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ABSTRACT: Polymorph engineering involves the manipulation
of material properties through controlled structural modification
and is a candidate technique for creating unique two-dimensional
transition metal dichalcogenide (TMDC) nanodevices. Despite its
promise, polymorph engineering of magnetic TMDC monolayers
has not yet been demonstrated. Here we grow FeSe2 monolayers
via molecular beam epitaxy and find that they have great promise
for magnetic polymorph engineering. Using scanning tunneling
microscopy (STM) and spectroscopy (STS), we find that FeSe2
monolayers predominantly display a 1T′ structural polymorph at 5
K. Application of voltage pulses from an STM tip causes a local,
reversible transition from the 1T′ phase to the 1T phase. Density
functional theory calculations suggest that this single-layer structural phase transition is accompanied by a magnetic transition from
an antiferromagnetic to a ferromagnetic configuration. These results open new possibilities for creating functional magnetic devices
with TMDC monolayers via polymorph engineering.
KEYWORDS: polymorphism, magnetism, two-dimensional materials, scanning tunneling microscopy, phase transitions,
density functional theory

TMDC monolayers have demonstrated great potential for
next-generation electronic, magnetic, and optical appli-

cations.1 These atomically thin materials host a variety of novel
phenomena, including nontrivial topology,2−4 superconductiv-
ity,5,6 charge density waves,5,7−9 magnetism,10,11 and Mott
insulating phases,6,12,13 most of which can be strongly tuned
through electrostatic gating and strain.14−18 The coexistence of
different crystal structures having the same stoichiometries in
TMDC monolayers provides unique opportunities for TMDC
polymorph engineering. The three main polymorphs for
TMDC monolayers are the trigonal prismatic (1H), octahedral
(1T), and distorted octahedral (1T′) lattices, each of which
exhibits very different physical properties. Structural manipu-
lation between TMDC monolayer polymorphs has been used
to induce topological transitions between the 1T′ and 1H
phases in WSe2 and MoTe2,

19,20 as well as metal−insulator
transitions between the 1H and 1T phases of TaSe2, TaS2, and
NbSe2.

21−23 Polymorph engineering of TMDC monolayers has
been achieved through temperature,24 strain,14 charge
doping,15,16 laser irradiation,25 and application of local electric
fields,21−23,26 thus expanding the toolbox for creating func-
tional devices based on TMDC monolayers. Despite rapid
progress in experimentally controlling polymorphism in
TMDC monolayers, however, the manipulation of magnetism
in these materials through polymorph engineering is still in its
infancy, mainly due to a lack of suitable material platforms.

Here we demonstrate that monolayer FeSe2 is a promising
candidate for magnetic polymorph engineering through a
combined experimental and theoretical investigation. The
FeSe2 monolayers used in this study were grown via molecular
beam epitaxy (MBE). Scanning tunneling microscopy (STM)
investigation reveals that our FeSe2 monolayers occur mainly
in a stripe phase that we identify as the 1T′ polymorph. We
find that FeSe2 monolayers can be locally converted into a
hexagonal phase that we identify as the 1T-FeSe2 polymorph
upon the application of voltage pulses from the STM tip. This
phase transition can be reversed by heating the sample above
50 K, thus establishing the 1T′ polymorph as the ground state
structure. DFT+U calculations confirm the assignment of 1T′
and 1T polymorphs to the stripe and hexagonal phases,
respectively, and corroborate that 1T′-FeSe2 is the most stable
polymorph and that it has a low energy barrier for structural
phase transitions. Our calculations further suggest the existence
of antiferromagnetic order in monolayer 1T′-FeSe2 and

Received: March 18, 2024
Revised: June 11, 2024
Accepted: June 12, 2024
Published: July 5, 2024

Letterpubs.acs.org/NanoLett

© 2024 American Chemical Society
8535

https://doi.org/10.1021/acs.nanolett.4c01286
Nano Lett. 2024, 24, 8535−8541

D
ow

nl
oa

de
d 

vi
a 

LA
W

R
EN

C
E 

B
ER

K
EL

EY
 N

A
TL

 L
A

B
O

R
A

TO
R

Y
 o

n 
A

ug
us

t 1
2,

 2
02

4 
at

 1
8:

43
:5

3 
(U

TC
).

