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Imaging tunable Luttinger liquid systems in 
van der Waals heterostructures
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Jiahui Nie1, Shiyu Li1, Zhehao Ge1, Zehao He1, Yunbo Ou4, Rounak Banerjee4, 
Takashi Taniguchi5, Kenji Watanabe6, Sefaattin Tongay4, Alex Zettl1,3,7, Steven G. Louie1,3 ✉, 
Michael P. Zaletel1 ✉, Michael F. Crommie1,3,7 ✉ & Feng Wang1,3,7 ✉

One-dimensional (1D) interacting electrons are often described as a Luttinger liquid1–4 
having properties that are intrinsically different from those of Fermi liquids in higher 
dimensions5,6. In materials systems, 1D electrons exhibit exotic quantum phenomena 
that can be tuned by both intra- and inter-1D-chain electronic interactions, but their 
experimental characterization can be challenging. Here we demonstrate that layer- 
stacking domain walls (DWs) in van der Waals heterostructures form a broadly tunable 
Luttinger liquid system, including both isolated and coupled arrays. We have imaged 
the evolution of DW Luttinger liquids under different interaction regimes tuned by 
electron density using scanning tunnelling microscopy. Single DWs at low carrier 
density are highly susceptible to Wigner crystallization consistent with a spin- 
incoherent Luttinger liquid, whereas at intermediate densities dimerized Wigner 
crystals form because of an enhanced magneto-elastic coupling. Periodic arrays of 
DWs exhibit an interplay between intra- and inter-chain interactions that gives rise to 
new quantum phases. At low electron densities, inter-chain interactions are dominant 
and induce a 2D electron crystal composed of phased-locked 1D Wigner crystal in a 
staggered configuration. Increased electron density causes intra-chain fluctuation 
potentials to dominate, leading to an electronic smectic liquid crystal phase in which 
electrons are ordered with algebraical correlation decay along the chain direction  
but disordered between chains. Our work shows that layer-stacking DWs in 2D 
heterostructures provides opportunities to explore Luttinger liquid physics.

Landau’s Fermi liquid theory has been successful in describing inter-
acting electrons in two and three dimensions using concepts based 
on Fermionic quasiparticle excitations5,6. However, this picture fails 
for interacting electrons confined to one dimension and leads to Lut-
tinger liquid behaviour1–4, in which the elementary excitations are 
bosonic. The one-dimensional (1D) electron interaction strength 
and resulting Luttinger liquid behaviour can be tuned continuously 
by varying the electron density. Isolated 1D electron chains at high 
electron density are well described by a weakly interacting Luttinger 
liquid theory2–4 (that is, in which the electron interactions are rela-
tively weak). This description features spin–charge separation in which 
low-energy excitations are described by plasmons and spinons. In 
the low-density limit, however, 1D electrons cross over into a regime 
that features a high susceptibility to quasi-long-range Wigner crystal-
lization because of stronger electron interactions. This regime has a 
qualitatively different picture for spin–charge separation, in which the 
charge mode is described as an electron crystal phonon and the spin 
mode is determined by antiferromagnetic exchange coupling between 

the nearest-neighbour electrons7,8. Here spin exchange interactions 
are highly suppressed and thermal fluctuations dominate, making the 
system a spin-incoherent Luttinger liquid7,8. For intermediate electron 
densities, the spin exchange interaction can lead to an unusual form of 
magneto-elastic coupling7,8, in which the electron lattice dimerizes and 
forms valence-bond spin-singlet pairs to lower the overall magnetic 
energy (that is, the spin-Peierls effect), analogous to the Su–Schrieffer– 
Heeger model. The electron crystal ultimately evolves into a standard 
linear Luttinger liquid as spin and charge energies become compara-
ble at sufficiently high electron density. Because crystalline order is 
algebraic in one dimension, the evolution from low to high density is 
a crossover. Arrays of 1D electron chains host even richer phenom-
ena because of the interplay between intra- and inter-chain interac-
tions. Depending on the strength of inter-chain interactions, many 
new quantum phases have been predicted theoretically, including 
two-dimensional (2D) electron crystals9,10, electron smectic liquid 
crystals10 and even sliding Luttinger liquids exhibiting non-Abelian 
fractional quantum Hall states11,12.
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In the past few decades, efforts have been made to explore Luttinger 
liquids experimentally. Weakly interacting Luttinger liquids have been 
observed in 1D metals13,14, semiconductor nanowires15–18, topological 
edges states19–22 and twin-boundary defects23,24, in which spin–charge 
separation and power-law scaling of tunnelling probability have been 
observed. Characterizing strongly interacting 1D electrons at lower 
densities is more difficult because they are sensitive to inevitable 
weak disorder and stray fields. Suspended semiconducting carbon 
nanotubes have provided a useful platform to explore the low-density 
regime, and signatures of Wigner crystallization have been observed 
in carbon nanotube electrical transport25 and scanning single-electron 
transistor (SET) measurements15. However, even few-electron Wigner 
crystals in these nanotubes are strongly distorted by disorder, thus 
preventing the study of quasi-long-range order and the crossover from 
a strongly interacting Wigner crystal to a weakly interacting Luttinger 
liquid. Experimentally characterizing arrays of coupled Luttinger liq-
uids is even more challenging for lack of a suitable platform. It has been 
suggested that the stripe phase of high-temperature superconductors26 
and the anisotropic moire superlattice in twisted WTe2 (ref. 27) might 
provide coupled 1D electron chains, but microscopic descriptions of 
these materials are still lacking.

