRC hotspot directly
indicates the regions that truly need to be refined after routing.
Fig. 2 depicts the examples of DRVs. In Fig. 2(a), a short
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the placement result comes into the global and detailed routing stages to
generate the routing result. With the ML model, we can directly use the
placement result to predict DRC hotspots.

violation occurs when two wires are overlapped, which will
cause the circuit to malfunction. In Fig. 2(b), a spacing
violation happens if the distance between two wires is smaller
than a threshold, which will cause crosstalk. In Fig. 2(c), a
pin accessibility violation arises when the upper layer of a pin
is covered by other wires, and thus the net cannot connect to
the pin.

B. Machine Learning for Routability Prediction

To evaluate routability of a placement solutions, tradition-
ally we need to come through the global routing and the
detailed routing to get DRC hotspots. However, routing is a
very time-consuming process that prevents the placer from
efficiently examining the routability. To overcome this chal-
lenge, researchers have developed early routability prediction
techniques that enables designers or EDA tools to perform
preventive measures such that DRC hotspot can be avoided in
a proactive manner. Fig. 3 illustrates the routability prediction
flow, which takes the placement result to forecast DRC
hotspot. This is a representative topic in ML for EDA,
and its benefits to chip quality are well demonstrated in
many previous works [3], [5], [6], [7], [14], [15]. In this
section, we introduce the ML background about routability
prediction.

Feature Extraction: Feature extraction for routability
prediction aims to select useful information from the place-
ment results into a format compatible to ML models. All
previous exploration uses the cell and net-related features
to facilitate routability prediction. The works [14], [15]
extract features into numerical format, and the others [3],
[5], [6], [7] employ image-based features to perform the
prediction. However, all these features are still manually
selected, requiring considerable engineering effort to choose
important features and discard the redundant ones. Also,

these hand-crafted features may lead to suboptimal solutions
because all previous works typically give specified features
in a predefined manner, without offering a complete feature
selection or analysis process. Thus, an efficient and effective
automated feature selection approach is necessary to accelerate
the selection process and ensure the quality of the selected
features. A work [16] develops a model architecture with
lattice graph to mimic the cell/net feature extraction. However,
it still needs to manually design model architectures and decide
their target features. Also, their goal is different from our
framework, as our focus lies in the automated selection of
features for the model input. To the best of knowledge, there
is no prior work focusing on the automated feature selection
on ML for EDA.

Model Architecture: Both works [14], [15] chooses mul-
tivariate adaptive regression splines to forecast the detailed
routing routability. In recent years, deep neural network
methods, including CNN and fully convolutional network
(FCN), become the dominant solutions [3], [4], [5], [6], [7]
to routability prediction. As routability prediction requires
pinpointing specific locations with DRC hotspots in a 2-D
layout, it shares a similar setting with semantic segmentation in
identifying pixelwise properties. Thus, FCN, as a popular tech-
nique for semantic segmentation, is widely used in routability
prediction [3], [5], [6].

Among representative routability estimators in recent years,
RouteNet [3] and J-Net [5] propose U-Net [17]-like FCN
structures, PROS [6] adopts an encoder—decoder FCN frame-
work, and the work [4] proposes a conditional GAN [4]
(cGAN)-based method with FCN architecture for routability
prediction. To the best of our knowledge, all previous routabil-
ity estimators [3], [5], [6], [7], [14], [15] are designed by
human developers. Thus, they require both ML and EDA
expertise and easily take weeks of model development time. In
addition, previous works develop their models mostly based on
hierarchical structures, with a limited number of branch struc-
tures. In comparison, our graph-based search space enables
highly flexible connections and rich branches, thus providing
significantly different model structures. The details of our
search space are presented in Section [V-B. Since the complex
pattern behind routability prediction may be reflected by
complicated interactions among features in a wide layout
region, branch structures can capture combined information
from different sources and benefit model performance.

C. Automated Feature Selection

Automated feature selection enables the automation of
feature selection given the raw feature space without human
intervention. In detail, it aims to efficiently establish a suitable
feature subset to maximize the model performance because
redundant features in the feature space could cause overfitting,
leading to suboptimal model performance. Additionally, reduc-
ing the feature number can accelerate the training process,
which can significantly enhance the NAS efficiency because
NAS often needs lots of training steps to explore architectures.
Thus, a succinct yet effective feature set is required for the
AutoML flow.

Authorized licensed use limited to: Duke University. Downloaded on August 20,2024 at 14:50:37 UTC from IEEE Xplore. Restrictions apply.



CHANG et al.: TOWARD FULLY AutoML FOR ROUTABILITY ESTIMATOR DEVELOPMENT 973

Sample architecture A -
| Search space S I l Evaluation strategy |

Guide |sampling

Search strategy Acouracy of A

Fig. 4. Overview of NAS.

In other domain applications, there has been some
approaches [9] for feature selection, e.g., iterative and
evolution-based search algorithms. However, iterative selection
methods are inefficient when we have a large feature combi-
nation. Also, evolution-based search algorithms require large
amounts of model training periods to converge. Given the poor
scalability of previous methods, we design a novel ML-based
feature selection method which can complete selection in an
efficient manner. Through our approach, we can identify the
most useful feature combinations for DRC hotspot detection.

