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Accurate estimates of user location are important for many online services, including event detection, dis-
aster management, and determining public opinion. Neural network-based techniques have proven to be
highly effective in predicting user location. However, these models typically require a large amount of la-
beled training data, which can be difficult to obtain in real-world scenarios. In this article, we present two
approaches to tackle the issue of limited training data when predicting city level location. First, we consider
a self-supervised approach that trains a state-level model without labeled data and then integrate this knowl-
edge into the training dataset used for city-level predictions. Second, we explore the option of increasing the
number of training examples by utilizing external resources to generate synthetic users. Finally, we combine
these two strategies, exploiting the benefits of both. We empirically evaluate our proposed techniques on
multiple Twitter/X datasets and show that our models perform significantly better than the state-of-the-art
with improvements of up to 6% for Acc@161 and 8% for F1 score.
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1 Introduction

Social media platforms like Twitter/X have emerged as a significant source of real-time breaking
news, event sharing, and public opinion. Associating users’ location to shared content is useful
for many applications, including disaster response, public health monitoring, urban planning, and
marketing [30, 42, 53, 55]. For example, when a natural disaster occurs, emergency response teams
can more rapidly help communities if they know the location of users who post about on-the-
ground conditions [9, 53, 54]. Social scientists can also utilize posts with location information
to understand public opinion about issues related to elections, the economy, and well-being. In
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these cases, knowing the location of Twitter/X users is necessary for constructing a representative
sample [6, 55].

Despite the need, obtaining reliable location information about different subpopulations of in-
terest remains challenging for two primary reasons. First, even though Twitter/X allows users to
share their locations either in the location field or through GPS tracking, a large fraction of users
choose to do neither. For example, it has been reported that less than 1% of Twitter/X posts have
geolocation information associated with them [31]. Second, even when users share location infor-
mation, it is often incomplete and inaccurate [27]. Manual labeling has also proven to be difficult,
because annotators often cannot reach a consensus, resulting in limited training data, especially
when the analysis includes a large number of cities [11, 49]. Consequently, researchers often en-
counter scenarios where they have to rely on model predictions trained using small datasets. It is
not atypical for studies involving manual annotation for training data to have a small amount of
labeled data, ranging from hundreds to thousands of users.

Because of the importance of location information, much research on location inference exists
[23, 24, 30, 41, 42]. These methods typically work by training a model using a hybrid set of features,
including tweet text, profile, and network information. While these methods are powerful when
large amounts of training data are available, they are insufficient when the training data are limited.
Therefore, work still remains in this low-resource setting, i.e., when the amount of labeled training
data is limited and each location in the training set has location labels for only a small number of
users (dozens or even less). Prior work has demonstrated that the performance of deep learning
models for different text classification tasks degrades significantly in this case [20, 37].

To address these challenges, this article focuses on city-level location inference in a low-resource
setting. We use tweet text and, when available, the location field text (self-reported location).! We
posit that to address this challenge, there are three broad directions we can take: (1) provide better
user representations through pretraining instead of training from scratch; (2) expand the number
of training examples by generating larger quantities of high-quality labeled training data; (3) uti-
lize a combination of both strategies. In our work, we test these different directions. To improve
user representations, we incorporate self-supervised learning (SSL) into our pretraining. SSL is
amachine learning process where the model trains itself to learn meaningful representations of in-
put data by creating auxiliary tasks and generating data labels for that auxiliary task automatically.
For this city location detection task, we propose Related Concept Pretraining as a form of SSL. The
general idea is to pretrain a model for a similar task on a random set of users and then add this addi-
tional knowledge to the users in the training set by fine-tuning their vector representations. To ac-
complish this, we construct a dataset that can be used for pretraining our model. This dataset uses
self-supervised learning to generate a state location without human annotation. We refer to this
new self-supervised signal as a pseudo-label. A model is pretrained using the state location pseudo-
label and then incorporated as additional knowledge into the training process of the city prediction.

To increase the number of training examples, we propose Data Augmentation Using External
Resources. Specifically, we take advantage of external knowledge that exists online to automati-
cally generate labeled data and then inject these examples into our training data. Some research
[3, 34] has demonstrated that leveraging location-related text found online can help with loca-
tion inference. Our data-augmentation approach explores this idea. Existing models typically rely
on identifying indicative words as guidance for model training. However, when applying deep
learning techniques to Twitter/X data, these approaches tend to under-perform because of the

!We do not adopt the commonly used mention network both for privacy reasons (it involves processing users’ handles)
and the resource constraint focus of our problem. Other types of data, such as timezone, are currently unavailable through
the Twitter/X API we have access to.
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dont worry, folks. the violent crime of our city was 8.6% percent higher in
2016. but i was still fine. actually from 2006 to 2016, violent crime was still
down. and i have proof #proudofspacecity

Q n Q ihi Q&

Fig. 1. A tweet discussing crime in Houston from a user who lives there. It does not include the city name,
but the details shared align closely with what is found on Wikipedia.

inherent noisiness of tweets and the limited effectiveness of word-level analysis [4, 38]. We take
a different approach. We take sentence and paragraph-level context from location-relevant pages
and generate synthetic users to add into our training dataset. We hypothesize that contextually
relevant words, sentences, or paragraphs can be informative. For example, Figure 1 shows a hypo-
thetical tweet mentioning information about Houston’s crime rate. The city name is not present
in the tweet. However, the Wikipedia page for the city of Houston states “Houston’s violent crime
rate was 8.6% percent higher in 2016 than the previous year; however, from 2006 to 2016, vio-
lent crime was still down 12 percent in Houston” [59]. If the Wikipedia knowledge is part of the
model, then the content of the tweet without the explicit city name may imply a user’s location.
Given this observation, our approach involves creating synthetic users whose posts are sourced
from location-related articles and assigning the corresponding locations to the users as labels. This
method effectively enlarges the size of the training data with valuable information and, as we will
show, it generally improves performance. Finally, we investigate the performance of combining Re-
lated Concept Pretraining and Data Augmentation using External Resources, with the objective of
leveraging the strengths of both approaches to improve the accuracy and robustness of the model.

While our primary interest is in developing location inference models given a resource con-
strained environment, we also have concerns about the lack of high-quality labeled data, i.e., the
reliability of ground truth datasets for the location inference task. For example, despite the popu-
larity of using geotagged information as the ground truth, different public datasets have different
rules for determining the users’ labels. Example strategies include using the coordinates of the
first geotagged tweet as the location of a user or using a majority vote of the collected tweets.
Given the variability in the way ground truth datasets are constructed, we explore the robustness
and validity of these methods by comparing different geotag labeling strategies to self-reported
locations from users’ profiles. Ultimately, we want to understand the impact of different ground-
truthing strategies and provide recommendations that may improve the consistency of research
in this area.

