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Abstract— We propose a versatile privacy framework for
quantum systems, termed quantum pufferfish privacy (QPP).
Inspired by classical pufferfish privacy, our formulation gener-
alizes and addresses limitations of quantum differential privacy
by offering flexibility in specifying private information, feasible
measurements, and domain knowledge. We show that QPP
can be equivalently formulated in terms of the Datta–Leditzky
information spectrum divergence, thus providing the first oper-
ational interpretation thereof. We reformulate this divergence
as a semi-definite program and derive several properties of
it, which are then used to prove convexity, composability, and
post-processing of QPP mechanisms. Parameters that guarantee
QPP of the depolarization mechanism are also derived. We ana-
lyze the privacy-utility tradeoff of general QPP mechanisms and,
again, study the depolarization mechanism as an explicit instance.
The QPP framework is then applied to privacy auditing for
identifying privacy violations via a hypothesis testing pipeline that
leverages quantum algorithms. Connections to quantum fairness
and other quantum divergences are also explored and several
variants of QPP are examined.

Index Terms— Auditing privacy, privacy-utility tradeoff,
pufferfish privacy, quantum differential privacy, quantum gen-
eralized divergences.

I. INTRODUCTION

WITH a surging interest in quantum and hybrid
classical–quantum systems, ensuring privacy of both

classical and quantum data has become pivotal. Privacy-
preserving data analysis has been widely studied for classical
systems by means of statistical privacy frameworks. Differen-
tial privacy (DP) is an important statistical privacy framework
that enables answering aggregate queries about a database
while keeping individual records private [1], [2]. However,
DP accounts for one type of private information only (namely,
records of individual users), and it does not allow encoding
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domain knowledge into the framework. To address these
limitations, a versatile generalization of DP, termed Pufferfish
Privacy (PP), has been proposed [3]. PP allows for customiz-
ing which information is regarded as private and explicitly
integrates distributional assumptions into the definition [3],
[4], [5]. PP has found use in several applications, including
smart metering [6], [7] and trajectory monitoring with location
tracking [8], [9] (see also Figure 1 of [10] for an explicit
example related to salary releases, where PP is applicable).
Information-theoretic formulations of classical DP and PP
have been proposed in [11] and [12], respectively.

Quantum DP (QDP) is a generalization of the classical DP
notion and has been proposed in [13]. See also [14] for DP of
quantum measurements and [15] for an information-theoretic
interpretation of QDP. Connections to quantum stability
through private learning have been studied in [16]. More-
over, [17] has explored how quantum classifiers can be made
private by using the intrinsic noise of existing quantum sys-
tems. See also [18], [19], [20], [21], and [22] for applications
of DP in quantum machine learning. Additionally, privacy
amplification of quantum and quantum inspired algorithms has
been analysed using QDP and classical DP notions in [23].
However, similar to the classical case, the versatility of QDP
is limited.

In this paper, we propose a flexible privacy framework for
quantum systems, termed quantum PP (QPP), that addresses
these limitations. We provide a comprehensive study of
QPP, encompassing properties, mechanisms, privacy-utility
tradeoffs, as well as the first operational meaning of the
Datta–Leditzky information spectrum divergence [24] (here-
after abbreviated as the DL divergence), which arises from
our framework.

A. Motivation

We seek to address key limitations of QDP by exploring
more flexible privacy frameworks for quantum information
processing. As delineated next, flexible secrets, embedding
domain knowledge, and relaxing the need for worst-case
measurements are considerations central to our approach.

1) Flexible Secrets: QDP guarantees that any pair of states
that are classified as neighbors are approximately indis-
tinguishable, i.e., cannot be identified under any possible
measurement. However, scenarios may arise in which one
wants to hide specific properties of the states, as opposed
to the state itself (e.g., whether the states possess a certain
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Fig. 1. Depiction of a setup where the goal is to hide whether the amount
entanglement V present in the bipartite states ρ1, ρ2, σ1, and σ2 equals a or b.
In this diagram, large squares represent the entire quantum state, while small
rectangles correspond to a specific attribute of that state (i.e., the amount of
entanglement as quantified by the function V). The specific attribute can take
on one of two values, a or b, represented by solid or dotted lines, respectively.
As the goal is to conceal only the entanglement level, and not necessarily the
specific quantum state, we want the sets R = {ρ1, ρ2} and T = {σ1, σ2}
to be indistinguishable.

symmetry or property, have any entanglement with a special
subsystem, or have secret correlations with other systems).
In such situations, QDP may be an overly pessimistic notion
of privacy, which, in turn, hinders utility. As an example,
consider hiding the amount of entanglement V present in the
bipartite states in the set {ρ1, ρ2, σ1, σ2}, for which V(ρ1) =
V(ρ2) = a and V(σ1) = V(σ2) = b. As illustrated in
Fig. 1, hiding whether V equals a or b amounts to making
the classes {ρ1, ρ2} and {σ1, σ2} indistinguishable. This can
be achieved by applying a QDP mechanism to the state space
{ρ1, ρ2, σ1, σ2} by choosing (ρi, σj) for all i, j ∈ {1, 2} as
neighbors, with the criterion that ρ and σ are neighbors if and
only if |V(ρ)−V(σ)| = |a− b|. However, doing so provides a
stricter guarantee than required. The source of the issue is the
inability of QDP to account for secrets concerning collections
of states (as opposed to singletons), which is the first issue we
aim to address.

2) Domain Knowledge: In QDP, a worst-case privacy guar-
antee is provided for all neighboring states. However, one may
possess knowledge about the likelihood of observing different
states, e.g., via expert feedback. Referring back to the setting
from Fig. 1, if we have domain knowledge such that observing
the states ρ1, ρ2, σ1, σ2 is prescribed by the probability vector
(p/2, (1− p) /2, 1/2, 0), for p ∈ (0, 1), then the requirement
simplifies to the indistinguishability of {ρ1, ρ2} versus {σ1}.
Classically, it has been demonstrated that domain knowledge
can be leveraged to design privacy mechanisms with increased
accuracy and utility [3], [25]. This calls for a quantum privacy
framework that can also encode domain knowledge.

3) Relaxing Worst-Case Measurements: Another worst-case
aspect of QDP is its account of all possible measurements.

However, such a requirement might be too stringent in prac-
tice, especially in quantum systems. As an example, while a
joint measurement can accurately distinguish between entan-
gled but physically separated states, oftentimes only local
operations and classical communications (LOCC) are available
(e.g., as considered in quantum data-hiding protocols [26],
[27], [28], [29], [30], [31], [32]). In such cases, one may
achieve improved accuracy and utility by relaxing the privacy
requirement to account for LOCC measurements only.

In sum, the rapid advancements in quantum technologies
requires designing flexible privacy frameworks that can be
adjusted to timely needs. Furnishing such a framework is the
main objective of our paper.

B. Contributions

This work proposes a quantum analog of the PP framework
that accounts for the three aforementioned aspects. Our formal-
ism enables reasoning about privacy of quantum systems using
information-theoretic tools. We provide a comprehensive study
of QPP, encompassing properties, mechanisms, and privacy-
utility tradeoffs. Our paradigm also gives rise to the first
operational interpretation of the DL divergence [24]. The
proposed QPP framework comprises four key ingredients:

1) the set of potential secrets,
2) the set of discriminative pairs that are required to be

indistinguishable at the output of the mechanism,
3) the set of data distributions, which encodes domain

knowledge on the occurrence of quantum or classical
data, and

4) the set of measurements to be accounted for, which
is specified based on physical, ethical, or any other
constraints.

See Definition 4 for a formal definition. QPP guarantees the
indistinguishability, under any allowable measurement, of sets
of states formed based on the above ingredients.

After defining the operational privacy framework,
we observe that when the measurement class contains
all possible measurements, QPP can be equivalently posed as
a DL divergence constraint. To the best of our knowledge,
this provides the first operational interpretation of the
DL divergence. We then derive an efficiently computable
formulation of the DL divergence as a semi-definite program
(SDP), which may be of independent interest. This SDP is
utilized to prove properties of the DL divergence, which
are then used in the analysis of QPP mechanisms. These
properties include joint quasi-convexity and the data-
processing inequality under positive and trace non-increasing
maps (see Section IV). Our results also generalize the
connection between the hockey-stick divergence and QDP,
originally established in [15]. Moreover, we show that
existing privacy frameworks such as classical DP [1], [2],
classical PP [3], utility-optimized local DP (not subsumed by
classical PP) [33], and QDP [13], [15] are special cases of
our QPP framework.

We then move on to derive properties of QPP mechanisms,
encompassing convexity, post-processing, and composabil-
ity (both parallel and adaptive). As a specific example,
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we characterize the flip parameter that guarantees QPP of
the depolarization mechanism. We also describe how QPP
mechanisms implementable on quantum devices can be instan-
tiated to achieve classical PP. We consider the associated
privacy-utility tradeoff for QPP mechanisms. Our utility metric
captures how invertible the privacy mechanism is, which
is formulated as the infimized diamond distance between a
post-processing of the mechanism’s output and the identity
channel. We show that this utility metric can be com-
puted as an SDP, and we analyze the privacy-utility tradeoff
of the depolarization mechanism. Lastly, we study optimal
privacy-utility tradeoffs of QPP mechanisms and characterize
the achievable region in several settings.

Another application we consider is privacy auditing, which
refers to certifying whether a black-box mechanism satisfies
a target privacy guarantee. While several auditing methods
are available for classical frameworks, there is currently no
approach that can handle quantum data. We fill this gap
by proposing the first auditing pipeline for quantum privacy
mechanisms. In contrast to existing approaches for classi-
cal DP and PP, which require first relaxing the privacy
notion and only then auditing, our approach audits for QDP
directly. Extensions of these ideas to the QPP setting are also
considered.

Finally, we explore connections between QPP, existing
quantum privacy frameworks, and figures of merit. First,
we examine the connection between quantum privacy and
fairness [34], [35], showing that private quantum mechanisms
are fair, and under certain conditions, fair algorithms are pri-
vate. We also provide bounds on quantum Rényi divergences
and the trace distance, which stem from QPP. This inspires
relaxations of QPP that are defined via these divergences,
which, in particular, provide other operational interpretations
thereof as privacy metrics. Lastly, we present a variant of QPP
that can incorporate entanglement into the framework with the
use of reference systems.

C. Organization

The rest of our paper is organized as follows. In Section II,
we introduce notation and preliminaries in quantum infor-
mation theory and privacy. Section III presents the QPP
framework, its equivalent formulations in terms of the
DL divergence, and special cases of it. In Section IV, we focus
further on the DL divergence, reformulate it as an SDP, and use
this SDP to prove several properties of it. Properties of gen-
eral QPP mechanisms and the depolarization mechanism are
studied in Section V. We analyze the privacy-utility tradeoff
of QPP mechanisms in Section VI, while the privacy auditing
application is considered in Section VII. Connections to exist-
ing privacy frameworks and to other quantum divergences are
explored in Section VIII. Then, we propose several relaxations
and variants of QPP in Section IX. Section X summarizes our
main contributions and provides concluding remarks.

II. PRELIMINARIES AND BACKGROUND

A. Notation

Sets are denoted by calligraphic letters, e.g., X . For k, n ∈
N, we use Xn×k to denote the database space of n × k

matrices; columns correspond to different attributes while rows
to different individuals. The (i, j)th entry of x ∈ Xn×k

is denoted as x(i, j). The ith row and jth column of x
are denoted by x(i, ·) and x(·, j), respectively. We denote
by (Ω,F ,P) the underlying probability space on which all
random variables (RVs) are defined, with E designating expec-
tation. RVs are denoted by upper case letters, e.g., X , with
PX representing the corresponding probability law. For X ∼
PX , we interchangeably use supp(X) and supp(PX) for the
support. The joint law of (X,Y ) is denoted by PXY , while
PY |X designates the (regular) conditional probability of Y
given X . Conventions for n×k-dimensional random variables
are the same as for deterministic elements. The space of all
Borel probability measures on S ⊆ Rd is denoted by P(S).
The Kullback–Leibler (KL) divergence between P,Q ∈ P(X )
with P ≪ Q is given by D(P∥Q) := EP

[
ln
(
dP
dQ

)]
, where

dP
dQ is the Radon–Nikodym derivative of P with respect to Q.
For (X,Y ) ∼ PXY , the mutual information between X and
Y is denoted by I(X;Y ) := D(PXY ∥PX ⊗ PY ).

We now review basic concepts from quantum informa-
tion theory and refer the reader to [36] and [37] for more
details. A (classical or quantum) system R is identified with
a finite-dimensional Hilbert space HR. We denote the set of
linear operators acting on HR by L(HR). The support of a
linear operator X ∈ L(HR) is defined to be the orthogonal
complement of its kernel, and it is denoted by supp(X). Let
T(C) denote the transpose of C. The partial transpose of
C ∈ L(HA ⊗ HB) on the subsystem A is represented as
TA(C). Let Tr[C] denote the trace of C, and let TrA[C]
denote the partial trace of C over the subsystem A. The trace
norm of a matrix B is defined as ∥B∥1 := Tr[

√
B†B]. For

operators A and B, the notation A ≥ B indicates that A−B is
a positive semi-definite (PSD) operator, while A > B indicates
that A−B is a positive definite operator.

A quantum state ρR ∈ L(HR) on R is a PSD, unit-trace
operator acting on HR. We denote the set of all density
operators in L(HR) by D(HR). A state ρR of rank one is
called pure, and we may choose a normalized vector |ψ⟩ ∈ HR

satisfying ρR = |ψ⟩⟨ψ| in this case. Otherwise, ρR is called
a mixed state. By the spectral decomposition theorem, every
mixed state can be written as a convex combination of pure,
orthogonal states. A quantum channel N : L(HA) → L(HB)
is a linear, completely positive and trace-preserving (CPTP)
map from L(HA) to L(HB). We denote the adjoint of N
by N †. A measurement of a quantum system R is described
by a positive operator-valued measure (POVM) {My}y∈Y ,
which is defined to be a collection of PSD operators satisfying∑
y∈Y My = IHR

, where Y is a finite alphabet. The Born
rule dictates that, after applying the above POVM to ρ ∈
D(HR), the probability of observing the outcome y is given
by Tr[Myρ].

B. Quantum Divergences

We define several quantum divergences that will be used
throughout this work. We call a distinguishability measure
D(·∥·) a generalized divergence [38] if it satisfies the data-
processing inequality; i.e., for every channel N , state ρ, and
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PSD operator σ,

D(ρ∥σ) ≥ D(N (ρ)∥N (σ)) . (1)

The normalized trace distance between the states ρ and σ
is defined as

T(ρ, σ) :=
1
2
∥ρ− σ∥1 , (2)

while the fidelity between them is defined as [39]

F(ρ, σ) :=
∥∥√ρ√σ∥∥2

1
. (3)

The diamond distance between the two channels N ,M :
L(HA) → L(HB) is defined as [40]

∥N −M∥⋄ := sup
ρRA

∥NA→B(ρRA)−MA→B(ρRA)∥1 , (4)

where the optimization in the definition is over every reference
system R and bipartite density operator ρRA (with R allowed
to be arbitrarily large). It is well known, however, that it
suffices to perform the optimization over pure bipartite states
such that the dimension of the reference system R is equal to
the dimension of the channel input system A.

The Petz–Rényi quantum relative entropy of order α ∈
(0, 1) ∪ (1,∞) of a state ρ with respect to a PSD operator σ
is given by [41], [42]

Dα(ρ∥σ) :=
1

α− 1
ln Tr[ρασ1−α] (5)

if α ∈ (0, 1)∨(α > 1∧supp(ρ) ⊆ supp(σ)) and ∞ otherwise.
It is a generalized divergence for α ∈ [0, 1) ∪ (1, 2] [42]. The
special case of α → 1 is called the quantum relative entropy
and amounts to

D(ρ∥σ) ≡ D1(ρ∥σ) := lim
α→1

Dα(ρ∥σ) = Tr[ρ(ln ρ− lnσ)]

(6)

when supp(ρ) ⊆ supp(σ) and it is equal to +∞ otherwise.
The quantum entropy of a state ρ is defined as

S(ρ) := −Tr[ρ ln ρ] . (7)

Equivalently, S(ρ) = −D1(ρ∥I), where I is the identity
operator.

Fix α ∈ (0, 1) ∪ (1,∞). The sandwiched Rényi relative
entropy of a state ρ and a PSD operator σ is defined as [43],
[44]

D̃α(ρ∥σ) :=
1

α− 1
ln Tr

[(
σ

1−α
2α ρσ

1−α
2α

)α]
(8)

if α ∈ (0, 1) ∨ (α ∈ (1,∞) ∧ supp(ρ) ⊆ supp(σ)) and ∞
otherwise. It is a generalized divergence for α ∈ [1/2, 1) ∪
(1,∞) [45] (see also [46]).

Fix δ ∈ [0, 1], a state ρ, and a PSD operator σ. The
Datta–Leditzky information spectrum divergences are defined
as follows [24]:

Dδ(ρ∥σ) := sup
{
γ ∈ R : Tr[(ρ− eγσ)+] ≥ 1− δ

}
, (9a)

D
δ
(ρ∥σ) := inf

{
γ ∈ R : Tr[(ρ− eγσ)+] ≤ δ

}
, (9b)

where

(A)+ :=
∑
i:ai≥0

ai|i⟩⟨i| (10)

for a Hermitian operator A =
∑
i ai|i⟩⟨i|. Hereafter we

abbreviate these divergences as DL divergences. Proposi-
tion 4.3 of [24] shows that

Dδ(ρ∥σ) = D
1−δ

(ρ∥σ), (11)

and so we can speak of a single DL divergence, which we set
hereafter to be D

δ
from (9b). Slightly rewriting (9), we have

the equivalent representations:

Dδ(ρ∥σ) = ln sup
{
λ ≥ 0 : Tr[(ρ− λσ)+] ≥ 1− δ

}
(12a)

D
δ
(ρ∥σ) = ln inf

{
λ ≥ 0 : Tr[(ρ− λσ)+] ≤ δ

}
. (12b)

The max-relative entropy of a state ρ and a PSD operator σ
is defined as [47]

Dmax(ρ∥σ) := ln inf {λ : ρ ≤ λσ} (13)

= ln sup
0≤M≤I

Tr[Mρ]
Tr[Mσ]

, (14)

and the smooth max-relative entropy is defined for δ ∈ [0, 1]
as

Dδmax(ρ∥σ) := inf
ρ̃ : 12∥ρ̃−ρ∥1≤δ

Dmax(ρ̃∥σ), (15)

with the optimization taken over every state ρ̃. These quantities
have been given an operational meaning in [48].

The Thompson metric [49] is defined in terms of the
max-relative entropy as

DT (ρ∥σ) := max{Dmax(ρ∥σ),Dmax(σ∥ρ)}, (16)

and it has been given an operational meaning in [50] and [51].

C. Classical and Quantum Privacy

In this section, we provide background on the existing
definitions of privacy for both classical and quantum systems,
starting from classical DP and proceeding to quantum DP
thereafter.

1) Classical Differential and Pufferfish Privacy: DP allows
for answering queries about aggregate quantities while pro-
tecting the individual entries in a database [1]. To this end,
the output of a differential privacy mechanism should be
indistinguishable for neighboring databases, defined as those
that differ only in a single record (row). Formally, we say that
x, x′ ∈ Xn×k are neighbors, denoted x ∼ x′, if x(i, ·) ̸=
x′(i, ·) for some i ∈ {1, . . . , n}, and they agree on all other
rows. We also note that a randomized privacy mechanism A,
as mentioned below, is described by a (regular) conditional
probability distribution PA|X for its output given the data.

