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ABSTRACT

Social media posts have been used to predict different user be-
haviors and attitudes, including mental health condition, political
affiliation, and vaccine hesitancy. Unfortunately, while social media
platforms make APIs available for collecting user data, they also
make it challenging to collect well structured demographic features
about individuals who post on their platforms. This makes it diffi-
cult for researchers to assess the fairness of models they develop
using these data. Researchers have begun considering approaches
for determining fairness of machine learning models built using
social media data. In this paper, we consider both the case when
the sensitive demographic feature is available to the researcher and
when it is not. After framing our specific problem and discussing
the challenges, we focus on the scenario when the training data
does not explicitly contain a sensitive demographic feature, but
instead contains a hidden sensitive feature that can be approxi-
mated using a sensitive feature proxy. In this case, we propose an
approach for determining whether a sensitive feature proxy ex-
ists in the training data and apply a fixing method to reduce the
correlation between the sensitive feature proxy and the sensitive
feature. To demonstrate our approach, we present two case studies
using micro-linked Twitter/X data and show biases resulting from
sensitive feature proxies that are present in the training data and
are highly correlated to hidden sensitive features. We then show
that a standard fixing approach can effectively reduce bias even if
the sensitive attribute needs to be inferred by the researcher using
existing reliable inference models. This is an important step toward
understanding approaches for improving fairness on social media.
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1 INTRODUCTION

Most fairness studies use well structured data sets, where both the
attributes and the properties of the individuals, e.g. demographic
features, are clearly specified and understood. While an important
first step, we know that computer scientists and data scientists are
using machine learning algorithms in considerably more complex
contexts. In these complex contexts, there may be missing values,
poor quality attributes, or a wider range of data types, including text
and images. Just as critical, there may also be missing information
about sensitive features. In fact, in some contexts, the sensitive
feature of interest may never be available to researchers, making
it difficult to determine the fairness of a model. In this paper, we
consider one such context - social media.

Researchers have been using social media data to better under-
stand different behaviors and opinions of individuals, including
extremism [1, 59], mental health conditions [12, 30], and politi-
cal affiliation [16, 35]. Many of these types of studies make use
of opportunistic data collection from APIs. Unfortunately, while
social media platforms make APIs available for collecting data (in-
cluding posts, user account information, and network information)
from their platforms, they also make it challenging to collect well
structured demographic features about the individuals using their
platforms. These features are needed by researchers to assess the
fairness of models built using these data.

To further exacerbate the situation, platforms maintain differ-
ent demographic characteristics about their users. Singh and col-
leagues studied required demographic information across some pop-
ular social media platforms, including Twitter/X, Facebook, Tiktok,
LinkedIn and Snapchat, and found large variability in the type and
amount of demographic information required to create an account
on these platforms [56]. For example, gender and birth date are
required to open an account on Facebook, but neither are required
when creating an account on LinkedIn (location is required on
LinkedIn). This inconsistency in the requirements of demographic
data means that even if demographic data are made available by
platforms, much of the demographic data would contain missing
values, limiting researchers ability to access the demographic char-
acteristics they need in order to measure potential bias in their
training data, and ultimately in their learning models.

The sharing of demographic characteristics leads to an additional
issue, user privacy. While there are privacy concerns associated
with having access to some sensitive demographic attributes, there
are potential fairness concerns associated with not having access,
or having inconsistent access, i.e. platforms on which some users
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share their demographic information, but others do not. To bet-
ter understand the impact of these issues on fairness, this paper
investigates the fairness of machine learning models constructed
using social media data. We consider scenarios when missing data
exist because some users have accounts but do not actively post,
and the sensitive attribute of interest is not readily available to the
researcher and must be inferred. Our work compliments existing
studies since we conduct our empirical evaluation on micro-linked
social media data. Specifically, we use Twitter/X data for which we
have demographic data through a micro-linked survey. Users in
our study have given consent to micro-link their survey response
to their Twitter/X data (see Section 7 for more detail).

More specifically, after describing challenges associated with
measuring fairness on social media, we demonstrate the existence
of fairness issues using two Twitter/X case studies.! Consistent with
previous work, we find that even if sensitive features are not used to
build the machine learning model, bias exists because non-sensitive
features serve as proxies to these sensitive features. We refer to
these non-sensitive features as sensitive feature proxies. We then
consider an approach for reducing these biases when the ground
truth sensitive attribute is available and when it must be inferred.
Our empirical evaluation shows that our approach can effectively
reduce bias even if the sensitive attribute of interest is not initially
available to the researcher.

Our main contributions can be summarized as follows. (1) We
formally define and describe hidden sensitive features and sensitive
feature proxies for social media data and discuss the additional
challenges social media data pose when trying to determine model
fairness. (2) We introduce an approach to measure the relationship
(overlap) between the sensitive feature proxy and the hidden sen-
sitive feature. (3) Using two Twitter/X case studies, we show the
bias that manifests within classification models as a result of this
relationship, including bias from missing data, i.e. low activity level.
(4) We consider an existing fixing approach, apply it to this new
social media setting, and show that it improves fairness with a very
small tradeoff in performance, even when the sensitive attribute is
not readily available to the researcher.

2 RELATED LITERATURE

Numerous examples of discriminatory or unfair machine learning
models and applications have been described in the literature [19,
40, 41]. In the USA, the Civil Rights Act of 1964 states that it is
illegal to discriminate against people based on race, color, religion,
sex, or national origin. These demographic traits are examples
of sensitive/protected attributes or attributes that should not be
dominant features used by machine learning algorithms to make
predictions. Therefore, in order to avoid discrimination, information
about sensitive attributes must be available, and researchers must
use this information to quantify bias in classifiers. We begin this
section by describing ways researchers measure fairness and make
adjustments when models are not fair. We then present literature
related to social media fairness. Traditional fairness research has
focused on numeric and/or categorical features, but social media

'We focus on Twitter/X since the platform is used by many researchers and the data
being analyzed are all public.
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data sets are typically textual. Therefore, we focus our discussion
on fairness in text.

2.1 Measuring and improving fairness

In machine learning fairness, there are two main families of fair-
ness definitions: group-based and individual-based [15]. The group-
based or statistical notion of fairness use demographic parity, equal-
ized odds, and CV to measure fairness [10, 24]. The individual
notion of fairness attempts to ensure that similar individuals are
treated similarly [22]. There is no standard way to measure this as
it is very context dependent. In this paper, we consider group-based
fairness and use group-based fairness metrics to measure bias in
the machine learning models we consider.

To correct bias, a number of correcting algorithms have been pro-
posed. Correction algorithms can be grouped into three categories:
pre-processing, in-processing and post-processing. Pre-processing
approaches attempt to fix the input data in order to improve fairness
[9,11, 24,37, 45, 58]. For example, Feldman et al. fix continuous data
by changing feature values to remove correlations between feature
values and the sensitive attribute [24]. Wang and Singh focus on
the role of missing values and selection bias on the fairness of cate-
gorical attributes and use resampling and reweighting to improve
fairness [58]. In-processing fixes add fairness constraints in the
objective function during the training process [5, 38, 47, 57, 63]. For
example, researchers have introduced changes to some traditional
machine learning models, such as logistic regression and decision
trees, to include a fairness constraint in the objective function to
ensure that each subgroup has an equal probability of receiving
a positive outcome [38]. Post-processing approaches change pre-
dicted labels after the model is trained. They modify the results
of a trained classifier to ensure fair prediction results on sensitive
attributes [8, 29, 31, 50, 51]. For example, Petersen et al. use the pre-
dicted results and a similarity graph between individuals to ensure
individual fairness, i.e. similar people should be treated similarly
and get similar predicted results [50].