D. Neural Architecture Search

NAS [10] automatically conducts architecture engineering
to find effective neural network models for specific tasks.
Recent works demonstrate great potential of NAS in applica-
tions, including image classification [10], object detection [10],
and semantic segmentation [18]. NAS contains three key
ingredients: 1) search space; 2) evaluation strategy; and 3)
search strategy. Search space defines a family of candidate
architectures that can be explored in NAS. Evaluation strategy
determines the way to estimate the design metrics (e.g.,
accuracy) of a candidate architecture and provides feedback to
the search process. Search strategy is the method to explore the
search space and guide the search process toward promising
ML models. The overall NAS procedure is sketched in Fig. 4.

Our NAS approach abstracts NAS space into graphs and
includes various types of operations as search options. Then,
our NAS approach performs proxyless evaluation [19] to eval-
uate the performance of candidate models on the target dataset.
Finally, our NAS approach develops a search strategy based on
a progressively graph updating and sampling algorithm [20]
to efficiently explore ML models.

III. PROBLEM FORMULATION

We apply AutoML techniques to assist the feature extraction
and the design of ML models for routability prediction. After
placement, a layout is tessellated into w x h tiles, then its
input feature X € R¥*"*¢ is composed of ¢ different 2-D
feature maps. The ground-truth label is collected after detailed
routing finishes for DRC hotspot. Our AutoML problem can
be formulated as follows.

Problem 1 (AutoML for Routability Prediction): Given a set
of placement solutions, it aims to select the input features X
from the feature space C, and then explore the architecture
A € S of the neural network model f4 within the defined search
space S, to detect the locations of DRC hotspots Y such that
the performance of f4, is maximized, where

fa i X e RV sy e fo, 13,

We use the ROC-AUC as the metrics of diagnostic ability
of the model. ROC curve plots the tradeoff between true
positive rate (TPR) versus false positive rate (FPR) by varying
classification threshold. A higher ROC-AUC indicates that a
higher precision of DRC hotspot detection can be achieved at
the cost of the same number of false alarms.

IV. AUTOMATED ML MODEL DEVELOPMENT

Our AutoML framework consists of two main stages:
1) automated feature selection that extracts the most relevant
features within the feature space and 2) NAS which designs
the high-quality model architecture based on the extracted
features. In this section, we first present our automated feature
selection method. Then, we introduce our NAS approach,
including the search space, the evaluation strategy, and the
search strategy.

A. Automated Feature Selection

Automated feature selection aims to efficiently and effec-
tively choose useful features to boost the model performance
and the search efficiency of our NAS method. To achieve this
goal, we establish a comprehensive raw feature space that
covers common raw features relevant to routability prediction.
Since defining the feature space still requires human expertise,
we include widely known raw features that could correlate
with routing results based on the conventional understanding
of placement and routing practices from previous routability
prediction works [3], [4], [6], [2]] to minimize the human
effort. These features can be separated into two categories:
1) cell density-based features and 2) net density-based features.
We first introduce the cell density-based features as follows.

1) Macro Density: The region occupied by macros.

2) Cell Density: The number of standard cells in a region.

3) Pin Density: The number of pins in a region.

4) Pin Accessibility: The potential number of wires con-
necting to the pins in each region [6].

Note that cells with different functions and nets with different
bounding box sizes would have distinct impacts on routability.
Thus, density distributions of the D flip-flips (DFFs) and clock
tree buffers are generated independently for the cell, pin,
and pin accessibility features. In addition, four pin density
features is derived by the pins associated with nets that have
varying bounding box thresholds (4k, 1k, 0.1k, 0.01k y,mz).
In summary, we have 14 cell density-based features.

Next, the net density-based features are provided below.

1) RUDY: The total uniform wire volume spreading in
bounding boxes of nets [3].

2) Bounding Boxes: The total number of the net bounding
box outlines passing each region [21].

3) Vertical/Horizontal Net Density: The uniform wire vol-
ume in the vertical/horizontal direction [6].

4) Rectangle Steiner Minimum Tree (RSMT) RUDY: The
total uniform wire volume spreading in the RSMTs of
nets.

5) Pin RSMT RUDY: This feature assigns the density of
each pin to the RSMT RUDY of the associated net [3].
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Fig. 5. Visualization of wire density features. (a) RUDY. (b) Net bounding
boxes. (c) Pairwise flight lines. (d) Star flight lines. (e) Source-sink flight
lines. (f) MST flight lines.

To estimate the net connectivity, a heuristic named flight
line [21], which is a line that connects two pins, is adopted.

1) Pairwise Flight Lines: Connect from every pair of pins
in each net.

2) Star Flight Lines: Connect every pin to the centroid of
all pins in each net.

3) Source-Sink Flight Lines: Connect the source pin to all
sinks in each net because routers tend to connect sinks to
the source through shortest paths in timing optimization.

4) Minimum Spanning Tree (MST) Flight Lines: Connect
the pins through MST in each net.

For each type of flight line, we draw flight lines of all nets into
a single image to construct the feature. Some net density-based
features are visualized in Fig. 5.