Definition 1 (Classical Differential Privacy): Fix
ε ≥ 0 and δ ∈ [0, 1]. A randomized mechanism
A : Xn×k → Y is (ε, δ)-differentially private if

P
(
A(x) ∈ B

)
≤ eε P

(
A(x′) ∈ B

)
+ δ, (17)

for all x ∼ x′ with x, x′ ∈ Xn×k and B ⊆ Y measurable.
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As is evident from the above definition, DP aims to conceal
whether any particular individual (row) is in fact part of the
database or not. While being a powerful and widely appli-
cable privacy framework, it is often appropriate to consider
even broader frameworks. Pufferfish privacy [3] is a versatile
generalization of DP that not only allows flexibility in the
definition of secrets but also enables the integration of domain
knowledge of the database space Xn×k. The PP framework
consists of three components:

1) A set of secrets S ⊆ Xn×k of measurable subsets;
2) A set of secret pairs Q ⊆ S × S that need to be

indistinguishable in the (ε, δ) sense (cf., (18) below),
3) A class of data distributions Θ ⊆ P(Xn×k) that captures

prior beliefs or domain knowledge.
As formulated next, PP aims to guarantee that all secret

pairs inQ are indistinguishable with respect to the prior beliefs
PX ∈ Θ.

Definition 2 (Classical pufferfish privacy): Fix ε ≥ 0 and
δ ∈ [0, 1]. A randomized mechanism A : Xn×k → Y is (ε, δ)-
private in the pufferfish framework (S,Q,Θ) if

P
(
A(X) ∈ B

∣∣R) ≤ eε P
(
A(X) ∈ B

∣∣T )+ δ, (18)

for all PX ∈ Θ, (R, T ) ∈ Q with PX(R), PX(T ) > 0, and
B ⊆ Y measurable.

DP from Definition 1 is a special case of PP when
S = Xn×k, the set Q contains all neighboring pairs of
databases, and Θ = P(Xn×k) (i.e., there are no distributional
assumptions, and privacy is guaranteed in the worst case).
Other important examples that are subsumed by PP include
(i) generic DP [52], which allows for arbitrary neighboring
relationships, and (ii) attribute privacy [5], which privatizes
global properties of a database (e.g., a column that corresponds
to some sensitive information, such as salary).

2) Quantum Differential Privacy: QDP lifts the notion of
DP to the space of quantum states, with the neighboring
relation typically defined either in terms of closeness in trace
distance [13], reachability by a single local operation [14],1 or
by quantum Wasserstein distance of order 1 [53]. We denote
two states being neighbors by ρ ∼ σ.

Definition 3 (Quantum differential privacy [13], [15]):
Fix ε ≥ 0 and δ ∈ [0, 1]. Let D be a set of quantum states,
and let A be a quantum algorithm (viz., a quantum channel).
The algorithm A is (ε, δ)-differentially private if

Tr[MA(ρ)] ≤ eεTr[MA(σ)] + δ. (19)

for every measurement operator M (i.e., satisfying 0 ≤ M ≤ I)
and all ρ, σ ∈ D such that ρ ∼ σ.

This definition reduces to classical DP for discrete-output
mechanisms with an appropriate choice of the measurement
set. See Remark III-C3 below for further details.

III. QUANTUM PUFFERFISH PRIVACY (QPP)

Inspired by the versatility of the classical PP framework,
we propose a quantum variant thereof. Termed QPP, our

1Given two quantum states ρ and σ of n registers each, call them neighbors
if it is possible to reach either σ from ρ or ρ from σ by performing a general
quantum channel on a single register only.

framework allows for customizing the notion of private states,
tailoring the feasible set of measurements to the application
of interest, and incorporating domain knowledge of the state
distribution into the model. As such, the QPP framework can
generate a rich class of privacy definitions for both classical
and quantum systems, and for hybrid classical–quantum sys-
tems as well.

A. Framework

The QPP framework requires a domain expert to specify
four components: a set S of potential secrets, a set Q ⊆ S×S
of discriminative pairs, a set Θ of data distributions, and a
set M of measurements. We expand on and explicitly define
each component next.

1) Set S of Potential Secrets: Secrets are modeled as
subsets of density operators that share a certain property (these
subsets are merely singletons in the QDP case). The set S
is a collection of such secret subsets. For example, if one
aims to privatize the resource value V of a state, then the
corresponding set of secrets is S =

⋃n
i=1 Ti, where

Ti =
{
ρ ∈ D(H) : V(ρ) = ai

}
(20)

and {ai}ni=1 are the possible values that V can take (recall
that, in Fig. 1, we considered a setup relevant to hiding the
resource value V being a or b).

2) Set Q of Discriminative Pairs: This is a subset of
S×S that specifies which pairs of elements from S should be
indistinguishable. Namely, if (T1, T2) ∈ Q, then the goal of
the privacy mechanism is to conceal whether the input belongs
to T1 or T2. Note that ρ ∈ T1 ⇒ ρ /∈ T2. We require that Q is
symmetric, i.e., that (Ti, Tj) ∈ Q if and only if (Tj , Ti) ∈ Q.
Proceeding with the same example, we can set

Q =
⋃
i ̸=j

{(Ti, Tj)}. (21)

3) Set Θ of Data Distributions: A collection of probability
distributions PX ∈ P(X ) over a finite space X that indexes an
ensemble of density operators {ρx}x∈X . Taking X ∼ PX ∈
Θ, the matrix-valued random variable ρX models a density
operator that is randomly chosen according to PX . Proceeding
with the same example, {ρx}x∈X = {σ : σ ∈ Ti, Ti ∈ S} ⊂
D(H). The set Θ can be understood as capturing beliefs that
the adversary has regarding the state of the system.

In the above example, we have considered a subset of
density operators (i.e., {ρx}x∈X ⊂ D(H)). There could be
applications where we have to consider all density operators.
To incorporate this, we choose the following: Fix k ∈ N and
let Fk ⊂ 2D(H) be the collection of all finite subsets of D(H)
with k elements. For each F ∈ Fk, we write P(F) for the
class of all distributions supported on F , and define

Pk
(
D(H)

)
:=

⋃
F∈Fk

P(F). (22)

Every distribution P ∈ Pk
(
D(H)

)
is supported on exactly k

density operators. Note that all density operators outside of the
underlying finite set comprise of the null set. We associate a
random variable X ∼ P = PX with each such distribution and
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write X = supp(PX) for its support. Note the slight abuse in
notation, as the support of PX changes with the distribution,
which is not reflected in the generic indexing set X . The set
of data distributions in the QPP framework is now taken as
Θ ⊆ Pk

(
D(H)

)
for some k ∈ N.

4) Set M of Measurements: This set is a subset of all pos-
sible measurements, i.e., M⊆ {M : 0 ≤ M ≤ I}. The choice
of M gives the flexibility to consider only measurements that
are possible under physical, legal, or ethical constraints.

Remark 1 (Designing QPP Frameworks): QPP allows sys-
tem designers to explicitly encode their assumptions into
the privacy framework. Setting the framework (S,Q,Θ,M)
to accurately reflect the application of interest is crucial
for obtaining meaningful privacy guarantees and to optimize
utility. Explicit assumptions can also help account for eth-
ical or fairness concerns associated with quantum systems;
cf. Remark 11 for a concrete example concerning quantum
fairness and how it is incorporated within QPP.

Now, we are ready to present a formal definition of the
quantum analog of PP, which we call QPP.

Definition 4 (Quantum Pufferfish Privacy): Fix ε ≥ 0 and
δ ∈ [0, 1]. A quantum algorithm A is (ε, δ)-private in the
quantum pufferfish framework (S,Q,Θ,M) if for all PX ∈
Θ, (R, T ) ∈ Q with PX(R), PX(T ) > 0, and all M ∈ M,
the following inequality holds:

Tr
[
MA(ρR)

]
≤ eεTr

[
MA(ρT )

]
+ δ, (23)

where

ρR :=
∑

{x:ρx∈R}

qR(x)ρx, (24)

qR(x) :=
PX(x)
PX(R)

, (25)

PX(R) :=
∑

{x:ρx∈R}

PX(x), (26)

and ρT is defined similarly but with T instead of R. We say
that an algorithm A satisfies ε-QPP if it satisfies (ε, 0)-QPP.

Evidently, discriminative secret pairs in Q are indistinguish-
able at the output of a QPP mechanism A in the (ε, δ)-sense,
under every measurement from the class M.

Remark 2 (Semantics of the QPP Framework):
Informally, the QPP framework provides the following
privacy guarantee for fixed (R, T ) ∈ Q and PX ∈ Θ: For
a state ρX chosen according to X ∼ PX and input to the
quantum channel A, an adversary applying a measurement
M ∈ M on the channel output A(ρX) draws the same
conclusions regardless of whether ρX belongs to R or T .

Remark 3 (Incorporating Entanglement): We can incorpo-
rate entanglement in the QPP framework by introducing a
reference system. Specifically, we can modify the QPP frame-
work from (S,Q,Θ,M) to (S,G,Θ,M′), where

G :=

 (ωRRA, ω
T
RA) : ωRRA, ω

T
RA ∈ D(HR ⊗HA),

TrR
[
ωRRA

]
= ρR,TrR

[
ωTRA

]
= ρT ,

(R, T ) ∈ Q

 (27)

is a set of pairs of bipartite states with ρR and ρT defined
similar to Definition 4. We then say that A is (ε, δ)-QPP in that

framework if for all PX ∈ Θ, M′ ∈M′, and (ωRRA, ω
T
RA) ∈ G,

we have

Tr
[
M′(I ⊗ A)(ωRRA)

]
≤ eεTr

[
M′(I ⊗ A)(ωTRA))

]
+ δ.

(28)

However, it is unclear whether such a stronger privacy notion
would be useful in practical applications. For example, con-
sider σ1 := |0⟩⟨0|⊗ρR and σ2 := |1⟩⟨1|⊗ρT with (R, T ) ∈ Q.
If a measurement on the reference system can be applied,
then a computational-basis measurement distinguishes σ1 and
σ2 perfectly. Thus, it is important to choose A appropriately
with a practically applicable M′, such that the required
indistinguishability is achieved.

We shall revisit a variant of this framework with quantum
divergences in Section IX-B. The strength of the privacy
framework is determined by the underlying quantum diver-
gence. However, note that the problems discussed previously
are not completely solved by the variant proposed therein.

B. Equivalent Formulation of QPP With DL Divergence

We present an equivalent formulation for (ε, δ)-QPP by
means of the DL divergence from (9b). To the best of our
knowledge, this provides the first operational interpretation of
the DL divergence.

Proposition 1 (Equivalent Formulation of (ε, δ)-QPP):
Fix the framework (S,Q,Θ,M̄), with M̄ corresponding to
the set of all possible measurements. Then algorithm A
satisfies (ε, δ)-QPP with respect to the framework
(S,Q,M,Θ) if and only if for all PX ∈ Θ and (R, T ) ∈ Q,
we have

D
δ(A(ρR)

∥∥A(ρT )
)
≤ ε. (29)

Proof: We first show that (ε, δ)-QPP implies (29). For
fixed PX ∈ Θ and (R, T ) ∈ Q, observe that (ε, δ)-QPP
corresponds to

sup
M∈M̄

Tr
[
M
(
A(ρR)− eεA(ρT )

)]
≤ δ. (30)

Since

sup
M∈M̄

Tr
[
M
(
A(ρR)−eεA(ρT )

)]
=Tr

[(
A(ρR)−eεA(ρT )

)
+

]
, (31)

as a consequence of, e.g., [15, Lemma II.1], the inequality
in (30) is equivalent to

Tr
[(
A(ρR)− eεA(ρT )

)
+

]
≤ δ. (32)

By the definition in (9b), this leads to ε being a possible
candidate for the optimization in D

δ(A(ρR)
∥∥A(ρT )

)
, and

thus implies

D
δ(A(ρR)∥A(ρT )

)
≤ ε. (33)

As this holds for every PX ∈ Θ and (R, T ) ∈ Q, we obtain
the desired implication (ε, δ)-QPP ⇒ (29).
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Next, we show that (29) implies (ε, δ)-QPP. Suppose that for
all PX ∈ Θ and (R, T ) ∈ Q, we have D

δ(A(ρR)∥A(ρT )
)
≤

ε. Then, for fixed PX ∈ Θ and (R, T ) ∈ Q, let

D
δ(A(ρR)

∥∥A(ρT )
)

= ν, (34)

which implies that Tr
[(
A(ρR)− eνA(ρT )

)
+

]
≤ δ. Recalling

that ν ≤ ε and noting that λ 7→ Tr
[(
A(ρR)− eλA(ρT )

)
+

]
is a monotonically decreasing function (cf. [24, Lemma 4.2]),
we have

sup
M∈M̄

Tr
[
M
(
A(ρR)− eεA(ρT )

)]
= Tr

[(
A(ρR)− eεA(ρT )

)
+

]
(35)

≤ Tr
[(
A(ρR)− eνA(ρT )

)
+

]
(36)

≤ δ. (37)

As PX ∈ Θ and (R, T ) ∈ Q are arbitrary, (ε, δ)-QPP
follows.

In the following remark, we highlight how the DL diver-
gence also provides a novel characterization for classical PP.

Remark 4 (Classical PP Through DL Divergence): For
discrete probability distributions p, q ∈ P(Y), the DL
divergence in Eq. (12b) reduces to

D
δ

c(p∥q) :=

ln inf

λ ≥ 0 :
∑
y∈Y

max{p(y)− λ q(y), 0} ≤ δ

 . (38)

A randomized mechanism A : Xn×k → Y is (ε, δ)-
classical PP in the framework (Sc,Qc,Θc) if for all PX ∈ Θc,
(R, T ) ∈ Qc with PX(R), PX(T ) > 0,

D
δ

c

(
PA(X)|R∥PA(X)|T

)
≤ ε, (39)

where PA(X)|R, PA(X)|T are the output distributions condi-
tioned on the secret events R and T , respectively. See also
Remark 8 for further connections to information-theoretic
quantities characterizing classical privacy frameworks.

We further note that Lemma 1 below provides a
semi-definite programming characterization of the DL diver-
gence, which reduces to a linear program in the classical case.

Remark 5 (Operational Interpretation of DL Divergence):
For fixed PX ∈ Θ and (R, T ) ∈ Q, the DL divergence
D
δ(A(ρR)∥A(ρT )

)
is equal to the minimal ε that can be

achieved for fixed δ via the indistinguishability condition of
the QPP framework (S,Q,Θ,M̄) stated in (23).

Remark 6 (Equivalent Formulation With Hockey-Stick
Divergence): Another equivalent formulation of QPP arises
as a generalization of the information-theoretic equivalence
for QDP [15]. Specifically, A is (ε, δ)-QPP with respect to
the framework (S,Q,Θ,M̄), where M̄ = {M : 0 ≤ M ≤ I},
if

Eeε

(
A(ρR)

∥∥A(ρT )
)
≤ δ, (40)

for all PX ∈ Θ and (R, T ) ∈ Q, where Eν(ρ∥σ) :=
Tr[(ρ− νσ)+] is the hockey-stick divergence for ν ≥ 1 [38].
Fixing PX and (R, T ), the quantity Eeε

(
A(ρR)∥A(ρT )

)
is

the minimal δ that can be achieved for fixed ε under the
indistinguishability condition from (23).

C. Reduction to Existing Privacy Frameworks
The proposed QPP framework subsumes other important

privacy frameworks as special cases. These reductions are
presented next.

1) Quantum DP: In QDP (Definition 3), secrets are sin-
gletons, discriminative pairs comprise states satisfying a
neighboring relation, while the measurement class M includes
all possible measurements. QPP recovers the QDP setting by
making the following choices while recalling (22):2

S = D,
Q = {(ρ, σ) : ρ, σ ∈ D, ρ ∼ σ},
Θ = P2

(
D(H)

)
,

M = {M : 0 ≤ M ≤ I}. (41)

More generally, one may add flexibility to the QDP formu-
lation by considering other subsets Θ (i.e., Θ ⊂ P2

(
D(H)

)
).

This can be used, for instance, to treat situations in which only
certain neighboring pairs are of interest, namely, by choosing
the distributions that assign positive probabilities only to those
selected density operators. This can be interpreted as adding
domain knowledge to the original QDP framework.

2) Quantum Local DP: In quantum local DP (QLDP) [15],3

we choose secret pairs to be pairs of arbitrary distinct
states, while the measurement class includes all possible
measurements. Thus, QLDP realizes the same (S,Q,Θ,M)
framework as QDP, except that Q = {(ρ, σ) : ρ, σ ∈ D} for
QLDP.

3) Classical PP: Consider a classical PP framework
(Sc,Qc,Θc), as specified in Definition 2. Assume that pX ∈
Θc are discrete probability distributions over the probability
space P(Xn×k). Let the encoding of the database x ∈ Xn×k

be ρx := |x⟩⟨x|, and denote a projective measurement operator
corresponding to outcome y as |y⟩⟨y|. Here note that {|x⟩}x∈X
and {|y⟩}y∈Y are respective orthonormal bases formed related
to the input and output alphabets of the classical PP mecha-
nism Ac. Then classical PP is obtained from QPP by setting

S =
{
{ρx : x ∈ Rc} : Rc ∈ Sc

}
,

Q =
{(
{ρx : x ∈ Rc}, {ρx : x ∈ Tc}

)
: (Rc, Tc) ∈ Qc}

}
,

Θ = Θc,

M =

∑
y∈B

|y⟩⟨y| : B ⊆ Y

 . (42)

In this scenario, assuming the output of the algorithm is
discrete, we have that

A(ρx) =
∑

y∈Y,x′∈X
p(y|x)|y⟩⟨x′|ρx|x′⟩⟨y| (43)

where p(y|x) = P
(
Ac(x) = y

)
.

2For each pair of states (ρ, σ), there exists at least one probability distri-
bution that assigns positive probability for these two states, which recovers
the definitions of QDP.

3QLDP is also known as Local differential privacy (under the ‘extreme
setting’, as compared to standard QDP) in Section V-A of [15].
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Remark 7 (Utility-Optimized Privacy Models): As is evi-
dent from above, the measurement set corresponding to
classical PP entails every subset B ⊆ Y . However, when some
of the outcomes are not sensitive, we may want to relax this
requirement to gain utility (cf., e.g., [33]). While classical PP
does not allow for that, QPP gives extra flexibility in choos-
ing M and adapting it to the application of interest. Indeed,
if we only need to privatize outcomes within the set Y ′ ⊊ Y ,
the smaller measurement set M =

{∑
y∈Y′ |y⟩⟨y| : B ⊆ Y ′

}
is sufficient.

IV. DATTA–LEDITZKY INFORMATION
SPECTRUM DIVERGENCE

We now focus on the DL divergence [24], whose operational
interpretation in terms of QPP was provided in the previous
section (see Remark 5), and we study structural properties
thereof, which will be useful when analyzing the QPP frame-
work. We first formulate a primal and dual SDP to compute the
DL divergence and then use that to prove joint-quasi convexity,
the data-processing inequality under positive, trace-preserving
maps, and connections to the smooth max-relative entropy.

A. SDP Formulations

We now present several SDPs for computing the DL diver-
gence in (9b), which may be of independent interest. (Recall
that the other DL divergence in (9a) is easily obtained by
applying the equality in (11).)