Se
e 

ht
tp

s:
//p

ub
s.a

cs
.o

rg
/s

ha
rin

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zehao+He"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Shiva+Prasad+Poudel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Samuel+Stolz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tianye+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Antonio+Rossi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Feng+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sung-Kwan+Mo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sung-Kwan+Mo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Alexander+Weber-Bargioni"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zi+Qiang+Qiu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Salvador+Barraza-Lopez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tiancong+Zhu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+F.+Crommie"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michael+F.+Crommie"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.nanolett.4c01286&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01286?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01286?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01286?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01286?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.nanolett.4c01286?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/nalefd/24/28?ref=pdf
https://pubs.acs.org/toc/nalefd/24/28?ref=pdf
https://pubs.acs.org/toc/nalefd/24/28?ref=pdf
https://pubs.acs.org/toc/nalefd/24/28?ref=pdf
pubs.acs.org/NanoLett?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.nanolett.4c01286?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/NanoLett?ref=pdf
https://pubs.acs.org/NanoLett?ref=pdf


ferromagnetic order in the monolayer 1T-FeSe2 phase over a
large range of values for the parameter U.
FeSe2 monolayers were grown on highly oriented pyrolytic

graphite (HOPG) using MBE under a Se-rich environment
(see Methods for the details of growth). The growth was
monitored using reflection high-energy electron diffraction
(RHEED) as shown in Figure 1a. We observed the concurrent
growth of FeSe and FeSe2 monolayers. During growth at 800
K, the RHEED intensity from the FeSe2 monolayer (red lines
in Figure 1a) is stronger than the monolayer FeSe intensity
(green lines in Figure 1a). When the temperature decreases to
300 K, the relative RHEED intensity of monolayer FeSe
increases, indicating that monolayer FeSe2 is a metastable
phase.
Low-temperature (5 K) STM and scanning tunneling

spectroscopy (STS) measurements were performed to gain
insight into the structural and electronic properties of
monolayer FeSe2. The large-scale STM image shown in Figure
1b depicts monolayer FeSe2 islands on HOPG that have a step
height of ∼8.2 ± 0.2 Å. The high-resolution STM images and
STS data shown in Figure 1c−f enable us to differentiate the
structure and density of states of monolayer FeSe versus
monolayer FeSe2. Monolayer FeSe (Figure 1c) is observed to
have a square unit cell with a lattice constant of 3.8 ± 0.1 Å, as
seen previously.27 Our STS spectra obtained from monolayer
FeSe (Figure 1f, green curve) are also in agreement with
previous STS measurements.27 All non-FeSe monolayer islands
are identified as FeSe2 and are observed to have two different
polymorphs. A majority of the FeSe2 monolayer islands show a
stripe phase (Figure 1d), accounting for >90% of the total
FeSe2 island area. An atomically resolved image of the stripe
phase reveals a rectangular unit cell with lattice constants of 3.9
± 0.1 and 6.7 ± 0.1 Å (Figure 1d, bottom panel). The atomic
structure and symmetry of the stripe phase are similar to
previous observations of 1T′-WTe2

4 [although a slight period
doubling in the long direction can be seen for FeSe2 (see
Figure S1)]. The remaining fraction of the FeSe2 monolayer
islands exhibits a hexagonal phase with a lattice constant of 3.8

± 0.1 Å (Figure 1e) that is consistent with the 1T or 1H
TMDC polymorphs. STS measurements shown in the inset of
Figure 1f reveal that both phases of monolayer FeSe2 exhibit a
nonvanishing dI/dV signal near the Fermi level, thus indicating
metallic behavior.
Figure 2 shows the process by which the stripe phase of