In addition to constructing all 10 net density-based features
for all nets, we also separate nets into four groups with bound-
ing box thresholds (4k, 1k, 0.1k, 0.01k ,umz) to construct four
features for each wire density. As a result, there are 50 net
density-based features. In summary, cell density-based features
and net density-based features together form a comprehensive
feature space C € R"*/*64 to cover all potential raw features
for routability prediction.

Training with the entire feature space could lead to subop-
timal model performance because some uncorrelated features
may introduce redundancy or noise. In addition, training with
large amount of features significantly prolongs the training
period, which can severely worsen the efficiency of our NAS
process. Thus, we propose an ML-based automated feature
selection method to capture the critical features from the
feature space and build a succinct feature set.

First, we allocate the weight w € R™"¢° of the first
convolutional layer into ¢ different groups W; according to the
input channel dimension

Wi = {wjkiilVj,k <h VI < o}

where h is the kernel size, ¢ is the number of input feature
channels, and o is the number of output channels. Thus, each
group W; of weight will correspond to an input feature i. Then,
we employ a structured regularization loss called group-lasso
£e [22] on every W;

L, = Zzz(Wi) (D

where £>(W;) is the mean square root of weights in W;.
Namely, this group-lasso loss applies €1 loss on £7(W,). Our
overall training objective is

minL, +a * Ly

where L, is the prediction loss for routability prediction, and
« is the regularization strength of the group lasso. Minimizing
L, during training encourages weights W; between different
groups to become sparse, leading to some groups having
weights close to zero. In addition, minimizing L, together can
help us maintaining high-prediction performance at the same
time. Note that each W; is responsible for a specific input
feature i. Therefore, we can view the norm of W; as the feature
importance metric. The higher value of the norm of W; means
that this feature contributes more to the routability prediction
result. Then, we sort features based on W; in a nonincreasing
order and iteratively add the feature C; into our feature subset
Xiy1 =X;UC; for i =1 to |C| and perform training. Finally,
we select the best-performing feature set X; as our input feature
set X.

Our ML-based feature selection flow is illustrated in Fig. 6.
Since we use a graph-based search space in our NAS (will
be detailed in Section IV-B), we apply the model with
six complete-ordered directed acyclic graphs (DAGs), which
covers all possible architectures in our search space, in our
feature selection.

Also, our ML-based feature selection method only requires
|C| times of training to complete selection, making it much
more efficient compared to other iterative or evolution-based
search algorithms. In addition, we empirically observe that the
feature selection results are not affected by the choice of model
structures used in group lasso training. Fig. 7 shows the high
similarity between the norms of group weights trained with
two different model architectures. With this special attribute
of our feature selection method, it is suitable to design a two-
stage AutoML framework.

B. Graph-Based Neural Architecture Search

Based on the selected input features, we use our proposed
graph-based NAS method motivated by [20] to automate the
design of neural networks for routability prediction. In the
following, we introduce three key components of our NAS:
1) search space; 2) evaluation strategy; and 3) search strategy.

Search Space: In our NAS-based model, we can partition
the architecture into two parts: one part is iteratively changed
during the search process, while the other is fixed. Our model
is shown in Fig. 8. The yellow rectangles represent the fixed
part with widely adopted structures, and the six blue rectangles
indicate the changeable part. In the following, we demonstrate
the architectures of the fixed part and the changeable part.
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using the (a) RouteNet [3] structure and (b) the architecture comprising of
six fully ordered DAGs based on our NAS.

We start with deciding all candidate operations in the
changeable part. First, regular convolution layers with different
numbers of filters are included. Besides, atrous convolution,
also named dilated convolution [23], is selected as a promising
candidate operation since it can effectively enlarge receptive
fields of filters. This operation can thus help to capture
large patterns, such as congestions, caused by nets spanning
a large region. In addition, the work of [24] introduces a
new mixed depthwise convolution (MixConv) that separates
channels into groups and applies different kernel sizes to
each group. Compared with a regular convolution that can
only observe patterns in a fixed size area, this operation can
identify congestion patterns of different sizes when applied
in routability prediction. Thus, MixConv is a good fit for
our work since routability can be affected by the relations of
nets and standard cells in different regions within a layout.
Among these candidate operations, to our best knowledge,
atrous convolution is only adopted in a recent routability esti-
mator [6], and MixConv is never used in routability prediction.
Adopting various promising operations can improve diversity
in candidate models and help cover more potential high-
quality models in the search space. As a result, the candidate
operations op include the following four types.

1) 3 x 3 convolution with 64 % 2! filters.

2) 3 x 3 convolution with 128 % 2 filters.

3) 3 x 3 atrous convolution with dilation rate 2, 64 x 2

filters.

4) Mixed convolution with four groups, kernel size
[7,9,11, 13].
Note that our search space totally has three stages, and we use
a multiplier of 2 to gradually increase the number of filters
when the operation is selected in stage i.