Here we demonstrate that layer-stacking domain walls (DWs) in 
bilayer WS2 form an ideal platform for exploring spin and orbital 
quantum behaviour in 1D Luttinger liquids with tunable interaction 
strength. Stacking DWs can be formed either in isolated form (yield-
ing single 1D electron chains) or as self-assembled periodic arrays 
of Luttinger liquids. An advantage of DWs is that they are embed-
ded in 2D van der Waals heterostructures that exhibit low structural 
disorder and facilitate convenient electrical device fabrication and 
characterization. Using scanning tunnelling microscopy (STM), we 
have directly imaged the evolution of DW-based Luttinger liquids 
under different interaction regimes that reveal new quantum phe-
nomena. We find that isolated DWs exhibit almost perfect 1D Wigner 
crystals pinned by dilute defects at low electron density. In this regime, 
density matrix renormalization group (DMRG) calculations suggest 
that exponentially suppressed spin interactions are dominated by 
thermal excitations for our experimental temperature, giving rise to 
spin-incoherent Luttinger liquid behaviour. At increased electron den-
sities, we experimentally observe dimerized Wigner crystals that are 
consistent with theoretical predictions of enhanced magneto-elastic 
coupling between an antiferromagnetic spin chain and the electron 
charge lattice. Our DMRG calculations in this regime suggest that this 

dimerization is associated with enhanced susceptibility to oscillating 
valence bond order. At even higher density, the observed Wigner 
crystals evolve into weak-interacting linear Luttinger liquids both 
experimentally and in our calculations. For periodic arrays of DWs 
in the low-electron-density regime, we experimentally observe ani-
sotropic 2D electron lattice behaviour arising from phase-locked 1D 
Wigner crystals. At increased densities, a new electron smectic liquid 
crystal phase emerges.

Device and measurement scheme
Our experimental setup involves an artificially stacked 60°-twisted 
bilayer WS2 device integrated into a scanning tunnelling microscope 
as shown in Fig. 1a (see Methods for fabrication details). The artificial 
stacking technique introduces small angle variations and strain that 
generate stacking DWs in the bilayer WS2. The bilayer WS2 is placed on 
top of an hBN flake with thickness dhBN = 67 nm that is placed above a 
graphite back gate. A back gate voltage VBG is applied to electrostatically 
dope electrons into the bilayer WS2. A sample-tip bias Vbias is applied 
enabling the STM measurement. We use a graphene nanoribbon (GNR) 
contact electrode on the WS2 surface to minimize the device resistance 
and facilitate STM measurement28.

Our STM topographic images of bilayer WS2 (Fig. 1b) show a series 
of 1D structures corresponding to stacking DWs. A single DW sepa-
rates two AB stacking regions with in-plane dislocations of one unit 
cell characterized by a Burgers vector29–35 (see Methods and Extended 
Data Fig. 1 for more details). We observe different DW configurations, 
including isolated DWs (Fig. 1b, top left) and few-DW clusters (Fig. 1b, 
bottom left). DWs are also observed to self-assemble into periodic 
arrays (Fig. 1b, right) with inter-DW separation of LDW ≈ 8.2 nm. Com-
bining density functional theory (DFT) calculations with our STM 
spectroscopy shows that the conduction band minimum in a DW is 
lower than for an AB stacked region (see Supplementary Information 
sections 3 and 4 for more details). This causes electrostatically doped 
electrons (controlled by the back gate voltage) to be confined within 
the DWs and thus provides a platform for studying Luttinger liquids.