In summary, we present a neural network-based model for city-level user location detection on
Twitter/X in a low-resource setting and make the following contributions: (1) We propose self-
supervised and data-augmentation approaches for advancing location inference on Twitter/X. (2)
We use Related Concept Pretraining to integrate state-level knowledge into the training process
as a strategy for improving the quality of the training data for this specific task. (3) As a com-
plementary strategy, we propose using location-related articles, e.g., Wikipedia pages, as external
knowledge to increase the number of examples in the training data without manual labeling. (4)
We conduct an extensive empirical analysis and demonstrate the strengths of each strategy on dif-
ferent Twitter/X datasets. (5) We present an analysis of the integrated approach that combines both
external knowledge pretraining and training data expansion and show its effectiveness. (6) We in-
vestigate the most commonly used ground truth labeling strategies and demonstrate the strengths
and weaknesses of each. (7) We make our code publicly available to support research in the area.?

2The code can be found through https://github.com/GU-DataLab/location_prediction
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The remainder of this article is organized as follows: In Section 2, we review the relevant litera-
ture. In Section 3, we present our experimental design. Section 4 describes our datasets. In Section 5,
we present our empirical evaluation. Section 6 presents conclusions and future work.

2 Related Literature

The related literature is divided into two parts. First, we describe previous work on location in-
ference (Section 2.1) and demographic inference (Section 2.2. Then, we review approaches for
addressing challenges that arise when using limited training data (Section 2.3).

2.1 Location Inference

Location information, such as countries, states, or cities, plays a vital role in contextualizing news,
emergency events, and people’s behaviors. Given its importance, automatic identification of loca-
tions has been studied for decades [63].

Location Categories. There are many different labels used for location inference tasks. In most
studies, home locations are predicted at city-level [30, 41, 42], and sometimes the classification task
is at the state, country, points, or grids level [27, 50, 51]. State-level categorization typically uses all
the states in a specific country as label categories, and country-level categorization involves using
a specific country as the category. For points-level, latitude and longitude are used as the location
categories. For grid categorization, the surface of the earth is represented as a two-dimensional
space over latitude and longitude pairs. Categories are created by grouping pairs whose latitude
and longitude are close to each other. City-level classification uses city labels to represent each
city and the immediate surrounding suburb. This strategy is used because of the large population
variation between large and small cities [23]. To mitigate this issue, most studies follow the city
category method of Han and colleagues [23], grouping together large cities with their surrounding
satellites and suburb cities and using them as labels.

Location Inference Approaches. The earliest attempts to identify the locations of users in-
volved mapping their IP addresses to physical locations [8], but this approach relies on private
information only accessible to internet service providers. Subsequent efforts focused on text-based
methods. Amitay and colleagues [3] propose a model that extracts information related to a loca-
tion listed in a gazetteer to identify geographical regions of web pages. Bilhaut et al. [5] build a
rule-based geographical classifier that utilizes a geographical gazetteer as an external lexicon.

Researchers have explored the use of classic machine learning algorithms like Support Vector
Machine (SVM) for location inference of users on social media platforms [12, 39]. Han and col-
leagues [23] propose using location-indicative words via feature selection, e.g., maximum entropy,
for this task. Han and colleagues [24] also propose a stacking-based method that combines tweet
text and metadata, including self-reported location and time zone. Krishnamurthy and colleagues
[34] introduce a knowledge-based approach using Wikipedia to improve location classification ac-
curacy. In their model, they match the entities of a city from Wikipedia and the entities mentioned
by the user in his/her posts and then predict the most likely location of a user.

With the increasing popularity of deep learning methods, numerous neural network-based meth-
ods have been proposed. Miura and colleagues [41] map text, self-reported location, biographies,
and timezone into the embedding space using fastText [7] and then concatenate all the embed-
dings from different components. This model achieves a comparable performance to some of the
advanced models that employ classic machine learning methods. Huang and Carley [29] propose a
CNN-based model that uses both text and metadata. Networks have also been investigated in the
context of deep learning for location prediction by Ebrahimi and colleagues [17]. In their work,
the authors construct a graph from users who mention each other and use network embeddings
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to represent users. The main limitation of network-based models is that users who are not linked
to the network display suboptimal performance in the test set. Miura and colleagues [42] propose
a GRU model that combines tweet text, biography, and network embeddings using an attention
mechanism, and their model outperforms several baselines. A semi-supervised learning approach
is proposed by Rahimi and colleagues [48], but their model does not perform as well as the state-of-
the-art in many cases. Mahmud and colleagues [39] develop a two-level hierarchical location clas-
sifier that predicts a country location mapped from the city label and then the city label within the
former. Wing and Baldridge [60] also build a hierarchical tree as the classification structure. Both
of these methods require training one classifier separately many times, reducing their efficiency.

Huang and Carley [30] introduce a hierarchical location prediction neural network, which si-
multaneously predicts a coarse-grained location (state) and the fine-grained label (city), the former
of which serves as a guide of the latter and thus, greatly reduces the training time. They employ
both word-level and character-level embedding in their model and create a new state-of-the-art.
Despite this improvement, we will show that when dealing with small datasets, the model still
faces challenges in a low-resource setting when there are a limited number of labeled examples
available for training at both the city-level and state-level. Our work differs from these previous
works, since we pretrain a model using generated state-level pseudo-labels that were obtained from
a large number of arbitrary users on Twitter/X. These pseudo-labels are also added as additional
features to our training examples. We also use external knowledge to generate new user training
examples to increase the size of our training data. To the best of our knowledge, SSL has not been
proposed for location detection to enhance user representations, and using available documents
to create synthetic users to increase the sample size has also not been explored.

2.2 Other Demographics

Inferring individuals’ attributes such as gender and age on Twitter/X has been used to understand
public opinion of different groups and conduct social science research on a variety of topics such
as harassment and health [16, 28]. As a result, the inference of a Twitter/X user’s demographics
has become an active area of research.

Earlier work often focused on using classic algorithms such as Naive Bayes (NB) with features
generated from bag-of-words [11, 44, 52]. Rao and colleagues [49] introduce sociolinguistic fea-
tures, i.e., the use of words such as LOL and OMG, and they achieve higher accuracy than using
n-grams alone when inferring gender, age, and political orientation. Fink and colleagues [21] uti-
lize n-grams, hashtags, and LIWC features to build an SVM classifier for gender inference, but
the performance improvement is marginal. Chen and colleagues [11] employed a more extensive
set of features that combines n-grams, topic features, profile images, and names to achieve state-
of-the-art performance [11] for age and gender inference. Zamal and colleagues [2] propose using
features generated from networks for political orientation. Specifically, they adopt features such as
n-grams and statistics and also the same feature set from users’ friends. Their SVM model performs
significantly better than the bag-of-words-based model.