Lemma 1 (SDP Formulation of the DL Divergence): For
δ ∈ (0, 1), a state ρ, and a PSD operator σ, the following
equalities hold

D
δ
(ρ∥σ) = ln inf

λ,Z≥0
{λ : Tr[Z] ≤ δ, Z ≥ ρ− λσ} (44a)

= ln sup
µ,W≥0

{
Tr[Wρ]− µδ :

Tr[Wσ] ≤ 1, W ≤ µI

}
. (44b)

Proof: Considering (12b), fix λ > 0 and first observe that

Tr[(ρ− λσ)+] = sup
Λ: 0≤Λ≤I

Tr[Λ (ρ− λσ)]. (45)

Indeed, this follows because, for every 0 ≤ Λ ≤ I , we have
that

Tr[Λ (ρ− λσ)] = Tr
[
Λ
(
(ρ− λσ)+ − (ρ− λσ)−

)]
≤ Tr

[
Λ (ρ− λσ)+

]
≤ Tr

[
(ρ− λσ)+

]
, (46)

and the inequalities above are all attained by setting Λ to be
the projection onto the support of (ρ− λσ)+. The SDP dual
of this quantity is given by

Tr
[
(ρ− λσ)+

]
= inf
Z≥0

{Tr[Z] : Z ≥ ρ− λσ} . (47)

Intuitively, Z = (ρ− λσ)+ is the smallest choice of a PSD
operator that satisfies the constraint Z ≥ ρ− λσ.

We then find from (9b), (12b), and (47) that

D
δ

s(ρ∥σ) = ln inf
{
λ ≥ 0 : Tr[(ρ− λσ)+] ≤ δ

}
= ln inf

λ,Z≥0
{λ : Tr[Z] ≤ δ, Z ≥ ρ− λσ} , (48)

which completes the proof of (44a).

The dual forms of these optimization problems are derived
from the canonical primal and dual formulations of SDPs,
which are respectively given by (cf. [37, Definition 2.20])

inf
Y≥0

{
Tr[BY ] : Φ†(Y ) ≥ A

}
,

sup
X≥0

{Tr[AX] : Φ(X) ≤ B} , (49)

where A and B are Hermitian matrices and Φ is a Hermiticity-
preserving superoperator. Comparing the former to (48), we
make the following choices so that the general optimization
problem recovers (48) (inside the logarithm):

Y =
[
λ 0
0 Z

]
, B =

[
1 0
0 0

]
, (50)

Φ†(Y ) =
[
−Tr[Z] 0

0 Z + λσ

]
, (51)

A =
[
−δ 0
0 ρ

]
. (52)

Then, setting

X =
[
µ 0
0 W

]
, (53)

we solve for the map Φ(X) to find that

Tr[XΦ†(Y )]

= Tr
[[
µ 0
0 W

] [
−Tr[Z] 0

0 Z + λσ

]]
(54)

= −µTr[Z] + Tr[W (Z + λσ)] (55)
= Tr[(W − µI)Z] + λTr[Wσ] (56)

= Tr
[[
λ 0
0 Z

] [
Tr[Wσ] 0

0 W − µI

]]
(57)

= Tr[Y Φ(X)], (58)

so that

Φ(X) =
[
Tr[Wσ] 0

0 W − µI

]
. (59)

Plugging into the dual form, we obtain

sup
X≥0

{Tr[AX] : Φ(X) ≤ B}

= sup
µ,W≥0

{Tr[Wρ]− µδ : Tr[Wσ] ≤ 1,W ≤ µI} . (60)

Choose µ = µ1 ∈ (0, 1) and W = µ2I such that
µ1δ < µ2 < µ1, as a strictly feasible solution to the above.
For the other SDP formulation from (48), set λ such that
Tr[(ρ− λσ)+] ≤ δ, and Z = (ρ− λσ)+ ≥ 0 as a feasible
solution. By Slater’s condition, we conclude that strong duality
holds, and the primal and dual optimal values coincide.

Corollary 1 (Another Formulation of the DL Divergence):
DL divergence has the following equivalent formulation:

D
δ
(ρ∥σ) = ln sup

0≤W≤I,Tr[Wρ]≥δ

Tr[Wρ]− δ

Tr[Wσ]
. (61)
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Proof: Consider the SDP formulation in (44b) and set
W ′ = W

µ therein to arrive at

D
δ
(ρ∥σ) = ln sup

µ,W ′≥0

{
µTr[W ′ρ]− µδ :

µTr[W ′σ] ≤ 1, W ′ ≤ I

}
(62)

= ln sup
0≤W ′≤I,Tr[W ′ρ]≥δ

Tr[W ′ρ]− δ

Tr[W ′σ]
, (63)

where the last equality follows from identifying that µ =
1/Tr[W ′σ] is the µ that maximizes the former, given that
Tr[W ′ρ] ≥ δ. When Tr[W ′ρ] < δ, the optimum µ = 0 and
the objective within the supremum becomes zero. Replacing
W ′ by W , concludes the proof.

Remark 8 (Approximate Max-Divergence): In [2], the
δ-approximate max-divergence is defined as

Dδ∞(pY ∥pZ) := ln max
S∈Supp(Y ),Pr[Y ∈S]≥δ

Pr[Y ∈ S]− δ

Pr[Z ∈ S]
,

(64)

where Y and Z are random variables distributed according to
Y ∼ pY and Z ∼ pZ . By substituting classical distributions
into Corollary 1, we observe that the DL divergence reduces
to the approximate max-divergence. Note that the approximate
max-divergence has been used to characterize (ε, δ)-(classical)
DP in [2, Remark 3.1]. Thus, this showcases that the equiva-
lence we established for QPP with the DL divergence herein
reduces to the existing equivalence for (classical) DP.

B. Properties

We derive several properties of the DL divergence
from (12b), which are subsequently used in the analysis
of the QPP framework. Basic properties of the DL diver-
gence, including the data-processing inequality, have been
proven in [24, Proposition 4.3]. Here, we generalize the
data-processing inequality to hold for arbitrary positive,
trace non-increasing maps (beyond the set of quantum
channels) and also establish joint-quasi convexity of the
DL divergence, along with its connection to the smooth
max-relative entropy (recall the definition in (15)). The
proofs of these properties rely on the SDP formulation from
Lemma 1.

Proposition 2 (Properties of the DL Divergence): Fix δ ∈
(0, 1), and let ρ, ρ1, . . . , ρk and σ, σ1, . . . , σk be two
collections of states and PSD operators, respectively.
The DL divergence in (12b) satisfies the following
properties:

1) Data-processing inequality: For every positive, trace
non-increasing map N , we have

D
δ
(ρ∥σ) ≥ D

δ(N (ρ)∥N (σ)
)
. (65)

2) Joint-quasi convexity: Let pi ∈ [0, 1], for i ∈ {1, . . . , k},
with

∑k
i=1 pi = 1. Then

D
δ

(
k∑
i=1

piρi

∥∥∥∥∥
k∑
i=1

piσi

)
≤ max

i
D
δ
(ρi∥σi) , (66)

and, more generally,

D
δ′
(

k∑
i=1

piρi

∥∥∥∥∥
k∑
i=1

piσi

)
≤ max

i
D
δi(ρi∥σi) , (67)

where δ′ :=
∑k
i=1 piδi with δ1, . . . , δk ∈ (0, 1).

3) Relation to smooth max-relative entropy:

D
δ
(ρ∥σ) ≤ Dδmax(ρ∥σ) ≤ D

δ′

(ρ∥σ)− ln(1− δ′) , (68)

where δ′ := 1 −
√

1− δ2 ∈ (0, 1), and the second
inequality above can be equivalently written as

D

√
δ(2−δ)

max (ρ∥σ) ≤ D
δ
(ρ∥σ)− ln(1− δ) . (69)

4) Quasi subadditivity: Let δ1, δ2 ∈ (0, 1) satisfy δ′1 + δ′2 <
1, with δ′i :=

√
δi(2− δi) ∈ (0, 1) for i ∈ {1, 2}. Then

D
δ′1+δ

′
2(ρ1 ⊗ ρ2∥σ1 ⊗ σ2)

≤ D
δ1(ρ1∥σ1) + D

δ2(ρ2∥σ2)− ln
(
(1− δ1)(1− δ2)

)
.

(70)

Furthermore,
a) if δ1 = δ2 = 0, then

D
0
(ρ1 ⊗ ρ2∥σ1 ⊗ σ2) ≤ D

0
(ρ1∥σ1) + D

0
(ρ2∥σ2).

(71)

b) if σ1, σ2 are states, then

D
δ
(ρ1 ⊗ ρ2∥σ1 ⊗ σ2) ≤ D

δ1(ρ1∥σ1) + D
δ2(ρ2∥σ2),

(72)

where

δ := min
{
δ1 + eD

δ1 (ρ1∥σ1)δ2, δ2 + eD
δ2 (ρ2∥σ2)δ1

}
.

(73)

Proof: Property 1: The statement was proven in [24,
Proposition 4.3] for a quantum channel N by using the
inequality

Tr[(ρ− eγσ)+] ≥ Tr
[
(N (ρ)− eγN (σ))+

]
, (74)

which holds for all γ ∈ R. Here, we prove the data-processing
inequality, but we generalize it to hold for a positive, trace
non-increasing map N . Our derivation relies on the SDP
formulation of the DL divergence from (44a).

Let λ⋆ and Z⋆ be optimal choices4 in the optimization for
D
δ
(ρ∥σ), so that D

δ
(ρ∥σ) = lnλ⋆, Z⋆ ≥ ρ − λ⋆σ with

Tr[Z⋆] ≤ δ, and Z⋆ ≥ 0 (indeed, note that the infimum is
achieved with Tr[(ρ−λ⋆σ)+] = δ). Since Z⋆−(ρ−λ⋆σ) ≥ 0,
it follows that N

(
Z⋆ − (ρ − λ⋆σ)

)
≥ 0 from the assumption

that N is a positive map. Consequently, we obtain

Z ′ := N (Z⋆) ≥ N (ρ)− λ⋆N (σ). (75)

4When the DL divergence is finite, the infimum is achieved by a standard
continuity plus compactness argument. The stated relations trivially hold when
the DL divergence is infinite.
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Furthermore, Z ′ ≥ 0 since Z⋆ ≥ 0 and N is a positive map.
Additionally, since N is trace non-increasing, it follows that

Tr[Z ′] ≤ Tr[Z⋆] ≤ δ. (76)

Thus, λ⋆ is a feasible point for D
δ(N (ρ)∥N (σ)

)
. We con-

clude the proof by noting that the quantity D
δ(N (ρ)∥N (σ)

)
involves a minimization over all such feasible points, implying
the desired inequality:

D
δ(N (ρ)∥N (σ)

)
≤ ln(λ⋆) = D

δ
(ρ∥σ) . (77)

Note that this property can also be derived using the proof of
[38, Lemma 4].

Property 2: We again consider the SDP from (44a). Let λ⋆i
and Z⋆i be optimal for D

δ
(ρi∥σi), so that D

δ
(ρi∥σi) = ln(λ⋆i ),

Z⋆i ≥ ρi − λ⋆i σi with Tr[Z⋆i ] ≤ δ, and Z⋆i ≥ 0. Define

Z :=
k∑
i=1

piZ
⋆
i ≥

k∑
i=1

piρi −
k∑
i=1

λ⋆i piσi. (78)

and observe that Tr[Z] ≤ δ and Z ≥ 0. This implies that Z ≥∑k
i=1 piρi−maxi λ⋆i

∑k
j=1 pjσj , which suggests that maxi λ⋆i

and Z are (candidate) infimizers in the SDP formulation of
D
δ
(∑k

i=1 piρi

∥∥∥∑k
i=1 piσi

)
. Consequently, we obtain

D
δ

(
k∑
i=1

piρi

∥∥∥∥∥
k∑
i=1

piσi

)
≤ ln

(
max
i
λ⋆i

)
= max

i
D
δ
(ρi∥σi) .

(79)

The proof of the general case follows along the same lines by
observing that Tr[Z] ≤

∑k
i=1 piδi.

We also present an alternative proof for this using the
joint-convexity of hockey-stick divergence in Appendix I.

Property 3: From [48, Appendix B], we have that

Dδmax(ρ∥σ) = ln inf
λ,ρ̃,Y≥0

{
λ : ρ̃ ≤ λσ, Tr[Y ] ≤ δ,
Tr[ρ̃] = 1, Y ≥ ρ− ρ̃

}
.

(80)

Let λ, Y , and ρ̃ be arbitrary operators satisfying the constraints
for Dδmax(ρ∥σ). Then by combining the inequalities ρ̃ ≤ λσ
and Y ≥ ρ− ρ̃, we get

Y ≥ ρ− λσ. (81)

We see that λ and Y satisfy the constraints needed for λ and
Z, respectively, in the SDP for D

δ
(ρ∥σ), whereby

D
δ
(ρ∥σ) ≤ λ. (82)

Since the argument holds for all λ, Y , and ρ̃ satisfying the
constraints in the definition of Dδmax(ρ∥σ), we further obtain

D
δ
(ρ∥σ) ≤ Dδmax(ρ∥σ). (83)

The proof is concluded by invoking the following lemma
(proven in Appendix II).

Lemma 2: Fix λ > 0, let ρ be a state and σ a positive
semi-definite operator, and define δ := Tr[(ρ− λσ)+]. Then

D

√
δ(2−δ)

max (ρ∥σ) ≤ lnλ− ln(1− δ). (84)

For fixed δ ∈ (0, 1), by definition, we have D
δ
(ρ∥σ) =

ln(λ⋆) with δ = Tr[(ρ− λ⋆σ)+]. With that, Lemma 2 with
the reparametrization δ → 1−

√
1− δ2, yields

Dδmax(ρ∥σ) ≤ D
1−
√

1−δ2
(ρ∥σ) + ln

(
1√

1− δ2

)
. (85)

This completes the proof.

Property 4: This follows by invoking Property 3 and using
the fact that the smooth max-relative entropy satisfies subad-
ditivity (Appendix III) with

Dδ1+δ2max (ρ1 ⊗ ρ2∥σ1 ⊗ σ2) ≤ Dδ1max(ρ1∥σ1) + Dδ2max(ρ2∥σ2).
(86)

Part (a) now follows by taking the limits δ1 → 0 and
δ2 → 0 in (86), and applying Property 3.

To prove Part (b), we use the SDP formulation in (44a).
Let D

δi(ρi∥σi) = ln(λ⋆i ) for i ∈ {1, 2}. It follows that Zi ≥
ρi − λ⋆i σi with Tr[Zi] ≤ δ and Zi ≥ 0. Consider that

(ρ1 ⊗ ρ2)− λ⋆1λ
⋆
2(σ1 ⊗ σ2)

= (ρ1 ⊗ ρ2)− λ⋆1σ1 ⊗ ρ2 + λ⋆1σ1 ⊗ ρ2 − λ⋆1λ
⋆
2(σ1 ⊗ σ2)

= (ρ1 − λ⋆1σ1)⊗ ρ2 + λ⋆1σ1 ⊗ (ρ2 − λ⋆2σ2)
≤ Z1 ⊗ ρ2 + λ⋆1σ1 ⊗ Z2 =: Z. (87)

Observe that Z ≥ 0 and Tr[Z] = Tr[Z1] + λ⋆1Tr[Z2], since
Tr[ρ1] = Tr[σ1] = 1. Consequently, we have Tr[Z] ≤ δ1 +
λ⋆1δ2, and λ⋆1λ

⋆
2 is a candidate infimizer. For δ′ = δ1 + λ⋆1δ2,

we now arrive at

D
δ′

(ρ1 ⊗ ρ2∥σ1 ⊗ σ2) ≤ ln(λ⋆1λ
⋆
2) (88)

= ln(λ⋆1) + ln(λ⋆2) (89)

= D
δ1(ρ1∥σ1) + D

δ2(ρ2∥σ2) . (90)

The above holds for δ′ = δ2 + λ⋆2δ1 as well, by adding and
subtracting λ⋆2ρ1⊗σ1 instead of λ⋆1σ1⊗ρ2, and then following
the same argument.

V. PROPERTIES AND MECHANISMS FOR QPP

A. Properties of QPP Mechanisms

Modern guidelines for privacy frameworks [54] render prop-
erties such as convexity and post-processing (also known as
transformation invariance) as basic requirements for privacy
frameworks. Composability is another important property,
which implies that a combination of privacy mechanisms is
itself private. These properties are known to hold for the
classical mutual information PP framework, and all of them,
except for composability, hold for the classical PP framework;
cf. [12, Theorem 2] and [3, Theorem 5.1], respectively.

Before proving these properties for the QPP framework,
we discuss their operational interpretation. Convexity means
that applying a QPP mechanism that is randomly chosen
from a given set of such mechanisms still satisfies QPP.
Post-processing ensures that passing the output of a QPP
mechanism A through a channel N preserves QPP; see
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Fig. 2. Properties of QPP mechanisms: (a) refers to post-processing of QPP
algorithm A; If A satisfies QPP, then N ◦A also satisfies QPP. (b) refers to
parallel composition of k QPP mechanisms; composition of k mechanisms
independently in a parallel fashion satisfies QPP if each Ai satisfies QPP.

Fig. 2a. Parallel composability is illustrated in Fig. 2b and
guarantees that QPP holds after applying

A(k) :=
k⊗
i=1

Ai = A1 ⊗A2 ⊗ · · · ⊗ Ak (91)

to the input ρX1⊗ρX2⊗· · ·⊗ρXk , with Xi ∼ PX ∈ Θ, where
each Xi is independently chosen. Informally, the semantic
meaning of this property is that after applying A(k), the same
conclusions can be drawn about the input ρX1⊗ρX2⊗· · ·⊗ρXk

regardless of whether each ρXi belongs to Ri or Ti, where
(Ri, Ti) ∈ Q for all i ∈ {1, . . . , k}. In this setting, the set of
discriminative pairs is taken as

Q(k) :=(R(k), T (k)) :
R(k) := (R1, . . . ,Rk),

T (k) := (T1, . . . , Tk)
∀i ∈ {1, . . . , k} (Ri, Ti) ∈ Q

 . (92)

Furthermore, the class of product measurements is
⊗k

i=1Mi

(i.e., the output of algorithm Ai is followed by a measurement
from Mi, for all i ∈ {1, . . . , k}), while the set of all possible
measurements on the k systems, including joint measurements,
is denoted by M̄k. We note here that one could consider other
classes of limited measurements, such as local operations and
classical communication (LOCC) measurements and positive-
partial-transpose (PPT) measurements [55].

The formal statement of these properties is as follows.
Theorem 1 (Properties of QPP Mechanisms): The follow-

ing properties hold:
1) Convexity: LetA1, . . . ,Ak be (ε, δ)-QPP mechanisms in

the framework (S,Q,Θ,M). Take I to be a k-ary categorical
random variable with probability distribution (p1, . . . , pk).
Then the mechanism A := AI (i.e., A = Ai with probability

pi, for i ∈ {1, . . . , k}) also satisfies (ε, δ)-QPP in the same
framework (S,Q,Θ,M).

2) Post-processing: If a mechanism A satisfies (ε, δ)-
QPP in the framework (S,Q,Θ,M), then, for a quantum
channel N , the processed mechanism N ◦ A also satisfies
(ε, δ)-QPP in the framework (S,Q,Θ,M′), where M′ ⊆{
M′ : N †(M′) ∈M

}
.

3) Parallel composability (non-adaptive): Let A1, . . . ,Ak
be mechanisms such that Ai is (εi, δi)-QPP in the framework
(S,Q,Θ,Mi), for each i ∈ {1, . . . , k}. Then the composed
mechanism

A(k) :
k⊗
i=1

σi 7→ A1(σ1)⊗ · · · ⊗ Ak(σk) (93)

satisfies
(∑k

i=1 εi,
∑k
i=1 δi

)
-QPP in the framework(

S,Q(k),Θ,
⊗k

i=1Mi

)
.