monolayer FeSe2 can be locally converted into the hexagonal
phase by applying a voltage pulse from the STM tip. Figure 2a
shows an FeSe2 island before tip pulsing, where most of the
island is in the stripe phase (see the dashed line phase
boundary). To induce a local phase change, the STM tip was
positioned at the location indicated by the white cross in
Figure 2b and a voltage pulse of 3.4 V was applied for 100 ms
with the STM feedback loop open (for the tunnel set point, VB
= −1 V and IT = 10 pA). After the pulse, the region near the tip
pulse position is seen to convert from the stripe phase to the
hexagonal phase (see the lower dashed line which indicates the
created phase boundary). The close-up image in the inset of
Figure 2b shows the hexagonal symmetry of the converted
region (this region has an area similar to the altered regions
observed in other STM-driven phase transitions21,28,29). The
rest of the island was converted from the stripe phase to the
hexagonal phase by scanning the entire island with a bias
voltage (VB) of 3.5 V (IT = 10 pA) (Figure 2c). Once
converted to the hexagonal phase, the island could not be
changed back to the stripe phase by pulsing despite the
application of numerous voltage pulses (Vpulse) in the range
from −5 to 5 V.
To better characterize the phase conversion process, we

systematically determined the threshold pulse voltage required
to convert different stripe phase islands to the hexagonal phase.
For each island, a low voltage pulse of 2 V was first applied
(using the initial tunnel set point VB = −1 V and IT = 10 pA),
and then incrementally higher pulses were applied up to a
maximum of 5 V (using the same initial set point) until a tip-
induced structural phase transition occurred. A histogram of
the minimum voltage pulse required to cause local phase
conversion at 5 K for different monolayer islands is plotted in

Figure 1. Growth and structural characterization of FeSe2 monolayers. (a) RHEED patterns (top to bottom) of clean HOPG (blue), a mixture of
monolayer FeSe2 (red), and monolayer FeSe (green) after growth at 800 K and after cooling to 300 K. (b) Large-scale STM image of a typical
MBE-grown sample (VB = −1.0 V; IT = 10 pA). The inset shows the height profile along the blue line. (c) Close-up STM image of an FeSe
monolayer with a square unit cell (green) (VB = −1.0 V; IT = 100 pA). (d) Close-up STM image of monolayer 1T′-FeSe2 with a rectangular unit
cell (blue) (for the top panel, VB = −1.0 V and IT = 10 pA; for the bottom panel, VB = −1.0 V and IT = 100 pA). (e) Close-up STM image of the
1T-FeSe2 monolayer with a hexagonal unit cell (black) (VB = −0.3 V; IT = 100 pA). (f) STS spectra of monolayer FeSe (green), 1T′-FeSe2 (blue),
and 1T-FeSe2 (red) (lock-in Vmod = 2 mV). The curves have been shifted vertically for easier viewing (dashed lines show dI/dV = 0 for each curve).
The inset shows STS spectra in the low-bias range for monolayer 1T′-FeSe2 (blue) and 1T-FeSe2 (red) (lock-in Vmod = 2 mV). Tip stabilization set
point for STS: VB = −0.2 V, and IT = 100 pA.
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Figure 2d. Stripe phase islands that did not convert into the
hexagonal phase after the application of voltage pulses up to 5
V are denoted “nonconvertible” (NC). The phase conversion
process is observed to be dependent on polarity, as no islands
could be converted with negative pulses up to a magnitude of
−4 V. At 5 K, 98% of all monolayer islands in the stripe phase
could be converted to the hexagonal phase using positive
pulses (Figure 2d) with an average threshold voltage ⟨Vth⟩ =
3.3 V. No clear trend is seen regarding the area of the
converted FeSe2 region and the magnitude of the applied
voltage pulse (see Figure S2). Possible mechanisms that might
explain the 1T′ to 1T phase transition observed here include
the effect of the tip-induced electric field on local electronic
dipole moments,21,29 as well as the effect of electronic doping
on the total energy of the two-dimensional film.15,20

The ease with which the stripe to hexagonal phase transition
of FeSe2 monolayers can be induced suggests a relatively low
energy barrier between the stripe and hexagonal polymorphs.
This implies that thermally induced island structural transitions

might be able to compete with tip-induced transitions at higher
temperatures. To test this hypothesis and gain insight into the
magnitude of the relevant energy barrier, we performed
additional experiments at higher temperatures using the
switching protocol described above. Figure 3a shows the tip-
induced switching histogram for an ensemble of islands held at
20 K. The observed switching characteristics are very similar to
those occurring at 5 K: all 23 islands were switched with ⟨Vth⟩
of 3.1 V. At higher temperatures, however, the switching
behavior of the islands gradually changes. For example, Figure
3b shows that at 40 K the threshold voltage increases to 3.5 V
and 11% of the islands are nonconvertible. At 50 K, the
threshold voltage increases to 3.9 V and 27% of the islands
cannot switch (Figure 3c). At 60 K, the threshold voltage
increases further to ⟨Vth⟩ of 4.4 V, while the nonswitching
fraction increases to 54% (Figure 3d). The temperature-
induced trend is seen in Figure 3e, which shows the
nonswitching fraction of islands as a function of temperature.
In addition to the apparent increased difficulty of switching