In recent years, deep neural network-based models have attracted much attention. Kim and
colleagues present a model using word embeddings and recursive neural networks (RNN) for
gender and age inference. Wood-Doughty and colleagues propose using names only (last name
and screen name) for gender inference [61]. In their work, the models encode names and screen
names using convolutional neural network (CNN) and RNN, separately. Their best model
achieves a higher result than classic machine learning models. A multi-modal model is proposed
by Vijayaraghavan and colleagues [57], where they use an attention mechanism [14] to combine
components, including profile image, tweet text, and user network. Their model significantly
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enhances the accuracy for inference of age, gender, and political orientation when compared to
the traditional models. The rise of large-scale pretrained models has led to the growing popularity
of sentence-level embeddings. Liu and colleagues [38] propose using BERT for gender and age
classification, and the results show that sentence-level embeddings perform much better than
word-level analysis. A hierarchical network-based model developed by Liu and Singh [36] uses
tweet text and emojis for age inference. Specifically, they use gated recurrent unit (GRU) [15]
with an attention layer to separately train the emoji component (using word embedding and CNN)
and the text component (using BERT). Contrastive Language-Image Pre-training (CLIP)
[47] is introduced by Liu and Singh for age and gender prediction, and the accuracy is shown
to improve greatly over BERT [36]. The limitation of all these neural models is that they require
large amounts of labeled data (typically thousands per label) for pretraining and/or fine-tuning.

2.3 Algorithms for Small Training Data

Research in this space focuses on three strategies for handling small training datasets: transfer
learning, data augmentation, and self-supervised learning.

2.3.1 Transfer Learning. Transfer learning is a machine learning approach with the goal of
enhancing performance on a related task by utilizing the knowledge gained from a previously
learned task. It has become an important approach for enhancing deep learning models on small
datasets. For example, Mou and colleagues [43] use transfer learning with a convolutional neural
network for sentence entailment recognition. In their work, they pretrain a model using a large
labeled dataset and fine-tune it for two smaller datasets to achieve better performance. Agrawal
and Awekar [1] apply transfer learning for cyberbullying detection, and they experiment with
transferring embedding weights and network weights from one model to another. This approach
results in significant improvement in accuracy. Transfer learning has also been proposed for demo-
graphic inference. For example, Liu and Singh [37] adopt supervised transfer learning for gender
and age inference on Twitter/X by pretraining a model with a large labeled dataset and achieve
significant improvement over the state-of-the-art. One of the main drawbacks of these types of
transfer learning methods is that they typically assume a (large) labeled dataset for pretraining,
which is not always feasible, since manual labeling is time-consuming and resource-intensive.

2.3.2 Data Augmentation. Traditionally, data augmentation is a technique that involves gener-
ating new data points from existing data to increase the size of a dataset. The goal of data aug-
mentation is to introduce additional variance and diversity into the dataset, which can improve
the robustness of learning models. For image augmentation, common techniques include flipping,
rotating, cropping, and translating images [40, 46]. For text, popular methods include altering text
data through methods such as word replacement or shuffling. For example, Wei and Zou [58]
propose easy data augmentation (EDA) and show that by augmenting data with techniques
such as synonym replacement and random word insertion, the performance of numerous NLP
tasks improved. Karimi et al. [32] propose An Easier Data Augmentation (AEDA), which inserts
punctuation marks into the input sequence. They improve the state-of-the-art on different news
classification tasks. Back-translation, which involves translating a sentence from one language to
another and then translating it back to the original language, has also shown some success [26].
Our approach for data augmentation is novel, since we use external knowledge to increase the
number of examples in the training set. One limitation of data augmentation is that it can poten-
tially result in a large distributional discrepancy between the original text and the augmented text,
leading to a negative impact on the performance of the model. Therefore, when employing data
augmentation, distributional alighment must exist between the original and augmented texts to
see a performance gain.
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2.3.3 Self-Supervised Learning (SSL). Self-supervised learning is another popular method for
addressing issues caused by small data. It has recently drawn attention because of its generaliza-
tion ability and has been used across different domains, including natural language processing
[19, 35] and computer vision [10, 22]. For instance, Bidirectional Encoder Representations
from Transformers (BERT), which has been shown to be effective on a wide range of NLP
tasks, is pre-trained on two tasks: masked language modeling, where a model is trained to predict
as random sample of input tokens that have been replaced by a placeholder, and next sentence
prediction, where the goal is to decide whether a pair of sentences are related and whether one
sentence is the subsequent sentence of the other. RoOBERTa [35] was introduced as a refinement
of the BERT model. The authors show that BERT’s performance can be greatly enhanced with im-
proved training strategies and data-processing techniques such as training models longer, larger
batches, and more training data. However, these models are often at the post-level, limiting the
number of tokens in the input. Our task is a user-level task, so we can take advantage of using
multiple posts (tweets) to represent one training example. Feng and colleagues [19] develop a
self-supervised approach for bot detection using the number of followers as the prior knowledge
for pretraining. Their model combines tweets, user profile information, and network embeddings
using an attention mechanism that utilizes word embedding to encode text and profile informa-
tion. This strategy has been shown to not be as effective at dealing with the noisiness of tweets
[37]. While these strategies have performed well, these problems typically have a small number
of classes that are being predicted—less than 10. Our task, city-level prediction. contains hundreds
of classes. In general, our approach attempts to use SSL to enhance the vector representations of
users in the training data and data augmentation to generate new training examples. In both cases,
our approaches are novel for demographic inference and location inference.

3 Methods

In this section, we present our proposed approaches for location inference in a resource-
constrained environment. We begin with a problem formulation (Section 3.1). Then, we describe
our base model for location prediction (Section 3.2). Finally, we introduce the proposed methods
(Sections 3.3 and 3.4).

3.1 Problem Formulation

Suppose we have a set of users U and a subset of the users are part of a labeled training dataset
UT, where UT = {ulT, uZT, R u,Tn} and ulT represents the ith user in the training dataset and m

representing the number of users in the training dataset. Each user u! is represented by a set of
features xl.T. The features may be tweet text or self-reported location. We denote this as xl.T rext

and xl.T’lac, respectively. We are interested in predicting the city label y! for each u;. Therefore,

at a broad level, our goal is to build a neural model N to predict location Y = {y7,yI,... ,yl}
using features X7 = {xlT, xZT, ...,xI} of our users UT: N(XT) = YT. In cases where there is no

ambiguity, we will simplify the notation by removing the training set T superscript: N(X) =Y.

3.2 Base Model

Our approach is to enhance both the learning model and the training data. We begin by describing
the base learning model we use. Figure 2 shows the overview of this model. This base model first
maps tweet text and self-reported location into separate embedding spaces. Then, each type of
data is input into an RNN with attention. NL _, is used to process tweet text embeddings in the
Tweet Text Component, and N, l{) . is used to process the location field representations in the Location

Field Component. Finally, an attention layer combines the information to make the city prediction.
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Tweet Text Component

T
Ntext

Encoder

User u Attention Prediction

Word

Location Field
Address NT

Location Field Component

Fig. 2. Overview of the base model N.

3.2.1 Tweet Text Component. To get user post representations, we first use a sentence encoder

to encode the tweet text X7, , into an embedding space.

s = sentence_encoder(xztext),i € [1,m]

Then, we adopt a Hierarchical Attention Network (HAN) [62] as the structure of N, which
includes a GRU with an attention network. Compared to traditional attention network, HAN is
able to capture the intra-post relationship between these different post components, as well as
the inter-post relationships of a user’s posts. This structure has been shown to be useful for user-
level tasks with Twitter/X data [37]. Specifically, we use a bidirectional GRU to encode tweet text
representations:

h, = GRU(s,),i € [1,m]

—

hi = GRU(Si),i S [m, 1].