Proof: See Appendix IV.

More broadly, parallel composition (i.e., Property 3 of
Theorem 1) holds under particular separable measurements
that are defined as follows:∑

j

M(j)
1 ⊗ · · · ⊗M(j)

k : ∀i
∑
j

M(j)
i ∈Mi, ∀i, j M(j)

i ≥0

 .

(94)

where product measurements considered in Theorem 1 are a
special case.

The latter two properties of Theorem 1 change if one
considers a measurement class that comprises all possible
measurements M̄k, as opposed to only product measurements.
This is one of the main distinctions between the semi-classical
and quantum cases, where, for the latter, joint measurements
can infer more information and thus privacy degrades. The
following theorem accounts for this latter scenario.

Theorem 2 (Properties of QPP with M = M̄): The
following properties hold for the case in which the measure-
ment class is M̄:

1) Convexity: Let A1, . . . ,Ak be (ε, δ)-QPP mechanisms
in the framework (S,Q,Θ,M̄). Take I to be a k-ary cate-
gorical random variable with parameters (p1, . . . , pk). Then
the mechanism A := AI (i.e., A = Ai with probability pi,
for i ∈ {1, . . . , k}) also satisfies (ε, δ)-QPP in the framework
(S,Q,Θ,M̄).

2) Post-processing: If a mechanism A satisfies (ε, δ)-QPP
in the framework (S,Q,Θ,M̄), then, for a quantum chan-
nel N , the mechanism N ◦ A also satisfies (ε, δ)-QPP in the
framework (S,Q,Θ,M̄).

3) Parallel composability: If Ai satisfies (εi, δi)-QPP in
(S,Q,Θ,M̄) for i ∈ {1, 2}, then the composed mech-
anism A1 ⊗ A2 satisfies (ε′, δ′)-QPP in the framework(
S,Q(2),Θ,M̄2

)
where

ε′ := ε1 + ε2 + ln
(

1
(1− δ1)(1− δ2)

)
, (95)

δ′ :=
√
δ1(2− δ1) +

√
δ2(2− δ2). (96)
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and A1 ⊗A2 also satisfies (ε1 + ε2, δ)-QPP where

δ := min{δ1 + eε1δ2, δ2 + eε2δ1}. (97)

Observe that, if δi = 0 for i ∈ {1, 2}, then A1 ⊗A2 satisfies
(ε1 + ε2)-QPP for the parallel composed framework.

Proof: The proof of Corollary 2 relies on properties of
the DL divergence established in Proposition 2. Items 1), 2),
and 3) follow from joint quasi-convexity (Property 2), data
processing (Property 1), and quasi subadditivity (Property 4),
respectively.

Remark 9 (Comparison to Existing Results): In
[15, Corollary III.3], the parallel composition of two
mechanisms that satisfy (εi, δi)-QDP for i ∈ {1, 2} is shown
to be (ε1 + ε2, δ)-QDP, where δ is given in (97). The proof
technique is, however, different from ours. Property 3 of
Theorem 1 also reveals that if one considers a restricted
class of measurements (e.g., product measurements), then
it is possible to achieve tighter privacy guarantees (namely,
(ε1 + ε2, δ1 + δ2)-QDP) than those obtained when allowing
all joint measurements on the two systems. Also note that
δ′ in (96) is independent of ε1 and ε2, whereas δ in (97)
depends on them. Depending on the particular values that
the parameters εi and δi take, for i ∈ {1, 2}, one of these
aforementioned results provides sharper privacy guarantees.

Example 1: Here we provide an example to illustrate the
distinction between the case of joint measurements and prod-
uct measurements, and more generally PPT measurements
(which contain the set of LOCC measurements, as well as
product measurements). Let αd be the maximally mixed state
on the antisymmetric subspace of two d-dimensional systems,
and let σd be the maximally mixed state on the symmetric
subspace, i.e.,

αd :=
I − F

d (d− 1)
, (98)

σd :=
I + F

d (d+ 1)
, (99)

where F :=
∑
i,j |i⟩⟨j| ⊗ |j⟩⟨i| is the unitary swap operator.

These states are orthogonal and thus perfectly distinguishable
by a joint measurement. Indeed, this measurement is given
by {Παd ,Πσd}, where Παd := (I − F ) /2 and Πσd :=
(I + F ) /2. By setting M = Παd , we find that Tr[Mαd] =
1 and Tr[Mσd] = 0.

We can consider a QPP framework with Q = {(αd, σd)}
and the set of measurements to be M̄. In this case, we only
have QPP (i.e., the inequality Tr[Mαd] ≤ eε Tr[Mσd] + δ is
satisfied) by setting ε ≥ 0 arbitrary and δ ≥ 1, which is a
weak privacy guarantee (or really no privacy at all).

However, we can alternatively restrict the measurement
operators to PPT measurement operators, i.e., those M which
satisfy 0 ≤ M ≤ I and 0 ≤ MΓ ≤ I , where the Γ superscript
denotes the partial transpose. In this case, we find for every
such PPT measurement operator M that

Tr[Mαd] = Tr[MΓαΓ
d ] (100)

= Tr[MΓ
(
I − dΦd

)
/ (d (d− 1))] (101)

≤ Tr[MΓ
(
I + dΦd

)
/ (d (d− 1))] (102)

Fig. 3. Setup for adaptive composition: On the top system, the channel A1 is
followed by the quantum instrument {Ey}y∈Y , and then the random classical
outcome Y is used to choose the channel AY

2 . In this setting, we analyse
how well an adversary can learn properties of the input state σI by applying
measurements on the output state.

= Tr[M (I + F ) / (d (d− 1))] (103)

=
d+ 1
d− 1

Tr[Mσd]. (104)

The first equality follows because the partial transpose is its
own adjoint, and the second equality follows by introducing
the maximally entangled state Φd := 1

d

∑
i,j |i⟩⟨j| ⊗ |i⟩⟨j|.

The inequality follows because 0 ≤ MΓ. By applying the
above inequality, we conclude that (ε, δ)-QPP holds with ε =
ln
(
d+1
d−1

)
and δ = 0, so that privacy improves as dimension

increases.
1) Adaptive Composability: Adaptive composition refers to

the case when each subsequently composed mechanism is
chosen based on the outputs of the preceding ones. The goal
is to quantify the overall privacy leakage at the output of the
adaptively composed mechanism. This idea has been studied
in detail for classical privacy settings [2], and here we explore
it for QPP.

We first focus on the setting depicted in Fig. 3. Fix
Xi ∼ PX ∈ Θ for i ∈ {1, 2}, which are independently chosen,
and let the input state be

σI := ρX1 ⊗ ρX2 . (105)

On the top subsystem in Fig. 3, the channel A1 is followed
by the quantum instrument {Ey}y∈Y , which is a collection of
completely positive maps such that the sum map

E :=
∑
y∈Y

Ey (106)

is trace preserving [56], [57], [58]. Depending on the mea-
surement outcome y, the channel Ay2 is chosen and applied to
the bottom subsystem. The combined output state at stage O,
as marked in the figure, is

σO :=
∑
y∈Y

Ey
(
A1(ρX1)

)
⊗ |y⟩⟨y| ⊗ Ay2(ρX2). (107)

We focus on adaptive composition of two quantum mech-
anisms in the above described setting. Suppose that A1 is
an (ε1, δ1)-QPP mechanism in the framework (S,Q,Θ,M1).
Suppose furthermore that, for each outcome y ∈ Y ,
the mechanism Ay2 satisfies (ε2, δ2)-QPP in the framework
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(S,Q,Θ,M2) in the following sense: for all (R, T ) ∈ Q and
M ∈M2,

Tr
[
MAy2(ρR)

]
≤ eε2Tr

[
MAy2(ρT )

]
+ δ2. (108)

Under adaptive composition, we want to guarantee indistin-
guishability of pairs of states

σRI := ρR1 ⊗ ρR2 and σTI := ρT1 ⊗ ρT2 , (109)

where (Ri, Ti) ∈ Q for i ∈ {1, 2}. This means, informally,
that the adversary would draw the same conclusions regardless
of whether ρXi belongs to Ri or Ti, for i ∈ {1, 2}, when the
initial input σI to the system in Fig. 3 is given by (105). The
following proposition provides parameters under which QPP
of the adaptively composed mechanism is guaranteed.

Proposition 3 (Adaptive Composition of QPP): Fix the
framework (S,Q,Θ,M̄). Suppose that A1 satisfies (ε1, δ1)-
QPP and Ay2 satisfies (ε2, δ2)-QPP for every measurement
outcome y, as in (108). Then the mechanism in Fig. 3
satisfies (ε1 + ε2, δ2 + δ1|Y|)-QPP in the framework
(S,Q×Q,Θ,M̄ ⊗ M̄) where |Y| denotes the cardinality of
the set Y .

Proof: See Appendix V.

Note that, when δi = 0 for i ∈ {1, 2}, the privacy
parameters are additive. However, when δi ̸= 0, the privacy
parameter δ2 + δ1|Y| degrades linearly with an increasing
number of measurement outcomes.

Remark 10 (Composability With Correlated States): In
Property 3 of Theorem 1 and Proposition 3, we considered
the case in which two mechanisms composed in parallel,
receive independent inputs (i.e., the input being ρX1 ⊗ ρX2

where Xi ∼ PX ∈ Θ for i = {1, 2}, which are chosen
independently). In Appendix VI we study the setting in
which the inputs are correlated. There, we observe that QPP
shares similar properties related to composability of classical
PP frameworks, where the class of Θ plays a key role in
composability to hold in general.

In Proposition 3, we assume a local structure of measure-
ments conducted in the process, as shown in Fig. 3. This
assumption is mainly motivated by technical considerations,
as we can treat the resulting setting using our existing set
of tools. Exploration of advanced adaptive composition tech-
niques, which holds for more general classes of measurements
is an interesting avenue for future work. In Section IX-B,
we present a variant of QPP where adaptive composition holds
for general measurements and strategies (refer to Fig. 8 and
Remark 25).

B. Mechanisms for QPP

We propose mechanisms to achieve ε-QPP and (ε, δ)-QPP
using the depolarization channel. In addition, we provide a
general procedure to generate (ε, δ)-(classical) PP mechanisms
using a quantum mechanism satisfying (ε, δ)-QPP.

1) Depolarization Mechanism: Let

ApDep(ρ) := (1− p)ρ+
p

d
I, (110)

where p ∈ [0, 1] and d is the dimension of the Hilbert space
on which ρ acts.

Fig. 4. Depolarization mechanism to achieve QPP: This corresponds to a
channel E followed by a depolarizing channel. Note that we can choose E = I
to be the identity channel as well.

Theorem 3 (ε-QPP depolarization mechanism): Fix p ∈
[0, 1] and a privacy framework (S,Q,Θ,M). Let E be a
quantum channel. Then ApDep(E(·)) (in Fig. 4) is ε-QPP if

p ≥ dK

dK + eε − 1
, (111)

where

K := sup
M∈M

∥M∥∞
Tr[M]

× sup
Θ,(R,T )∈Q

∥∥E(ρR)− E(ρT )
∥∥

1

2
. (112)

This further implies that the depolarization channel with
parameter p achieves ε-QPP whenever

ε ≥ ln
(

1 +
(1− p)dK

p

)
. (113)

Proof: Fix PX ∈ Θ, (R, T ) ∈ Q, and M ∈ M, and
consider that

Tr
[
MApDep

(
E(ρR)

)]
Tr
[
MApDep(E(ρT ))

] − 1

=
(1− p)Tr

[
ME(ρR)

]
+ p

dTr[M]
(1− p)Tr[ME(ρT )] + p

dTr[M]
− 1 (114)

=
(1− p)Tr

[
M
(
E(ρR)− E(ρT )

)]
(1− p)Tr[ME(ρT )] + p

dTr[M]
(115)

≤
(1− p)

∣∣Tr
[
M
(
E(ρR)− E(ρT )

)]∣∣
p
dTr[M]

(116)

Given the above, if

ε ≥ ln

(
1 +

d(1− p)
∣∣Tr
[
M
(
E(ρR)− E(ρT )

)]∣∣
pTr[M]

)
, (117)

then

Tr
[
MApDep

(
E(ρR)

)]
Tr
[
MApDep(E(ρT ))

] ≤ eε. (118)

Recalling that (R, T ) ∈ Q if and only if (T ,R) ∈ Q, the
roles of ρR and ρT can be interchanged, and we conclude
that

e−ε ≤
Tr
[
MApDep

(
E(ρR)

)]
Tr
[
MApDep(E(ρT ))

] . (119)

Consider that

Tr
[
M
(
E(ρR)− E(ρT )

)]
≤ ∥M∥∞

∥∥E(ρR)− E(ρT )
∥∥

1

2
.

(120)
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Indeed, consider the following Jordan–Hahn decomposition
E(ρR) − E(ρT ) = P − Q, where P and Q are the positive
and negative parts of E(ρR)− E(ρT ), respectively, satisfying
P,Q ≥ 0 and PQ = 0. Then

Tr
[
M
(
E(ρR)− E(ρT )

)]
= Tr[M(P −Q)] (121)
≤ Tr[MP ] (122)

≤ ∥M∥∞

∥∥E(ρR)− E(ρT )
∥∥

1

2
, (123)

where the last inequality follows from Hölder’s inequality and
because

∥∥E(ρR)− E(ρT )
∥∥

1
= Tr[P ]+Tr[Q] = 2Tr[P ] since

Tr
[
E(ρR)− E(ρT )

]
= 0 = Tr[P −Q].

Collecting all terms and supremizing over M and Θ and
all secret pairs of Q yields the desired result.

Note that the parameter K derived from Theorem 3 repre-
sents the domain knowledge accessible and incorporated into
the privacy model of the (S,Q,Θ,M) QPP framework.

Corollary 2 (ε-QDP With Domain Knowledge): Fix p ∈
[0, 1], and a privacy framework (S,Q,Θ,M) for QDP that
encodes domain knowledge. Let E be a quantum channel. Then
ApDep(E(·)) is ε-QPP with

ε ≥ ln
(

1 +
(1− p)d

2p
k′ sup

M∈M

∥M∥∞
Tr[M]

)
, (124)

where

k′ := sup
(ρx1 ,ρx2 )∈WΘ

∥E(ρx1)− E(ρx2)∥1 , (125)

WΘ := {(ρx1 , ρx2) ∈ Q | ∃PX ∈ Θ PX(x1), PX(x2) > 0}.
(126)

Note that the domain knowledge encoded into the QDP
framework may guide towards an improved accuracy/utility,
as opposed to considering all neighboring states as secret
pairs and all possible measurements. For the QDP framework
without domain knowledge, [13, Theorem 3] shows that

ε ≥ ln
(

1 +
(1− p)d

2p
sup
ρ∼σ

∥ρ− σ∥1

)
(127)

is a sufficient condition to ensure (ε, 0)-QDP. Compared with
that due to the condition

sup
M∈M

∥M∥∞
Tr[M]

× sup
(ρx1 ,ρx2 )∈WΘ

∥E(ρx1)− E(ρx2)∥1

≤ sup
ρ∼σ

∥ρ− σ∥1 , (128)

a QDP framework that has the capability to incorporate domain
knowledge may cause less perturbation to the useful channel
output of E in some cases. The rightmost inequality holds
because WΘ includes only the neighboring pairs of states such
that their occurrence has a positive probability, while ρ ∼ σ
denotes all possible neighboring pairs. Furthermore, we always
have that ∥M∥∞Tr[M] ≤ 1 for every measurement operator M.

Remark 11 (Local DP): For the setup in Remark III-C2,
Theorem 3 reduces to

p ≥ d

d+ eε − 1
, (129)

with the choice of the identity channel instead of E in Fig. 4.
This occurs because ∥ρ− σ∥1 ≤ 2, with equality for pairs of
orthogonal states, and ∥M∥∞ ≤ Tr[M], with equality holding
whenever M is a rank-one measurement operator. This is
analogous to a version of the randomized response technique
used to achieve classical local DP [59], [60], [61]. For a finite
alphabet X with cardinality |X |, the randomized response
mechanism outputs the true value with probability 1−q, and it
outputs a randomly chosen realization with probability q/|X |.
Then, if

q ≥ |X |
|X |+ eε − 1

, (130)

ε-local differential privacy is achieved. This analogy further
suggests that the depolarization mechanism can be considered
as a quantum version of the randomized response mechanism
that achieves classical privacy guarantees.

Considering the scenario in which we want to provide a
privacy guarantee for all possible measurements (i.e., M =
M̄), next we derive the parameter p to achieve (ε, δ)-QPP.

Proposition 4 ((ε, δ)-QPP Depolarization Mechanism):
Fix p ∈ [0, 1] and the privacy framework (S,Q,Θ,M) with
M = {M : 0 ≤ M ≤ I}. Let E be a quantum channel. Then
ApDep(E(·)) is ε-QPP if

p ≥ max
{

0,
d(K ′ − δ)

dK ′ + eε − 1

}
, (131)

where

K ′ := sup
Θ,(R,T )∈Q

∥∥E(ρR)− E(ρT )
∥∥

1

2
. (132)

Proof: The proof follows from the use of the equivalent
formulation through the hockey-stick divergence and the prop-
erties of this divergence. By [15, Lemma IV.I], we have

Eeε

(
ADep

(
E(ρR)

)
∥ADep

(
E(ρT )

))
≤ (1− eε)

p

d
+ (1− p)Eeε

(
E(ρR)∥E(ρT )

)
. (133)

We also have the property [15, Lemma II.4]

Eeε

(
E(ρR)∥E(ρT )

)
≤
∥∥E(ρR)− E(ρT )

∥∥
1

2
. (134)

Combining these relations, and supremizing over Θ, and secret
pairs (R, T ) ∈ Q, we can choose

δ ≥ (1− eε)
p

d
+ (1− p)K ′. (135)

Then, rearranging the terms we arrive at

p ≥ d(K ′ − δ)
dK ′ + eε − 1

. (136)

Since p ≥ 0, when K ′ − δ ≤ 0, we set p = 0.

2) Classical PP Mechanisms From QPP Mechanisms: The
QPP formalism provides a direct methodology to design classi-
cal PP mechanisms with the assistance of QPP mechanisms.5

5In the context of classical PP mechanisms, the main attempt has been the
introduction of Wasserstein mechanisms, based on the infinity order Wasser-
stein distance and its modifications. In particular, [4] and [62] introduced
these mechanisms to achieve (ε, 0)-PP and (ε, δ)-PP, respectively. However,
it is important to note that these approaches may encounter computational
intractability challenges.
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Fig. 5. Generation of classical PP mechanisms from QPP mechanism A:
First the classical data is encoded using quantum encoding techniques, then
the QPP mechanism A, and if needed any other channel J , and finally the
measurement channel.

In this case, we use quantum encoding to convert classical
data to quantum data. We denote the quantum encoding of
classical data x ∈ Xn×k as ρx := |x⟩⟨x| (recall that pX ∈
Θc are discrete probability distributions over the probability
space P(Xn×k) and this leads to a finite collection of {ρx}x
quantum encodings). Then, we ensure the privacy for the
quantum data (quantum encoding) such that the privacy is
ensured for the underlying classical data.