with an increased temperature, we also observe islands
switching back to the stripe phase at higher temperatures.
For example, at 20 K no islands return to the stripe phase for
waiting times on the order of 1 minute, while at 50 K, we
observe 25% of the islands switching back to the stripe phase
after a 1 minute waiting period. The increased difficulty of the
1T′ to 1T phase transition with an increased temperature is
likely influenced by the increased rate of back conversions.
This is consistent with the fact that the striped 1T′ phase of
monolayer FeSe2 is the thermodynamically stable phase.
The temperature dependence of the switching behavior can

be visualized for a single monolayer island as shown in Figure
3f−i. Figure 3f shows the entire island in the stripe phase at 50
K before switching [the dashed black line shows a grain
boundary between two rotated 1T′ domains (see section 3 of
the Supporting Information for additional discussion of
domain boundaries)]. Figure 3g shows the island after being
pulsed at the marked location, causing the lower right quadrant
to switch to the hexagonal phase (50 K). The sample was then
warmed up to 60 K over a period (Δt) of ∼1 h, whereupon the
same island was reimaged. As shown in Figure 3h, heating
causes the island to switch back to the stripe phase with a grain
boundary bisecting the island between two rotated 1T′
domains (similar phase reversal also occurs for fully converted
1T islands as shown in section 4 of the Supporting
Information). This island could not be switched to the
hexagonal phase via tip pulsing at 60 K, but the 1T′−1T′
rotational grain boundary did shift as a result of pulsing (Figure
3i) (similar tip pulse-induced movement of 1T′−1T′ grain
boundaries has been seen in TMDC monolayers previously26).
To gain further insight into the properties of monolayer

FeSe2, we performed density functional theory (DFT)
calculations using the DFT+U method with U values ranging
from 0 to 6 eV for the Fe d orbital. As shown in Figure 4a, our
relaxed DFT structures systematically underestimate the lattice
constants of the 1T′ and 1T FeSe2 polymorphs by ∼9%
compared to the STM data (the energetically unfavorable 1H
polymorph has a lattice constant that is >18% smaller than the
experimental hexagonal lattice constant). Slight underestima-
tion of lattice constants is common for DFT-based
methods.30−33 Our DFT calculations provide useful insight
into the energetics of the different FeSe2 polymorphs,
including their magnetic configurations. As shown in Figure
4b, the 1T′-FeSe2 monolayer is the energetically favorable

Figure 2. Electrically induced structural phase transition in FeSe2
monolayers. (a) STM image of the stripe phase FeSe2 monolayer
island before any STM tip manipulation (VB = −1.0 V; IT = 10 pA).
The boundary between the 1T′ stripe phase and the 1T hexagonal
phase of the FeSe2 monolayer is indicated by a yellow dashed line.
The inset shows a close-up image of the stripe phase (VB = −1.0 V; IT
= 10 pA). (b) Same island shown in panel (a) after a 3.4 V voltage
pulse applied at the position indicated by the white x. The inset shows
a close-up image of the hexagonal 1T phase (VB = −1.0 V; IT = 10
pA). (c) Same island after STM scanning with VB = 3.5 V and IT = 10
pA. The inset shows a close-up image of the newly converted 1T
hexagonal phase (VB = −0.3 V; IT = 100 pA). (d) Histogram showing
the number of islands converted from the stripe phase to the
hexagonal phase and the minimum voltage pulse required for each
conversion. Islands that did not exhibit a phase change from the stripe
phase to the hexagonal phase for pulses of ≤5 V are counted as
“nonconvertible” (NC).
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polymorph for U values of ≤4 eV [>160 meV/formula unit
(f.u.) lower in energy than 1H-FeSe2] but is only ∼5 meV/f.u.
more stable than monolayer 1T-FeSe2 for U = 4 eV. This leads
to an energy difference of ∼50 K between the 1T-FeSe2 and
1T′-FeSe2 phases, in reasonable agreement with the exper-
imental results and supporting our choice of U = 4 eV.
Our DFT calculations provide insight into the magnetic