Wigner–Friedel crossover in isolated DWs
We are able to directly image the electron distribution in DWs by meas-
uring the tunnel current from DW conduction band edge (CBE) states36 
(see Methods and Extended Data Fig. 2 for details). Figure 2a shows the 
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Fig. 1 | Stacking DWs in a bilayer WS2. a, Schematic of the STM measurement 
of a gate-tunable bilayer WS2 device. The bilayer WS2 is placed on top of a 67-nm 
thick hBN layer and a graphite substrate that defines the back gate. A back gate 
voltage VBG is applied to perform electron-doping of the WS2. A sample-tip bias 
Vbias is applied to the WS2 and relative to the STM tip. A GNR array is placed on 
top of the WS2 to serve as the contact electrode. b, Typical STM topographic 

images of the stacking DWs in the bilayer WS2 that separates two AB stacking 
regions with a one-unit-vector interlayer dislocation. The DWs exhibit different 
aggregation behaviours, including single DWs (left top), triple DWs (left bottom) 
and DW periodic arrays (right). The inter-DW distance in the triple DWs and DW 
arrays is about 8 nm. Max, maximum; Min, minimum. Scale bars, 20 nm (b, left 
top and left bottom); 50 nm (b, right).



Nature  |  Vol 631  |  25 July 2024  |  767

evolution of the CBE tunnel current map for a DW (central one in triple 
DWs) in the low-electron-density regime for 2.5 V < VBG < 9.0 V. Three 
bright spots labelled as A, B and C remain fixed even as the electron 
density is changed and are attributed to three separate defects in the 
DW that each pin an electron. Between defects B and C, we observe a 
periodic lattice of highly localized electrons with a quantized electron 
number that increases from 4 to more than 15 as VBG is increased from 
2.5 V to 9.0 V. This tunable 1D electron lattice provides direct evidence 
for 1D Wigner crystal formation in DWs. Although a true crystal with 
long-range order is theoretically forbidden in an infinite 1D system,  
a well-defined Wigner crystal with quasi-long-range order can be sta-
bilized by long-range Coulomb interactions in a finite 1D chain37, as 
observed here.

The observed 1D electron lattices show almost no disorder except 
for the defects pinning the ends of the Wigner crystal chain, thus indi-
cating the high quality of the 1D DW system. The Wigner crystal persists 
to a surprisingly high electron density. We can characterize the electron 
density using the dimensionless parameter r = d

as B
 where d is the elec-

tron separation, a = εħ

m eB
4π 2

e
2

 is the effective Bohn radius, me = 0.39m0 is 

the effective electron mass obtained from our DFT calculations and 
ε = 3.9ε0 is the relative permittivity (ε0 is the vacuum permittivity). The 
values of d and rs for the 1D lattice shown in Fig. 2a are listed in the table 
of Fig. 2b and stand in contrast to the case of 2D electron gases in which 
the Wigner crystal state exists only for rs > 30 (refs. 38–40). We see 
that the 1D Wigner crystal state is present for our DW lengths even at 
rs < 8. This is a signature of the strong impact that electron–electron 
interactions have in 1D.

At increased electron densities, a crossover from the 1D Wigner 
crystal to a dimerized Wigner crystal and then to a weakly interacting 

Luttinger liquid is observed. Figure 3a shows the evolution of the 
CBE tunnel current map for 1D electrons in a DW containing a single 
defect over the range 8.5 V < VBG < 14.5 V. For better visualization of the 
experimental data, Fig. 3b shows a 2D plot of the normalized current 
as a function of VBG and horizontal position in which each horizontal 
line is obtained by vertically averaging the pixels for each image in 
Fig. 3a. Wigner crystal formation is seen at low electron densities, 
but as VBG is raised above 10 V an unexpected distortion of the Wigner 
crystal is observed in which adjacent peaks merge and form dimers. 
The dimerization becomes more pronounced at increased electron 
density until VBG reaches about 11.5 V, at which point the two peaks 
in each dimer pair merge into a single broad peak. For VBG > 11.5 V, 
the Wigner crystal is gone and a new pattern with a doubled period 
emerges. This new pattern corresponds to the charge density oscil-
lation (that is, Friedel oscillation) of a Luttinger liquid in the weakly 
interacting regime.