— — . ) — —
We concatenate h; and h; to get an annotation of the tweet text for user i, h; = [h;, h;]. Next,

we use an attention mechanism to reward tweet text that provides more important features for
correctly classifying a user. This yields

fi = tanh(Wh; + b),

exp( fiTo)
=
> exp(fi o)

v = Zaihi.
i

The tweet annotation h; is fed through a MultiLayer Perceptron (MLP) to get f; as a hidden
representation. Then, we measure the importance of the tweet text with a context vector o and get
a weight «; through a softmax function. Finally, we compute the tweets vector v as a weighted sum.

3.2.2 Location Field Component. Following prior work [42], we also adopt a HAN as the net-
work structure of NI{) . to process self-reported location. Specifically, we first encode XITOC into em-
beddings using a word-embedding encoder and then a GRU layer followed by an attention layer
to generate the final representations. This is identical to the tweet text component.
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Fig. 3. Overview of the related concept pretraining.

3.2.3  Feature Fusion. Since we do not know whether the tweet text or the location field is more
important for the location inference task, we incorporate an additional attention layer to combine
both pieces of information. In this way, different weights are assigned to the two components,
depending on their importance for the prediction task. We then include a fully connected layer
before returning the final prediction.

3.3 Related Concept Pretraining

Our first improvement is to integrate relevant related location concepts into the model training.
This approach can be viewed as a way to enrich the feature space.

3.3.1 Model Background. More formally, suppose we have a dataset with random users. The

user set is represented as UR = {uf, u?, e, uS}, where n is the total number of users and uf is

the jth user. Each user uf contains tweet text and location field features, like users in U . Similarly,

R _ (R R R R R _ (R
let X/, = {xl’text,xz,text, <+ +»Xp rexs ) De the tweet text features of users U™ and X, == {xl’loc,

R R

Xy oer -+ 0 X } be the self-declared location features.
,loc n,loc

3.3.2 Model Design.

Model Overview. Figure 3 shows the overview of the Related Concept Pretraining approach.
It consists of two steps: pretraining and fine-tuning. First, we pretrain a model N _,, which takes
tweet text XX as input. The labels are then built using a self-supervised signal. These labels are
state labels and are derived from the location field Xﬁ) .- We refer to these new labels as pseudo-
labels, since these are extracted using self-supervised learning. (We will discuss our decision to
select the location field information as the self-supervised signal in the next subsection.) The dif-
ference between pseudo-labels and ground truth labels is that pseudo-labels are extracted automat-

ically without human annotation, while ground truth labels are manually annotated by humans.
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Figure 3 also shows a simplified version of the base model (see Figure 2 for more detail). Specif-
ically, NX _, will be used within the tweet text encoder in the tweet text component of the base
model, while we keep other components unchanged. Finally, we make the city prediction.

Model Structure. For pretraining, we choose the location field address as the self-supervised
signal for the following reasons: (1) Self-declared location information can be an informative fea-
ture that contributes to model accuracy [30]. While it is not always the user’s actual address, it can
still guide the model, serving as a reasonable estimate. (2) Self-reported location is shared publicly
by many users on Twitter/X [12], making it straightforward to collect.

Because self-declared locations are often noisy, i.e., they could be a city, a state, or even invalid,
we implement a function to map users’ self-reported location into states. We build a city-to-state
dictionary. We then created a mapper function that searches for a city name (and/or a state name)
in the user profile and returns the corresponding state mapping using the city-to-state dictionary.
We choose states as the signal because of their hierarchical relationship to cities and because state
information is more commonly found in the location field than city information [12]. More for-
mally, we first use a state mapper function mapper to convert the self-report location into the
corresponding state in the United States:

= {y}'} = {mapper(x};,.)}.J € [1,n].

For example, if the value of x¥ i loc is “SF, Cali,” then we convert it into the state “California.” Then,
we apply a filter function f zl ter, which returns false if the location field information can not be
mapped into a state. Those users that we cannot map to a state are filtered out:

y'R = {yR c YR|filter(y]R) = True},j € [1,n]

R R : R .
XR ., = (xR X; rext © Xrexe|filter(y;) = True}, j € [1,n].
Finally, we pretrain a model with X% = {x1 text,xz extr - x;thext} as input and YR = {y’R
TS v, R’} as the class labels, where n’ is the number of remaining users. Similar to the Tweet

Text Component of the base model, we use a HAN as the structure for the neural model NX .

Fine-tuning. For fine-tuning, we replace the original encoder N/, , with NX . We still use
NII;C to process the location field and an attention layer to combine the 1nformat10n from the
tweet text and the location field. We hypothesize that this external knowledge will improve the
predictive accuracy of the location inference model, because the pretraining using state will result
in a user embedding that is closer to the city task.

3.4 Data Augmentation Based on External Resources

Intuitively, our other strategy is to increase the number of users in the training dataset, U”. We ac-
complish this by taking location-related articles, e.g., Wikipedia, and segmenting the information
into different synthetic users.’®

3.4.1  Model Background. More formally, suppose we have a set of articles A = {ay,ay, ..., a4},
where g is the total number of articles and ay is the kth article. Each article a; contains a title ex
and content ¢, which consists of |c| sentences.

3.4.2 Model Design.

Model Overview. Figure 4 presents the overview of the proposed Data Augmentation Based on
External Resources. We first download online articles related to cities. Each article includes a title e
and content ¢, which is segmented into different fragments. We then pair each fragment with the

3The segment function is based on sentence segmentation, with each synthetic user containing 20 sentences.
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Fig. 4. Overview of data augmentation based on external resources.

title and create synthetic users. Next, we combine all the synthetic users from all the articles with
users U from the training dataset. Finally, we use our base model to train the combined dataset
and make predictions.

Synthetic User Generation. Our synthetic user generation approach focuses on increas-
ing the size of the training data by incorporating knowledge from external sources. In particu-
lar, we hypothesize that utilizing location-related information available online can improve the
model’s performance, since the labeled training data may not contain sufficient information for
model prediction. Recall that some cities have very few labels. We leverage the effectiveness of
Wikipedia in enhancing location classification [34] and utilize it as our source of external knowl-
edge. Specifically, as Figure 4 shows, we download the Wikipedia articles related to different
cities that exist in the training dataset. For each article, we use a segment function segment to
divide the page content into fragments and assign the same label (article title) to each fragment.
This yields:

U = {segment(ck, ex)}. k € [1,g].

We then combine the newly generated users U" with the users U7 from the training set. Finally,
we train a model with the base model structure using the combined dataset and make predictions.
Note that, for this method, we do not conduct fine-tuning. Instead, we only add the new training
examples to the existing training dataset and train the model from scratch.

3.5 Hybrid Approach

In our work, we also investigate the performance of merging the pretraining and augmentation
methods, leveraging the respective advantages of both. Specifically, we first pretrain a model N _,,
as the same process in related concept pretraining. Then, using the combined dataset U" + UT
generated from the proposed data-augmentation approach, we adopt the base model structure with

NE _, as the tweet text encoder to train and make final predictions.