ground states of the different polymorphs of monolayer FeSe2.
Figure 4c shows that the 1T′ rectangular AFM phase has the
lowest energy of all of the polymorph phases, while the 1T FM
phase is the nearest adjacent phase with an energy just 5 meV/
f.u. higher (theoretically predicted magnetic orderings were
seen to remain constant for electron and hole doping levels of
≤1013 cm−2). No experimental signatures of inelastically
induced transitions between different theoretically predicted
magnetic phases were observed for our FeSe2 samples.
The magnetic moments of the 1T′ rectangular AFM phase

are predicted to have a magnitude of 3.59 μB per Fe atom and
0.09 μB per Se atom. The nearby 1T FM phase is predicted to
have magnetic moments of 3.69 μB per Fe atom and 0.12 μB
per Se atom (spin-polarized band structures for these magnetic
configurations can be seen in Figure 4e and are compared to
experimental dI/dV spectra in Figure S6). The ferromagnetic
1T-FeSe2 monolayer adopts an in-plane magnetic configu-
ration with a magnetic anisotropy barrier of 1.1 meV/f.u.
(Figure 4d), consistent with an observed phase transition in
magnetoresistance measured previously for multilayer 1T-
FeSe2 nanocrystals.

34

The calculated magnetic states of both 1T-FeSe2 and 1T′-
FeSe2 are consistent with each Fe atom transferring four
electrons to surrounding Se atoms, thus changing the Fe
electron shell structure from 4s23d6 to 4s03d4. The four
remaining d electrons are expected to result in 4 μB per Fe
atom according to Hund’s rule, which is reasonably consistent
with our calculated magnetic moments. Because the Fe atoms
in FeSe2 are the next-nearest neighbors, the magnetic exchange
interaction is likely dominated by superexchange coupling
through Se atoms, whose sign and magnitude can strongly
depend on bond lengths and bond angles. This is the probable
cause of the different magnetic ground states between
monolayer 1T-FeSe2 and monolayer 1T′-FeSe2.
In conclusion, we have experimentally demonstrated the

growth of the 1T′ polymorph of monolayer FeSe2, as well as
reversible manipulation between monolayer FeSe2 1T′ and 1T
polymorphs. The 1T′-FeSe2 to 1T-FeSe2 transition is realized
electrically upon application of a voltage pulse with the STM
tip, while the 1T-FeSe2 to 1T′-FeSe2 transition is induced
thermally. DFT simulations suggest that this structural phase
transition is accompanied by a change from antiferromagnetic
ordering in monolayer 1T′-FeSe2 to ferromagnetic ordering in
monolayer 1T-FeSe2. The predicted difference in magnetic
ordering between the 1T and 1T′ phases combined with the
experimentally observed reversible structural phase transition
suggests that the magnetic ground state of FeSe2 monolayers
may be locally manipulated through their structural poly-
morph. FeSe2 monolayers thus potentially provide a new

Figure 3. Thermal reversibility of the structural phase transition in FeSe2 monolayers. Histograms show the number of monolayer islands converted
from the stripe phase to the hexagonal phase (i.e., 1T′ to 1T phase) and minimum voltage pulse required for conversion at (a) 20 K, (b) 40 K, (c)
50 K, and (d) 60 K. Islands not undergoing phase conversion for pulses of ≤5 V are counted as nonconvertible (NC). (e) Temperature
dependence of the total fraction of islands counted as nonconvertible. STM images of the same monolayer FeSe2 island (f) before and (g) after a
3.4 V pulse at the position indicated by the blue x. (h) Same island after the sample temperature is increased to 60 K. (i) Same island after the
application of a 3.4 V pulse at the position depicted by the blue x (60 K). The boundary between two rotated stripe domains shifts after the voltage
pulse as shown by the dashed black lines.
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platform for the investigation and manipulation of structural
and magnetic phase transitions in the atomically thin limit.