By viewing CNN/FCN as a set of operations and the
connections of operations, a model can be regarded as a graph.
Specifically, vertices represent operations and edges indicate
the directed connections of operations. Therefore, we view the
six blue changeable parts {S}, S2, ..., S¢} in Fig. 8 as DAGs,
named sampled-DAGs. There are two parallel sampled-DAGs
between every two downsampling layers. The changes of them
are restricted and guided by six guide-DAGs {Gi, G, ...,
Ge}. Each guide-DAG G;(V;, E;) represents a combination of
the candidate operations and the propagation of data tensors.
It is composed by a set of completely ordered vertices Vi,
with each vertex v € V; representing a candidate operation
op,. Each edge e(u,v) € E; represents the propagation of
the output tensor of vertex u to the input of v. Edge e(u, v)
is constructed if u < v in their order, which makes the
guide-DAG G; completely ordered with maximum edges to
provide all possible connections. Fig. 9(a) shows an example
of a guide-DAG, where the complete order of vertices is
1 - 2 — .-- — 7. Each vertex concatenates all its input
tensors from the incoming edges and produces the output
tensor by its operation. Specifically, given a vertex v with
op, and input tensors iy, iy,, ..., i, from incoming edges
e(ur,v),e(u,v),...,e(ur, v), the output tensor o, of this
vertex is

i)

Concatenation with all the input tensors of each vertex can
help the model to discover different feature combinations to
enhance the observation of routability information.

To connect each sampled-DAG together to form our sam-
pled model, we design some fixed operations in the fixed part.
As Fig. 8 shows, there are three downsampling layers with
standard convolution with stride of 2. The fixed structure at the
end is composed of three transposed convolution layers with
stride of 2 to recover feature maps with a total upsampling
factor of 8 to form a DRC hotspot solution. In addition, we
add three shortcuts between stages with different feature scales
to further boost the performance, following the famous U-
Net [17] model.

In our search space, the parallel sampled-DAG structures
between every two downsampling layers can produce different
feature representations and pass their aggregation to the next
sampled-DAG structures after downsampling. Additionally,
our search space allows for multiple parallel tensor propa-
gations within a sampled-DAG because the topology of the
graph G; contains all possible connections. In summary, our
approach offers a highly flexible and extensive search space
that can generate a variety of feature representations and lead
to accurate routability prediction.

Evaluation Strategy: Previous work [19] proposes con-
ducting NAS directly on the target dataset to enhance the
performance of searched models. Therefore, we directly
perform search on the training split of our target dataset,

0y = opv(Concat(iul, Luy s - -
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Fig. 8.

Overview of our graph-based NAS method. We sample multiple DAGs from the search space to form a sampled model. After training for several

epochs, we get the evaluation metrics, i.e., ROC-AUC, and utilize it to update the weight of selected edges in guide-DAGs. Conv, s = 2 and TConv, s = 2
represent standard convolution, and transposed convolution layer with stride 2, respectively.

Algorithm 1 Connection Weights Update in the Meta Graph

Require: A set of guide-DAGs {G1, . .
B, learning rate o

., Gg}, baseline metrics

1: fori=1to 6 do

2: G; = Preprocess(G;) > pseudo vertex vq insertion
3: while 7 not converge do

4: for i=1to 6 do

5: Si = Sampling(G}) > Algorithm 2
6: M = ConstructModel({S;,i = 1 to 6})

7: n = Eval(M)

8: fori=11to 6 do

9: for edge ¢ in G/ do

10: if ¢ is selected in S; then

11: We = W, k exp (a(n — B))

12: B = average metrics of top-5 sampled graphs

employing ROC-AUC as the search objective for routability
prediction (mentioned in Section III).

Search Strategy: Given the large size of our search space,
exhaustively examining every subgraph in the search space is
neither efficient nor feasible. For example, it is impossible to
use random search to efficiently converge and obtain high-
quality model architectures. To overcome this challenge, we
propose a graph propagation method to search for well-
performing models in an efficient manner.

Graph propagation has two key components to perform
searching: 1) graph sampling and 2) weight updating tech-
niques. Graph sampling is to sample edges and operations
from the guide-DAG G; by defining a weight on each edge
to control its sampling probability. In weight updating, we
will gradually update weights through our search process
to find a promising model within the search space. The
flow of our search strategy is detailed in Algorithm 1. First,
in the preprocessing step (lines 1 and 2), we construct a
pseudo vertex vo and add vg to V;. Vertex v represents the
downsampling layer before G;. An edge e(vo, v) is constructed
for each v € V;. These edges provide all possible input
connections from the downsampling layer vy to all vertices
v € V;. The graph after preprocessing is denoted by G/(V/, E)).
The edge weights in E; are set to 1. An example of G; is

shown in Fig. 9(b), where the new green vertex with index O is
a pseudo vertex, representing the downsampling layer before
G; in Fig. 9(a).