4 Analysis of Location Datasets

In this section, we first introduce the datasets used in our empirical evaluation, including the
training sets, the pretraining set, and the Wikipedia dataset. Then, we discuss the reliability of
different labeling methods for determining the ground truth location. Finally, we use this reliability
analysis to suggest a method for labeling location datasets and apply the method to label the dataset
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we collected. For the remaining datasets, we keep the existing labels to ensure consistency with
prior research.

4.1 Datasets

TwitterUS. The first dataset we use is a publicly available dataset, TwitterUS [50], which consists
of 429K users in the training set, 10K users for development, and 10K test users in a North American
region. The ground truth location of a user is set to the first geotag of the user in the dataset.
Following prior work [30], we assign the closest city to each user’s ground truth location using the
city category approach designed by Han and colleagues [23]. Because our focus is a low-resource
setting, i.e., a small number of labeled examples, we extract 50 random users per category (city). We
exclude cities if there are fewer than three users associated with them, leaving a dataset containing
18,470 users.

GeoText. GeoText is a dataset from Eisenstein et al. [18] that contains 9,500 users with geograph-
ical coordinates for each user. All users come from the contiguous United States. The ground truth
location of a user is also set to the first geotag of the user in the dataset. Similar to the TwitterUS
dataset, we apply a filtering criterion of a minimum of three users per category, resulting in a total
of 9,373 remaining users. Because handles are not shared due to privacy concerns, we only use
text for this dataset.

GeoDecahoseSample. We collect a dataset that consists of approximately 10,000 users sampled
from the Twitter Decahose (a 10% sample of tweets). Each user has at least one geotagged tweet
in the United States. We use the geotagged tweet and the profile to determine the location of the
user. Similar to other datasets, we remove cities that do not meet the minimum requirement of
having at least three users. We call this dataset GeoDecahoseSample, resulting in a final dataset
containing 6,559 users.

GeoState. For our data-collection process, we randomly selected a consecutive two-week period
in each of the quarters in 2021-2022 (last two quarters for 2021 and first two quarters for 2022)
from the Twitter Decahose [56]. We then collected the profile information of users who posted
tweets and identified their locations using their profiles. Next, we randomly selected up to 1,000
handles from each state, removing suspended accounts or accounts that did not post any tweets.
This results in a dataset containing approximately 900 users per state.

Wikipedia. We first download all the articles associated with American cities that also exist
in our training datasets from Wikipedia. Next, we extract articles specifically from the “main ar-
ticle” section of each city, which includes a link that redirects the reader to another Wikipedia
article containing more in-depth information on a specific topic related to the main topic of the
current page. For example, we retrieve the Wikipedia article for the city of Boston, as well as the
article for the history of Boston from the “main article” section. Using this approach, we generate
approximately 5,100 synthetic users.

4.2 Location Labeling Reliability

There are primarily three methods for labeling users in location datasets: using self-reported lo-
cation, using the first geotagged location, or using a majority vote of geotagged locations. For
example, Roller et al. [50] set the location of the first geotagged post of a user in the dataset as
the ground truth location. Han and colleagues [25] propose using a majority vote method. They
only keep users with at least 10 geotagged tweets to get a reliable estimate of a user’s primary
location. To be eligible as a data record in the geotagged dataset, a user must have 50% of their
tweets coming from the same area. Vijayaraghavan et al. [57] use the self-reported location as the
ground truth.
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Table 1. Match Rate for Different Methods during Different Time Periods

Most Recent Two Years Most Recent Three Years
GeoDecahoseSample GeoState | GeoDecahoseSample GeoState
Segments 0.888 0.895 0.818 0.803
Segments vs. Majority Vote 0.874 0.889 0.816 0.802
Segments vs. Self-reported Location 0.613 0.533 0.6 0.523
Segments vs. First GeoDecahoseSample Tweet 0.662 0.657 0.618 0.588

To test the validity of each of these labeling methods, we first segment the geotagged tweets
of each user into distinct time periods and compare the matching rates of these segments with
a yearly granularity. To obtain a reliable estimate, we follow the rule of Han and colleagues [25]:
For each segment, a user must have at least 10 geotagged tweets, and 50% of their tweets must
originate from the same area. We remove those that do not satisfy the condition. This method
aims to identify whether users change their primary location over time. Then, we perform a
comparison between the labels determined by the tweet segments and the location labels from
the first geotagged method, the majority vote method, and the self-declared location method,
respectively. We consider a match to occur only when (1) the segment locations are the same
during a one-year time window, and (2) the segment locations match the location determined by
the specific labeling method.

Because TwitterUS and GeoText only provide the coordinates of the first tweet, we choose
GeoDecahoseSample and GeoState for this analysis and use their geotagged tweets. Table 1
presents the match rate of different methods for total time windows of two years and three years,
respectively. For the GeoDecahoseSample dataset, when comparing two consecutive segments, the
match rate is 0.888, indicating that users who share their geotagged information tend to stay in
the same location for an extended period. The majority vote method also has a high match rate
(0.874), suggesting that it is a relatively reliable labeling technique even though the match rate is
slightly lower than the segment method. Manual inspection of tweets reveals that the decrease
is mainly due to the impact of geotagged locations from previous time periods when a user may
have been in a different location (note that the majority vote method involves considering all of
a user’s tweets across all times for labeling purposes). The profile location method yields a match
rate of 0.613. Though not as accurate as majority vote, it still provides insights into why Related
Concept Pretraining (RCP) may help with city-level prediction. Finally, the match rate for the
first geotagged location method is 0.657. This approach is better than using profile location, but
not as strong as segments or majority vote. For GeoState, we see a similar trend. Both the seg-
ment method and majority vote have a high match rate, and the results are comparable to the
GeoDecahoseSample dataset. Similarly, the match rate for the first geotagged location method is
significantly lower, indicating that it may not be an effective labeling approach.

For the three-year window, we see that the match rate is lower than the match rate for the two-
year window by 1% and 7%. However, the segment method and majority vote still yield favorable
results with match rates exceeding 0.8.

4.3 Our Ground Truth Labeling Approach

The labeling approach we recommend is a variant of the majority vote method. We choose not to
use the segment method, since it assumes that users have multiple years of geotagged tweets. We
begin by filtering users who do not have a minimum of 10 geotagged tweets with a valid location.
Then, we only consider a user’s most recent 30 tweets for the majority vote calculation. This helps
mitigate the influence of older tweets.* This process results in a final dataset of 6,559 users for

4The requirement of 30 geotagged tweets was determined empirically.
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the GeoDecahoseSample dataset. For the other two datasets (TwitterUS and GeoText), we use the
ground truth provided, since we do not have the historical data.

5 Empirical Evaluation

In this section, we evaluate our proposed models. We first describe the experimental setup (Sec-
tion 5.1) and baseline models (Section 5.2). Then, we conduct a detailed empirical evaluation
to assess the effectiveness of our approaches for location prediction with limited training data
(Section 5.3).