Some bias correction techniques have been applied to text clas-
sification. Geyik et al. quantify gender bias in the LinkedIn search
ranking algorithm and propose a mitigation algorithm that changes
the existing ranking algorithm to ensure fairness based on a user’s
sensitive attribute. If one demographic group has a much lower
rank than others, the algorithm gives that group a higher rank to
ensure fairness [26]. Bolukbasi et al. find that word embeddings
trained on Google News articles exhibit gender bias and they pro-
pose a fixing algorithm that first identifies words with gender bias
and then adjusts word vectors to remove the bias [8].

While most popular fairness toolkits (such as AI Fairness 360 by
IBM [4], Fairlearn by Microsoft [7], and the What-if tool by Google
[60]) require ground truth information about the sensitive attribute,
there are bias correction algorithms that do not require sensitive
attribute information. One approach is to use proxies for sensitive
attributes based on other features in the training data [13, 17, 18,
53, 64]. For example, Zhang [64] proposes using the geo-location
and the last name of applicants to infer their race and then uses the
inferred race to ensure that a race bias does not exist during the
mortgage application process. Using proxies for sensitive attribute
could still cause fairness issue. For example, using the geo-location
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and the last name to infer race could be biased against women
who marry outside their ethnic group [48, 61]. Chen et al. propose
using proxy features to measure fairness without using the ground
truth sensitive attribute [13]. Another approach is to use privacy-
preserving methods to avoid directly using sensitive attributes
[32, 62]. For example, Hu and colleagues [32] propose a distributed,
privacy-preserving fair learning framework using multiple local
agents, where each local agent separately holds different sensitive
demographic data. During the training process each agent learns
a fair local dictionary and sends it to the modeler. The modeler
then learns a fair model based on an aggregated dictionary. While
both of these strategies are promising, our approach differs since
we focus more on improving the fairness and we assume a domain
that contains noisy, partial (missing) data. Furthermore, in our data,
we do not have a separate proxy that we know about apriori to use
to approximate the sensitive attribute. Instead our study assumes
that the training data includes a hidden sensitive attribute proxy
that we need to adjust for if we want to build a fair classifier.

2.2 Machine learning model fairness using
social media data

Different researchers have identified fairness and ethical issues
arising from models built using social media data [42, 56]. Ekstrand
et al. use accuracy differences across demographic groups as a fair-
ness metric and find that researchers often fail to check if every
subgroup is treated fairly while evaluating the effectiveness of rec-
ommendation systems. The authors show that female users receive
less accurate results than male users [23]. Sherman et al. use a popu-
lation of Reddit users with known genders and depression statuses
to analyze gender bias in depression classifiers and discuss potential
correction methods, e.g. adding a regularization term for gender
to correct for the performance differentials across demographic
groups [55]. Ball-Burack et al. show racial dialect bias in harmful
tweet detection. Specifically, the African American English dialect
tweets have a higher rate of being detected as harmful compared to
White English tweets. They use existing bias mitigation methods
such as debiasing word embedding and reweighting to correct for
the racial bias in the harmful tweet detection algorithm [2].

We pause to mention that while some of the mentioned work
proposes fixing approaches, most fixing methods have not been
designed using social media data. For example, the gender neutral
word embeddings introduced by Bolukbasi et al. are built using
text from newspapers [8]. Social media posts are different from
newspaper articles since social media language is less formal and
posts are shorter than articles. Previous research has shown that
embeddings built on formal text often do not have good perfor-
mance on social media data [39], reminding us that much work still
exists to translate general text fixing approaches to ones that are
effective for models constructed using social media data.

Researchers need to be able to measure fairness on social me-
dia even when sensitive features are not available. To support this
scenario, we highlight some research that infers demographic infor-
mation from social media with high accuracy [14, 43, 44]. Many re-
searchers use classic machine learning algorithms for demographic
inference. Newer work uses neural models for demographic infer-
ence. For example, Liu et al. predict gender and age from user posts
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and biography data using BERT (Bidirectional Encoder Representa-
tions from Transformers) to transform text into embeddings and
use the embeddings as input to build a neural network with LSTM
(Long-short term memory) and attention layers [44]. We will use
this approach to infer the sensitive feature of interest and demon-
strate that proxies exist for these features in the training data set
(see Section 4).

Ghosh et al. investigate how uncertainty and errors in demo-
graphic inference impact the fairness in fair ranking algorithms.
They use race and gender as sensitive attributes and suggest that re-
searchers should not use inferred demographic data as input unless
the inference results have very high accuracy [27]. We acknowledge
that high accuracy is necessary to use inferred attributes. This is
one reason we focus on gender. It is a demographic that can be
inferred with very high accuracy.

3 SOCIAL MEDIA CLASSIFICATION

For many social media classification tasks different forms of text are
used as training data. For example, we may use posts to predict a
person’s likelihood of getting vaccinated. However, these posts may
be highly correlated to sensitive demographic features like gender
or race, and may lead the classifier to perform differently across
different race and gender groups. When we do not have access
to these sensitive demographic features, we will refer to them as
hidden sensitive features within our learning environment. In this
section, we describe the relationship between our learning task and
these hidden sensitive features (Section 3.1). We then present the
challenges that arise for social media classification as a result of the
hidden sensitive features and data issues that could negatively affect
fairness when building models with social media data (Section 3.2).

3.1 Modeling hidden sensitive features

Figure la shows a diagram of how a classic machine learning
model is generated. In this work, our prediction task is binary. Let
Y ={y1,y2, ..., yn} be the set of binary labels we want to predict
and for the ith observation, y; € {+, —} with y; = + being a positive
or desired outcome and y; = — being a negative or non-desired out-
come. Similarly, let Y = {ij1, 2, .. ., §in} be the set of predicted label
and §; € {+, —} represent the predicted label of ith observation.?
Given a labeled training set consisting of training features X and
labels Y, a machine learning model M is constructed. We use the
features in the training data X (blue circle on the left) to predict
labels ¥ (blue rectangle on the right) using machine learning model
M, where Y=M (X), and evaluate the differences between Y and
Y.

Previous literature has shown that language usage is correlated
with different demographics, including sensitive ones like gender
and race [54]. Because we will use text for our prediction task,
we want to model this possible relationship between a sensitive
demographic feature and features constructed from text. Let S =
{s1,52,...,5n} be the set of values for a binary sensitive feature,
e.g. gender, that is known to the researcher, but not part of the
training data. The set S contains n individual observations, and

2We note that for some inference tasks on social media, there is not a clear privileged
outcome. In those cases, we typically define the minority class (in terms of available
labels) as the privileged group.
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s; represents the sensitive feature value of the ith observation.
For the ith observation, we set s; = 1 if the observation is in the
privileged group and s; = 0 if it is in the unprivileged group. Figure
1b shows the training and prediction process with this hidden
sensitive feature, where S is shown in the triangle. Similar to Figure
1a, the big blue circle represents the training features. In this figure,
we also show a smaller circle within the blue circle that represents
the subset of training features (text features in our case) X” that are
highly correlated with the hidden sensitive feature S. We refer to X?
as a sensitive feature proxy. When this situation exists, we say that
a strong relationship exists between X and S through X?. In other
words, while S is not in X, proxies for it are and these proxies are
being used to build M(X) and predict Y, thereby possibly biasing
the inference process.