Proposition 5 ((ε, δ)- (classical) PP mechanism):
Given an (ε, δ)-QPP mechanism A within the framework
(S,Q,Θ,M) when ρx := |x⟩⟨x| with

S = {{ρx : x ∈ Rc} : Rc ∈ Sc} ,
Q = {({ρx : x ∈ Rc}, {ρx : x ∈ Tc}) : (Rc, Tc) ∈ Qc}} ,
Θ = {{pX(x), ρx}x : pX ∈ Θc},
M = {M : 0 ≤ M ≤ I} , (137)

any post-processing of A by a quantum channel J followed
by applying a POVM {My}y∈Y denoted as A : Xn×k → Y
as shown in Fig. 5 is (ε, δ)-PP in the framework (Sc,Qc,Θc).

Furthermore, for a selected post-processing J and POVM
{My}y∈Y , it is sufficient for MJ

c ⊆M for A to be (ε, δ)-PP,
where

MJ
c :=

J †
∑
y∈B

My

 : B ∈ Y

 . (138)

Proof: Fix B ⊆ Y . Consider that

P(A(X) ∈ B|Rc)

=
P({A(X) ∈ B} ∩ Rc)

P(Rc)
(139)

(a)
=

∑
x∈Rc

p(x)P(A(x) ∈ B)
PX(R)

(140)

(b)
=

∑
x∈Rc

p(x)
∑
y∈B P(A(x) = y)

PX(R)
(141)

(c)
=

∑
ρx∈R p(x)

∑
y∈B Tr[MyJ ◦ A(ρx)]
PX(R)

(142)

(d)
= Tr

∑
y∈B

MyJ ◦ A

∑
ρx∈R

p(x)
PX(R)

ρx

 (143)

(e)
= Tr

J †
∑
y∈B

My

A (ρR)
 (144)

(f)
= Tr

[
MA(ρR)

]
, (145)

where: (a) from R := {ρx : x ∈ Rc}; (b) from B being
a collection of y ∈ Y; (c) from My being the measurement

applied to obtain the outcome y; (d) from the linearity of trace
operator and quantum channels A,J ; (e) from the definition
of ρR, and J † being the adjoint of J ; and finally (f) from
M := J †

(∑
y∈B My

)
.

Similarly, P(A(X) ∈ B|Tc) = Tr
[
MA(ρT )

]
. Then with the

assumption that A is (ε, δ)-QPP for (S,Q,Θ,M) mentioned
in the proposition statement, we have

P(A(X) ∈ B|R) ≤ eε P(A(X) ∈ B|T ) + δ. (146)

concluding the proof.

Depolarization is a common kind of noise considered in
quantum information processing. Thus, this offers a method
for designing classical PP mechanisms by combining the
results presented in Proposition 5 and Theorem 3. However,
it is essential to recognize that quantum encoding of classical
data would require additional computational resources, shifting
the complexity of the mechanism design phase to the encoding
phase.

VI. QUANTIFYING PRIVACY-UTILITY TRADEOFF

In this section, we aim to assess the utility achievable
through the implementation of a privatization mechanism
while adhering to privacy constraints and characterize the
inherent tradeoffs involved in this process. To achieve this,
we define a utility metric grounded in an operational approach
and demonstrate its representation via an SDP. Subsequently,
we leverage this metric to conduct an in-depth analysis of
privacy-utility tradeoffs, with a specific emphasis on the depo-
larization mechanism.

A. Utility Metric

Let A denote a privacy mechanism. We focus on assessing
the potential of reversing the effects of A by applying a
post-processing mechanism B to recover the initial input state
to A up to an error 1−γ. We define γ-utility in terms of how
distinguishable B ◦A is from the identity channel, employing
the normalized diamond distance as the distinguishability
measure.

Definition 5 (γ-utility): Let A : L(HA) → L(HC) be a
privacy mechanism, and fix γ ∈ [0, 1]. We say that A satisfies
γ-utility if

U(A) := 1− inf
B

1
2
∥I − B ◦ A∥⋄ ≥ γ, (147)

where the infimum is taken over every quantum channel B :
L(HC) → L(HD).

The defined utility metric can be reformulated as an SDP
by using the dual SDP form of the diamond distance [63,
Section 4] and rewriting the quantum channel B in terms of
its Choi matrix ΓBCD, as well as translating the conditions for
B to be a channel to conditions on its Choi matrix, namely
ΓBCD ≥ 0 and TrD

[
ΓBCD

]
= Ic.

Proposition 6 (SDP Formulation of γ-Utility): The
γ-utility of a privacy mechanism A can be formulated as the

Authorized licensed use limited to: Cornell University Library. Downloaded on August 20,2024 at 17:41:39 UTC from IEEE Xplore.  Restrictions apply. 



5746 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 8, AUGUST 2024

following SDP:

U(A) = 1− inf
µ≥0

ZAD≥0

ΓBCD≥0


µ :

ZAD ≥ ΓAD − ΓB◦AAD ,
µIA ≥ TrD[ZAD] ,
TrD

[
ΓBCD

]
= IC

 ≥ γ,

(148)

where

ΓB◦AAD := TrC
[(
IA ⊗ ΓBCD

) (
TC(ΓAAC)⊗ ID

)]
, (149)

and Γ represents the Choi matrix with the subscripts showing
the input and the output system of the channel while the super-
script indicating the channel considered, with no superscript
for the identity channel.6

Note that a similar SDP formulation for approximate
degradability where the identity channel in Definition 5
is replaced by the complementary channel is presented in
[64, Proposition 9].

Remark 12 (Characterizing Optimal Privacy-Utility Trade-
offs): The optimal utility attained by an (ε, δ)-QPP mechanism
can be characterized as an SDP. To achieve this, we combine
the equivalent formulation of QPP via the DL divergence from
Proposition 1 with the SDP formulation of DL divergence
in Lemma 1. Combining this with the SDP formulated from
Proposition 6 enables computing the privacy requirements
and quantifying utility together. Additionally, we determine
the optimal privacy parameters for fixed utility requirements.
For a comprehensive discussion of this point, please refer to
Appendix VII. The utilization of the SDP derived for the DL
divergence in this operational task highlights an advantage of
the equivalent formulation for QPP using the DL divergence.

B. Analysis of Depolarization Mechanism

We now instantiate A as the depolarizing channel with
parameter p, denoted as ApDep (as defined in (110)), and
proceed to analyze U(ApDep).

Proposition 7 (Utility from depolarization mechanism):
Fix p ∈ [0, 1]. The depolarization mechanism satisfies γ-utility
if and only if

U(ApDep) = 1− p(d2 − 1)
d2

≥ γ. (150)

Proof: The proof below relies on observing that the
optimization term (in the utility metric) is minimized by setting
B = I, and then evaluating

∥∥∥I − ApDep

∥∥∥
⋄

using the Choi
states of the channels ApDep and I, due to the joint covariance
of the two channels under unitaries (i.e., ApDep◦U = U ◦ApDep

and I ◦ U = U ◦ I for every unitary channel U).
Consider that∥∥∥I − B ◦ ApDep

∥∥∥
⋄

(a)
=
∥∥∥U ◦ (I − B ◦ ApDep) ◦ U†

∥∥∥
⋄

(151)

(b)
=
∥∥∥I − U ◦ B ◦ U† ◦ ApDep)

∥∥∥
⋄

(152)

6The Choi matrix of the composed channel B ◦ A is denoted by ΓB◦AAD
and (149) follows from [37, Eq. (3.2.22)].

(c)
=
∫

dU
∥∥∥I − U ◦ B ◦ U† ◦ ApDep)

∥∥∥
⋄

(153)

(d)

≥
∥∥∥∥I − (∫ dU U ◦ B ◦ U†

)
◦ ApDep)

∥∥∥∥
⋄
, (154)

where: (a) follows from the unitary invariance of the diamond
norm with U representing a unitary channel; (b) from the
commutative property of ApDep with every unitary channel;
(c) with dU denoting the Haar measure over the unitary group
and from the left-hand side being independent of U ; and
(d) from the convexity of the diamond norm.

Next, observe that B⋆ :=
∫

dU U ◦ B ◦ U† is a quantum
channel, and it is in fact equal to a depolarization channel [65].
Then, B⋆ = AqDep for some q ∈ [0, 1].

The composition of two depolarization channels

B⋆ = AqDep ◦ A
p
Dep (155)

is also a depolarization channel with parameter p⋆ := 1− (1−
p)(1−q). The minimum value is attained by the choice q = 0,
where AqDep in that case corresponds to the identity channel.

With that, we arrive at

inf
B

∥∥∥I − B ◦ ApDep

∥∥∥
⋄

=
∥∥∥I − ApDep

∥∥∥
⋄
. (156)

With the property of joint covariance of I and ApDep under
unitaries [37, Proposition 7.82], we simplify this to∥∥∥I − ApDep

∥∥∥
⋄

=
1
d

∥∥∥ΓAD − Γ
Ap

Dep
AD

∥∥∥
1
. (157)

Then consider that
1
d

∥∥∥ΓAD − Γ
Ap

Dep
AD

∥∥∥
1

(a)
=

1
d

∥∥∥ΓAD − ((1− p)ΓAD +
p

d
Id2
)∥∥∥

1
(158)

=
p

d

∥∥∥∥ΓAD − 1
d
Id2

∥∥∥∥
1

(159)

= p

∥∥∥∥ΓAD
d

(
1− 1

d2

)
− 1
d2

(
Id2 −

ΓAD
d

)∥∥∥∥
1

(160)

(b)
= p

(
1− 1

d2

)(∥∥∥∥ΓAD
d

∥∥∥∥
1

+

∥∥∥∥∥Id2 − ΓAD

d

d2 − 1

∥∥∥∥∥
1

)
(161)

(c)
= 2p

(
1− 1

d2

)
, (162)

where: (a) from Γ
Ap

Dep
AD = (1− p)ΓAD + p

dId2 ; (b) from ΓAD

d ,
and Id2 − ΓAD

d being orthogonal; and (c) from trace norm of
quantum states being equal to one.

Combining the above chain of arguments together completes
the proof.

Next, we focus on understanding the privacy-utility tradeoff
with respect to the parameter p governing a depolariza-
tion mechanism. From Proposition 7, to achieve γ-utility,
we require that

p ≤ (1− γ)d2

(d2 − 1)
. (163)

Conversely, to achieve ε-QPP in the chosen privacy framework
(S,Q,Θ,M), from Theorem 3, it suffices for p to satisfy

p ≥ dK

dK + eε − 1
. (164)
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Fig. 6. (a) For fixed d = 2, the figure depicts the optimum utility γ for
ε achievable with the depolarization mechanism in Theorem 3. The value of
K encodes the domain knowledge available, where K = 1 corresponds to
no such additional information being available. (b) For fixed K = 1, the
figure depicts the optimum utility γ for ε achievable with the depolarization
mechanism in Theorem 3 for d ∈ {2, 4, 8, 16}.

These two inequalities provide insights into the privacy-utility
tradeoff associated with the depolarization mechanism. Conse-
quently, it is essential to carefully tune the parameter p based
on the desired utility, characterized by γ, as well as the privacy
parameter ε.

1) Effect of Domain Knowledge: Fig. 6a illustrates the
optimal utility achievable using the ε-QPP depolarization
mechanism presented in Theorem 3. Notably, as the value of
K reduces, the attainable utility region expands. The parameter
K derived from Theorem 3 represents the domain knowledge
accessible and incorporated into the privacy model of the
(S,Q,Θ,M) QPP framework. This observation underscores
the significance of incorporating such domain knowledge
to enhance utility gains while simultaneously ensuring the
necessary privacy assurances.

2) Effect of Dimension: In Fig. 6, we observe a prominent
privacy-utility tradeoff as the dimension increases for the

depolarization mechanism presented in Theorem 3. Regard-
ing the utility of the depolarization mechanism (given by
1 − p(d2−1)

d2 ), we can always establish the following lower
bound for every d:

1− p(d2 − 1)
d2

≥ 1− p, (165)

where this lower bound is attained as d → ∞. However,
the achievable privacy level ε in (113) degrades at most
by an order of ln(d). Hence, it is crucial to identify the
optimal privacy parameters achieved by private mechanisms,
particularly in high-dimensional scenarios.

Remark 13 (Application Specific Privacy-Utility Tradeoffs):
In the previous analysis concerning the depolarization
mechanism in Fig. 4, we chose E = I, the identity channel.
However, it would be an interesting future work to explore
the utility for user-specific E channels. Specifically, we can
choose 1 − 1

2 infB∈CPTP ∥E − B ◦ ApDep ◦ E∥⋄ as the utility
metric. If E possesses certain symmetries, one can potentially
utilize arguments akin to those presented in the proof of
Proposition 7. This investigation could shed light on tailoring
privacy mechanisms to specific application needs, leading to
more effective privacy-utility tradeoffs.

VII. AUDITING PRIVACY FRAMEWORKS

Auditing for privacy aims to detect violations in privacy
guarantees and reject incorrect algorithms (see [10], [66], [67],
[68] for classical approaches). In this section, our focus is on
utilizing quantum information theory tools and quantum algo-
rithms to audit the privacy of quantum systems. Specifically,
we concentrate on auditing algorithms for QDP guarantees,
and it should be noted that these ideas can be extended to
audit algorithms for privacy guarantees demanded by QPP (see
Remark 16).

The main idea behind auditing classical privacy frameworks
(DP and PP) involves translating the privacy requirement into
a weaker privacy notion that can be efficiently computed.
For example, in [10], sliced mutual information based DP is
used to audit for DP. By doing so, algorithms failing to meet
the privacy conditions imposed by the relaxed privacy notion
are concluded to violate the original privacy requirement.
However, a pitfall of this approach is the inability to quantify
the gap between the constraints stemming from the original DP
or PP notion and the relaxed privacy notions. In other words,
even if we verify that the relaxed privacy notion is satisfied,
we cannot determine whether the original privacy requirement
is also satisfied. In contrast, in this work, we focus on QDP
without translating it into a relaxed privacy notion.

A. Techniques for Auditing QDP

1) Using Semi-Definite Programs: By leveraging the equiv-
alent formulation from Proposition 1 and adopting the specific
choices of (S,Q,Θ,M) as provided in Remark III-C1, for
(ε, δ)-QDP, we have that

sup
ρ∼σ

D
δ
(A(ρ)∥A(σ)) ≤ ε. (166)
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Fig. 7. Quantum circuit assisted in estimating QDP: Uρ, Uσ are the unitaries
used to prepare ρ and σ by tracing out R1, R2 systems, respectively. Then
A is applied on the systems Si for i ∈ {1, 2}. The unitary Q takes inputs
Fi, Bi and outputs F ′i , Ti, where Fi and Ti are qubit systems. Finally, each
of the Ti systems is measured and the (classical) output random variable is
denoted as Xρ for i = 1 and Xσ for i = 2. Here Xρ, Xσ ∈ {0, 1}. This
procedure is repeated a sufficient number of times, and the outcomes of the
trials are used to estimate P(Xρ = 0) and P(Xσ = 1).

Then, we can compute the left-hand side above by using
the SDP formulation of D

δ
(·∥·) presented in Lemma 1. This

approach is particularly beneficial for low-dimensional setups
as the time complexity of SDP computation is polynomial in
the dimension of the quantum states. However, it is essential to
note that the complexity of this approach grows exponentially
with the number of qubits, making it less feasible for higher-
dimensional systems.

Additionally, using the equivalent formulation in Remark 6,
consider that (ε, δ)-QDP is equivalent to

sup
ρ∼σ

Eeε(A(ρ)∥A(σ)) ≤ δ, (167)

where

Eγ(ρ∥σ) := Tr[(ρ− γσ)+] (168)

=
1
2
∥ρ− γσ∥1 +

(1− γ)
2

, (169)

with γ ≥ 1 for quantum states ρ and σ [15, Eq. (II.2)].
As shown in (45) and (47), the quantity on the right-hand side
of (168) can be evaluated by means of an SDP. Then, auditing
QDP reduces to computing Eγ

(
A(ρ)∥A(σ)

)
for ρ ∼ σ. How-

ever, similar to the previous approach, the time complexity
of this SDP also grows exponentially with the number of
qubits. Thus, computing these SDPs remains challenging for
higher-dimensional quantum systems.

2) Using Quantum Circuits: Another approach is to borrow
the results of [69] and [70] and use the connection of Eγ(ρ∥σ)
to the trace distance given in (169). Despite this connec-
tion, evaluating Eγ(ρ∥σ) remains computationally challenging,
even for quantum computers [69], [70]. Nevertheless, there are
proposals for evaluating the trace distance using variational
quantum algorithms [71], [72] (which however do not give
particular runtimes), and for cases in which the quantum states
have low rank [73].

In the subsequent analysis, we explore an approach
from [71] and [72] (via variational algorithms with
parameterized quantum circuits) to estimate the quantity
∥A(ρ)− eεA(σ)∥1. Using such an estimate, for a fixed value
of the privacy parameter ε, we can validate on which values
of δ the needed guarantees are satisfied.

Firstly, let us focus on how to estimate Eeε(A(ρ)∥A(σ))
for a fixed ρ ∼ σ and ε. With the ideas developed in

[71, Algorithm 14], we discuss how a process similar to
a quantum interactive proof can be used for estimating the
privacy level. For that, refer to the quantum circuit in Fig. 7:
the unitaries Uρ and Uσ are used to prepare the states ρ and σ,
by tracing out systems R1 and R2, respectively. Then the
algorithm A is applied on the systems Si for i ∈ {1, 2}. The
unitary Q takes inputs Fi, Bi and outputs F ′i , Ti, where Fi
and Ti are qubit systems. Finally, both of the Ti systems are
measured in the standard basis {|0⟩, |1⟩}, and the (classical)
output random variable is denoted as Xρ for i = 1 and Xσ for
i = 2. Here Xρ and Xσ take values in {0, 1}. This procedure
is repeated a sufficient number of times, and we use the results
to estimate P(Xρ = 0) and P(Xσ = 1).

Next, consider a scenario in which one could maximize the
following utility function over all possible choices of Q:

g(Q, ρ, σ,A, ε) :=
1

eε + 1
P(Xρ = 0) +

eε

eε + 1
P(Xσ = 1).

(170)

In quantum complexity terminology, this action could be
conducted by a quantum prover who has unbounded compu-
tational power (we discuss how to relax this assumption in
Remark 14). From [71, Eq. (128)] and the discussion therein,
we conclude that

f(ρ, σ,A, ε) := sup
Q
g(Q, ρ, σ,A, ε) (171)

=
1
2

(
1 +

1
eε + 1

∥A(ρ)− eεA(σ)∥1

)
, (172)

where the optimization is over every unitary Q.
If

f(ρ, σ,A, ε) ≤ 1
2

(
1 +

2δ + eε − 1
eε + 1

)
, (173)

then Eeε(A(ρ)∥A(σ)) ≤ δ, due to (168). Then, by changing
the role of ρ and σ in (170), we obtain f(σ, ρ,A, ε). Next,
we select the maximum out of these quantities

f̂(ρ, σ,A, ε) := max {f(ρ, σ,A, ε), f(σ, ρ,A, ε)} . (174)

To this end, if

sup
ρ∼σ

f̂(ρ, σ,A, ε) ≤ 1
2

(
1 +

2δ + eε − 1
eε + 1

)
, (175)

it can be verified that A is (ε, δ)-QDP.
Remark 14 (Relaxing the Computationally Unbounded

Assumption): As the number of qubits increases, classical
methods (e.g., using SDPs) often become intractable due to
the exponential growth in computational complexity. So in
light of this, the above approach is desired with the increasing
dimension of the quantum system.