5.1 Experimental Settings

In our experiments, we use one NVIDIA Tesla P4 GPU on a Google Cloud compute engine with
60 GB of memory. We initialize word embeddings with GloVe [45] and encode tweet text using
CLIP [47]. We employ the Adam update rule [33] to optimize our model. Weight, bias, and con-
text vector are randomly initialized for the attention layers and then normalized to have a mean
value of 0 and a standard deviation of 0.05. A batch size of 32 is used for training, and tweets per
user are limited to a maximum of 200, with shorter sequences padded. We set the learning rate
as 0.0001. We use a bidirectional GRU with hidden size being 512 and layer being 1.” For users,
including synthetic users, who lack location field information, padding is also utilized. We collect
the Wikipedia content of 342 cities and generate appropriately 5,100 synthetic users. We keep the
test set unchanged and run each experiment five times with a random seed. For the proposed data-
augmentation model and the hybrid model, each synthetic user takes 20 sentences as that user’s
tweets (see Section 5.7 for the sensitivity analysis). New data are incorporated into the training and
validation sets, while the test set is also kept unchanged and only used for assessing the model’s
performance. We report the average results of the following commonly used metrics:

— Accuracy The percentage of correctly predicted cities.

— Acc@161 The percentage of predicted cities that are within a 161 km (100 miles) radius of
true locations. This metric is used to capture near-misses.

— Median The median distance computed from the distances between the predicted cities and
the corresponding actual location coordinates.

5.2 Baseline Models

We consider seven different models, which include the state-of-the-art models for location infer-
ence from previous works.

— Support Vector Machine (SVM) has been successfully used for the location inference task
using Twitter/X data [39].

— Naive Bayes (NB) has also been successfully used for location detection [23].

— Word Attention Minura et al. [42] propose an attention-based model for this task that
combines text, metadata, and network data. Specifically, they map all these components into
an embedding space and then use an attention layer to connect them. We use a variant of
their model that combines text and metadata.

— Base Model We use the base learning model presented in Section 3.2 as another baseline.

— Transformer We use the transformer model as another baseline. Specifically, we first con-
vert tweet text into embeddings and then use a transformer architecture for our learning
task.

SFor detailed implementation, please refer to our source code.
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— Traditional Augmentation We randomly apply the augmentation techniques in EDA [58]
to tweet text and use the base model structure for the experiments. The augmentation tech-
niques include synonym replacement, random word insertion, random word swap, and ran-
dom word deletion.

— Hierarchical Location Prediction Neural Network (HLPNN) [30] Huang and Carley
[30] introduce a hierarchical model where they use character-level and word-level embed-
dings for this task with state information guiding the training of the city prediction. Specifi-
cally, each tweet is represented as both word embeddings and character embeddings. Then,
a transformer is used to connect all the components. Finally, the optimization goal is to min-
imize the loss of both state prediction and city prediction. We employ a variation in which
we utilize CLIP to encode tweet text, since it has shown significant improvement in demo-
graphic inference on Twitter/X [37].

— Emoji Model This method is proposed by Liu and Singh [36]. The base model is similar to
ours, but this approach also incorporates emojis as an independent component to further
improve the performance. In the original paper, the authors specify that emojis should be
sorted based on their posting time, similar to tweets. However, since the available public
datasets are from earlier periods, we only have the timestamp information for the GeoDec-
ahoseSample dataset. Therefore, we use that dataset for these results.

— Traditional Transfer Learning (TL) This transfer learning method proposed by Liu and
colleagues [37] works by pretraining a model on a larger labeled dataset and then fine-tuning
it using the smaller training set. In our work, we adopt a similar approach by conducting
model pretraining using one of the three available datasets and then fine-tuning the pre-
trained model using a different dataset. Specifically, we pretrain a model using TwitterUS
and apply the model to the GeoDecahoseSample dataset for fine-tuning and make predic-
tions for GeoDecahoseSample.

5.3 Experimental Results

Results of Accuracy&Acc@161. Table 2 shows the results of the state-of-the-art and the pro-
posed models. For TwitterUS, when using text only, we see that the classic machine learning mod-
els perform well in terms of accuracy. SVM gets higher accuracy than both the word-embedding
model and the base model. The accuracy of the base learning model is higher than the word-
embedding model, indicating the effectiveness of sentence-level embedding. The transformer and
the baseline model with RNN+Attention perform similarly. TL performs the best among the state-
of-the-art, with an accuracy of 0.098. The proposed pretraining approach achieves a comparable
accuracy to that of TL, with a difference of 0.1%, and it is 1.8% higher than the base model. The
proposed data-augmentation method achieves an accuracy of 0.119, which is 2.1% higher than TL.
The hybrid model has the highest accuracy, with an improvement of 2.3% over TL. For Acc@161,
we see that classic models do not perform as well. TL is again the best performer among all state-
of-the-art models, and the hybrid model achieves the highest result with an improvement of 2.2%
over TL.

For GeoDecahoseSample, the traditional augmentation-based model achieves the highest accu-
racy compared to other state-of-the-art models. It is 0.1% lower than the proposed pretraining
method, which has an accuracy of 0.478. The proposed data-augmentation approach has the high-
est result, with a 4.2% improvement over the best state-of-the-art model. For Acc@161, the hybrid
model performs the best. It is 6.1% higher than the traditional augmentation-based method.

For GeoText, a similar trend is observed as in the other datasets. TL achieves the best result
among all the state-of-the-art models, and the proposed pretraining approach has comparable
accuracy to TL, with only a small difference of 0.4%. The hybrid model performs the best and is 1.6%
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Table 2. Comparisons of Our Methods and the State-of-the-art on Different Datasets

TwitterUS GeoDecahoseSample GeoText
Acc  Acc@161 | Acc Acc@161 Acc  Acc@161
Text
NB 0.061 0.158 0.313 0.418 0.103 0.336
SVM 0.087 0.191 0.423 0.531 0.099 0.334
Word Attention 0.035 0.11 0.312 0.432 0.088 0.284
Base Model 0.081 0.294 0.455 0.655 0.114 0.35
Emoji Model NA NA 0.453 0.661 NA NA
Transformer 0.079 0.301 0.436 0.645 0.121 0.383
Traditional Augmentation 0.078 0.279 0.477 0.685 0.118 0.362
TL 0.098 0.329 0.464 0.684 0.146 0.409
HLPNN 0.091 0.309 0.475 0.683 0.132 0.399
RCP (our model) 0.099 0.331 0.478 0.71 0.142 0.423
DAER (our model) 0.119 0.341 0.519 0.727 0.154 0.436
Hybrid (our model) 0.121 0.351 0.516 0.746 0.162 0.451
Text+Loc
NB 0.055 0.153 0.306 0.42
SVM 0.094 0.199 0.392 0.501
Word Attention 0.084 0.226 0.445 0.616
Base Model 0.111 0.343 0.465 0.671
Emoji Model NA NA 0.444 0.653 NA
Transformer 0.1 0.268 0.466 0.661
Traditional Augmentation 0.113 0.349 0.488 0.704
TL 0.117 0.363 0.505 0.727
HLPNN 0.113 0.371 0.505 0.729
RCP (our model) 0.114  0.357 0.48 0.709
DAER (our model) 0.124 0.363 0.525 0.74
Hybrid (our model) 0.128  0.377 0.518 0.746

Related Concept Pretraining is denoted by RCP and Data Augmentation based on External Resources is denoted as
DAER. We report results under two different feature settings: Text and Text+self-reported location. “N/A” signifies no
applicable results for the given dataset.

higher than TL. Also, the hybrid model outperforms the state-of-the-art in terms of Acc@161, with
an improvement of 4.2%. Overall, we see that the proposed pretraining method generally achieves
comparable results to the best state-of-the-art model without using any externally labeled dataset.
The proposed augmentation model has higher results than all the state-of-the-art models, and the
hybrid model usually performs the best.