To build a fair classifier, we want to minimize the size of the sub-
set of features in X that are highly correlated to sensitive attribute
S. This is illustrated in Figure 1c, where the size of X? is smaller and
the correlation between X? and S is insignificant. This means that
the bias generated by using a proxy of S has been reduced, model
M’ (X) will not use "hidden" sensitive information or a sensitive
proxy to predict ¥, and therefore, M’ (X) will be more fair than
M(X).

3.2 Challenges associated with social media
classification fairness

If we know the demographics of the users in X, then we can quan-
tify the bias in M and determine an appropriate fixing algorithm to
ensure that M’ is less biased. Unfortunately, as mentioned in Sec-
tion 1, demographic data is not consistently available on different
platforms. Platform users also share different amounts of demo-
graphic information, meaning that while researchers may have
access to the demographic characteristics of some people within
their sample, it is highly likely that a large fraction of their sam-
ple share different demographic characteristics, leading to a large
fraction of missing values.

Researchers have used different approaches for obtaining these
demographics uniformly across their data sets. One approach is to
obtain demographic information through surveys [49] and obtain
informed consent to link the survey information to their Twitter/X
account. However, for analyses that involve millions of platform
users, this approach is prohibitively expensive, especially given low
survey response rates [1]. Another approach is to use the shared
features to infer the demographic feature of interest. We will refer to
the inferred value of S as S. Using this approach leads to additional
secondary questions. Can we infer the hidden sensitive feature S
and use that information to accurately measure the bias created by
the sensitive feature proxy X? that informs the researcher about
whether or not M(X) is fair? If the answer is yes and the model is
not fair, can we make adjustments to ensure that M’ (X) is fair and
accurate?

31f the sensitive feature is not binary, it can be converted into a binary feature by
defining a privileged group and an unprivileged group. For example, assume the sen-
sitive feature S is race and that there are five values for race in the data set: {White,
Black, Hispanic, Asian, Others}. We can convert these values into a binary attribute
where one or more races are designated as the privileged group, and the other races
as the unprivileged group. There is no universal rule for which attributes go into the
privileged group - it depends on the sample and the learning task.
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An additional issue that arises with respect to inference using
social media data results from different levels of user activity on the
platform. Users spend varying amounts of time using social media
and post at different rates. Some users choose to actively share
their opinions on social media, while others rarely post. Previous
research has shown that on Twitter/X, the most active 10% of users
who are U.S. adults contribute 80% of all tweets created [33]. It has
also been shown that more information can be inferred from active
users than relatively inactive ones [46]. We suggest using activity
level as a new way to think about missing data. If the activity
level of a user is too low, meaning the amount of missing data
is particularly high, then reliable inference is not possible using
that user’s posts. Finally, selection bias is another data issue that
is prevalent on social media since different people choose to join
different social media sites. Selection bias happens if observations
from some groups in the sample are oversampled and others are
undersampled. In our case studies, we consider the impact of each
of the challenges.

4 METHODOLOGY

In this section, we present our approach, focusing on the exper-
imental design (Section 4.1), and the models we consider in our
empirical evaluation (Section 4.2).

4.1 Experimental design

We present our high level experimental design in Figure 2. We
begin by training each machine learning model using text and
numerical features (step A). We then compute the performance
of each model (accuracy and F1 score), and the fairness of the
model (p%-rule and CV) using S (step B). We note that S is not
contained in X. We only use it to determine the fairness of Y. We
then identify the model that has the highest accuracy and F1 score
(step C). If the fairness of this model is low, we say that a strong
correlation exists between X? and S. When this occurs, we apply
the pre-processing fix method proposed by Wang and Singh [58]
(step D). This method removes selection bias in the training data by
randomly removing examples from the over-represented group and
adding examples using resampling to the underrepresented group.
This fixing methods will increase statistical independence between
the sensitive feature S and the outcome Y. We then retrain the best
model M(X) using the new data set that contains less selection bias
and use fairness metrics to evaluate whether or not the model is
more fair (step E).

As mentioned in Section 3, sensitive demographic information is
often not available in social media data sets. In this second scenario,
we select an existing demographic inference model (step F), and
then determine $ by inferring the demographic feature of interest
for each user (Step G). We then assume $ is the ground truth, and
apply the same fixing method to remove selection bias.

The importance of this second experiment is twofold. First, we
can simulate how fairness can be determined when the demographic
information is not available for researchers to use. Second, because
we have access to the actual ground truth labels in our data set,
we can compare the difference in fairness quality of the prediction
models using the actual demographic information and the inferred
demographic information.
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Table 1: Training features

Category Features

Account statistics

Number of tweets, number of days since first tweet

Network statistics

Number of followers, number of followings

Tweet statistics

Average number of words per tweet, average word length per tweet, proportion of emojis per tweet,
proportion of hashtags per tweet, proportion of punctuation per tweet, proportion of emojis in biography,
proportion of hashtags in biography, proportion of punctuation in biography

Biography statistics

Number of words in biography, average word length in biography proportion of emojis in biography,
proportion of hashtags in biography, proportion of punctuation in biography

N-gram features Unigram, bigram, trigram

4.2 Feature Construction and Machine Learning
Models

For our analysis, we use two classes of machine learning algorithms,
classic machine learning models with N-gram features and neural
network models with BERT embeddings.

Classic machine learning model with N-gram features. We use
user account statistics, user network statistics, user biography, and
user tweets to build our machine learning models (see Table 1).
For the user tweets and biography, we extract numerical features
such as number of emojis in each tweet and create text tokens
using N-gram (unigrams, bigrams and trigrams). We then use the
token frequency as features to train our models. We train classic
machine learning models that have performed well on different
prediction tasks using Twitter/X data: logistic regression, random
forest, decision tree, and support vector machine (SVM). While not
exhaustive, this is a representative set.

Neural network model. In addition to classic machine learning
models, we want to explore fairness of deep learning models. Fig-
ure 3 shows the architecture of the neural network models we use,
a standard BERT model and a BERT model with an attention layer.
Both models use BERT, a pretrained contextual language repre-
sentation that can be used to convert text into embeddings [20].
Researchers have shown that BERT has good performance on

traditional NLP tasks, including demographic inference on Twit-
ter/X [44]. For the standard BERT model, we convert tweets and
user biographies into embeddings using the pretrained uncased
BERT-Base model [52]. We then input embedding vectors into a
Long Short Term Memory (LSTM) layer and after the LSTM layer,
we add account information features together into a fully connected
Multi-Layer Perceptron neural network with one hidden layer.

The second model is an attention based model. In text classifi-
cation tasks, some types of information may be more important
for the learning task than other information. For example, if we
are predicting a user’s opinion or stance on an issue, posts may be
more important than a user’s account information. In an attention
mechanism neural network model, models learn what subsets of the
information are more informative and use this more informative
information to improve predictions. Figure 3b shows the attention
layer in the neural model architecture. We add the attention layer
after the LSTM layer and the attention layer is computed as fol-
lows: @ = softmax(Witanh(WoM + bg) + b1), where M € R™ is the
output from LSTM layer, m is number of nodes in the output layer
from LSTM, Wp, Wy € R™*™ are weights, and by, by € R™ are bias
terms. This model has been shown to be effective on social media
classification tasks such as mental health prediction [34], rumor
detection [25] and gender inference [44].
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5 EXPERIMENTAL SETUP

This section describes our experimental setup. We start by present-
ing details about the data sets used in the two case studies (Section
5.1). We then discuss data issues associated with these two data
sets and preprocessing strategies (Section 5.2). Finally, we present
our evaluation measures for both performance and fairness of our
models (Section 5.3).