■ METHODS
MBE Growth. Monolayer FeSe2 samples were grown on

highly oriented pyrolytic graphite (HOPG) or on bilayer
graphene on SiC(0001) substrates using MBE. Before growth,
the substrates were cleaned by annealing them at 900 K
overnight under ultra-high-vacuum conditions with a pressure
better than 2 × 10−10 mbar. Iron (purity of 99.995%, SPIE)
and selenium (purity of 99.999%, Alfa Aesar) were then
sublimated from an e-beam evaporator (flux of 0.08 Å/min)
and a home-built Knudsen cell (flux of 8 Å/min), respectively,
until the desired surface coverage was achieved while the
sample was held at 800 K.
STM Measurements. The clean transfer of the sample

from the MBE chamber to the STM chamber was achieved by
capping the sample with 20 nm of amorphous Se to prevent
degradation in air. Before STM measurement, the samples
were annealed in UHV at ∼200 °C for 1 h to remove the Se
capping layer and then transferred in situ to the low-
temperature (5 K) STM stage. Some samples were directly
transferred from the MBE chamber to the STM chamber
through a UHV suitcase to confirm the quality of the Se-
capped samples.
STM measurements were performed in a low-temperature

CreaTec UHV STM instrument operated at a pressure of <2 ×
10−10 mbar (5 K for all STM measurements except where
otherwise specified). Electrochemically etched tungsten tips
were calibrated on a Cu(111) surface before performing other
STM measurements. STS measurements were performed using
standard lock-in techniques (frequency of 401 Hz). The STM

tip was grounded during these measurements, and bias voltages
refer to the sample voltage.
To determine the lattice constants of epitaxial FeSe2

monolayers, we first calibrated our STM instrument by
obtaining atomic resolution of the underlying HOPG or
graphene substrate. The STM set point before the application
of voltage pulses for monolayer phase switching was typically
VB = −1 V and IT = 10 pA. Voltage pulses of 2 V were first
applied and then increased by 0.1 V until the stripe to
hexagonal phase transition was observed via STM topography
scans.

Computational Methods. Electronic structure calcula-
tions were performed using DFT as implemented in the VASP
package.35 PAW36 pseudopotentials were used to describe the
ionic potential of all atoms. We employed exchange-correlation
functionals with self-consistent van der Waals corrections37

using the optPBE-vdW functional.38−40 A 30 × 15 × 1 k-point
grid and a cutoff energy of 500 eV were employed. Energy and
force convergence criteria were set to 10−10 eV and 10−6 eV/Å,
respectively. The out-of-plane lattice vector was set to 30 Å. A
U parameter was added to constrain the spatial extent of the Fe
d orbitals, which are often too extended in standard DFT. This
approach also helps to provide more accurate magnetic
exchange couplings. We applied DFT+U corrections41,42

using the method of Dudarev et al.43
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Atomic structure of the monolayer FeSe2 stripe phase
(section 1), statistics for the converted area versus

Figure 4. Calculated energetics of FeSe2 monolayers. (a) Lattice constants of monolayer 1T′-FeSe2 along the X direction (black), monolayer 1T′-
FeSe2 along the Y direction (green), and monolayer 1T-FeSe2 along the X direction (red) derived from DFT+U calculations for different values of
U (normalized to the corresponding experimental lattice constants). (b) Total energy difference between the monolayer 1T- and 1T′-FeSe2
structures as a function of Hubbard parameter U in DFT+U calculations. (c) Total energy difference between monolayer 1T′-FeSe2 with a
rectangular antiferromagnetic (AFM) configuration and different X-FeSe2 polymorphs where X = {1T′, 1T, 1H} exhibiting different magnetic
ground states (U = 4 eV). The inset shows the three possible calculated 1T′ AFM configurations (red means spin up, and blue means spin down).
(d) Magnetic ordering for monolayer 1T′-FeSe2 in the rectangular AFM state and monolayer 1T-FeSe2 in the FM state along the b direction as
defined in panel (a) (the distorted 1T′ structure is exaggerated for the sake of clarity). (e) Band structure and density of states for rectangular AFM
monolayer 1T′-FeSe2 (top) and FM monolayer 1T-FeSe2 (bottom).
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magnitude of voltage pulses (section 2), additional
experimental data on domain walls (section 3), phase
reversal for a fully converted 1T island (section 4), and
experimental dI/dV spectra and calculated density of
states (section 5) (PDF)
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