After preprocessing, we enter the iterations to optimize
our model by its performance (line 3 of Algorithm 1). In
each iteration, we apply the sampling function in Algorithm 2
on each G; to sample the corresponding S; (lines 4 and 5).
In the remaining paragraph, we will cover the Algorithm 2,
which takes G; as the input and outputs a sampled-DAG
Si(Vs;, Es;). First, we initialize Vs, with v (line 1), the vertex
that represents the downsampling layer. For each vertex v; €
V{, if v; is in Vg;, we iterate through all its edges e(vj, vi)
to perform the edge selection (lines 3-5). During the edge
selection, for each e(v;, vy), its edge selection probability p is
set to the normalized weight of we,, v,) over the weights of
all outgoing edges of v;. This normalization is performed with
a softmax function (line 6). Note that a larger weight edge
means a higher probability to be sampled, and the softmax
function can further enhance the difference between weights
and reflect it on the probability. If e(v;, vi) is selected, we add
e(vj,v) and vg into Eg; and Vg,, respectively, (lines 8-10).
In later iterations, the outgoing edges of v; will be extracted
and performed sampling. After the edge selection of S;,
we enter the operation sampling (lines 11-19) to select the
operation of each vertex € Vg, Each vertex v; also has
a weight wop,,, to represent the sampling probability of
four different operation k. Similar to edge sampling, we use
softmax function to normalize operation weights and then
select one operation for each vertex. Finally, S; is returned
after iterating through all the vertices. Fig. 9 demonstrates an
example of subgraph sampling. In Fig. 9(b), red edges in G
are selected by Algorithm 2 in edge sampling. According to
the red edges, the sampled-DAG S| is constructed in Fig. 9(c).
Vertices without any outgoing edge are connected to the right
downsampling layer. Then, we perform operation sampling on
S1 to select vertex operations to form the sampled architecture
in Fig. 9(d).

After sampling each S;, we construct our model through the
architecture in Fig. 8 and measure our evaluation metrics 7
with our evaluation strategy in Algorithm 1 (lines 6 and 7).
According to 1, we iterate all edges in each G; and update
the edge weights which are sampled in S; in this iteration
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Fig. 9. Example of the subgraph sampling. A guide-DAG G| (a) first is preprocessed to form G/1 (b). After edge sampling, we construct the sampled-DAG
S1 (c) with the selected edges and vertices. Then, we perform operation sampling to choose the operation of each vertex to form our sampled architecture (d).

Algorithm 2 Sampling(G})
Require: G;(V;, E})
Ensure: S;(Vs,, Es;)

1: Vs, = {vo}, vo € Vi/

2: Eg, =0

3: for each v; € V] do

4: if vi € Vg, then

5 for each e(v;, ux) € E; do

6: _ exp(we(v/-,vk))
’ p= 217:] CXP(We(»y,v,))

7: random r(0, 1)

8: if p > r then > sampled by probability p
: Vs, = Vs, U {w}

10: Es; = Es; U {e(vj, v)}

: for each v; € Vg, do

12: random r(0, 1)
13: p=0
14: for each wop,,;, k =11to 4 do
exp(wop,v;)

15: =

P Z?:i CXp(Wopl \f/-)
16: p=p+/p
17: if p > r then > sampled by probability p’
18: Opy; = Opy
19: break

20: return S;(Vs,, Es,)

(lines 8-13). The weight w, of edge e is defined as

We = We * exp (@(n — B))

where « is the updating rate, and B is the baseline metrics.
The weights are updated according to the difference between
the evaluation metrics 1 and the baseline metrics 8. We utilize
an exponential function to boost the weight update. If the
sampled model has a higher performance than the baseline, the
edge weights will increase by this updating equation. Thus,
the sample probabilities of these high-performance edges also
increase in the following iteration. The baseline metrics B
are set as the average evaluation metrics of all previously
sampled models (line 14) to encourage the search process
to explore higher-performing models across iterations. This
process of sample and weight updating persists until the model
performance reaches convergence.

TABLE 1
BENCHMARK STATISTICS

Benchmarks fnets
Min Max Median | Average
ISCAS’89 [25] 177 31650 650 3572
ITC99 [26] 9635 | 206659 | 38879 57167
IWLS’05 [27] 581 101891 13134 28225
ISPD’15 [28] 29416 | 1293412 | 112877 | 253006

The probability sampling mechanism can encourage the
exploration of different architectures in the search space since
it covers all subgraphs and vertex operation combinations.
Thus, our graph propagation enables a high flexibility of
architectures in the search process. Also, graph propagation
only takes about 0.5 days to identify high-quality architectures,
indicating the weight updating in graph propagation can effec-
tively guide the sampling process toward well-performance
architectures. Therefore, our graph propagation method can
efficiently find suitable architectures for routability prediction
even with a huge search space.

V. EXPERIMENTAL RESULTS

In this section, we first describe our experimental setups on
dataset construction, feature construction and selection, and
our NAS method along with training details. We then present
our evaluations on two routability prediction benchmarks: 1)
routing congestion and 2) DRC hotspot detection.

A. Experiment Setup

Dataset Construction: We construct a comprehensive
dataset using 74 designs with largely varying sizes
from multiple benchmarks. There are 29 designs from
ISCAS’89 [25], 13 designs from ITC’99 [26], 19 other designs
from Faraday and OpenCores in the ITWLS’05 [27], and
13 designs from ISPD’15 [28] benchmark. The benchmark
statistics are presented in Table I, which shows the minimum,
maximum, median, and average number of nets in each bench-
mark design. The dataset covers designs with net numbers
ranging from 177 to 1.29 million. Thus, the dataset can
enable the model to learn feature representations with robust
generalization to designs with various sizes. We apply Design
Compiler for logic synthesis and Innovus [29] for physical
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TABLE II
PERFORMANCE COMPARISON OF ROUTABILITY PREDICTION WITH OUR AUTOML-CRAFTED MODEL, ROUTENET [3], AND PROS [6]

Method

ROC-AUC on designs (#nets)

