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ABSTRACT: Motivated by the recent experimental developments in van der Waals
heterostructures, we investigate the emergent magnetism in Mott insulator−semimetal moire ́
superlattices by deriving effective spin models and exploring their phase diagram by Monte
Carlo simulations. Our analysis indicates that the stacking-dependent interlayer Kondo
interaction can give rise to different types of magnetic order, forming domains within the
moire ́ unit cell. In particular, we find that the AB (AA) stacking regions tend to order
(anti)ferromagnetically for an extended range of parameters. The remaining parts of the
moire ́ unit cell form ferromagnetic chains that are coupled antiferromagnetically. We show
that the decay length of the Kondo interaction can control the extent of these phases. Our
results highlight the importance of stacking-dependent interlayer exchange and the rich magnetic spin textures that can be obtained
in van der Waals heterostructures.
KEYWORDS: moire ́ superlattices, 2D magnets, multidomain magnetic order, Kondo model

Kondo model is a quintessential strongly correlated model
that describes the interaction between localized magnetic

moments and weakly interacting conduction electrons via an
antiferromagnetic spin−spin interaction.1−3 Commonly utilized
for lanthanide and actinide intermetallic compounds, the Kondo
model can possess diverse phenomena such as heavy fermion
formation, magnetic order, and unconventional superconduc-
tivity.1 Unlike other interacting models, such as the Hubbard
model, the Kondo model exhibits a clear separation between the
localized and the itinerant degrees of freedom, which allows for
controlled calculations in certain limits.2 In the simplest form,
the Kondo model involves only local interactions since both the
localized moments and the conduction electrons originate from
the f and d orbitals of the same lanthanite/actinide ions in most
intermetallics.
Recently, an alternative route to realize the Kondo model has

emerged in van der Waals (vdW) heterostructures. These
synthetic Kondo lattices consist of a two-dimensional (2D)
Mott insulator layer and a metallic or semimetallic layer as
depicted in Figure 1(a,b). This route separates the Kondo
model’s two necessary degrees of freedom into different layers,
in contrast to the intermetallics. For instance, a synthetic Kondo
lattice has been realized in 1T-TaS2/2H-TaS2 bilayers where
1T-TaS2 is a Mott insulator, and 2H-TaS2 is a metal.4 STM
experiments show a Kondo resonance in the tunneling spectrum
appearing at around 27K.4 Similar behavior have also been
observed in 1T/1H-TaSe2

5 and 1T/1H-TaS2
6 heterobilayers.

Synthetic Kondo lattices may also be constructed in 2Dmagnet-
metal/semimetal bilayers. As an example, a Kondo model with
Kitaev intralayer interactions has been proposed for graphene/
α-RuCl3 bilayers.7 Recent experimental and theoretical studies
show that the interaction between graphene and α-RuCl3 can

have a significant impact on the electronic and magnetic
properties of both layers.8−15

Compared to intermetallics, 2D vdWmaterials offer a broader
tunability through gating, electric field, pressure, and strain.16

Their properties can be further controlled in moire ́ super-
lattices.17 Moire ́ superlattices can be formed by twisting or a
lattice mismatch between the layers. For instance, the in-plane
lattice constant of 1T-TaS2 and 2H-TaS2 are 3.36 and 3.316 Å
respectively,18,19 which results in a moire ́ pattern with a
periodicity of L ∼ 75 unit cells. Even though the local stacking
pattern depends on the origin of the moire ́ pattern, both
mechanisms lead to similar features.
Motivated by these recent developments, we develop a model