When using both text and self-reported location, for TwitterUS, we see that word-embedding
model still performs worse than the base model, but both perform better than the classic machine
learning models. The transformer model again has comparable accuracy to the baseline model with
RNN+Attention. The proposed pretraining method has comparable accuracy to other state-of-the-
art models, such as TL and HLPNN. The proposed augmentation method performs better than
all the state-of-the-art models, and the hybrid model achieves the highest accuracy, which is 1.1%
higher than TL, the best state-of-the-art model. Additionally, the hybrid method performs best for
Acc@161. For GeoDecahoseSample, the proposed data-augmentation model generally achieves the
best results. Overall, we have a 2% improvement in accuracy over the best state-of-the-art models,
including TL and HLPNN, and a 1.7% improvement for Acc@161.
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Table 3. Comparisons of Our Methods and the State-of-the-art on Different Datasets
for Median Error Distance

TwitterUS | GeoDecahoseSample | GeoText
Text
NB 968.7 427.0 620.2
SVM 1,018.3 85.9 650.1
Word Attention 1,062. 385.8 1,519.7
Base Model 3734 27.2 561.4
Emoji Model NA 274 NA
Transformer 356 38.3 446.1
Traditional Augmentation 403.6 20.1 525.9
TL 340.7 23.4 347.3
HLPNN 357.2 20.7 351.6
RCP (our model) 332.4 17.7 318.2
DAER (our model) 330.2 1.7 306.5
Hybrid (our model) 317.5 0 265.6
Text+Loc
NB 1,253.8 427.0
SVM 995.6 161.6
Word Attention 793.1 30.8
Base Model 305.1 23.5
Emoji Model NA 29.9 N/A
Transformer 591.4 21.3
Traditional Augmentation 310.6 12.3
TL 285.2 3.4
HLPNN 272.3 3.8
RCP (our model) 284.2 15.7
DAER (our model) 296.0 0.0
Hybrid (our model) 2743 2.5

Related Concept Pretraining is denoted by RCP and Data Augmentation based on External
Resources is represented as DAER. “N/A” signifies no applicable results for the given dataset.

Results of Median Error Distance. Table 3 displays the median distance of the state-of-the-art
models and the proposed models. For TwitterUS, the error distance is reduced by approximately
23.2 kilometers when comparing TL to the best proposed model. We see a similar trend for the
GeoDecahoseSample dataset. It is worth noting that the median error distance of our best proposed
model is 0, showing that our method greatly reduces the error distance. For GeoText, the hybrid
model has an error distance that is 39.2 kilometers smaller than the state-of-the-art models. When
using both text and self-declared location, our model generally performs similarly or better than
the state-of-the-art models.

5.4 Evaluation of Users with/without Self-reported Location

Cheng and colleagues [13] found that only 26% of Twitter/X users provide location information
at the city level in their profiles. In our study of the TwitterUS dataset, we found that 42% of users
have self-reported city information provided. When this is available, it is useful to use. However,
because many users do not provide this information, inferring location is important. In this
section, we present the results of our models for both types of users. For users without locations
in their profiles, we report the performance of our model using only text and compare it to the
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Fig. 5. Results, including accuracy and Acc@161 for users who self-reported their location and those who
did not. For each subfigure, the X axis shows the different types of approaches (TL, HLPNN, and the hybrid
model) and the Y axis is accuracy or Acc@161.

state-of-the-art models. For users with location information, we show the results using both the
text and the location field information. Similar to the previous section, this analysis includes the
best state-of-the-art models and the hybrid model.

Figure 5 presents the comparisons between our model and the best state-of-the-art models for
accuracy and Acc@161 of the TwitterUS dataset and the GeoDecahoseSample dataset. For Twit-
terUS, our model achieves better results for both groups of users in terms of accuracy. The evalua-
tion based on Acc@161 shows that the proposed model performs better than or comparably to the
best state-of-the-art model. For GeoDecahoseSample, our model generally performs better, with
a marginal improvement when using both text and self-reported location. These results further
demonstrate the ability of our proposed model to attain a higher accuracy than other models for
users who share their city-level location and those who do not.
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Table 4. Number of Users for Each City from the Sampled Datasets

TwitterUS | GeoDecahoseSample | GeoText
5 Users per City 1,894 1,186 1,214
10 Users per City 3,764 1,833 1,995
20 Users per City 7,459 2,485 3,020

We consider three different sample sizes of users per city—5, 10, and 20.

Table 5. Evaluation on Sampled Datasets of Best Models (TL, HLPNN, and the Hybrid Model)

TwitterUS GeoTagged GeoText
5 per City 10 per City 20 per City 5 per City 10 per City 20 per City 5 per City 10 per City 20 per City
Acc Acc@161| Acc Acc@161] Acc Acc@161| Acc Acc@l161| Acc Acc@161| Acc Acc@161| Acc Acc@161| Acc Acc@l161| Acc Acc@161
TL 0.049  0.216 0.066 0.279 0.094 0328 |0.285 0.611 0.341 0.651 [0.412  0.692 0.031 0.237 0.043  0.277 ]0.059 0312
HLPNN 0.049  0.208 0.069 0277 |0.098 0337 |0.176  0.506 |0.271 0.595 10391  0.664 |0.019  0.185 |0.026 0.22 0.041 0.271
Hybrid 0.078 0.283 |0.099 0.321 0.113  0.358 |0.285 0.636 |0.357 0.663 |0.43 0.702 |0.051 0.285 |0.063 0.337 |0.071 0.334
Improvement 2.9% 6.7% 3% 4.2% 1.5% 2.1% 0% 2.5% 1.6% 1.2% 1.8% 1% 2% 4.8% 2% 6% 1.2% 2.2%

In the last row, we show the improvement of our model over the state-of-the-art models.

5.5 Evaluation of Smaller Training Datasets

To evaluate the performance of our models in real-world scenarios, where each city label is associ-
ated with only dozens or fewer samples, we select three samples from each dataset as the training
data. Each sample consists of a different number of users per city: up to 5 users per city, 10 users
per city, and 20 users per city. Table 4 displays the number of training samples for each sample.