5.1 Data set

Our two data sets connect survey responses to Twitter/X accounts,
allowing us to have accurate ground truth demographics and ac-
cessible Twitter/X data. For both surveys, respondents consented
to allowing us to link survey responses to their Twitter/X data to
support social science and computer science research. This work
is completed under IRB STUDY00003571 and STUDY00002133 at
Georgetown University. We will use the first data set to predict gun
ownership and the second to predict the willingness of people to
receive a Covid-19 vaccine.

Gun ownership. This data set is a nationally representative sam-
ple of 2563 individuals. Among all individuals, 661 respondents
from the sample consented to having their survey response linked
to their Twitter/X data for a two year period. Survey responses

Yanchen Wang and Lisa Singh

Table 2: Sample distribution for gun ownership and Covid-19
vaccine hesitancy data sets

(a) Gun ownership (b) Covid-19

Gender Gun . Count Gender Wllhngnes§ to Count
ownership take a vaccine

Female | No 173 Female | No 44

Female | Yes 63 Female | Yes 200

Male No 208 Male No 29

Male Yes 97 Male Yes 200

included respondent gun ownership status, demographic informa-
tion, and Twitter/X handles [28]. We use the Twitter/X handles
to collect the tweets, biography, and account information of the
consented survey respondents. After data collection, we exclude
individuals without valid Twitter/X handles, those having limited
Twitter/X activity (too much missing data), or individuals who did
not provide their gender or gun ownership status. After removing
those individuals, we have 541 individuals in the data set for the pre-
diction task. For this case study, the prediction task is to determine
whether the user is a gun owner. The sensitive feature is gender.
Table 2a shows the distribution of gender and gun ownership in
this sample. Within our sample, men are approximately 5% more
likely to own guns than women. We will refer to this data set as
the Gun Ownership Data Set.

Covid-19. This data set is part of the MOSAIC (Measuring Online
Social Attitudes and Information Collaborative) project, a collabo-
ration between SSRS, Georgetown University, and the University
of Michigan. It is a nationally representative data set of 9544 indi-
viduals, 689 of whom consented to allowing us to link their survey
responses to their Twitter/X data to support social science and
computer science research. In the survey, we collect respondents
opinions on the Covid-19 vaccine, including whether or not they
are likely to get vaccinated, their demographic information, and
their Twitter/X handles. We use the provided handles to collect
account information and tweets from Twitter/X. We then remove
individuals who have missing values in their Covid-19 responses or
have too few tweets. This leaves 473 individuals in our data set for
the prediction task. Using this sample, our goal is to predict whether
or not an individual is planning to take (or has already taken) a
Covid-19 vaccine. Gender is the sensitive attribute. Table 2b shows
the distribution of gender and vaccine willingness. In this data,
female respondents are 5.3% more likely not to take a Covid-19
vaccine than male respondents. We will refer to this data set as the
Covid-19 data set since we are predicting vaccine hesitancy.

5.2 Data Issue

In Section 3.2, we discussed the prevalence of different types of data
issues that arise when using social media data for prediction. Miss-
ing values are a prevalent data issue in social media data. Missing
values arise in multiple ways: 1) users (subgroups of users) who do
not have accounts on specific social media platforms, and 2) users
who share limited information e.g., users who have very few posts.
In Section 5.1 we mentioned that we removed respondents who
post too few tweets. We empirically determined that less than 10
tweets is too few when considering model performance in terms
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of accuracy and F1 score. In this section, we want to explore the
impact of missing values in terms of Twitter/X activity level on
fairness. For example, if female users post fewer tweets then male
users, and we remove a large number of female users from our
sample, we may introduce bias in the pre-processing.

We define Twitter/X activity as a continuous variable that mea-
sures the number of tweets a user posts. Figure 4 shows Twitter/X
activity in the gun ownership data set. The x-axis represents the
Twitter/X activity and the y-axis shows the number of respondents
with at least that level of Twitter/X of activity (sample size), the gen-
der ratio and the gun ownership ratio, respectively. Figure 4a shows
that the size of our sample of respondents decreases significantly
as the Twitter/X activity increases (from 659 with at least 1 post to
481 with at least 50 post). Figure 4b and 4c show the relationship
between tweet activity, the sensitive attribute and the label. Gender
ratio is defined as number of male users divided by the number of
female users and gun ownership ratio is the number of gun owners
divided by number of non gun owners. From the two figures, both
the gender and gun ownership ratios remain fairly stable across
Twitter/X activity levels, particularly when the activity level is
greater than 10. When the Twitter/X activity level is between 10
and 50, the difference between the maximum and minimum gender
ratio is less than 0.1 or 7.3% and for the gun ownership ratio, it is
less than 0.03 or 6.9%. From this result, we can conclude that setting
Twitter/X activity level to 10, i.e., removing all handles posting
less than 10 tweets, will reduce activity bias. We will empirically
evaluate the impact of lower levels of ‘missing’ data by assessing
the impact on model performance when the number of posts is
above 10, but less than 50. We consider this a moderate to low level
of missingness.

Figure 5 shows a similar set of figures for Twitter/X activity on
the Covid-19 vaccine data set. Similar to the gun ownership data
set, the sample size changes significantly (from 572 with at least 1
post to 379 with at least 50 post). Gender ratio and Covid-19 vaccine
acceptance ratio remain fairly constant. Similar to gun violence,
setting the minimum Twitter/X activity to 10 posts reduces the
amount of bias in our sample. In general, dropping users with too
much missing information will reduce the bias to our sample and
improve model performance.

5.3 Evaluation

In our fairness evaluation, we use two metrics to quantify fairness,
disparate impact (“p%-rule”) [24, 63] and CV [10]. The p%-rule is
closest to the legal definition of fairness and it is often used in
anti-discrimination laws to measure fairness and discrimination [3].
The p%-rule is defined as:

P(Y=+|S=1) P(Y=+|S=0)
P(Y=+S=0) P(Y=+S=1)

n (

The p%-rule measures the probability ratio of getting a positive
outcome between the privileged group and the unprivileged group.
When using the p%-rule, the higher the value, the fairer the machine
learning model. Generally, if the p%-rule is greater than 80%, or
0.8, the model is considered to be non-discriminatory [6]. Another
fairness metric, CV, proposed by Calders and Verwer is similar to
p%-rule, but uses the difference instead of the ratio to quantify bias.
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It is defined as:
[P(Y = +|S = 1) = P(Y = +|S = 0)]

A low value for CV is an indication of a fair classifier. Compared
to the p%-rule, CV does a better job of capturing bias when the
probabilities are high. For example, if P(Y = +|S = 1) = 0.95 and
P(Y = +|S = 0) = 0.8, the p%-rule value is 0.842 (indicating a fair
classifier), but the CV value is 0.15, highlighting the difference be-
tween the probabilities. When the probabilities are low, p%-rule has
values that better align with expected fairness values. For example,
if P(Y = +|S=1) = 0.2 and P(Y = +|S = 0) = 0.05, CV is still 0.15,
but p%-rule is 0.25.