to study the magnetic order in synthetic Kondo moire ́
superlattices. We consider honeycomb lattices for both layers
which are common among vdW magnets such as α-RuCl3. We
utilize an extended Kondo interaction since the local stacking
order changes within the moire ́ unit cell. In the limit of small
twist angles, only a few sites are aligned perfectly on top of each
other, corresponding to AA and AB stacking regions. Our model
incorporates both the Kondo interaction and the moire ́
potential. Our goal is not to simulate a material directly but it
is to explore the magnetic phenomena that emerges at the
intersection of these two mechanisms. For small twist angles, we
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calculate the Ruderman-Kittel-Kasuya-Yosida (RKKY) inter-
action20−22 via exact diagonalization up to third nearest
neighbor and perform Monte Carlo simulations on the effective
spin model to obtain the ground state spin texture. Our main
results are as follows: (i) we show that the sign and the
magnitude of the RKKY interaction varies depending on the
local stacking order. (ii) Our Monte Carlo simulations indicate
that the AA stacking regions order antiferromagnetically (AFM),
whereas the AB regions order ferromagnetically (FM). The
remaining parts of the moire ́ unit cell form ferromagnetic chains
that are coupled antiferromagnetically (FMC). (iii) The extent
of these regions varies with the inverse decay length of the
Kondo interaction, α. For small α, FMC dominates the majority
of the moire ́ unit cell, whereas for large α, FM, AFM, and FMC
domains coexist.
We start by introducing the extended Kondo lattice

Hamiltonian, which describes the interactions between localized
magnetic moments with the conduction electrons in the moire ́
unit cell.

H t c c c c

J r c c S

( H.c.)

( )

ij
ai bj

is
is is

ij
K ij i i j

;

= +

+ ·

† †

†

(1)

where csiσ† is the creation operator for conduction electrons in s =
{a, b} sublattice and S is the spin operator of the local moments.
rij represents the distance between two sites, rij = |ri − rj|. We
consider the an extended Kondo coupling given by,

J r J e r a( ) for 3

0 otherwise
K ij

r a
ij0

/
0

ij 0=

= (2)

where a0 is the bond length on the honeycomb lattice and α is
the inverse decay length. α is dimensionless since an explicit 1/a0
is included in the expression. α is proportional to the inverse
length of interlayer hopping and may be controlled via pressure
in vdW materials. The cutoff in the exchange coupling for
r a3ij 0> is imposed for practical computational purposes23

and we checked that our conclusions are independent of the
cutoff. For the rest of the manuscript, we consider μ = 0, a
semimetallic filling for the conduction electrons and use J0/t =
10−2 to stay in the perturbative regime. Extended Kondo
interaction is essential for the topological phases in heavy
fermions.24−27 It has also been investigated for nematic28 and
higher angular momentum Kondo liquids.29,30

RKKY interaction arises due to magnetic impurities
interacting with conduction electrons which create net spin
polarization. While the polarization propagates, it decays and
undergoes Friedel oscillations. In Figure 1(c), we present the
spin polarization when themagnetic impurity is perfectly aligned
on top of a conduction site (AA stacking). The polarization is
antiferromagnetic to the magnetic impurity due to the nature of
the Kondo exchange coupling. The coupling flips sign at its
nearest neighbors (NN) due to the large Dirac momentum
(short wavelength) Friedel oscillations, similar to the effect of
magnetic impurities in graphene.31 In Figure 1(d), the magnetic
impurity is placed at the center of the honeycomb (AB stacking).
Note that the polarization is much smaller in this case since the
local moment can only interact with conduction electrons at a
distance r = a0 and JK(r = a0) ≪ JK(r = 0). The interaction of a
second impurity with the spin-polarization induced by the first
impurity leads to an effective interaction between the two local
moments, which is known as RKKY interaction. In the absence
of spin−orbit coupling, the RKKY interaction has SU(2)
symmetry and can be expressed as a Heisenberg interaction, JijSi
· Sj. We estimate the RKKY coupling constant via exact
diagonalization following the procedure described in ref 31. We
place two local moments at sites i and j and calculate the energy,
including the interactions with the conduction electrons by
aligning local moments parallel (EFM) or antiparallel (EAFM).
The RKKY coupling is given by the energy difference, Jij = (EFM
− EAFM)/2S2. In the following, we consider unit spins, S = 1.
There are two key factors in determining the sign and the

magnitude of the RKKY interaction, and both depend on the
local stacking pattern. Themagnitude of the RKKY interaction is
primarily determined by the magnitude of rij. Since JK(rij) decays
exponentially with rij (eq 2), the RKKY interaction which is
proportional to [JK(rij)]2 is overall larger in AA stacking regions
where rij/a0 ≪ 1 compared to AB stacking where rij/a0 ∼ 1 for
one of the magnetic impurity. The sign of the interaction
depends on whether the local moments primarily couple to the
same or different conduction sites. Coupling to the same
conduction site results in an FM RKKY interaction. Yet, if they
couple to NN sites, the sign of the conduction electron
polarization flips between the NN sites due to Friedel
oscillations as discussed above and the RKKY interaction is
AFM in this case. To illustrate these effects, we present the