The crossover from Wigner crystal to weakly interacting Luttinger 
liquid can also be seen in momentum space. Figure 3c shows the fast 
Fourier transformation (FFT) of Fig. 3b and exhibits two distinct 
wavevector peaks at different electron densities. In a non-interacting 
two-fold degenerate 1D system (that is, due to spin-valley locking) the 
Fermi wavevector is k = N

LF
π
2 , where L is the 1D chain length and N is the 

total electron number. The Friedel oscillation (also present in the 
non-interacting limit) arising from the backscattering of electrons 
then has a wavevector k k= 2 = N

LFr F
π . By contrast, the Wigner crystal 

state has a period of L/N and thus features a wavevector k k= = 4N
LW

2π
F.  

The two dispersive peaks in Fig. 3c are, therefore, assigned to the Wigner 
crystal (red dashed line) and Friedel oscillation (white dashed line). 
The Wigner crystal branch (4kF) becomes weaker with increased  
electron density and disappears at VBG ≈ 11.5 V. The Friedel oscillation 
branch (2kF) emerges at VBG ≈ 10 V and becomes the dominant periodic-
ity gradually with the increased electron density. Both branches are  
seen in the intermediate region 10 V < VBG < 11.5 V, which corresponds 
to the dimerized Wigner crystal regime. Extended data showing the  
crossover from Wigner crystal to weakly interacting Luttinger liquid 
are included in Supplementary Information section 5.

To better understand the different density-dependent regimes 
observed experimentally for isolated DWs, we performed numeri-
cal DMRG calculations (see Supplementary Information section 6 for 
details). Figure 3d shows the resulting local electron density profile 
as a function of average density for a DMRG calculation of a finite 1D 
chain of electrons at T = 0. The corresponding FFT plot is shown in 
Fig. 3e. Comparison of Fig. 3d,e with Fig. 3b,c shows that the DMRG 
calculation captures the main features of the experiment, including 
the dimerization of the Wigner crystal with increasing electron density 
followed by a crossover into the weakly interacting Luttinger liquid 
regime featuring a 2kF oscillation.

The DMRG result shows the 2kF oscillation (Fig. 3e) extending further 
into the low-density regime than is seen experimentally (Fig. 3c). This 
probably originates from the thermal excitation of the spin degree of 
freedom at low density during the experiment (T = 5.4 K) (see Methods 
and Extended Data Fig. 3a for details). This regime has been theoreti-
cally explored previously and is referred to as a spin-incoherent Lut-
tinger liquid7,8 in which thermally induced spin incoherence suppresses 
the 2kF Friedel oscillation relative to the 4kF Wigner crystal7,8, consistent 
with our experimental data.

The dimerization phenomenon occurring at slightly higher density 
(0.30 nm−1 < n < 0.38 nm−1; Fig. 3b,c) arises when the spin exchange 
energy exceeds the thermal energy, thus making the spin behaviour 
important in the Wigner crystal. In this regime, the electrons are antifer-
romagnetically coupled, and the exchange energy strongly depends on 
the electron separation, leading to a magneto-elastic coupling which 
tends to lower the overall energy of the 1D system by dimerizing the lat-
tice to gain magnetic energy (see Methods and Extended Data Fig. 3b,c 
for details).
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Fig. 2 | Tunnel current measurement of 1D Wigner crystal. a, CBE tunnel 
current maps for the centre DW in a triple-DW group with VBG increased from 
2.5 V to 9.0 V. Vbias is selected in the range of −0.85 V < Vbias < −0.30 V to minimize 
the tip-sample vacuum level mismatch (tip setpoint: Vbias = −2.70 V, Isp = 20 pA, 
and htip = −100 pm). The maps show a pinned 1D Wigner crystal in which each 
bright dot corresponds to one localized electron. Three pinning defects are 
labelled with red arrows at the bottom. b, Table of the electron separations and 
corresponding values of rs for the images shown in a. Min, minimum. Scale bar, 
10 nm (a).
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In the high-density regime (n > 0.38 nm−1), the electron kinetic 
energy overcomes the Coulomb interaction, and the system behaves 
as a weakly interacting Luttinger liquid. Here the electron density is 
dominated by the 2kF Friedel oscillation, and the 4kF oscillation gradu-
ally vanishes because of the delocalization of the Wigner crystal.