However, finding the Q that achieves the optimum utility
in (170) is practically infeasible. To relax this assumption,
we replace the action of the prover (who finds this Q)
with a parameterized circuit Qθ. Then we can use (170)
as a utility function for training a variational quantum
algorithm [74], [75] to estimate a lower bound for (171). With
that we obtain a lower bound on Eeε(A(ρ)∥A(σ)), which we
denote as ELB

eε (A(ρ)∥A(σ)). A lower bound gives a sufficient
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condition for ruling out algorithms that do not satisfy (ε, δ)-
QDP. This claim follows because the estimated lower bound
ELB
eε (A(ρ)∥A(σ)) > δ implies that Eeε(A(ρ)∥A(σ)) > δ.
Remark 15 (Neighboring Pairs): To verify (ε, δ)-QDP,

it is required to compute whether f̂(ρ, σ,A, ε) ≤
1
2

(
1 + 2δ+eε−1

eε+1

)
for all neighboring pairs (ρ, σ) ∈ Q.

However, checking this requirement has increasing
computational complexity as the cardinality of the set
Q increases. If the privacy requirements can be relaxed so
as to encode domain knowledge as in QPP framework, the
effective set Q may be a small set in some applications
of interest. For an example, consider an application where
hypothesis testing is carried out between the states ρ and σ
under privacy constraints where Q = {(ρ, σ), (σ, ρ)}.

Remark 16 (Auditing QPP): 7 To audit for (ε, δ)-QPP in the
framework (S,Q,Θ,M̄), one can use the ideas described
above by choosing ρR and ρT for all PX ∈ Θ, (R, T ) ∈ Q
instead of ρ and σ. In that case, the complexity of the approach
relies on the set of Q as well as distributions contained in Θ.

B. Formal Guarantees for Auditing QDP

The question of quantifying the success of a privacy auditing
approach, specifically in correctly accepting and rejecting
an algorithm with given privacy requirements, is a crucial
consideration in privacy auditing research. The authors of [10]
and [68] have worked towards answering this question for
auditing classical DP, but using a relaxed privacy definition.

To tackle this for the quantum setting, we propose a
hypothesis testing-based auditing pipeline tailored specifically
for QDP (also for QPP). In this pipeline, we use the trace-norm
estimation quantum algorithm proposed in [73]. This quantum
algorithm provides an estimation with at most α additive error
from the exact value, with high probability, which allows us
to achieve the desired significance in the hypothesis test.

Let us define

Tε(ρ, σ,A) :=
1

eε + 1
∥A(ρ)− eεA(σ)∥1 . (176)

Fix (ρ, σ) ∈ Q. If algorithm A satisfies (ε, δ)-QDP, then
Eeε(A(ρ)∥A(σ)) ≤ δ. By applying (168), we arrive at

Tε(ρ, σ,A) ≤ 2δ + eε − 1
eε + 1

=: g(ε, δ). (177)

Next, by estimating the quantity on the left-hand side, and
using g(ε, δ) as a threshold, we design an auditing pipeline
for QDP by means of the following null and alternative
hypotheses:

H0 : max{Tε(ρ, σ,A),Tε(σ, ρ,A)} ≤ g(ε, δ), (178)
H1 : max{Tε(ρ, σ,A),Tε(σ, ρ,A)} > g(ε, δ). (179)

Let the estimates of Tε(ρ, σ,A) and Tε(σ, ρ,A) from a
randomized algorithm (in our analysis we use the algorithm
corresponding to [73, Corollary 3.4]) be T̂ε(ρ, σ,A) and
T̂ε(σ, ρ,A), respectively. We choose

T̂εmax(ρ, σ,A) := max{T̂ε(ρ, σ,A), T̂ε(σ, ρ,A)} (180)

as our test statistic.
7Note that the following ideas can also be extended to auditing for variants

of QPP in Section IX as well (See also Remark 21).

1) Estimation of the Test Statistic:
Lemma 3 (Estimating Trace Distance Using Samples of ρ,

σ — Restatement of [73, Corollary 3.4]): Given access to
identical copies of d-dimensional quantum states ρ and σ, there
is a quantum algorithm that estimates the normalized trace
distance T(ρ, σ) (recall (2)) within additive error α and with
probability not less than 1− β, by using

O

(
log
(

1
β

)
r2

α5
log2

( r
α

)
log2

(
1
α

))
(181)

samples of ρ and σ, where r is an upper bound on the rank
of ρ and σ.

Lemma 3 is obtained by using the existing result in
Corollary 3.4 of [73], and combining its argument in The-
orem 2.6 therein on estimating Tr[Aρ] within additive error
α with probability 1 − β, by using O

(
1
α2 log

(
1
β

))
identical

samples of ρ. The algorithm proposed in [73] is designed
based on the following idea. Let V := (ρ−σ)/2. Consider its
singular value decomposition as V = WΣU†. Then the trace
distance can be expressed by the following identity:

T(ρ, σ) =
1
2

(Tr[ρ sgn(V )]− Tr[σ sgn(V )]) , (182)

where sgn(V ) := W sgn(Σ)U†, and sgn(·) is the sign func-
tion. Then, Tr[ρ sgn(V )] and Tr[σ sgn(V )] can be estimated
separately, by combining the techniques of quantum singular
value transformation [76] and the Hadamard test [77]. To this
end, to implement unitary block-encodings of ρ and σ approx-
imately, the technique of density matrix exponentiation [78] is
used.

The same techniques can be employed to compute
Tε(ρ, σ,A) since

Tε(ρ, σ,A) =
1

eε + 1
(Tr[A(ρ) sgn(Vε)]− eεTr[A(σ) sgn(Vε)]) ,

(183)

where Vε := (A(ρ)− eεA(σ))/(eε + 1).
2) Type-1 Error Analysis: We arrive at the following bound

on the Type-1 error of the proposed hypothesis testing pipeline.
Proposition 8 (Type-I Error): Fix arbitrary α, δ > 0 and

consider the above hypothesis testing pipeline. Then

sup
ρ∼σ

P
(
T̂εmax(ρ, σ,A) > g(ε, δ) + α

∣∣∣H0

)
≤ β, (184)

if the algorithm from Lemma 3 has access to

O

(
log
(

1
β

)
r2

α5
log2

( r
α

)
log2

(
1
α

))
(185)

identical copies of the states ρ and σ, such that ρ ∼ σ and
where

r := sup
ρ∼σ

max{rank(A(ρ)) , rank (A(σ))}. (186)

Proof: Fix ρ and σ such that ρ ∼ σ. Under the null hypoth-
esis and the assumption that T̂εmax(ρ, σ,A) = T̂ε(ρ, σ,A),
we have that

P
(
T̂εmax(ρ, σ,A) > g(ε, δ) + α

)
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= P
(
T̂ε(ρ, σ,A) > g(ε, δ) + α

)
(187)

(a)

≤ P
(
T̂ε(ρ, σ,A)− Tε(ρ, σ,A) > α

)
(188)

≤ P
(
|T̂ε(ρ, σ,A)− Tε(ρ, σ,A)| > α

)
(189)

(b)

≤ β, (190)

where: (a) follows since Tε(ρ, σ,A) ≤ g(ε, δ) under the
null hypothesis; (b) from the high probability statement
in Lemma 3. Similarly, the above inequality holds when
T̂εmax(ρ, σ,A) = T̂ε(σ, ρ,A) concluding the proof.

Proposition 8 provides a bound on the number of samples of
the states required to achieve type-I error (significance) of β.
In that case, we would use a threshold of g(ε, δ) + α for
accepting the null hypothesis, such that the null hypothesis
is accepted when the test statistic is less than or equal to
g(ε, δ) + α.

Remark 17 (Computational Complexity With Rank r):
From Proposition 8, it is evident that the copy
complexity of the algorithm grows as O(r2 log2(r)).
Let A : L(HA) → L(HB) be a quantum channel. Then,
r ≤ dB , where dB is the dimension of the Hilbert space HB .
To handle computational complexity, one possibility is to
compose A with another quantum channel N that translates
the space to a low-dimensional setting. However, due to
the data-processing inequality for the trace distance, it will
only provide a lower bound. With that, it is possible to
reject algorithms if Tε(ρ, σ,N ◦ A) > g(ε, δ), which implies
that Tε(ρ, σ,A) > g(ε, δ). Consequently, it may lead to
limitations similar to classical auditing approaches that use
relaxed privacy notions, since the contraction gap between
Tε(ρ, σ,N ◦ A), and Tε(ρ, σ,A) is hard to quantify. In the
quantification of the gap, finding the contraction coefficient
ηN of the channel N would be useful if ηN < 1 (recall
that the contraction coefficient of a channel N under a
generalized divergence D, as given in Eq. (1), is defined as
ηN := supρ,σ∈D,D(ρ∥σ)̸=0

D(N (ρ)∥N (σ))
D(ρ∥σ) ).

In summary, we proposed a hypothesis testing pipeline for
auditing the privacy of quantum systems, offering formal guar-
antees on auditing QDP using quantum algorithms designed
for estimating trace distance. However, an essential task for
further investigation is analyzing the Type-II error of this
approach. This analysis would allow us to quantify the power
of the test and assess its ability to correctly accept algorithms
with the desired privacy requirements, which is left for future
work.

VIII. INFORMATION-THEORETIC BOUNDS FROM QPP
AND CONNECTIONS TO QUANTUM FAIRNESS

In this section, we begin by investigating several
information-theoretic bounds that stem from an algorithm
satisfying QPP constraints. We then establish connections
between QPP and quantum fairness [34], [35] using these
bounds. Later on we utilize the derived bounds to assess the
relative strength of the QPP variants introduced in Section IX.

A. Information-Theoretic Bounds From QPP
In [15], it was highlighted that finding bounds on quantum

relative entropy and mutual information resulting from QDP

is an interesting open problem. We address this question in a
general setting, encompassing QDP as a special case. We offer
bounds for relative entropy and Holevo information, along
with bounds for Rényi relative entropies and trace distance.
For the rest of the discussion, we adopt the fixed privacy
framework to be (S,Q,Θ,M̄).

Proposition 9 (Bounds on Quantum Rényi Relative Entropy
and Quantum Relative Entropy Due to QPP): Fix α > 1. If A
is ε-QPP (i.e., (ε, 0)-QPP) in the framework (S,Q,Θ,M̄) for
all PX ∈ Θ and (R, T ) ∈ Q, then

Dα
(
A(ρR)∥A(ρT )

)
≤ min

{
ε2α

2
, ε

}
, (191)

where Dα(·∥·) is an arbitrary quantum Rényi relative entropy
satisfying data processing.8 Furthermore,

D
(
A(ρR)∥A(ρT )

)
≤ min

{
ε2

2
, ε

}
, (192)

where D is the quantum relative entropy in (6).
Proof: ε-QPP of the framework (S,Q,Θ,M̄) implies that

for all PX ∈ Θ and (R, T ) ∈ Q

DT
(
A(ρR)∥A(ρT )

)
≤ ε, (193)

where DT is the Thompson metric from (16). This follows by
the definition of the max-relative entropy defined in (14) and
Thompson metric in (16), and recalling the definition of QPP
framework for δ = 0 and M = M̄ (see Definition 4). By this
implication and the fact that every quantum Rényi-divergence
Dα of order α satisfying data processing is bounded from
above by Dmax [79, Eq. (4.36)], ε-QPP implies that for all
PX ∈ Θ and (R, T ) ∈ Q,

Dα
(
A(ρR)∥A(ρT )

)
≤ ε. (194)

By a different argument via the maximal extension presented
in Lemma 4, we can further arrive at the following, for all
PX ∈ Θ, (R, T ) ∈ Q, and εα ≤ 2,

Dα
(
A(ρR)∥A(ρT )

)
≤ ε2α

2
. (195)

This completes the proof of the first inequality.
Next, noting that the Petz–Rényi relative entropy in (5)

satisfies data processing for α ∈ (0, 1)∪(1, 2], and then taking
the limit α→ 1+, we arrive at the bound on quantum relative
entropy by using the equality in (6).

Lemma 4: Fix α > 1, and ρ, σ PSD operators. For
αDT (ρ∥σ) ≤ 2, the following inequality holds:

Dα(ρ∥σ) ≤ α

2
(DT (ρ∥σ))2, (196)

where Dα(ρ∥σ) is an arbitrary quantum Rényi relative entropy
satisfying data processing.

Proof: See Appendix VIII.
Remark 18 (Operational Interpretation of Thompson Met-

ric): An operational interpretation of the Thompson metric
has appeared in symmetric postselected hypothesis testing
(a setting allowing for an inconclusive outcome along with

8Note that Petz–Rényi in (5) satisfies data processing for α ∈ (0, 1)∪(1, 2]
and sandwiched Rényi in (8) satisfies data processing for α ∈ [1/2, 1) ∪
(1,∞).
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two general conclusive outcomes and postselecting on the
conclusive outcomes) as the asymptotic error exponent of
discriminating two quantum states ρ and σ [51], as well as
in the resource theory of symmetric distinguishability [50].
Here by referring to (193), the QPP framework also pro-
vides another operational interpretation of the Thompson
metric. In the framework (S,Q,Θ,M̄), for fixed PX ∈
Θ and (R, T ) ∈ Q,9 the Thompson metric given by
DT
(
A(ρR)∥A(ρT )

)
is equal to the minimal ε needed to

achieve ε-QPP.
Proposition 10 (Bounds on Trace Norm): If A is ε-QPP,

then

sup
Θ,(R,T )∈Q

∥∥A(ρR)−A(ρT )
∥∥

1
≤ min

{
ε,
√

2ε
}
, (197)

and if A is (ε, δ)-QPP, we have

sup
Θ,(R,T )∈Q

∥∥A(ρR)−A(ρT )
∥∥

1
≤ 2− 4(1− δ)

eε + 1
. (198)

Proof: The first inequality holds by applying the quantum
Pinsker inequality ( 1

2 ∥ρ− σ∥21 ≤ D(ρ∥σ)) [80, Theorem 1.15]
and Proposition 9.

For the second inequality: (0, δ′)-QPP is equivalent to

sup
Θ,(R,T )∈Q

∥∥A(ρR)−A(ρT )
∥∥

1

2
≤ δ′. (199)

Then, adapting Lemma 5 and fixing ε′ therein to zero leads
to the desired result.

Lemma 5: Fix (S,Q,Θ,M) privacy framework. Then,
we have

(ε, δ)-QPP =⇒ (ε′, δ′)-QPP, (200)

where ε′ < ε with

δ′ := 1− (eε
′
+ 1)(1− δ)
(eε + 1)

. (201)

Proof: The proof follows similarly to the proof of
[11, Property 3] for classical DP and is presented in
Appendix IX.

Remark 19 (Bounds on Holevo Information): In
Appendix X, we provide bounds on the Holevo information
in the settings of QDP and QLDP (recall this privacy notion
from Remark III-C2).

B. Quantum Fairness and QPP

We now demonstrate that quantum fairness can be viewed
as a special case of QPP, which should encourage the design
of customized fairness models via the QPP framework.

Quantum fairness seeks to treat all input states equally,
meaning that all pairs of input states that are close in some
metric (e.g., close in trace distance) should yield similar
outcomes when processed by an algorithm [34]. For a quantum
decision model A = {E , {Mi}i∈O}, where a quantum channel
E is followed by a POVM {Mi}i∈O (i.e., a quantum algorithm
described by a quantum to classical channel), quantum fairness
is defined in [34] as follows.

9By definition also for (T ,R) ∈ Q.

Definition 6 ((α, β)-Fairness [34]): Suppose we are given
a quantum decision model A = {E , {Mi}i∈O}, two distance
metrics D(·∥·) and d(·∥·) on D(H) and D(O) respectively.
Fix 0 < α, β ≤ 1. Then the decision model A is (α, β) fair if
for all ρ, σ ∈ D(H) such that D(ρ∥σ) ≤ α, then

d(A(ρ)∥A(σ)) ≤ β. (202)

Proposition 11 (Fairness Guarantee From QPP): Let
D(ρ∥σ) = ∥ρ− σ∥1 /2 and d(A(ρ)∥A(σ)) =
1
2

∑
i|Tr[MiE(ρ− σ)]|. Fix

S = {ρ : ρ ∈ D(H)},
Q = {(ρ, σ) : ρ, σ ∈ D(H), D(ρ∥σ) ≤ α},
Θ = P2

(
D(H)

)
,

M = {M : 0 ≤ M ≤ I}. (203)

If E satisfies ε-QPP with (S,Q,Θ,M) above, then A =
{E , {Mi}i∈O} is (α,

√
ε′/2)-fair, where ε′ = min{ε, ε2/2}.

Proof: From Proposition 10, E being ε-QPP implies

∥E(ρ)− E(σ)∥1 ≤ min{ε,
√

2ε} =
√

2ε′, (204)

for ρ and σ such that D(ρ∥σ) ≤ α.
Then, consider the measurement channel that performs the

following transformation:

E(ρ) →
∑
i∈O

Tr[MiE(ρ)] |i⟩⟨i|. (205)

It follows from the data-processing inequality for the trace
distance that∥∥∥∥∥∑

i∈O
(Tr[MiE(ρ)]− Tr[MiE(σ)]) |i⟩⟨i|

∥∥∥∥∥
1

≤
√

2ε′. (206)

This leads to

d(A(ρ)∥A(σ)) =
1
2

∑
i

|Tr[MiE(ρ− σ)]| ≤
√
ε′

2
, (207)

concluding the proof.

This shows how ε-QPP also provides fairness to the decision
models of interest. However, fairness guarantees may not be
sufficient to guarantee privacy in general. Next, we show that
when M satisfies a relationship related to the POVM of the
quantum decision model where fairness needs to be ensured,
fair algorithms also act as privacy mechanisms.

Proposition 12 (Privacy Guarantees Obtained From Fair-
ness): Consider the same privacy framework as in (203) but
with the modification M = {∪i∈BMi|B ⊆ O}. If A =
{E , {Mi}i∈O} is (α, β)-fair, then E is (ε, 2β)-QPP for every
ε ≥ 0.

Proof: Since A is (α, β)-fair, it follows that

1
2

∑
i∈O

|Tr[MiE(ρ− σ)]| ≤ β. (208)

Then, for every B ⊆ O∣∣∣∣∣Tr

[∑
i∈B

MiE(ρ− σ)

]∣∣∣∣∣ ≤∑
i∈B

|Tr[MiE(ρ− σ)]| (209)
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≤
∑
i∈O

|Tr[MiE(ρ− σ)]| (210)

≤ 2β, (211)

where the first inequality follows from the triangular inequal-
ity, the second from B ⊆ O, and the last from (208).

IX. VARIANTS OF QUANTUM PUFFERFISH
PRIVACY FRAMEWORK

We now propose variants of QPP via generalized diver-
gences (as defined in (1)).10 We provide an operational
interpretation of generalized divergences as privacy metrics
and characterize the relative strength between them.

Here, we focus on QPP in the framework (S,Q,Θ,M̄)
and formulate QPP based on generalized divergences, which
we denote by (D, ε)-QPP, where D is a placeholder for the
generalized divergence being used.

Definition 7 ((D, ε)-QPP): Fix a privacy framework
(S,Q,Θ,M̄) and ε > 0. An algorithm A is (D, ε)-QPP if

sup
Θ,(R,T )∈Q

D
(
A(ρR)∥A(ρT )

)
≤ ε, (212)

where D is an arbitrary generalized divergence and ρR and
ρT are defined as in Definition 4. Note that these two density
matrices depend on elements of Θ and Q.

Indeed, Definition 7 encompasses variants of classi-
cal DP [81], [82] and QDP [15], which rely on Rényi
divergences as the generalized divergence along with the
appropriate choice of QPP framework (S,Q,Θ,M) stated in
Remark III-C3 and Remark III-C1, respectively.