Figure 1. (a) Schematic representation of our model with conduction
electrons on the upper layer and localized magnetic impurities on the
lower layer, twisted relative to the upper layer. The blue arrows denote
the local moments. The magnetic impurity, indicated by the red arrow,
interacts only with the conduction electrons at the sites shown in yellow
in the conduction layer. (b) Top view of our schematic. (c and d)
Induced spin polarization for AA and AB stacking respectively for the
inverse decay length α = 3. The impurity spin is marked with black
arrow, and the area of the circles on each site is proportional to the spin
polarization, where excess spin-↑ (spin-↓) density is blue (red). (e and
f) The RKKY coupling, J as a function of α for AA and AB stacking up to
fifth nearest neighbor.

Nano Letters pubs.acs.org/NanoLett Letter

https://doi.org/10.1021/acs.nanolett.4c01574
Nano Lett. 2024, 24, 8575−8579

8576

https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01574?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01574?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01574?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01574?fig=fig1&ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://doi.org/10.1021/acs.nanolett.4c01574?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


RKKY interaction as a function of α for AA stacking and AB
stacking for the “untwisted” system in Figure 1(e) and (f). For α
≫ 1, we recover the limit of local Kondo interaction where the
exchange is only significant for rij/a0 ≪ 1. In particular, the AA
stacking shows AFMNN and FM next nearest neighbor (NNN)
interactions. These results are in agreement with previous
estimations for RKKY interaction in graphene.31 On the
contrary, the exchange constants are significantly smaller for
the AB stacking region since JK(r = a0) diminishes for α ≫ 1.
However, unlike AA stacking, the NN exchange is FM since the
local moments couple to the same conduction site.
For small α, the behavior of the exchange couplings is more

complex due to multiple channels of Kondo interaction
interfering with each other.32 In particular, we find that the
sign of theNN interaction changes to FM for AA stacking for α <
2 and several other exchange couplings seem to diverge for α < 1.
In order to keep J r a J r( 3 )/ ( 0)K K0= = small and justify the
cutoff at r a3 0> , we only consider α ≥ 3 for the reminder of
the paper. To the best of our knowledge, the decay length
dependence of the interlayer Kondo interaction in vdW
materials has not been studied extensively. Still, we anticipate
that 3 ≤ α ≤ 10 provides a regime that covers a large parameter
space.
For small twist angles, the local stacking within a moire ́ unit

cell can be described by a translational shift, r(R) ≃ θ z ̂ × R
where R and r are the position within the moire ́ unit cell and
translational shift, respectively.23,33 Therefore, a moire ́ unit cell
with a large periodicity can be considered as a superposition of
all possible stacking orders.34 We label the different regions in
the moire ́ unit cell by the primary stacking orders,35 AA, AB, BA,
and saddle point stacking (SP) in Figure 2(a). These regions

exhibit different types of RKKY interactions. A local moment
placed in AA or AB stacking regions polarizes the conduction
electrons similar to the untwisted case as depicted in Figure 1(c)
and (d). As a result, the effective magnetic interactions in these
regions are similar to the untwisted case but superimposed in
real space. The polarization induced by a local moment in the
saddle point (SP) region is shown in Figure 2(b). It is
noteworthy to emphasize that among the three NN sites, two of
them couple primarily to the same conduction site and therefore
exhibit FM exchange. However, for the other bonds, the local
moments couple to the different conduction sites, which results

in AFMNN coupling. This leads to FM chains (FMC) in the SP
region, as discussed below.We summarize these results in Figure
2(c), where we present the NN exchanges for all the bonds
within a 2 × 2 moire ́ unit cell for α = 4.6. We consider a twist
angle θ = 4° with N = 394 unit cells for the remainder of the
article, but our results are independent of the twist angle for
small θ.
In order to determine the magnetic ground state of the moire ́