Table 5 presents the comparisons of results when using samples with different numbers of users
for training. For ease of exposition, we only compare the best state-of-the-art models (TL and
HLPNN) and the hybrid model. We use both text and self-reported location when training our
model when using the GeoDecahoseSample and TwitterUS datasets and text only when using the
GeoText dataset, since this dataset does not include the location field information. We focus on
accuracy and Acc@161.° From the table, we see that for sampled TwitterUS, when using 5 users
per city, our model achieves the best results, with an improvement of 2.9% for accuracy and 6.7%
for Acc@161. The difference between the TL and the HLPNN is marginal. When considering 10
users per city, our model still performs 3.3% and 4.2% better than the previous state-of-the-art for
accuracy and Acc@161, respectively. For the case with 20 users per city, we observe a similar trend.
For the GeoDecahoseSample dataset, we see that the hybrid model generally performs significantly
better than the TL and the HLPNN models. The performance of the HLPNN model is much worse
than the TL and the hybrid models. We posit that this is due to the relatively small size of the
sampled dataset. For GeoText, the hybrid model again performs the best, and both the TL and
the hybrid models have better results than the HLPNN model. Figure 6 summarizes these results
using a heatmap. The y-axis shows the different methods and the x-axis shows the number of users
per city for three different datasets. While all the Acc@161 are more accurate for the GeoTagged
dataset, the Hybrid method is always better than or just as good as the other methods when the
number of users is limited.

5.6 Evaluation on Fewer Cities

For some applications, researchers limit their studies to a small number of target cities. For this
analysis, we reduce the number of cities of interest based on population. The first sample consists
of the 10 cities with the highest population, and the second sample consists of the 10 cities with
the lowest population, based on data from the United States Census Bureau.” Figure 7 shows the

®Note that the median distance metric is also applicable.
The list can be accessed through https://www.biggestuscities.com/
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Fig. 6. Visualization of the Acc@161 comparing different methods using limited data.

cities and number of users in our dataset that are located in each city.? It is not surprising to see
that the most populated cities tend to have more labeled data, and the least populated cities have
less. Due to the significant distance between these cities, we use accuracy and F1 score rather than
Acc@161 and median distance to compare the performance of the models.

Table 6 shows the results for GeoDecahoseSample and GeoText. We focus on comparing the
performance of the hybrid model with that of the best performing state-of-the-art models: TL and
HLPNN. For the GeoText dataset, the TL and the hybrid models outperform the HLPNN model
for both groups of cities. While the accuracy difference between the TL model and the proposed
model is insignificant, we see that the F1 score of the hybrid model is much higher than the TL
model, with an improvement of 5.9% for the most populated cities and 8.3% for the least populated
cities, again demonstrating its ability to accurately identify cities with very different characteristics
and limited data. For the GeoDecahoseSample dataset, we see a similar trend. The accuracy of the
three models for the most populated cities is comparable, but the F1 score of our model is 3.1%
higher than the best baseline. For the least populated cities, our model significantly outperforms
the baseline models, with an improvement of 5% in accuracy and 7.2% in F1 score. These results
suggest that our model can be deployed for studies containing different numbers of cities, as well
as different population characteristics.

5.7 Sensitivity Analysis of Wikipedia

In this section, we study how the model performance changes when different numbers of sen-
tences from Wikipedia pages are used to represent each synthetic user. Table 7 shows the results
of assigning 20, 30, or 50 sentences to each synthetic user using the proposed data-augmentation
model. As we can see, in terms of both accuracy and Acc@161, different methods perform best
for each dataset. However, the difference between the lowest performer and highest performer is
within 1% across all the datasets, indicating that the specific selection of sentences has minimal
impact.

5.8 Model Efficiency

In general, each experiment takes between 5 and 10 hours to run. For RCP, the pretraining phase
extends the overall run time by appropriately 5 hours, and it is only necessary to do once. Its

8Note that, when selecting cities for each dataset, we only consider cities that are present within that specific dataset, which
accounts for the variation in cities between the two datasets.
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Table 6. Results of the Proposed Model and Baselines for 10 Most Populated Cities in the
US and 10 Least Populated Cities in the US

GeoText GeoDecahoseSample
Most Populous | Least Populous | Most Populous | Least Populous
Acc F1 Acc F1 Acc F1 Acc F1
TL 0.536 0.339 | 0.396  0.204 | 0.858 0.725 | 0.715  0.602
HLPNN 0.455 0.212 0.32 0.112 0.863  0.727 | 0.531 0.366
Hybrid 0.547 0.398 0.4 0.287 | 0.864 0.758 | 0.765 0.674
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Table 7. Comparisons of Different Segmenting Methods that Involve Using Different Numbers
of Sentences from Corresponding Wikipedia Articles as Tweets when Creating Synthetic Users

GeoDecahoseSample TwitterUS GeoText

Accuracy Acc@161 | Accuracy Acc@161 | Accuracy Acc@161
20 Per User 0.519 0.727 0.119 0.341 0.154 0.436
30 Per User 0.516 0.714 0.123 0.348 0.147 0.431
50 Per User 0.514 0.717 0.114 0.338 0.156 0.437

fine-tuning phase is cost-effective compared to other methods, as it converges rapidly. With DAER,
the larger training data causes a longer duration compared to the base model (appropriately
5 hours). For the hybrid model, it still converges quickly because of the pretrained model. In
general, our proposed methods have a comparable runtime to the other models.

6 Conclusions and Future Work

In this article, we present different approaches for city-level inference when limited training data
are available. This setting is particularly important when conducting a study with a large number
of cities because of the cost associated with labeling training data. The first method, Related Con-
cept Pretraining, leverages a self-supervised learning framework to enhance user representations.
Our experiments demonstrate the effectiveness of this approach, particularly for predicting users
based on text data alone. Our second method, Data Augmentation Based on External Resources, uti-
lizes external knowledge to increase the number of training examples by adding synthetic users.
Empirical results show that both of these methods perform better than the state-of-the-art for
location inference. We also find that combining these two approaches into a hybrid model that
leverages their respective advantages to enhance user representations and expand the size of the
training data further improves the accuracy of our model. This is true irrespective of the available
features.

Our work also includes two sensitivity analyses. First, we restrict the number of training exam-
ples available for each label (city). Using these subsamples, we compare the performance of our
best model against the best state-of-the-art models. The results show that our proposed model gen-
erally outperforms the other models, indicating its ability to perform well even when the number
of training examples is limited. We also consider focusing on a smaller number of cities within a
single analysis, specifically narrowing down the classification task to only 10 cities based on pop-
ulation. In this setting, our model again shows significant improvements, suggesting its potential
utility for tasks involving different numbers of cities.

Finally, we examine various labeling methods for determining ground truth cities using two
different datasets. We find that the majority vote method is a more reliable strategy, compared to
assigning the location based on the first geotagged entry or relying on self-declared location. We
propose a labeling method that is based on majority vote, potentially addressing the limitations of
prior methods.

There are a number of possible future directions. First, finding new sources of external knowl-
edge may further enhance the model performance. One potential approach is to utilize chatbots
like ChatGPT, which has shown great text generation capabilities and can introduce a different
but relevant type of location information into our model. Additionally, while our article primar-
ily focuses on city prediction within North America, we would like to extend the applicability of
our models to a global dataset containing a broader range of cities. Other possible directions in-
clude considering multi-lingual location detection and testing this approach on other social media
platforms.
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