Remark 20 (Properties of (D, ε)-QPP): Post-processing
holds, by the definition of generalized divergences. Convexity
follows if D satisfies the direct-sum property, as defined in [37,
Eq. (4.3.7)], from which it follows that D is jointly convex [37,
Proposition 4.15].

Parallel composability: If Ai satisfies (εi, δi)-QPP in
(S,Q,Θ,M̄) for i ∈ {1, . . . , k}, then the composed mecha-
nism, as defined in Theorem 1, satisfies

(
D,
∑k
i=1 εi

)
-QPP in

the framework
(
S,Q(k),Θ,M̄k

)
, if D satisfies subadditivity

(i.e., if D(ρ1 ⊗ ρ2∥σ1 ⊗ σ2) ≤ D(ρ1∥σ1) + D(ρ2∥σ2) for
all states ρ1, ρ2, σ1, and σ2). It is worth noting that by
employing this privacy notion based on generalized diver-
gences, we achieve improved composability results, even in
scenarios involving joint measurements (recall property 3 of
Corollary 2).

Remark 21 (Auditing Variants of QPP): The
methodologies proposed in Section VII can be used to audit
the variants of QPP (based on generalized divergences) as
well. In this regard, quantum algorithms and procedures
for estimating respective generalized divergences (e.g.,
Rényi relative entropies) would be useful. This motivates
the development of novel techniques for estimating them
efficiently and accurately, beyond those already established
in [83].

10Due to the definition of generalized divergences, the privacy notions
defined based on them inherently satisfy post-processing.

A. Variants Based on Rényi Divergences

First, let us recall definitions of the following quantities.
The measured Rényi divergence of order α ∈ (0, 1) ∪ (1,∞)
is defined as [84, Eqs. (3.116)–(3.117)]

Ďα(ρ∥σ) := sup
M

Dcα(M(ρ)∥M(σ)) , (213)

where

Dcα(M(ρ)∥M(σ)) :=
1

α− 1
ln

(∑
x∈X

(p(x))α(q(x))1−α
)
,

(214)

with p(x) := Tr[Mxρ] and q(x) := Tr[Mxσ] for M cor-
responding to a POVM {Mx}x∈X . The Rényi preparation
divergence of order α ∈ (0, 1) ∪ (1,∞) is defined as [85]

D̂α(ρ∥σ) := inf
P,Q,P

Dcα(P∥Q), (215)

where P is a classical–quantum channel, P(P ) = ρ, P(Q) =
σ, and the classical Rényi divergence is defined as

Dcα(P∥Q) :=
1

α− 1
ln

(∑
x∈X

(P (x))α(Q(x))1−α
)
. (216)

The quantities in (213) and (215) satisfy the data-processing
inequality for all α ∈ (0, 1) ∪ (1,∞) by construction, fol-
lowing from this property holding for the underlying classical
divergence. Moreover, the following bounds hold

Ďα(ρ∥σ) ≤ Dα(ρ∥σ) ≤ D̂α(ρ∥σ). (217)

where Dα is an arbitrary quantum Rényi divergence that
satisfies data processing [86, Eq. (3.7)].

Remark 22 (Relative Strength of Privacy Metrics):
Choosing the preparation divergence D̂α = D in (D, ε)-
QPP gives a stronger privacy metric that satisfies the
post-processing property for the family of quantum Rényi
divergences of order α, while Ďα = D gives a weaker privacy
metric from that same family of divergences. That is, we have
that

sup
Θ,(R,T )∈Q

Ďα
(
A(ρR)∥A(ρT )

)
≤ sup

Θ,(R,T )∈Q
Dα
(
A(ρR)∥A(ρT )

)
(218)

≤ sup
Θ,(R,T )∈Q

D̂α
(
A(ρR)∥A(ρT )

)
, (219)

so that

(D̂α, ε)-QPP =⇒ (Dα, ε)-QPP =⇒ (Ďα, ε)-QPP. (220)

The above relations follow by the direct application of (217)
and Definition 7.

Remark 23 (Operational Interpretation as Privacy Met-
rics): Choose

S = {ρ, σ}, (221)
Q = {(ρ, σ)}, (222)
Θ = {{PX(x), ρx}x∈X : PX ∈ P(X ), ρx ∈ {ρ, σ}},

(223)

Authorized licensed use limited to: Cornell University Library. Downloaded on August 20,2024 at 17:41:39 UTC from IEEE Xplore.  Restrictions apply. 



NURADHA et al.: QUANTUM PUFFERFISH PRIVACY: A FLEXIBLE PRIVACY FRAMEWORK FOR QUANTUM SYSTEMS 5753

M = M̄. (224)

The strongest privacy metric that can be generated from the
family of quantum Rényi divergences of order α, which is
also a generalized divergence, is devised by setting D = D̂α.
In the chosen QPP framework (S,Q,Θ,M), the value of ε
that divides the region where (D, ε)-QPP is achieved and the
region where it is violated, for an identity channel, is D̂α(ρ∥σ).

The sandwiched Rényi relative entropy D̃α in (8) satisfies
data processing for α ∈ [1/2, 1) ∪ (1,∞) [45], [46], and
the quantum relative entropy D in (6) also satisfies data
processing [87]. Thus, both of these are candidates for a
generalized divergence.

Proposition 13: Fix (S,Q,Θ,M̄), α ∈ [1/2, 1) ∪ (1,∞),
and δ ∈ (0, 1). Then, for an algorithm A, we have that

ε-QPP =⇒ (D̃α, ε′)-QPP =⇒ (ε⋆, δ)-QPP, (225)

where

ε′ := min
{
ε,
ε2α

2

}
, (226)

ε⋆ := ε′ +
1

α− 1
ln
(

1
δ2

)
+ ln

(
1

1− δ2

)
. (227)

We also have

ε-QPP =⇒ (D, ε′′)-QPP =⇒ (ε̂, δ)-QPP, (228)

where

ε′′ := min
{
ε,
ε2

2

}
, (229)

K := sup
Θ,(R,T )∈Q

T
(
A(ρR),A(ρT )

)
(230)

ε̂ :=
1
δ2

(ε′ +K) + ln
(

1
1− δ2

)
. (231)

Proof: The first implication in both (225) and (228)
follows from Proposition 9. Then for the second implica-
tion, recall from item 3 of Proposition 2 that D

δ
(ρ∥σ) ≤

Dδmax(ρ∥σ). Then applying [48, Propositions 5 and 6],
we arrive at:

D
δ
(ρ∥σ) ≤ D̃α(ρ∥σ) +

1
α− 1

ln
(

1
δ2

)
+ ln

(
1

1− δ2

)
,

(232)

D
δ
(ρ∥σ) ≤ 1

δ2
(D(ρ∥σ) + T(ρ, σ)) + ln

(
1

1− δ2

)
. (233)

Finally, to conclude the proof, invoke Proposition 1 to establish
the required relationship to the QPP framework from there.

Note that the chain of implications in (225) holds for every
Rényi divergence Dα satisfying data processing, beyond just
D̃α, because data processing is the key property to adapt
Proposition 9 and [48, Proposition 6] (see Eqs. (K51) and
(K52) therein).

Remark 24 (Comparison to Existing Results for QDP):
In the special case of QDP, the dependence on the (ε, α)
parameters in (225) provides a strict improvement over
previous results. Specifically, Lemmas V.4 and V.5 of [15]
show that

ε-QDP =⇒ (Dα, ε)-QDP =⇒ (ε̄, δ)-QDP, (234)

Fig. 8. Adaptive composition with reference systems: First A1 is applied on
the upper system, then the quantum channel N on both the systems, and lastly
A2 on the upper system. Then the adaptive composition is QPP if A1 and
A2 are.

with

ε̄ := ε+
ln
(
1/(1−

√
1− δ2)

)
α− 1

≈ ε+
ln(2/δ2)
α− 1

, (235)

where the approximation holds for small δ. Our first implica-
tion in (225) is tighter compared to this since ε′ ≤ ε and the
second implication is also tighter (i.e, ε⋆ ≤ ε̄) if we choose
δ2 ≤ 1− 2(− 1

α−1 ) in the small δ regime.

B. Variant Incorporating Entanglement

In this subsection, we introduce a novel variant of QPP
that incorporates reference systems. This extension potentially
allows us to explore the impact of entanglement on the privacy
of the system of interest.

Definition 8 ((DR, ε)-QPP With Reference Systems): With
the same setup (S,Q,Θ,M) in Definition 4, a quantum
algorithm A : L(HA) → L(HB) is (ε,D)-QPP with reference
systems if

sup
Θ,(ωRRA,ω

T
RA)∈G

D
(
(IR ⊗A)(ωRRA)∥(IR ⊗A)(ωTRA)

)
≤ ε,

(236)

where the set G is defined in (27).
Since there is no restriction on the reference systems, the

supremum in Definition 8 is also taken over the dimension
of the reference system R, which is an unbounded set.
However, following from isometric invariance of general-
ized divergences, together with purification and the Schmidt
decomposition, it suffices to take the supremum over pure
bipartite states with the reference system R isomorphic to the
channel input system A.

Remark 25 (Properties): Similar to variants of QPP (recall
Remark 20), this variant incorporating reference systems also
satisfies post-processing, convexity, and parallel composability.

Adaptive composition: Let Ai be a (DR, εi)-QPP algorithm
for i ∈ {1, 2}. Consider the adaptive composition of A1 and
A2, as shown in Fig. 8: First A1 is applied on the upper
system, then the quantum channel N acts on both systems,
and lastly A2 acts on the upper system. Adaptive composition
of A1 and A2 also satisfies (DR, ε1)-QPP. This shows that
the adaptive composition illustrated in Fig. 8 does not degrade
privacy, showcasing the strength of the privacy framework in
Definition 8.

Next, we observe that Definition 8 is a stronger privacy
guarantee than Definition 7, which does not take into account
reference systems.
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Corollary 3 (Strength Compared to (D, ε)-QPP): (DR, ε)-
QPP implies (D, ε)-QPP.
This follows from the data-processing inequality for the under-
lying generalized divergence D, choosing the channel as the
partial trace over the reference system R. It highlights that in
certain scenarios where the system of interest is entangled with
other reference systems, the general QPP guarantees defined
in earlier sections may not be sufficient.

The choice of D could heavily affect the design of useful
privacy frameworks with entanglement (recall the example
in Remark 3 with the choice D = Dmax, along with the
equivalence of Dmax to ε-QPP, as given in (193)). Therefore,
careful consideration of the appropriate generalized divergence
is essential for developing effective and meaningful privacy
frameworks that account for entanglement effects.

X. CONCLUDING REMARKS AND FUTURE DIRECTIONS

This work proposed QPP as a flexible privacy framework
for quantum systems. We showed that QPP is captured
exactly by the DL divergence, endowing the latter with an
operational interpretation of the DL divergence. The DL
divergence representation was used to study properties of
QPP mechanisms and characterize privacy-utility tradeoffs.
As a concrete case study, we explored the depolarization QPP
mechanisms and characterized the parameter values to achieve
privacy. A methodology for auditing quantum privacy was also
developed.

Future research directions are abundant and include
privacy-utility analysis of specific quantum estimation tasks,
designing efficient quantum algorithms that achieve QPP,
analysing the type-II error of our quantum privacy audit-
ing pipeline, providing tight characterizations of parallel
composability of QPP mechanisms, and devising efficient
methods for computing the DL divergence using quantum
algorithms to enable quantum privacy auditing. In the longer
term, the proposed framework could lay the foundations for
privacy-preserving learning in quantum systems.

APPENDIX I
ALTERNATIVE PROOF FOR JOINT-QUASI CONVEXITY

OF DL DIVERGENCE

By adapting the strong convexity of Hockey-Stick diver-
gence (Proposition II.5 of [15]), with the substitutions p = q
and γ2 = 1 and γ1 = γ therein, we obtain

Tr

[(
k∑
i=1

piρi − γ

k∑
i=1

piσi

)
+

]

≤
k∑
i=1

piTr
[
(ρi − γσi)+

]
≤ max

i
Tr
[
(ρi − γσi)+

]
.

(237)

Then by assuming maxi Tr
[
(ρi − γσi)+

]
≤ δ, γ is a

candidate for the optimization of
D
δ
(∑k

i=1 piρi

∥∥∥∑k
i=1 piσi

)
. This leads to

D
δ

(
k∑
i=1

piρi

∥∥∥∥∥
k∑
i=1

piσi

)
≤ ln(γ). (238)

The above holds for all γ such that maxi Tr
[
(ρi − γσi)+

]
≤

δ. Then, optimizing over such γ, we arrive at joint quasi-
convexity:

D
δ

(
k∑
i=1

piρi

∥∥∥∥∥
k∑
i=1

piσi

)
≤ max

i
D
δ
(ρi∥σi) . (239)

APPENDIX II
PROOF OF LEMMA 2

The proof given below is closely related to the proof of [79,
Lemma 6.21], but there are some subtle differences and so we
provide it here for completeness.

Let

Σ := (ρ− λσ)+ , (240)

G := (λσ)1/2 (λσ + Σ)−1/2
. (241)

Note that

0 ≤ G†G (242)

= (λσ + Σ)−1/2 (λσ) (λσ + Σ)−1/2 (243)

≤ (λσ + Σ)−1/2 (λσ + Σ) (λσ + Σ)−1/2 (244)
≤ I. (245)

From the fact that ρ− λσ ≤ Σ, it follows that

ρ ≤ λσ + Σ. (246)

Define the following state:

ρ̃ :=
GρG†

Tr[G†Gρ]
. (247)

Consider that

1− Tr[GρG†]

= Tr[(I −G†G)ρ] (248)

≤ Tr[(I −G†G) (λσ + Σ)] (249)

= Tr[(I −G†G) (λσ + Σ)] (250)
= Tr[λσ + Σ]

− Tr
[
(λσ + Σ)−1/2 (λσ) (λσ + Σ)−1/2 (λσ + Σ)

]
(251)

= Tr[λσ + Σ]− Tr[λσ] (252)
= Tr[Σ] (253)
= δ (254)

This implies that

Tr[GρG†] ≥ 1− δ. (255)

Then it follows that

ρ̃ =
GρG†

Tr[G†Gρ]
(256)

≤ G (λσ + Σ)G†

Tr[G†Gρ]
(257)

=
λσ

Tr[G†Gρ]
(258)
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≤ λσ

1− δ
. (259)

Let ψRA =
√
ρAΓRA

√
ρA be the canonical purification of ρA,

with ΓRA :=
∑
i,j |i⟩⟨j|R⊗ |i⟩⟨j|A, and let ψ̃RA = GAψRAG

†
A

Tr[G†Gρ]

purify ρ̃. Then√
F (ρ, ρ̃) ≥ 1√

Tr[G†Gρ]
|⟨ψ|RAIR ⊗GA|ψ⟩RA| (260)

≥ |⟨ψ|RAIR ⊗GA|ψ⟩RA| (261)
= |⟨Γ|RAIR ⊗

√
ρAGA

√
ρA|Γ⟩RA| (262)

= |Tr[Gρ]| (263)
≥ Re[Tr[Gρ]] (264)

= Tr[Gρ] (265)

= 1− Tr[
(
I −G

)
ρ], (266)

where

G :=
G+G†

2
. (267)

The first inequality follows from Uhlmann’s theorem for
fidelity, and the second follows because Tr[G†Gρ] ≤ 1.
Observe that G ≤ I because ∥G∥∞ ≤ 1 and by applying
the triangle inequality. So this means that I − G ≥ 0. Now
consider that

Tr[
(
I −G

)
ρ]

≤ Tr[
(
I −G

)
(λσ + Σ)] (268)

= Tr[λσ + Σ]− Tr[G (λσ + Σ)] (269)
= Tr[λσ + Σ]

− 1
2

Tr
[ (

(λσ)1/2 (λσ+Σ)−1/2 + (λσ+Σ)−1/2 (λσ)1/2
)
×

(λσ + Σ)
]

(270)

= Tr[λσ + Σ]− 1
2

Tr
[
(λσ)1/2 (λσ + Σ)−1/2 (λσ + Σ)

]
− 1

2
Tr
[
(λσ + Σ)−1/2 (λσ)1/2 (λσ + Σ)

]
(271)

= Tr[λσ + Σ]− 1
2

Tr
[
(λσ)1/2 (λσ + Σ)1/2

]
− 1

2
Tr
[
(λσ)1/2 (λσ + Σ)1/2

]
(272)

= Tr[λσ + Σ]− Tr
[
(λσ)1/2 (λσ + Σ)1/2

]
(273)

≤ Tr[λσ + Σ]− Tr
[
(λσ)1/2 (λσ)1/2

]
(274)

= Tr[λσ + Σ]− Tr[λσ] (275)
= Tr[Σ] (276)
= δ. (277)

So all of this implies that√
F(ρ, ρ̃) ≥ 1− δ, (278)

and in turn that

F(ρ, ρ̃) ≥ (1− δ)2 . (279)

By applying the inequality

1
2
∥ρ− ρ̃∥1 ≤

√
1− F(ρ, ρ̃), (280)

we conclude that
1
2
∥ρ− ρ̃∥1 ≤

√
1− (1− δ)2 (281)

=
√

1− (1− 2δ + δ2) (282)

=
√

2δ − δ2 (283)

=
√
δ (2− δ). (284)

Putting everything together, we see that ρ̃ is a quantum state
satisfying

1
2
∥ρ− ρ̃∥1 ≤

√
δ (2− δ), (285)

ρ̃ ≤ λσ

1− δ
. (286)

This means that ρ̃ and λ
1−δ are feasible for D

√
δ(2−δ)

max (ρ∥σ),
and so it follows that

D

√
δ(2−δ)

max (ρ∥σ) ≤ ln
(

λ

1− δ

)
(287)

= lnλ+ ln
(

1
1− δ

)
. (288)

This concludes the proof.

APPENDIX III
SUBADDITIVITY OF SMOOTH MAX-RELATIVE ENTROPY

Lemma 6: Given δ1, δ2 ∈ [0, 1] such that δ1 + δ2 ≤ 1,
states ρ1 and ρ2, and PSD operators σ1 and σ2, the following
subadditivity relation holds

Dδ1+δ2max (ρ1 ⊗ ρ2∥σ1 ⊗ σ2) ≤ Dδ1max(ρ1∥σ1) + Dδ2max(ρ2∥σ2).
(289)

Proof: Let ρi and λi be optimal choices for Dδi
max(ρi∥σi),

for i ∈ {1, 2}. Then, consider that

ρ1 ⊗ ρ2 ≤ λ1σ1 ⊗ ρ2 ≤ λ1σ1 ⊗ λ2σ2 = λ1λ2σ1 ⊗ σ2.