Intra- and inter-chain interactions in DW arrays
The interactions between 1D electron chains in DW arrays lie beyond 
the scope of our 1D DMRG treatment, but this is also a regime in which 
we observe rich experimental phenomenology, including new quan-
tum phases arising from the interplay between intra- and inter-DW 
interactions. Figure 4a–h shows the experimental evolution of the CBE 
tunnel current for an array of DWs as VBG is increased over the range 
2.0 V < VBG < 5.0 V. We find that the distribution of electrons across the 
DWs changed dramatically as the overall density is changed. At low 
electron density (Fig. 4a–d), the DW Wigner crystal chains exhibit a 
staggered structure with electrons in one chain aligning with empty 
sites in the neighbouring chain. This can be seen in the blue arrows of 
Fig. 4c that trace the zigzag path between electrons in neighbouring 
chains (defects are identified by yellow circles in Fig. 4g). The staggered 
structure minimizes inter-DW interactions (that is, by maximizing the 
separation between electrons in neighbouring DWs) thus producing 
a new anisotropic 2D electronic crystalline phase. Figure 4i–l shows 

2D FFT plots of the low-density staggered phase shown in Fig. 4a–d. 
Sharp diffraction peaks characterizing this new crystalline phase can 
be observed.

At higher electron density (Fig. 4e–h), the staggered electronic phase 
dissociates into a new electronic configuration. This can be seen in a 
trace of neighbouring electrons for VBG = 4.0 V, which shows an almost 
random path (Fig. 4f, blue arrows). In this regime, a pinned 1D Wigner 
crystal remains in each DW but inter-DW coherence vanishes, simi-
lar to the transition from 2D crystalline state to 2D smectic state seen 
in liquid crystals. A smectic liquid crystal-like phase is confirmed by 
the 2D FFT plots of Fig. 4m–p that exhibit trivial peaks because of the 
periodic DW line array (marked with red circles) as well as a nontrivial 
feature (marked by blue ovals) that arise because of the interior 1D 
Wigner crystal periodicity. Intensity within each blue oval reflects a 
constant wavevector along the DW direction (corresponding to the 1D 
Wigner crystal periodicity), but the diffuseness of the feature reflects 
randomness in the direction perpendicular to the DW and thus indicates 
disorder between different Wigner crystal chains. These diffraction 
patterns are characteristic of more conventional smectic liquid crystal 
phases10,41,42 (further data can be seen in Supplementary Information 
section 8).

This 2D crystalline-to-smectic transition originates from the inter-
play between intra- and inter-DW interactions, as well as defect-
induced intra-DW potential fluctuations. At low electron densities, 
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Fig. 3 | One-dimensional Wigner–Friedel crossover. a, Evolution of CBE tunnel 
current maps for a centre DW in a triple-DW group with VBG increased from 8.5 V 
to 14.5 V. The periodic structure of the 1D Wigner crystal is gradually replaced 
by a new periodic structure having twice the period. A defect near the left end is 
labelled with a red arrow. Vbias = −0.23 V (tip setpoint: Vbias = −2.70 V, Isp = 20 pA 
and htip = −100 pm). b, 2D plot of the normalized CBE tunnel current of the DW  
in a. Each line comes from vertically averaging the pixels of an image from a.  

c, FFT of the data shown in b. A Hamming window was used for the FFT. Two 
dispersing peaks (labelled with dashed lines) correspond to 2kF and 4kF, where 
kF is the Fermi wavevector as defined in the text. d, DMRG calculation of the 1D 
spatial charge distribution as a function of electron density n. The simulated 1D 
chain is 80 nm long with hard-wall ends. The charge distribution is symmetric 
about x = 40 nm, so we only show the results for x < 40 nm. e, FFT of the result 
shown in d. Dispersing peaks at 2kF and 4kF can be seen. Scale bar, 10 nm (a).
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we expect the inter-DW interaction (Einter) and intra-DW interaction 
(Eintra) to both be higher than the defect-induced fluctuation potential 
(ED). Together they stabilize the anisotropic 2D electron lattice com-
posed of phase-locked 1D Wigner crystals that exhibit a staggered 
electron configuration with weak distortions to accommodate dis-
order. For increased electron density, however, the inter-DW interac-
tion is expected to rapidly decrease as E ∝ e nl

inter
− 2 π , where n = N/L 

is the 1D chain electron density and l is the distance between adjacent 
DWs (see Supplementary Information section 9 for details). Here a 
new energy hierarchy emerges in which Eintra > ED > Einter, causing the 

Wigner crystal within each chain to remain stabilized while inter-chain 
coherence is destroyed by disorder.