In our experiments, we use 5-fold cross validation to train our
models and use accuracy and F1 score on the validation set in
each fold to measure accuracy and F1, We use p%-rule and CV
score to measure fairness. The fairness metrics require that we
define the positive and negative outcomes for the sensitive attribute.
This means we have to specify the privileged and unprivileged
groups. Unlike most classic fairness data sets such as the COMPAS
recidivism data and the German credit data [21, 36], there is no
clear definition of positive and negative outcome for our data sets.

6 EMPIRICAL EVALUATION

In this section, we begin by investigating the fairness of different
types of machine learning models for our two cases (Section 6.1).
When the classifiers are not fair, we show how fairness can be im-
proved using our fixing approach (Sections 6.2 and 6.3). Finally, we
measure and analyze the decrease in relationship between the sen-
sitive feature proxy X? and the hidden sensitive feature S (Section
6.4).

6.1 Prediction results for case studies

Gun ownership. Table 3 shows the average and standard error (in
parentheses) for accuracy, F1 score, and the fairness measures for
all the classic machine learning models and neural network models
in our study. In terms of model performance, logistic regression has
the best overall performance (72%) and the best performance for
both the privileged group (77%) and the unprivileged group (67%),
followed by the neural network model with an attention layer
(69%). Overall, the performance of logistic regression is 3% higher
in accuracy and 8% higher in F1 score when compared to the second
best model. We believe that the logistic regression model has better
performance than the neural network model because our data set
is relatively small with approximately 500 observations. Typically,
more examples are necessary to train a neural model. In terms
of fairness, the random forest and neural network with attention
layer models have the best fairness scores and logistic regression
has an average fairness score when compared to the other models.
The p%-rule score for logistic regression is about 20% lower than
random forest, 9% higher for the CV score and the difference in
accuracy between the privileged and unprivileged group is 5% less
than random forest. However, random forest performs poorly in
terms of accuracy (the 2nd lowest) and F1 score (the lowest).
Covid-19. Table 4 shows the model performance and fairness
scores for the Covid-19 data set. Similar to the gun ownership
data, the neural network models have worse performance than



EAAMO ’23, October 30-November 01, 2023, Boston, MA, USA

1.45

Yanchen Wang and Lisa Singh

700

o
1]
@

.2
1.40 -
650 0115 € o0.50
2 600 B 2
@ =130 A G 045
@ s50 @125 o \/_\/\_’\
g 500 g 120 g 0.40
3 O 115 g 0.35
450 110 3
400 1.05 0.30
o 10 20 30 40 50 0 10 20 30 40 50 [ 10 20 30 a0 50
Twitter activity Twitter activity Twitter activity
(a) Number of handles (b) Gender ratio (c) Gun ownership ratio
Figure 4: Twitter/X activity of respondents in the gun ownership data set
600 115
6.2
550 110 6.0
8 8 105 Ssas
‘% 500 ® 1.00 o E
[} - < ° 5.6
= 5 095 — S Ysa \/\
5450 T o090 - 4 E 5.2
w D o.85 3 % 5.0
400 o 38
0.80 S g4
350 0.75 4.6
[ 10 20 30 40 50 [} 10 20 30 40 50 Py o 20 30 40 s0
Twitter activity Twitter activity Twitter activity
(a) Number of handles (b) Gender ratio (c) Vaccine acceptance ratio

Figure 5: Twitter/X activity of respondents in Covid-19 data set

the classic N-gram models. Again, this likely occurs because the
sample size is fairly small (462 observations). In terms of model
performance, random forest has the best performance, followed
by the neural network model with an attention layer and logistic
regression. Overall, the performance of random forest is 3% higher
than the next best model in terms of accuracy and F1 score. In
terms of fairness, the fairness scores are fairly consistent across
all models. SVM has the highest fairness score followed by logistic
regression. The p%-rule score for random forest is approximately
9% lower than SVM, less than 1% higher than the CV score and the
difference in accuracy is 5% higher than SVM. However, SVM has
the lowest accuracy and a F1 score when compared to the other
models.

For both of our case studies, we find that the best performing
models have reasonable accuracy and F1 scores. However, their
fairness scores are poor, meaning that they are biased with respect
to gender. Therefore, our next step is to determine whether or not
we can improve the fairness while maintaining predictive accuracy.

6.2 Fixing using the ground truth sensitive
attribute (S)

In this section, we show that if a sensitive attribute S is available,
we can use an existing fairness fixing method ([58]) to reduce the
correlation between X? and S, thereby reducing the bias. Figure
6 shows the performance and fairness scores of the best classifier
for each data set before and after fixing. The red dots show the
performance and fairness scores of the best classifier (using the
results from Table 3) for each data set before fixing, the purple
dots show prediction results of the best classifier after fixing using
the ground truth sensitive attribute. In both data sets, the fairness
scores, p%-rule and CV, improve substantially with only a small
tradeoff in accuracy and F1 score. For example, in the gun ownership

data set, the accuracy decreases by less than 2% and the F1-score by
less than 3%, while the p%-score increases to 0.89 (23% increase) and
the CV score decreases to 0.05 (8% decrease). Similar to many other
studies performed on different types of data sets, these results are a
strong indication that when ground truth demographic features are
available, researchers can easily use existing fairness fixing methods
to reduce bias. But what about when demographic features are not
available? We consider this scenario next.

6.3 Fixing method with inferred sensitive
attribute (S)

In this section, we explore inferring the sensitive attribute, i.e. com-
puting S for cases when ground truth sensitive feature is not avail-
able to the researcher.

Table 5 shows the performance of predicting gender using three
state of the art inference models: Siamese, BERT and BERT emoji
[43, 44] on the gun ownership and Covid-19 data sets. We note
that the three gender inference models we consider in this paper
infer binary gender. We acknowledge that this is a limitation since
there are more than two possible values for gender. However, in
our data sets, we only have binary gender information as ground
truth data and therefore, can only infer binary gender from the
inference models. Among the three models, BERT emoji has the
best performance with an overall accuracy of 0.809 and 0.787 on
gun ownership and Covid-19, respectively.

Next, we use the inferred sensitive attributes $ from each gender
inference model as a proxy for the ground truth sensitive attribute
S. We then apply the same fixing method to remove selection bias.

These results are also shown in Figure 6. Recall that the left
subfigures show the accuracy (x-axis) and F1 scores (y-axis) for the
original data (red square), the ground truth data (purple triangle)
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Table 3: Results for predicting gun ownership
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Privileged Unprivileged Overall
Model F1 score p%-rule Ccv rivilege npriviiege vera
group accuracy | group accuracy | accuracy
Logistic regression | 0.699 (0.04) | 0.648 (0.061) | 0.127 (0.062) | 0.768 (0.033) | 0.671(0.028) | 0.72 (0.03)
Random forest 0.498 (0.066) | 0.877 (0.067) | 0.033 (0.029) | 0.662 (0.027) 0.601 (0.026) 0.635 (0.026)
Decision tree 0.481 (0.088) | 0.677 (0.105) | 0.117 (0.079) | 0.642 (0.039) 0.569 (0.033) 0.601 (0.036)
SVM 0.558 (0.041) | 0.376 (0.103) | 0.216 (0.095) | 0.706 (0.019) 0.578 (0.013) 0.646 (0.015)
NN without
W? ol 0.588 (0.042) | 0.683 (0.098) 0.114 (0.073) 0.684 (0.043) 0.617 (0.04) 0.651 (0.041)
attention layer
NN with
: 0.618 (0.048) | 0.773 (0.104) | 0.087 (0.064) | 0.716 (0.042) 0.653 (0.046) 0.689 (0.044)
attention layer
Table 4: Results for predicting Covid-19 vaccine hesitancy
Privileged Unprivileged Overall
Model F1 score p%-rule Ccv riviiege npriviege vera
group accuracy | group accuracy | accuracy
Logistic regression | 0.658 (0.059) | 0.744 (0.051) | 0.176 (0.043) | 0.697 (0.053) 0.599 (0.047) 0.654 (0.05)