ROC-AUC on all 74 designs

s344 (256) | 516850 (1.3k) | w80 (13.5k) | mgc_fft_a (32.1K)

RouteNet [3] 0.8781 0.7931 0.8135 0.7641 0.8035
PROS [6] 0.8864 0.8051 0.8384 0.8063 0.8246
AutoML-crafted 0.9295 0.8699 0.8885 0.8791 0.8831

design with the NanGate 45nm technology library [30]. For
each design, multiple placement solutions are generated with
different logic synthesis or physical design settings. Altogether
7000 placement solutions are generated from these 74 designs
in industrial tools. Each layout is tiled by 1 x 1 um? to
generate features. Thus, each feature tensor uses the resolution
according to its corresponding layout size. The raw features
are collected at the post-placement stage, and the ground-truth
DRC hotspots are available after detailed routing finishes.

The constructed dataset is randomly separated into two
splits with different designs. The training set contains layouts
from 51 designs, and the testing set are from 23 designs. Note
that the designs are not overlap in two splits to demonstrate
the transferability of our model. We use the results evaluated
on the testing set as our comparison metrics.

Feature Extraction and NAS Training: For each layout in the
target dataset, we follow Section I'V-A to perform automated
feature selection. After feature extraction, we adopt the NAS in
Section I'V-B to explore the search space defined for routability
prediction. All experiments are performed on 4 NVIDIA
TITAN RTX GPUs with Intel Xeon E5-2687W CPUs.

We employ the following hyperparameters to conduct model
training for both feature selection and final evaluation in our
experiments: we train our model for 128 epochs with Adam
optimizer [31], a batch size of 32, and a fixed learning rate of
0.0005. To combat overfitting and improve generalization, we
use a L2 weight decay of 107> and ReLU activation. For data
augmentation, we employ random cropping with size 224 x224
and random horizontal flipping. For NAS process, we set the
number of epochs to 20 to enhance the search efficiency.

Baseline Methods: We adopt two representative routability
prediction works [3], [6] as our baseline. We implement these
hand-crafted routability features and model architectures by
our own to compare with our AutoML framework.

B. DRC Hotspot Detection Results

To demonstrate the effectiveness of our AutoML framework,
we compare our AutoML-crafted model with RouteNet [3]
and PROS [6] trained by their own hand-crafted architectures
and features. Note that our automated feature selection method
extracts 21 features for our NAS method. In practice, chip
designers typically focus on optimizing a specific design and
care about the routability between different layout solutions of
the same design. Therefore, the prediction performance within
each design is important. In Table II, we first compare ROC-
AUCs evaluated on the placement solutions of some specific
designs with net numbers ranging from 256 to 32.1k. Our
AutoML-crafted model clearly outperforms two baselines on
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Fig. 10. ROC curves measured on all 74 designs with RouteNet [3],

PROS [6], and our AutoML-crafted model.

these four designs. Then, we report the averaged ROC-AUC
over all 74 designs to demonstrate the overall performance.
Our AutoML-crafted model achieves better performance than
RouteNet and PROS with 9.9% and 7.1% improvement,
respectively. In addition, the ROC curves plotted in Fig. 10
show that under certain FPRs, our AutoML-crafted model con-
sistently has higher TPRs compared to two baseline models.

We further benchmark our method on different feature
numbers by using our automated feature selection to select
varied top-k features based on the group norm with k =
{4, 8,21, 64}, where k = 21 is the automated-selected features,
and k£ = 64 means training with the entire feature space. Based
on this setting, we examine the performance contributions of
our feature selection method and NAS method. First, to show
the effectiveness of our feature selection method, we perform
random selection as the baseline. We apply our selected
features to our NAS method and other manually designed
model architectures to make a comprehensive analysis. As
shown in Table III, all models trained with our selected
features can have better performance than the ones trained with
random-selected features based on the same feature numbers.
For example, when we use four features, the NAS-crafted
model searched with our selected features can achieve 6.2%
higher ROC-AUC thant the model searched with four random-
selected features. In addition, all NAS-crafted models searched
with our selected features (4, 8, 21) can outperform the model
searched with the whole feature space (64 features). Thus, our
feature selection can effectively remove redundant features and
provide useful succinct feature sets with varied target feature
numbers.

Next, to evaluate the performance improvement bringing
from our NAS approach, we compare the NAS-crafted models
with two human-crafted architectures by searching/training
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TABLE IIT
PERFORMANCE COMPARISON OF ROUTABILITY PREDICTION BASED ON DIFFERENT MODEL ARCHITECTURES AND DIFFERENT
FEATURE SELECTION METHODS WITH VARIED FEATURE NUMBERS TO DEMONSTRATE THE PERFORMANCE
CONTRIBUTIONS OF OUR AUTOMATED FEATURE SELECTION AND THE NAS APPROACH

| Model architecture H RouteNet [3]

| PROS [6] |  NAS-crafted |

l #selected features H Random [ Ours

[ Random [ Ours [ Random [ Ours ‘

4 0.8014 | 0.8511 | 0.8222 | 0.8466 | 0.8215 | 0.8726
8 0.8048 | 0.8541 | 0.8188 | 0.8527 | 0.8313 | 0.8723
21 0.8241 | 0.8567 | 0.8328 | 0.8425 | 0.8494 | 0.8831
64 (all) 0.8496 0.8585 0.8695
TABLE IV