Conclusions
In conclusion, we show that layer-stacking DWs arising from differential 
uniaxial strain in van der Waals heterostructures offer tremendous 
opportunities to explore Luttinger liquid physics. Although we used 
the simple 2D semiconductor WS2 as a model system here, similar iso-
lated DWs and periodic DW arrays can be realized in any 2D bilayers 
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Fig. 4 | Electron crystalline-to-smectic transition in 1D DW array. a–h, CBE 
tunnel current maps for a periodic array of 1D DWs as VBG is increased from  
2.0 V to 5.0 V. Defects are marked with yellow circles in g. At low electron 
density (a–d), an array of 1D Wigner crystals is seen, which exhibits a staggered 
structure, forming a new 2D crystalline phase. At high electron density (e–h), 
the staggered order is lost and spatial coherence between nearby 1D Wigner 
crystals disappears, forming a new electronic smectic phase. Blue arrows label 
the positions of electrons in nearest-neighbour DWs. i–p, 2D FFT plots of the 

images shown in a–h. Hamming windows are used for the 2D FFT. At low density 
(i–l), the staggered Wigner crystal array yields well-defined peaks in the FFTs 
because of the presence of 2D crystalline structure. At high density (m–p), two 
features dominate the 2D FFT plots: (1) peaks reflecting the periodic spacing of 
DW lines (labelled with red circles); and (2) diffuse lines (labelled with blue ovals) 
that reflect 1D Wigner crystal periodicity but lack inter-DW spatial coherence 
(that is, the smectic liquid crystal state). Scale bars, 20 nm (a–h); 2 nm−1 (i–p).
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with uniaxial heterostrain. A wide variety of exotic Luttinger liquid 
phenomena could emerge from DWs in new van der Waals heterostruc-
tures, such as 2D charge density wave materials, 2D magnets and 2D 
superconductors.
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ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-024-07596-6.
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Methods

Sample fabrication
The bilayer WS2 device was fabricated using a micromechanical stacking 
technique43. A poly(propylene) carbonate (PPC) film stamp was used to 
pick up all exfoliated 2D material flakes. The 2D material layers in the 
main heterostructure region were picked up in the following order: sub-
strate hBN, graphite, bottom hBN, monolayer WS2, second monolayer 
WS2 (with 60° twist) and graphene nanoribbon array. The graphene 
nanoribbon array serves as a contact electrode for the twisted WS2. The 
PPC film and stacked sample were peeled together, flipped over and 
transferred onto an Si/SiO2 substrate (SiO2 thickness 285 nm). The PPC 
layer was subsequently removed using ultrahigh vacuum annealing at 
330 °C, resulting in an atomically clean heterostructure suitable for STM 
measurements. Metal layers (50 nm Au and 5 nm Cr) were evaporated 
through a shadow mask to form electrical contacts with graphene  
layers. Some residues on the shadow mask are occasionally transferred 
to the sample surfaces during the evaporation. These residues are later 
cleaned by the STM tip scratching. The STM tip is further cleaned on 
the GNR surface through field emission and/or tip bias pulse.

STM measurement
Tunnel current and dI/dV spectrum measurements were performed 
under open-loop conditions with the tip height first stabilized at tip 
bias Vbias and setpoint current Isp with closed feedback and then lowered 
by turning off the feedback and reducing the tip height by a distance 
of htip. A bias modulation with 25 mV amplitude and 500–900 Hz fre-
quency was applied to obtain the dI/dV signal. All STM measurements 
were performed at T = 5.4 K.

DW atomic structure
The DW atomic structure depends on the angle θ between the DW direc-
tion and the Burgers vector. Two extreme configurations are for shear 
(θ = 0) and tensile (θ = π/2) DWs (refs. 29,30). The shear DW atomic 
structure is shown in Extended Data Fig. 1 and shows a DW separating 
two AB stacking regions. Here a guide to the eye shows the W atoms 
in the bottom layer (orange dots) and the S atoms in the top layer 
(blue dots) across the DW to help visualize the interlayer dislocation. 
Although the S and W atoms are on top of one another to the left of the 
DW, they are separated by a unit cell to the right of the DW. Most DWs 
observed in this work have a Burgers vector angle θ between 0 and π/2, 
as identified through surface topography and atomically resolved STM 
images (for example, see Supplementary Fig. 1).

CBE tunnel current measurement
In this work, we probe the DW-correlated electrons using the CBE tunnel 
current instead of the conventional scanning tunnelling spectroscopy 
(STS).