Random forest

0.684 (0.042)

0.675 (0.064)

0.217 (0.058)

0.747 (0.051)

0.632 (0.062)

0.697 (0.041)

Decision tree

0.574 (0.062)

0.642 (0.068)

0.262 (0.062)

0.658 (0.051)

0.562 (0.055)

0.618 (0.045)

0.676 (0.023)

0.651 (0.098)

0.216 (0.058)

0.731 (0.028)

0.629 (0.024)

SVM 0.523 (0.074) 0.761 (0.069) | 0.158 (0.032) | 0.599 (0.055) 0.532 (0.049) 0.568 (0.053)
NN without

. 0.654 (0.03) | 0.662(0.089) | 0.227 (0.053) | 0.714 (0.035) 0.632 (0.031) 0.671 (0.032)
attention layer
NN with

0.688 (0.026)

attention layer

Table 5: Gender inference model performance

(a) Gun ownership

Ground truth | Siamese | BERT | BERT emoji
Male 0.818 0.747 | 0.827
Female 0.775 0.799 | 0.785
Overall 0.8 0.769 | 0.809
(b) Covid-19
Ground truth | Siamese | BERT | BERT emoji
Male 0.79 0.784 | 0.805
Female 0.766 0.737 | 0.771
Overall 0.778 0.759 | 0.787

and each model using the resampling fixing method with the in-
ferred sensitive attribute values (circles) on our two data sets. The
right subfigures show the p%-rule (x-axis) and the CV (y-axis) for
the same data. From the figure, we see that the accuracy and F1
scores remain high (less than a 2% difference). The fairness scores
using $ are significantly better than without fixing (red square), but
not as strong as when using the ground truth sensitive attribute
(purple triangle). In the gun ownership data, with inferred sensitive
attribute, the p%-rule improves by 18% and the CV score improves
by 4.7%. In the Covid-19 data, the p%-rule improves by 10.3% and
the CV score improves by almost 6%. A good machine learning
model should be in the top right corner of the left subfigures and
a fair model should be in the bottom right corner of the right sub-
figures. From the figures, the red dots, results without any fixing,
have good model performance but bad fairness. The purple dots,
results with fixing using ground truth gender, have lower accuracy
but better fairness, highlighting that fairness can be improved with
a small tradeoff with accuracy, even when ground truth data are
not available.

6.4 Analyzing the relationship between X? and
S

In Section 3, we suggested that when the sensitive attribute proxy
XP is highly correlated to S, the model may be less fair. The amount
of correlation is directly related to the fairness of the machine
learning model. Therefore, our goal is to make sure the correlation
is low.

To better understand the existing relationship between the sen-
sitive feature proxy X? and the hidden sensitive feature S, we want
to measure the size of the overlap in features between them. To
measure the initial overlap, we build a model to predict the sensi-
tive attribute (gender) using the features we used to predict gun
ownership. More specifically, we use a set of features to train a
logistic regression classifier to predict gun ownership. We then use
the same set of features to train another logistic regression model
to predict the sensitive attribute. After training both classifiers,
we identify the top n most predictive features from both models
and determine the overlap, i.e. the number of features in common
among the top n most predictive features in the two classifiers. The
more features in common, the stronger the relationship between
XP and S, i.e. the more related they are.

Figure 7 shows the proportion of overlapping features in both
the gun ownership and the Covid-19 data sets for n between 20 and
60. The proportion is largest when no fixing takes place (red lines)
and lowest after fixing using ground truth data (purple lines). When
fixing using an inferred gender value, the proportion of overlapping
features is in between the the two. We see from Figure 7 that the
size of the overlap between the sensitive feature proxy and the
hidden sensitive feature reduces by approximately 50% after fixing
for all the cases, further supporting the idea that fairness can be
achieved with only a small loss in accuracy whether or not the
sensitive attribute is available to the researcher.
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7 ETHICS AND REPRODUCIBILITY
STATEMENT

In our case studies, we obtained consent from survey respondents
to link their survey responses to their Twitter/X accounts. We also
received IRB approval (STUDY00003571 and STUDY00002133) from
Georgetown University and we use a strict protocol for storing the
survey and Twitter/X data from respondents.

We recognize the ethical complexity associated with the use
of human trace data for research and have focused on designing
an experiment that advances our knowledge of fairness on social
media while maintaining the privacy of those who consented to
being part of our research. We acknowledge that the detection of
user demographics also poses unique ethical considerations. While
automated methods can be valuable, error does exist in these models
and there are possible equity and justice related consequences to
imbalances in these errors. It is one reason that studies like these
are important for computer science researchers to conduct and
share.

8 CONCLUSION

As computer scientists try to understand opinion and behavior
on social media, it is imperative to build fair models in the pres-
ence of noisy, missing data. This work presents a methodology for
determining the fairness of models built using text social media
data when ground truth sensitive attributes are available and in
the case when they are not. Using two Twitter/X case studies, we
highlight the bias that exists when applying state of the art ma-
chine learning models on social media data. This bias is a direct
result of the presence of a sensitive feature proxy that correlates
to the hidden sensitive feature. We show that when we have the

ground truth sensitive feature, we can effectively improve fairness
by adapting existing fixing methods. We then show that when we
do not have the ground truth demographic feature of interest, we
can use existing reliable demographic inference models with high
accuracy to infer the sensitive feature and use the inferred feature
to improve fairness. This work is a first step toward understanding
how to effectively measure fairness in a noisy environment like
social media.

There are some important limitations of this work that may sug-
gest future research directions. First, our sample sizes were small.
Using self supervised learning or transfer learning may have im-
proved the accuracy of these models and given insight into the
fairness of these newer models. We also focused on binary classifi-
cation tasks. An important future direction is to understand how
well these finding hold for multi-class problems. Because we use
social media data, we have other types of features available to us,
e.g. relationship data and image data. Future work should consider
using all these types of data together to see what new fairness
issues may arise. Finally, our study was conducted on Twitter/X.
It would be informative to conduct similar experiments using data
from other social media platforms.

ACKNOWLEDGMENTS

This research was funded by National Science Foundation awards
#1934925 and #1934494, the National Collaborative on Gun Vio-
lence Research (NCGVR), and the Massive Data Institute (MDI) at
Georgetown University. We thank our funders for supporting this
work.

REFERENCES

[1] Shakeel Ahmad, Muhammad Zubair Asghar, Fahad M Alotaibi, and Irfanullah
Awan. 2019. Detection and classification of social media-based extremist af-
filiations using sentiment analysis techniques. Human-centric Computing and
Information Sciences 9, 1, 1-23.

Ari Ball-Burack, Michelle Seng Ah Lee, Jennifer Cobbe, and Jatinder Singh. 2021.
Differential tweetment: Mitigating racial dialect bias in harmful tweet detection.
In Conference on Fairness, Accountability, and Transparency. 116-128.

Solon Barocas and Andrew D Selbst. 2016. Big data’s disparate impact. California
Law Review 104, 671.