SEARCH TIME COMPARISON OF OUR NAS METHOD WITH
DIFFERENT FEATURE NUMBERS {4, 8, 21, 64}

‘ #features ‘ 4 ‘ 8 ‘ 21 ‘ 64 ‘
| Search time of NAS (hr) | 8.66 | 11.84 [ 20.01 [ 113.18 |

with our selected features. According to Table III, when
trained with our 21 features, the NAS-crafted model demon-
strates a high ROC-AUC of 0.8831, while RouteNet can
only have ROC-AUC of 0.8567. Overall, our NAS-crafted
models can outperform two human-crafted architectures under
all different feature sets, indicating that our NAS approach can
effectively boost the model performance.

In addition, we present the search time of our NAS under
different feature numbers (4/8/21/64) given the same model
exploration budget. As Table IV shows, an increase in the
feature numbers leads to longer search time. We posit this
is due to the expansion of model parameters and the severe
data input/output (I/O) overhead. This result indicates that
our feature selection can accelerate the NAS process by 6.1
to 12.1x compared to searching with all 64 features. Also,
our feature selection only takes about 5 h. Thus, the entire
AutoML process can be completed in about 0.6 to 1.0 days
to automatically build well-performing models for routability
prediction. In addition, this presents a significant improvement
in model development efficiency over manual model design,
which can take weeks or even months.

Finally, we investigate the performance when using a
different number of sampled-DAGs in our search space. In
detail, we set the sampled-DAG number to three in our search
space, which contains one sampled-DAG between every two
downsampling layers and do not have parallel DAG structures.
Based on this search space, the NAS-crafted model achieve a
slightly lower ROC-AUC of 0.8703 compared to the model
searched with our original search space composed of six
DAGs, which has ROC-AUC of 0.8831. The observation
suggests the importance of maintaining the original DAG
number and the parallel structure in the search space to ensure
the model performance.

VI. DISCUSSION

In this section, we first present an analysis of our selected
features. Then, we discuss the architectures of our NAS-
crafted models searched with different numbers of features.
To provide a more comprehensive analysis, we also compare
our NAS-crafted models with manually crafted models (e.g.,
RouteNet [3], PROS [6], and cGAN [4]). By examining both

feature selection and architecture design generated by our
AutoML framework, we aim to offer valuable insights for the
development of future routability estimators.

A. Automatic Selected Feature Analysis

We list the 21 features selected by our automated feature
selection method according to the rank.

1) Bounding boxes.

2) Cell density.

3) Pin density (clock tree).

4) RUDY.

5) Cell density (clock tree).

6) Pairwise flight lines.

7) Vertical net density.

8) Pin density.

9) Pin accessibility (DFF).

10) Pin accessibility.

11) Bounding boxes (nets with size < 4k).

12) Source-sink flight lines.

13) RSMT RUDY.

14) Macro density.

15) Cell density (DFF).

16) Horizontal net density (nets with size < 1k).

17) RUDY (nets with size < 0.1k).

18) Pin density (nets with size < 4k).

19) MST flight lines.

20) Pin density (nets with size < 1k).

21) RUDY (nets with size < 1k).
Note that the feature name is followed by the cell/net proper-
ties, and features without specified properties are built by all
cells/nets. For example, pin density (clock tree) represents the
density of cell pins belonging to clock tree buffers.

The most important feature is the bounding boxes of all nets.
Because the router typically employs L-shape routing method
on most nets to enhance routing efficiency, bounding boxes
provide a good estimation of the routing solution. In addition,
this feature has never been adopted in previous works. This
suggests that our feature extraction can discover new features
that go beyond the traditional sense of routability features.
Then, our method selects the cell density and the pin density
(clock tree). Cell density is applied in all routability prediction
works. It is interesting that the pin density of clock tree
buffers (rank 3) is more important than the pin density of all
cells (rank 8). We posit that clock tree nets usually are the
most complicated nets since all functional blocks require clock
signals to operate. Thus, pins of clock tree buffers could have a
higher chance of causing DRC hotspot than normal pins. Next,
our method sets RUDY as the forth important feature, which is
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Fig. 11.

also widely applied in previous works. According to Tables III
and IV, the NAS-crafted model searched with top-4 features
only exhibit little performance degradation but with shorter
search time compared to the model searched with 21 features.
Thus, researchers who prioritize development efficiency can
focus on these 4 features to save time without compromising
much on the model performance. In addition, these top-4
features are repeatedly chosen with different net/cell properties
in the top-21 features, which highlights the importance of them
to facilitate routability prediction.

Among the remaining features, our method selects the
other 6 types of net density-based features, including pairwise
and source-sink flight line, vertical/horizontal net density, the
RSMT RUDY, and the MST flight line. Also, RUDY and
pin density features with different net sizes are included,
indicating the importance of these type of features. In addi-
tion, almost all cell density-based features are included. By
using these 21 features, our NAS-crafted model can have
the best performance based on the results in Table III. As
a result, we believe that our feature selection results can
serve as a valuable benchmark for future routability estimator
development.