Conventionally, the STS measures the sample density of states at 
the energy of the tip bias (with respect to the sample Fermi level). To 
measure the electronic states around the Fermi level (in which most 
of the interesting correlated states live), dI/dV spectra around zero tip 
bias need to be measured that reflect the density of states at the Fermi 
level. However, a known difficulty hindering the conventional STS study 
of correlated states in TMD semiconductors is the difference in the 
large tip and sample work function. At zero bias, the work function 
difference induces charge accumulation at the tip apex that generates 
a strong local electric field and hence a local band bending effect in the 
probed TMD layer (analogous to the origin of the Schottky barrier in the 
metal–semiconductor interface). This local band bending can destroy 
the fragile correlated states locally and prohibit the measurement of 
their intrinsic properties.

To overcome the above issue, we discard the conventional STS meas-
urement scheme and instead choose to measure the CBE tunnel current 
that can minimize the tip perturbation, as described below.

Here we apply a proper sample-tip bias (Extended Data Fig. 2a) to 
satisfy two requirements simultaneously:
1.	 Alignment of the tip chemical potential μtip within the WS2 bandgap. 

As the chemical potential of electron-doped WS2 (μtip) lies above the 
CBE, when the tip chemical potential is lowered into the WS2 band 
gap, the tunnel current (denoted CBE tunnel current) comes only 
from the doped WS2 CBE electrons.

2.	Alignment of the tip and WS2 vacuum energy levels. This is to com-
pensate for the work function difference between the tip and WS2 
and ensure minimal tip perturbation to interacting electrons in the 
DW. Experimentally, we achieve this by finding Vbias that yields the 
best imaging quality (indicating alignment of the sample and tip 
vacuum levels and minimized tip perturbation) (see Supplemen-
tary Information section 5 for details). We note that the previously 
carefully prepared STM tip was used to probe partially filled Landau 
levels with minimum perturbation close to zero tip bias44. Here the 
large-tip-WS2 work function difference requires a nonzero tip bias 
to minimize the tip perturbation.

The CBE tunnel current map directly reflects the spatial distri-
bution of doped electrons as demonstrated previously in CBE cur-
rent measurements on Wigner molecular crystals in moire artificial 
atoms36. Extended Data Fig. 2b shows the tunnel current I–V char-
acteristic on a log scale as a function of VBG measured at the centre 
of a DW with a large tip and sample separation (determined by the 
setpoint condition of Vbias = −3.30 V, Isp = 20 pA and htip = −50 pm; 
see Methods on STM measurement). Negligible tunnel current 
occurs for −1.8 V < Vbias < 0, which corresponds to the WS2 semicon-
ducting band gap (the valence band edge (VBE) and CBE are marked 
with white dashed lines). The CBE tunnel current is lower than the 
measurement noise floor in the bandgap region because of the large 
tip and sample separation. When the tip height is slightly lowered  
(setpoint condition: Vbias = −2.70 V, Isp = 20 pA and htip = −100 pm), 
the CBE tunnel current starts showing up in the gap region, as seen 
in Extended Data Fig. 2c. Ideally, the tunnel current is expected to 
be constant (zero dI/dV) within the band gap while experimentally 
a bias-dependent current variation (nonzero dI/dV) is still observed 
because of the presence of tip perturbation at non-ideal tip bias. 
Here dispersing features appear in the range 3 V < VBG < 8 V that cor-
respond to quantized electron number changes in a finite-length 1D 
Wigner crystal (see additional details in Supplementary Information  
section 10).

Thermal excitation and spin-incoherent Luttinger liquid
We can gain insight into how thermal excitation affects the spin degree 
of freedom by considering the energetics of a 1D chain of electrons 
compared with the thermal background. At lower densities, the 
electrons are far apart with reduced wavefunction overlap and so 
the spin exchange energy is strongly suppressed. This is reflected 
in the DMRG-calculated spin excitation energy EJ (that is, the energy 
to flip a single spin in an 80-nm long electron chain; see Supplemen-
tary Information section 7 for details), which is plotted in Extended 
Data Fig. 3a and shows exponential reduction with separation for 
n < 0.30 nm−1. This is much smaller than the charge excitation energy 
ħω0 (that is, the zero-momentum longitudinal optical phonon energy 
of a 1D Wigner crystal; see Supplementary Information section 7 
for details). For n < 0.30 nm−1, the thermal energy kBT at T = 5.4 K 
dominates over the spin energy, thus precluding any possible spin  
coherence.