Rachel KE Bellamy, Kuntal Dey, Michael Hind, Samuel C Hoffman, Stephanie
Houde, Kalapriya Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta,
Aleksandra Mojsilovi¢, et al. 2019. Al Fairness 360: An extensible toolkit for de-
tecting and mitigating algorithmic bias. IBM Journal of Research and Development
63, 4/5, 4-1.

Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael Kearns,
Jamie Morgenstern, Seth Neel, and Aaron Roth. 2017. A convex framework for
fair regression. arXiv:1706.02409

D. Biddle. 2005. Adverse Impact and Test Validation: A Practitioner’s Guide to Valid
and Defensible Employment Testing. Gower.

Sarah Bird, Miro Dudik, Richard Edgar, Brandon Horn, Roman Lutz, Vanessa
Milan, Mehrnoosh Sameki, Hanna Wallach, and Kathleen Walker. 2020. Fairlearn:

[2

3

4

[5


https://arxiv.org/abs/1706.02409

Mitigating demographic bias of machine learning models on social media

[10

(11

[12

(13

[14

[15

[16

[17

[18

[19

[20

[21

[22

[23

[24

[25

[26

[27

[28

[29

[30

]

]

)

]

]

]

]

]

]

A toolkit for assessing and improving fairness in AL Technical Report MSR-TR-2020-
32. Microsoft. https://www.microsoft.com/en-us/research/publication/fairlearn-
a-toolkit-for-assessing-and-improving-fairness-in-ai/

Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T
Kalai. 2016. Man is to computer programmer as woman is to homemaker?
debiasing word embeddings. Advances in neural information processing systems
29.

Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ashton Anderson, and Richard
Zemel. 2019. Understanding the origins of bias in word embeddings. In conference
on machine learning. 803-811.

Toon Calders and Sicco Verwer. 2010. Three naive bayes approaches for
discrimination-free classification. Data Mining and Knowledge Discovery 21,
2, 277-292.

Flavio P Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan
Ramamurthy, and Kush R Varshney. 2017. Optimized pre-processing for dis-
crimination prevention. In Conference on Neural Information Processing Systems.
3995-4004.

Stevie Chancellor and Munmun De Choudhury. 2020. Methods in predictive
techniques for mental health status on social media: a critical review. NP7 digital
medicine 3, 1, 1-11.

Jiahao Chen, Nathan Kallus, Xiaojie Mao, Geoffry Svacha, and Madeleine Udell.
2019. Fairness under unawareness: Assessing disparity when protected class is
unobserved. In Conference on fairness, accountability, and transparency. 339-348.
Xin Chen, Yu Wang, Eugene Agichtein, and Fusheng Wang. 2015. A comparative
study of demographic attribute inference in twitter. In Conference on Web and
Social Media, Vol. 9.

Alexandra Chouldechova and Aaron Roth. 2018. The Frontiers of Fairness in
Machine Learning. arXiv:1810.08810

Michael D Conover, Bruno Gongalves, Jacob Ratkiewicz, Alessandro Flammini,
and Filippo Menczer. 2011. Predicting the political alignment of twitter users. In
Conference on Social Computing. 192-199.

Giandomenico Cornacchia, Vito Walter Anelli, Giovanni Maria Biancofiore,
Fedelucio Narducci, Claudio Pomo, Azzurra Ragone, and Eugenio Di Sciascio.
2023. Auditing fairness under unawareness through counterfactual reasoning.
Information Processing & Management 60, 2, 103224.

Alexander D’Amour, Hansa Srinivasan, James Atwood, Pallavi Baljekar, David
Sculley, and Yoni Halpern. 2020. Fairness is not static: deeper understanding of
long term fairness via simulation studies. In Conference on Fairness, Accountability,
and Transparency. 525-534.

Jeffrey Dastin. 2018. Amazon scraps secret Al recruiting tool that showed
bias against women. https://www.reuters.com/article/us-amazon-com-jobs-
automation-insight/amazon-scraps-secret-ai- recruiting- tool- that- showed-
bias-against-women-idUSKCN1MK08G

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
arXiv:1810.04805

Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive ics.uci.edu/ml

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. 2012. Fairness through awareness. In Innovations in Theoretical Computer
Science Conference. 214-226.

Michael D Ekstrand, Mucun Tian, Ion Madrazo Azpiazu, Jennifer D Ekstrand,
Oghenemaro Anuyah, David McNeill, and Maria Soledad Pera. 2018. All the
cool kids, how do they fit in?: Popularity and demographic biases in recom-
mender evaluation and effectiveness. In Conference on Fairness, Accountability
and Transparency. 172-186.

Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh
Venkatasubramanian. 2015. Certifying and removing disparate impact. In Con-
ference on Knowledge Discovery and Data Mining. 259-268.

Yue Geng, Zheng Lin, Peng Fu, and Weiping Wang. 2019. Rumor detection on
social media: A multi-view model using self-attention mechanism. In Conference
on Computational Science. 339-352.

Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. 2019. Fairness-
aware ranking in search & recommendation systems with application to linkedin
talent search. In Conference on Knowledge Discovery and Data Mining. 2221-2231.
Avijit Ghosh, Ritam Dutt, and Christo Wilson. 2021. When fair ranking meets
uncertain inference. In Conference on Research and Development in Information
Retrieval. 1033-1043.

Carole Roan Gresenz, Lisa Singh, Yanchen Wang, Jaren Haber, and Yaguang
Liu. 2023. Development and Assessment of a Social Media-Based Construct
of Firearm Ownership: Computational Derivation and Benchmark Comparison.
Journal of medical internet research 25, e45187.

Nina Grgic-Hlaca, Muhammad Bilal Zafar, Krishna P Gummadi, and Adrian
Weller. 2016. The case for process fairness in learning: Feature selection for fair
decision making. In NIPS symposium on machine learning and the law, Vol. 1. 2.
Sharath Chandra Guntuku, David B Yaden, Margaret L Kern, Lyle H Ungar, and
Johannes C Eichstaedt. 2017. Detecting depression and mental illness on social
media: an integrative review. Current Opinion in Behavioral Sciences 18, 43-49.

(31

[32

[33

[34

[35

[36

[37

[38

[40

[41

[42

[43

[44

[45

[46

[47

(48

[49

‘o
2.0

[51]

(52

[53

[54

[55

[56

EAAMO ’23, October 30-November 01, 2023, Boston, MA, USA

Moritz Hardt, Eric Price, and Nati Srebro. 2016. Equality of opportunity in
supervised learning. Advances in Neural Information Processing Systems 29, 3315—
3323.

Hui Hu, Mike Borowczak, and Zhengzhang Chen. 2021. Privacy-Preserving Fair
Machine Learning Without Collecting Sensitive Demographic Data. In Conference
on Neural Networks. 1-9.

Adam Hughes and Stefan Wojcik. 2019. Key takeaways from our new study of how
Americans use Twitter. https://www.pewresearch.org/fact-tank/2019/04/24/key-
takeaways-from-our-new-study-of-how-americans-use- twitter

Julia Ive, George Gkotsis, Rina Dutta, Robert Stewart, and Sumithra Velupillai.
2018. Hierarchical neural model with attention mechanisms for the classification
of social media text related to mental health. In Workshop on Computational
Linguistics and Clinical Psychology: From Keyboard to Clinic. 69-77.

Kokil Jaidka, Saifuddin Ahmed, Marko Skoric, and Martin Hilbert. 2019. Pre-
dicting elections from social media: a three-country, three-method comparative
study. Asian Journal of Communication 29, 3, 252-273.