B. NAS-Crafted Model Analysis

We compare and analyze the NAS-crafted models searched
using different number feature numbers, including 4, 8, and
21, as illustrated in Fig. 11. This analysis aims to provide
valuable insights about the future development of routability
estimators that target different features.

In sampled-DAGs 1 and 2, we observe that the model with 4
features only adopts two standard convolutional layers, while

Mix: mixed conv

Cxx: conv with xx filters

NAS-crafted models searched with (a) 4, (b) 8, and (c) 21 features for routability prediction.

the models with 8 and 21 features utilize wider and more
convolutional layers. Specifically in the model with 8 features,
sampled-DAGs 1 and 2 are the stage with the most operations.
This suggests that this stage is crucial to identify DRC hotspot
information in this resolution where the input tensor is reduced
by 2x. In sampled-DAG 3 and 4, we find an interesting trend:
the model with four features does not include any operation,
while the models with 8 and 16 features use several atrous
and mixed convolution layers. This observation indicates that
when the input resolution is reduced by 4x, the model with
4 features does not require any operation to process feature
information. However, the models with more features require
large-kernel convolution layers to extract large-scale hotspot
patterns. In sampled-DAG 5 and 6, the models with 4 and 21
features employ structures with lots of mix convolutions and
rich edge connections. These structures can enhance feature
interactions among operations to help capturing the complex
hotspot location information. The model with 8§ features does
not include any operation in this stage, meaning the prior
stages have provided enough expressive power for identifying
DRC hotspots. Also, keeping model compact could prevent
overfitting during prediction.

After detailing each sampled-DAG, we provide an overview
analysis of three NAS-crafted models. For the model with
4 features, our NAS method only assigns 6 operations to
predict routability. In contrast, the models searched with 8 and
21 features require 11 and 13 operations, respectively. The
increased operation numbers for models with more features
are due to the need for additional operations to effectively
express the feature representation toward DRC hotspot. In
summary, three NAS-crafted models exhibit large architecture

Authorized licensed use limited to: Duke University. Downloaded on August 20,2024 at 14:50:37 UTC from IEEE Xplore. Restrictions apply.



CHANG et al.: TOWARD FULLY AutoML FOR ROUTABILITY ESTIMATOR DEVELOPMENT 981

differences. This result highlights the need of designing unique
architectures for different feature sets and the advantage of
using our NAS method. In addition, we observe that the NAS
highly prefers a complex combination of mixed convolution
layers, which effectively learns from both small-scale and
large-scale input patterns. Such structure reflects the nature of
DRC hotspot detection that both local and global patterns of
a layout influences the routability at each point.

Human developers can hardly explore structures that are
similar to the NAS-crafted models. Most human-crafted mod-
els only support a limited number of operators (typically
regular convolution), and thus have limited ability to learn the
large-scale input patterns. They also adopt highly hierarchi-
cal architectures that lack the ability to aggregate different
levels of features. In contrast, our NAS method supports
operators that process features very differently. The variation
of vertex operations on the branches greatly increase the
diversity of feature representations that can be explored by
our NAS method. Moreover, our NAS method can construct
a number of scalable parallel branches and explore flexible
interactions among them, which is inherent in the topology
of the guide-DAGs. Therefore, our NAS method can extract
feature representations of large and small-scale patterns at the
same time and find the best interactions of features, which is
critical to improving the accuracy of routability prediction.

C. Future Direction

In this study, we introduce an AutoML framework that target
on optimizing the model accuracy for routability prediction.
Minimizing the model inference time could be another impor-
tant objective when applying the model in real optimization
scenarios. Because PROS [6] is used in optimizing global
routing, we compare the floating point operations per second
(FLOPS) and the number of model parameters of PROS and
our AutoML-crafted model. Our model has 14905M FLOPS
and 3M parameters. In comparison, PROS has 170052M
FLOPS and 206M parameters. Thus, our model not only has
better performance but also exhibits better-inference efficiency
than PROS, making it more suitable for optimization. In the
future, we can incorporate the number of parameters or FLOPS
as a penalty in the NAS objective to optimize the model
inference time and the accuracy at the same time.

VII. CONCLUSION

In this work, we develop an AutoML framework to automate
the ML model development for routability prediction. We
design an automated ML-based feature selection method that
efficiently identify suitable raw features for model inputs.
We propose an NAS method that supports a large search
space with various operations and highly flexible connec-
tions and automates the design of ML architectures. To the
best of our knowledge, this is the first research effort that
automates the feature selection for EDA. Our model, which
only requires 1 day to be automatically generated, proves
to outperform previous human-crafted routability estimators
with the maximum improvement of 9.9%. In addition, we
provide an in-depth analysis of our automatically selected

features and model architectures to benefit the future devel-
opment of routability estimators. Although we focus on
routability prediction, our framework could be general. Our
automated feature selection method can be applied to the
model development for any ML applications to choose proper
raw features. Also, given the similarities in solutions between
routability prediction and other essential EDA problems, e.g.,
IR drop estimation, clock tree prediction, lithography hotspot
detection, optical proximity correction, etc., our NAS method
could ultimately benefit the solving of these problems. The
AutoML framework proposed in this work paves the way for
a new research direction, toward the automation of ML model
development for EDA applications.
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