Wigner crystal dimerization and magneto-elastic coupling
The Wigner crystal dimerization occurs when the spin exchange energy 
EJ exceeds the thermal energy kBT, thus making the spin behaviour 
important in the Wigner crystal. In this regime, the electrons are 
antiferromagnetically coupled and the exchange energy EJ strongly 
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depends on the electron separation d (Extended Data Fig. 3b). This 
causes magneto-elastic coupling between the spin and charge of the 
Wigner crystal, as described by the expression7

S S∑H J u u= ( − ) ⋅ .
l

l l l ls−c 1 +1 +1

Here J1 = ∂J/∂d, where J is the spin exchange interaction (which is related 
to EJ, see Supplementary Information section 7), and ul and Sl are the spa-
tial coordinates and spin of the lth electron. This spin–lattice interac-
tion term is similar to what is seen in spin-Peierls systems45,46, except that 
the phonon originates from an electron lattice rather than an atomic 
lattice. Magneto-elastic coupling lowers the overall energy of the 1D 
system by dimerizing the lattice to gain magnetic energy (Extended 
Data Fig. 3b), thus enhancing the 2kF density oscillation as J1 increases 
at higher electron density. This order is expected to decay algebraically 
from the defects pinning the crystal. However, a quantitative analysis 
of the algebraic decay is challenging in the experiment because of the 
limited signal-to-noise ratio.

Evidence for the magnetic origin of the dimerization phenomenon 
can be further seen by calculating the entanglement entropy SEE of 
the 1D electron chain. SEE reflects the degree of entanglement for adja-
cent electrons and so provides a measure of spin-singlet formation. 
Extended Data Fig. 3c shows the DMRG calculation of entanglement 
entropy SEE across each site of the electron chain at n = 0.3 nm−1 (see 
Supplementary Information section 6 for details). A clear oscillation 
in the entanglement entropy is observed, suggesting a high degree 
of entanglement between each dimerized electron pair and thus a 
tendency towards spin-singlet formation. The combination of spin–
lattice coupling and alternating valence bond order in the dimerized 
1D Wigner crystal is analogous to the physics of 1D polyacetylene as 
described by the Su–Schrieffer–Heeger model47.

Data availability
The data supporting the findings of this study can be found at GitHub 
(https://github.com/HongyuanLiCMP/Imaging-Tunable-Luttinger-
Liquid-Systems-in-van-der-Waals-Heterostructures) and are also avail-
able from the corresponding authors upon reasonable request.
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AB DW ABW (bottom) S (top)
Extended Data Fig. 1 | Sketch of the atomic structure for a shear-type 
stacking DW. The left and right regions are AB stacked while the center shows  
a vertically aligned DW. The positions of W atoms in the bottom layer (orange 

dots) and S atoms in the top layer (blue dots) are highlighted along a linecut 
across the DW. For shear-type DWs, the two AB stacking regions have an interlayer 
unit-vector shift parallel to the DW.
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Extended Data Fig. 2 | Conduction band edge tunnel current measurement. 
a. Schematic energy diagram for the conduction band edge (CBE) tunnel current 
measurement of electron-doped WS2. The WS2 chemical potential μWS2

 lies 
above the CBE. When the tip chemical potential μtip (controlled by Vbias) is the 
aligned within the band gap of the WS2, the tunnel current arises from the doped 
electrons at the conduction band edge. b,c. Tunnel current I-V characteristics 

as a function of VBG measured at the DW center for electron-doped WS2 with  
(b) a large (Vbias = −3.30 V, Isp = 20 pA, htip = −50 pm) and (c) small (Vbias = −2.70 V, 
Isp = 20 pA, htip = −100 pm) tip-sample separation. The current is plotted on a log 
scale with the positive and negative branches using different colormaps. The 
CBE and valence band edge (VBE) are marked with white dashed lines. For small 
tip-sample separation a negative CBE tunnel current can be seen in the WS2 gap.
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Extended Data Fig. 3 | Analysis of the Wigner-Friedel crossover. a. Calculated 
charge phonon energy ħω0 and exchange interaction energy EJ  as a function  
of 1D chain electron density. The experimental temperature energy scale is 
labeled with a green dashed line. b. Schematic illustration of 1D electron chain 
with decreasing interaction strength (from bottom to top) shows three regimes: 
Wigner crystal, dimerized crystal, and Friedel oscillation. c. DMRG calculation 

of the charge density n x( ) and entanglement entropy SEE across each site of 1D 
electron chain for n = 0.3 nm−1 (see SI section 6 for details). SEE reflects the degree 
of entanglement (and therefore singlet formation) between neighboring 
electrons in a dimerized Wigner crystal. Vertical lines label the boundary 
(solid) and center (dashed) of singlet pairs.
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