Kondo lattice, we derive the RKKY exchange couplings up to the
third NN and perform classical Monte Carlo studies via the
Metropolis algorithm. We include a small single site anisotropy
term,− JA (Siz)2, which can naturally arise in real materials due to
spin−orbit coupling,36 to break the SU(2) symmetry of the
model. We pick JA much less than the smallest exchange
coupling. Starting with random initial conditions, we perform
120,000 Monte Carlo updates at each temperature. We
determine the ground state at T/Jmax = 10−4 where Jmax is the
maximum exchange coupling. Figure 3 depicts the Monte Carlo

snapshots of the ground state spin configurations for different
values of α. We demonstrate that for α < 4, the ground state
primarily consists of FMC throughout the moire ́ unit cell and a
small fraction of AFM around the AA stacking regions. For α > 4,
the FMC starts to shrink and FM (AFM) regions grow around
AB and BA (AA) regions. FMC regions almost fully disappear as
depicted in Figure 3(f) for α = 10. Note that for such values of α,
RKKY coupling essentially vanishes except for the AA stacking
regions.
In order to quantify these trends, we calculate the magnet-

ization, M S
N i i
1= , and the static spin structure factor

S(q) = (1/N2)⟨∑β=x,y,x|∑iSiβe−iq.ri|2⟩ of the ground state. S(q)

Figure 2. (a) Different stacking regions within a moire ́ unit cell: AA,
AB, BA and saddle point (SP). (b) Conduction electron polarization
induced by local moment for SP region for α = 4.6. (c) NN RKKY
interaction within a 2 × 2 moire ́ unit cell. Note that the dominant
interaction is FM (AFM) for AB and BA (AA) regions. The SP regions
2 of the 3 bonds are FM, and the remaining bond is AFM which results
in FM chains that are coupled antiferromagnetically.

Figure 3.Monte Carlo snapshots for the ground state spin textures for
α = 3, 3.2, 4.3, 4.6, 5, 10 for (a−f), respectively. For α < 4, the ground
state primarily consists of ferromagnetic chains that are coupled
antiferromagnetically with a small AFM region at the AA stacking. For α
> 4, FM (AFM) regions grow at AB and BA (AA) stacking regions
within the moire ́ unit cell. The color plot shows the z-component of the
magnetization, whereas the arrows show the in-plane component.
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exhibits peaks at q = (0, 0), {± b1(2)/2,± (b1 + b2)/2}, {± b1(2),
± (b1 + b2)}, where b1/2 are the reciprocal lattice vectors,
corresponding to FM, FMC and AFM orders respectively (see
Supporting Information for details). We present the amplitude
of these peaks in Figure 4(a). The q = (0, 0) component of S(q)

is the square of the magnetization as shown in Figure 4(b). The
spin structure factor also shows that the FMC is the primary
order for α < 6. For α > 6, FMC regions shrink and AFM, FM
regions grow rapidly. As shown in Figure 4(b), the magnet-
ization grows for α > 4 and saturates at about M/S = 0.2−0.25.
Experimental detection of complex magnetic textures in the

2D limit is challenging. Although a variety of noncoplanar
magnetic structures have been predicted in moire ́ superlattices
of vdW magnets,33,34,37−47 only few of these phases have been
observed experimentally by magnetic circular dichroism,48

magneto-optical Kerr effect49 and diamond NV magneto-
metry.50 Our simulations indicate that FM and AFM domains
can form within a single moire ́ unit cell. We expect that these
techniques should be able to detect the FM domains. For
instance, diamond NVmagnetometry can have resolution down
to 20−50 nm, which may be compatible with the domain sizes
for large moire ́ periodicity.50 Even though our model and
simulations does not apply to a material system directly, we
anticipate similar multidomain magnetic order may be realized
in synthetic moire ́Kondo lattices. The fact that moire ́patterning
can induce magnetic order is unexpected and the complex
magnetic structures are novel and can lead to the foundations for
other spin textures such as skyrmions in moire ́ Kondo
lattices.34,36

In conclusion, we presented a theoretical framework for
magnetic order in synthetic moire ́ Kondo lattices consisting of
Mott insulator and semimetal vdW layers. We showed that the
stacking-dependent Kondo interaction can give rise to various
types of magnetic order. In particular, we demonstrated that the
decay length of the Kondo interaction can control the magnetic
textures. Interesting future directions include realistic simu-
lations of material platforms, investigating the effects of pressure
and gating, and the competition between heavy fermion
formation and magnetism in these systems.
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