Lauren Kirchner Jeff Larson, Surya Mattu and Julia Angwin. 2016. How We
Analyzed the COMPAS Recidivism Algorithm.

Faisal Kamiran and Toon Calders. 2012. Data preprocessing techniques for
classification without discrimination. Knowledge and information systems 33, 1,
1-33.

Toshihiro Kamishima, Shotaro Akaho, Hideki Asoh, and Jun Sakuma. 2012.
Fairness-aware classifier with prejudice remover regularizer. In European Confer-
ence on Machine Learning and Knowledge Discovery in Databases. 35-50.

Akrivi Krouska, Christos Troussas, and Maria Virvou. 2020. Deep Learning for
Twitter Sentiment Analysis: The Effect of Pre-trained Word Embedding. Machine
Learning Paradigms: Advances in Deep Learning-based Technological Applications,
111-124.

Susan Leavy. 2018. Gender bias in artificial intelligence: The need for diversity
and gender theory in machine learning. In International Workshop on Gender
Equality in Software Engineering. 14-16.

Nicol Turner Lee. 2018. Detecting racial bias in algorithms and machine learning.
Journal of Information, Communication and Ethics in Society.

Sabina Leonelli, Rebecca Lovell, Benedict W Wheeler, Lora Fleming, and Hywel
Williams. 2021. From FAIR data to fair data use: Methodological data fairness in
health-related social media research. Big Data & Society 8, 1.

Yaguang Liu and Lisa Singh. 2021. Age Inference Using A Hierarchical Attention
Neural Network. In Conference on Information & Knowledge Management. 3273-
3277.

Yaguang Liu, Lisa Singh, and Zeina Mneimneh. 2021. A Comparative Analysis
of Classic and Deep Learning Models for Inferring Gender and Age of Twitter
Users. In Conference on Deep Learning Theory and Applications-DeLTA.

Ninareh Mehrabi, Fred Morstatter, Nanyun Peng, and Aram Galstyan. 2019.
Debiasing community detection: The importance of lowly connected nodes.
In Conference on Advances in Social Networks Analysis and Mining (ASONAM).
509-512.

Nor Rahayu Ngatirin, Zurinahni Zainol, and Tan Lee Chee Yoong. 2016. A
comparative study of different classifiers for automatic personality prediction. In
Conference on Control System, Computing and Engineering. 435-440.

Kirtan Padh, Diego Antognini, Emma Lejal-Glaude, Boi Faltings, and Claudiu
Musat. 2021. Addressing fairness in classification with a model-agnostic multi-
objective algorithm. In Uncertainty in Artificial Intelligence. 600-609.

R Colby Perkins. 1993. Evaluating the Passel-Word Spanish surname list: 1990
decennial census post enumeration survey results. US Department of Commerce,
Economics and Statistics Administration.

Andrew Perrin. 2015. Social media usage. Pew Research Center 125, 52—68.
Felix Petersen, Debarghya Mukherjee, Yuekai Sun, and Mikhail Yurochkin. 2021.
Post-processing for Individual Fairness. Advances in Neural Information Processing
Systems 34.

Geoff Pleiss, Manish Raghavan, Felix Wu, Jon Kleinberg, and Kilian Q Weinberger.
2017. On fairness and calibration. Advances in neural information processing
systems 30.

Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. arXiv:1908.10084

Alexey Romanov, Maria De-Arteaga, Hanna Wallach, Jennifer Chayes, Christian
Borgs, Alexandra Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, Anna
Rumshisky, and Adam Tauman Kalai. 2019. What’s in a name? Reducing bias in
bios without access to protected attributes. arXiv:1904.05233

H Andrew Schwartz, Johannes C Eichstaedt, Margaret L Kern, Lukasz Dziurzyn-
ski, Stephanie M Ramones, Megha Agrawal, Achal Shah, Michal Kosinski, David
Stillwell, and Martin EP Seligman. 2013. Personality, gender, and age in the
language of social media: The open-vocabulary approach. PloS one 8, 9.

Eli Sherman, Keith Harrigian, Carlos Aguirre, and Mark Dredze. 2021. Towards
Understanding the Role of Gender in Deploying Social Media-Based Mental
Health Surveillance Models. In Workshop on Computational Linguistics and Clini-
cal Psychology: Improving Access. 217-223.

Lisa Singh, A Polyzhou, Yanchen Wang, Jason Farr, and C Gresenz. 2020. Social
Media Data-Our Ethical Conundrum. Bulletin of the IEEE Computer Society


https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/
https://www.microsoft.com/en-us/research/publication/fairlearn-a-toolkit-for-assessing-and-improving-fairness-in-ai/
https://arxiv.org/abs/1810.08810
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://arxiv.org/abs/1810.04805
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.pewresearch.org/fact-tank/2019/04/24/key-takeaways-from-our-new-study-of-how-americans-use-twitter
https://www.pewresearch.org/fact-tank/2019/04/24/key-takeaways-from-our-new-study-of-how-americans-use-twitter
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1904.05233

EAAMO ’23, October 30-November 01, 2023, Boston, MA, USA

[57]

[58]

[59]

[60]

Technical Committee on Database Engineering 43, 4.

Vladimir Vapnik, Rauf Izmailov, et al. 2015. Learning using privileged information:
similarity control and knowledge transfer. Journal of Machine Learning Research
16, 1, 2023-2049.

Yanchen Wang and Lisa Singh. 2021. Analyzing the impact of missing values
and selection bias on fairness. International Journal of Data Science and Analytics,
1-19.

Yifang Wei and Lisa Singh. 2017. Using network flows to identify users shar-
ing extremist content on social media. In Pacific-Asia Conference on Knowledge
Discovery and Data Mining. 330-342.

James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fernanda
Viegas, and Jimbo Wilson. 2019. The What-If Tool: Interactive Probing of Machine

[61

[62

[63

]
]

Yanchen Wang and Lisa Singh

Learning Models. IEEE Transactions on Visualization and Computer Graphics,
1-1.

Marilyn A Winkleby and Beverly Rockhill. 1992. Comparability of self-reported
Hispanic ethnicity and Spanish surname coding. Hispanic Journal of Behavioral
Sciences 14, 4, 487-495.

Runhua Xu, Nathalie Baracaldo, and James Joshi. 2021. Privacy-preserving
machine learning: Methods, challenges and directions. arXiv:2108.04417
Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P
Gummadi. 2017. Fairness constraints: Mechanisms for fair classification. In
Artificial Intelligence and Statistics. 962-970.

Yan Zhang. 2018. Assessing fair lending risks using race/ethnicity proxies. Man-
agement Science 64, 1, 178-197.


https://arxiv.org/abs/2108.04417

	Abstract
	1 Introduction
	2 Related literature
	2.1 Measuring and improving fairness
	2.2 Machine learning model fairness using social media data

	3 Social media classification
	3.1 Modeling hidden sensitive features
	3.2 Challenges associated with social media classification fairness

	4 Methodology
	4.1 Experimental design 
	4.2 Feature Construction and Machine Learning Models

	5 Experimental setup
	5.1 Data set
	5.2 Data Issue
	5.3 Evaluation

	6 Empirical evaluation
	6.1 Prediction results for case studies
	6.2 Fixing using the ground truth sensitive attribute (S)
	6.3 Fixing method with inferred sensitive attribute ()
	6.4 Analyzing the relationship between Xp and S

	7 Ethics and Reproducibility Statement
	8 Conclusion
	Acknowledgments
	References