(290)

Furthermore, consider that
1
2
∥ρ1 ⊗ ρ2 − ρ1 ⊗ ρ2∥1

=
1
2
∥ρ1 ⊗ ρ2 − ρ1 ⊗ ρ2 + ρ1 ⊗ ρ2 − ρ1 ⊗ ρ2∥1 (291)

=
1
2
∥ρ1 ⊗ (ρ2 − ρ2) + (ρ1 − ρ1)⊗ ρ2∥1 (292)

≤ 1
2
∥ρ1 ⊗ (ρ2 − ρ2)∥1 +

1
2
∥(ρ1 − ρ1)⊗ ρ2∥1 (293)

=
1
2
∥ρ1∥1 ∥ρ2 − ρ2∥1 +

1
2
∥ρ1 − ρ1∥1 ∥ρ2∥1 (294)

=
1
2
∥ρ2 − ρ2∥1 +

1
2
∥ρ1 − ρ1∥1 (295)

≤ δ1 + δ2, (296)

where (291) follows from the triangular inequality for the trace
norm and the final inequality from the assumption that ρi are
the optimizers for Dδi

max(ρi∥σi), for i ∈ {1, 2}.
Finally we have shown that ρ1⊗ρ2 and λ1λ2 are candidates

for the optimization for Dδ1+δ2
max (ρ1 ⊗ ρ2∥σ1 ⊗ σ2), thus

concluding the proof.
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APPENDIX IV
PROOF OF THEOREM 1

For (1): Fix (ρR, ρT ) in (23), M ∈M. Consider that

Tr
[
MA(ρR)

]
= Tr

[
M

k∑
i=1

piAi(ρR)

]
(297)

=
k∑
i=1

piTr
[
MAi(ρR)

]
(298)

(a)

≤
k∑
i=1

pi
(
eεTr

[
MAi(ρT )

]
+ δ
)

(299)

=
k∑
i=1

pie
εTr
[
MAi(ρT )

]
+ δ (300)

= eεTr
[
MA(ρT )

]
+ δ, (301)

where (a) follows due to each Ai being (ε, δ)-QPP. This
inequality holds for every (ρR, ρT ), and so it holds for all
such pairs generated from (S,Q,Θ,M).

For (2): Fix 0 ≤ M′ ≤ I such that M′ ∈ M′ as stated in
the property. With that assumption, there exists M ∈M such
that M = N †(M′). Consider that

Tr
[
M′N

(
A(ρR)

)]
= Tr

[
N †(M′)A(ρR)

]
(302)

= Tr
[
MA(ρR)

]
, (303)

where N † is the adjoint of N , implying that

0 ≤ N †(M′) = M ≤ I (304)

because N † is positive and unital by the assumption
that N is a quantum channel. Similarly, we have that
Tr
[
M′N

(
A(ρT )

)]
= Tr

[
MA(ρT )

]
, and we conclude that

the processed mechanism satisfies (ε, δ)-QPP with the choice
of M′ ⊆ {M′ : N †(M′) ∈M}.

For (3): Fix (Ri, Ti) ∈ Q for i ∈ {1, . . . , k}, and⊗k
i=1 Mi ∈

⊗k
i=1Mi. Denote

A(k)(ρR
(k)

) := A1(ρR1)⊗A2(ρR2)⊗ . . .Ak(ρRk) (305)

and A(k)(ρT
(k)

) similarly by replacing R with T .
Fix i ∈ {1, . . . , k}. Consider that Tr

[
MiAi(ρRi)

]
≤ 1 ≤

1 + δi because Tr
[
MiAi(ρRi)

]
is a probability. Combining

with the inequality Tr
[
MiAi(ρRi)

]
≤ eεiTr

[
MiAi(ρTi)

]
+δi,

which holds from the assumption that QPP holds, we conclude
that

Tr
[
MiAi(ρRi)

]
≤ min

{
eεiTr

[
MiAi(ρTi)

]
, 1
}

+ δi. (306)

Consider that
k∏
i=1

Tr
[
MiAi(ρRi)

]
≤
(
min

{
1, eε1Tr

[
M1A1(ρR1)

]}
+ δ1

) k∏
i=2

Tr
[
MiAi(ρRi)

]
(307)

≤ min
{
1, eε1Tr

[
M1A1(ρR1)

]} k∏
i=2

Tr
[
MiAi(ρRi)

]
+ δ1

(308)

≤ min
{
1, eε1Tr

[
M1A1(ρR1)

]}
×(

min
{
1, eε2Tr

[
M2A2(ρT2)

]}
+ δ2

) k∏
i=3

Tr
[
MiAi(ρRi)

]
+ δ1

(309)

≤
2∏
j=1

min
{
eεj Tr

[
MjAj(ρTj )

]
, 1
} k∏
i=3

Tr
[
MiAi(ρRi)

]
+ δ1 + δ2 (310)

≤ e
∑k

i=1 εi

k∏
i=1

Tr
[
MiAi(ρTi)

]
+

k∑
i=1

δi, (311)

where the last inequality follows by proceeding with similar
expansions for each remaining term of the product as carried
out in the first three steps.

APPENDIX V
PROOF OF PROPOSITION 3

Fix M′,M ∈ M̄, PX ∈ Θ, and (R1, T1), (R2, T2) ∈ Q. Let
My := (⟨y|⊗I)M′(|y⟩⊗I) and note that My is a measurement
operator in M̄. Recall the definition of the channel

E :=
∑
y∈Y

Ey. (312)

Consider that

Tr

(M⊗M′)

∑
y∈Y

Ey(A1(ρR1))⊗ |y⟩⟨y| ⊗ Ay2(ρR2)


=
∑
y∈Y

Tr
[
MEy(A1(ρR1))⊗M′(|y⟩⟨y| ⊗ Ay2(ρR2)

)]
(313)

=
∑
y∈Y

Tr[MEy(A1(ρR1))] Tr[M′(|y⟩⟨y| ⊗ Ay2(ρR2)
)
]

(314)

=
∑
y∈Y

Tr[MEy(A1(ρR1))] Tr[M′
yA

y
2(ρ

R2)] (315)

(a)

≤
∑
y∈Y

Tr[MEy(A1(ρR1))]

×
(
min

{
1, eε2 Tr[M′

yA
y
2(ρ

T2)]
}

+ δ2
)

(316)

=
∑
y∈Y

Tr[Ey†(M)A1(ρR1)]

×
(
min

{
1, eε2 Tr[M′

yA
y
2(ρ

T2)]
}

+ δ2
)

(317)
(b)
= Tr[ME(A1(ρR1))]δ2

+
∑
y∈Y

(
Tr[Ey†(M)A1(ρR1)] min

{
1, eε2 Tr[M′

yA
y
2(ρ

T2)]
})

(318)
(c)

≤ δ2

+
∑
y∈Y

Tr[Ey†(M)A1(ρR1)] min
{
1, eε2 Tr[M′

yA
y
2(ρ

T2)]
}

(319)
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(d)

≤ δ2 +
∑
y∈Y

(
eε1 Tr[Ey†(M)A1(ρT1)] + δ1

)
×min

{
1, eε2 Tr[M′

yA
y
2(ρ

T2)]
}

(320)

≤
∑
y∈Y

(
eε1 Tr[Ey†(M)A1(ρT1)]eε2 Tr[M′

yA
y
2(ρ

T2)] + δ1
)

+ δ2 (321)

=
∑
y∈Y

(
eε2eε1 Tr[Ey†(M)A1(ρT1)] Tr[M′

yA
y
2(ρ

T2)] + δ1
)

+ δ2 (322)

= eε
′
×

Tr

(M⊗M′)

∑
y∈Y

Ey(A1(ρT1))⊗ |y⟩⟨y| ⊗ Ay2(ρT2)


+ δ2 + δ1 |Y| , (323)

where: (a) from Tr[M′
yA

y
2(ρ

R2)] ≤ 1 ≤ 1 + δ2 and Ay2 being
(ε2, δ2)-QPP; (b) and (c) from

Tr

∑
y∈Y

Ey†(M)A1(ρT1)

 = Tr

M
∑
y∈Y

EyA1(ρT1)

 (324)

= Tr[ME(A1(ρT1))] (325)
≤ 1; (326)

and (d) from A1 being (ε1, δ1)-QPP and the fact that Ey†(M)
is a measurement operator in M̄.

APPENDIX VI
COMPOSABILITY WITH CLASSICALLY

CORRELATED STATES

In Property 3 of Theorem 1 and Proposition 3, we con-
sidered the case in which two mechanisms, composed either
in parallel or adaptively, receive independent inputs (i.e., the
input being ρX1 ⊗ ρX2 where Xi ∼ PX ∈ Θ for i = {1, 2},
which are chosen independently). We now focus on the setting
in which the inputs are classically correlated. The input is
chosen as a separable state of the form

σI :=
∑
z∈Z

q(z)ωz ⊗ τz, (327)

where q represents a probability distribution with q(z) ≥ 0 and∑
z∈Z q(z) = 1, and ωz and τz are quantum states for all

z ∈ Z .11 One special case of interest is as follows:

σI :=
∑
x∈X

PX(x) ρx ⊗ ρx. (328)

In this setting, QDP ensures indistinguishability of the input
states

σ1
I :=

∑
z∈Z

q(z)ωz1 ⊗ τz1 and σ2
I :=

∑
z∈Z

q(z)ωz2 ⊗ τz2 ,

(329)

where ωz1 ∼ ωz2 and τz1 ∼ τz2 are neighbors for all z ∈ Z .

11Note that (327) covers the case of having input states of the form σI :=∑
(x,y)∈X×Y q(x, y) ωx ⊗ τy where for all x ∈ X and y ∈ Y ωx and τy

are states, by considering z to be an index for multiple variables, i.e., setting
z = (x, y).

We consider an instance of the QPP framework, called
flexible QDP, where (S,Q,Θ,M) is such that Θ and M are
chosen based on user needs, while the other parameters are
as given in Remark III-C1. Flexible QDP then satisfies the
following composability properties.

Corollary 4 (Composability of Flexible QDP): Let the ini-
tial input to the two mechanisms A1 and A2 be of the form∑
z∈Z q(z)ω

z ⊗ τz . The following composability properties
hold for the QDP framework.

Parallel Composability: Consider the parallel composed
mechanism

∑
z∈Z q(z)A1(ωz)⊗A2(τz).

1) If Ai is (εi, δi)-QDP in the framework (S,Q,Θ,Mi),
for i ∈ {1, 2}, then the composed mechanism satisfies
(ε1 + ε2, δ1 + δ2)-QDP in

(
S,Q(2),Θ,

⊗2
i=1Mi

)
2) If Ai is (εi, δi)-QDP in the framework (S,Q,Θ,M̄),

for i ∈ {1, 2}, then the composed mechanism satisfies
(ε′, δ′)-QDP in

(
S,Q(2),Θ,M̄2

)
with

ε′ := ε1 + ε2 + ln
(

1
(1− δ1)(1− δ2)

)
, (330)

δ′ :=
√
δ1(2− δ1) +

√
δ2(2− δ2). (331)

and also satisfies (ε1 +ε2, δ) in the same framework with
δ := min{δ1 + eε1δ2, δ2 + eε2δ1}.

Adaptive Composability: Suppose that A1 satisfies (ε1, δ1)-
QDP and A2 chosen adaptively satisfies (ε2, δ2)-QDP,
as in (108). Then, the composed mechanism in Fig. 3 with
σI in (327) satisfies (ε1 + ε2, δ2 + δ1|Y|) in the framework
(S,Q×Q,Θ,M̄ ⊗ M̄).

Proof: Item 1 in the parallel composability part follows
by a similar argument as given in the proof of Property 3 from
Theorem 1. For the proof of Item 2, first, we use quasi-
convexity of the DL divergence (property 2 in Proposition 2)
and then adapt Item 3 of Corollary 2. The adaptive com-
position result follows along the same lines as the proof of
Proposition 3 for fixed z, and then averaging over all z ∈ Z
gives the desired result.

Remark 26 (Extensions Beyond Flexible QDP):
Corollary 4 does not hold for the general QPP framework.
Indeed, it fails to hold, for instance, for the classical PP
framework [3, Theorem 9.1]. Nevertheless, Corollary 4 can
be extended to account for input states

∑
x∈X PX(x) ρx⊗ ρx

subjected to additional structural assumptions on the class of
admissible distributions:

Θ ⊆
{
PX ∈ P(X ) :

∀ (R, T ) ∈ Q, ∃ x, x′ ∈ X
s.t. qR(x) = qT (x′) = 1

}
(332)

where qR and qT are defined as in Definition 4. The classical
version of this condition for PP is known as “universally
composable scenarios” [3, Corollary 9.4].

APPENDIX VII
CHARACTERIZING OPTIMAL PRIVACY-UTILITY TRADEOFF

In this Appendix, we focus on identifying the optimal
utility that can be obtained by applying an (ε, δ)-QPP
mechanism. Here, we first focus on the setting in which
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Q = {(R1,R2), (R2,R1)}, M̄ = {M : 0 ≤ M ≤ I},
and Θ = {PX}, but the following ideas can be extended to
the case when Q is an arbitrary finite set and Θ includes
a finite number of probability distributions. However, the
computational complexity involved in identifying the optimal
utility increases with the cardinality of the set Q and Θ, due to
the addition of more constraints to the optimization problem.

To incorporate privacy requirements, we use the equivalent
formulation of QPP via the DL divergence presented in Propo-
sition 1. To this end, first, we employ the SDP formulated in
Lemma 1 to compute the relevant DL divergence and then use
that in the optimization of utility. We showcase the use of this
SDP in characterizing optimal utility next.

Proposition 14 (Optimal Utility for Fixed Privacy Con-
straints): The optimal utility, as quantified by the γ-utility
metric, for every privacy mechanism that is (ε, δ)-QPP in the
(S,Q,Θ,M̄) framework, where Q = {(R1,R2), (R2,R1)},
is given by the following:

U(ε, δ,R1,R2) := 1−

inf
µ≥0

ZAD≥0

ΓBCD≥0

ΓAAC≥0
λ1≥0,Y1≥0
λ2≥0,Y2≥0



µ :
ZAD ≥ ΓAD − TrC

[
ΓBCDTC(ΓAAC)

]
,

µIA ≥ TrD[ZAD] ,
TrD

[
ΓBCD

]
= IC ,

TrD
[
ΓAAC

]
= IA,

ln(λ1) ≤ ε,
Tr[Y1] ≤ δ,

Y1 ≥ TrA
[(

T(ρR1)⊗ IC
)
ΓAAC

]
−λ1TrA

[
(T(ρR2)⊗ IC)ΓAAC

]
,

ln(λ2) ≤ ε,
Tr[Y2] ≤ δ,

Y2 ≥ TrA
[
(T
(
ρR2

)
⊗ IC)ΓAAC

]
−λ2TrA

[(
T(ρR1)⊗ IC

)
ΓAAC

]



.

(333)

Proof: The proof follows from the SDP formulation of the
γ-utility given in Proposition 6, and the privacy constraints
(i.e., max{Dδ

(
A(ρR1)∥A(ρR2)

)
,D

δ(A(ρR2)∥A(ρR1)
)
} ≤

ε) imposed through the SDP formulation of DL divergence
presented in Lemma 1. We also used the fact that for a
superoperator A from system A to C, the following equality
holds [37, Eq. (3.2.14)]

A(ρR1) = TrA
[(

T(ρR1)⊗ IC
)
ΓAAC

]
. (334)

Remark 27 (Privacy Constraints via Equivalent Formula-
tion Through Hockey-Stick Divergence): Instead of using the
DL divergence, we can also encode the privacy constraints
through the equivalent formulation in Remark 6. To this end,
the dual formulation of the hockey-stick divergence (can be
obtained by (47)), as

Eλ(ρ∥σ) = inf
Z≥0

{Tr[Z] : Z ≥ ρ− λσ} , (335)

can also be incorporated to compute the optimum utility.
Remark 28 (Optimal Privacy Parameters for Fixed Utility):

To find out the optimal (minimal) privacy parameter ε⋆ for a
given mechanism A with the utility constraint γ, and fixed

tolerance δ, first we compute the following quantity:

λ⋆1(A, γ, δ) :=

inf
λ≥0

ZAD≥0

ΓBCD≥0
Y1≥0



λ :
ZAD ≥ ΓAD − TrC

[
ΓBCDTC(ΓAAC)

]
,

(1− γ)IA ≥ TrD[ZAD] ,
TrD

[
ΓBCD

]
= IC ,

Tr[Y1] ≤ δ,
Y1 ≥ TrA

[(
T(ρR1)⊗ IC

)
ΓAAC

]
−λTrA

[
(T(ρR2)⊗ IC)ΓAAC

]


.

(336)

Similarly λ⋆2 can be obtained by exchanging ρR1 and ρR2 .
Then the optimal value is given by

ε⋆(A, γ, δ) := ln(max{λ⋆1(A, γ, δ), λ⋆2(A, γ, δ)}) . (337)

The optimal (minimal) δ for a fixed ε with a utility constraint
can be obtained by encoding the privacy constraint through the
dual form of hockey-stick divergence, as given in Remark 27.

APPENDIX VIII
PROOF OF LEMMA 4

The proof follows analogously to the classical version of
this bound in [82, Proposition 3.3], along with the upper bound
for an arbitrary Dα(·∥·) satisfying data processing. Set α > 1.
Then, for such Dα(·∥·), from [79, Equation 4.34], which is
obtained by choosing a specific preparation channel, we have
that

Dα(ρ∥σ) ≤ 1
α− 1

log Tr
[
σ1/2

(
σ−1/2ρσ−1/2

)α
σ1/2

]
.

(338)

Let us use the following substitution:

DT (ρ∥σ) = ε. (339)

Then we have Dmax(ρ∥σ) ≤ ε and Dmax(σ∥ρ) ≤ ε. Moreover,
with the definition of Dmax(·∥·) in (13), we have ρ ≤ eεσ and
σ ≤ eερ. Then we find that

e−εI ≤ σ−1/2ρσ−1/2 ≤ eεI. (340)

Suppose that σ−1/2ρσ−1/2 has the following spectral decom-
position

∑
i ti|ϕi⟩⟨ϕi|. Then e−ε ≤ ti ≤ eε, and so for all i,

∃λi ∈ [0, 1] such that

ti = λie
ε + (1− λi)e−ε. (341)

Consider that

e(α−1)Dα(ρ∥σ)

≤ Tr
[
σ1/2

(
σ−1/2ρσ−1/2

)α
σ1/2

]
(342)

= Tr

[
σ1/2

∑
i

(
λie

ε + (1− λi)e−ε
)α |ϕi⟩⟨ϕi| σ1/2

]
(343)

=
∑
i

(
λie

ε + (1− λi)e−ε
)α Tr[σ|ϕi⟩⟨ϕi|] (344)

≤
∑
i

(
λie

εα + (1− λi)e−εα
)
Tr[σ|ϕi⟩⟨ϕi|] (345)

= eεαc1 + e−εαc2 (346)
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where the first inequality follows from the inequality in (338),
the second from the convexity of the function x 7→ xα for
α > 1, and the definitions

c1 :=
∑
i

λiTr[σ|ϕi⟩⟨ϕi|] , (347)

c2 :=
∑
i

(1− λi)Tr[σ|ϕi⟩⟨ϕi|] . (348)

In (346), we arrive at a function of α (i.e., eεαc1 +e−εαc2).
Observing that c1+c2 = 1, we can find c1 and c2 by evaluating
this function of α at α = 1, which turns out to be equal to
one because ∑

i

tiTr[σ|ϕi⟩⟨ϕi|] = Tr[ρ] = 1, (349)

where ti is given in (341). Proceeding with this we get c1 =
1−e−ε

eε−e−ε . Then collecting all these relations and simplifying we
obtain,

e(α−1)Dα(ρ∥σ) ≤ sinh(αε)− sinh((α− 1)ε)
sinh(ε)

. (350)

Together with [82, Lemma B.1], and the assumption that αε ≤
2, we can further bound (350) from above by eα(α−1)ε2/2.
With the substitution in (339) we conclude the proof.

APPENDIX IX
PROOF OF LEMMA 5

Fix PX ∈ Θ and (R, T ) ∈ Q. By assumption, we have that

Tr
[
MA(ρR)

]
≤ eεTr

[
MA(ρT )

]
+ δ. (351)

With the choice for δ′ as in the Lemma statement (i.e., (201)),
we have δ − δ′ = (1 − δ)(eε

′ − eε)/(eε + 1). Plugging this
in, we find that

Tr
[
MA(ρR)

]
≤ eε

′
Tr
[
MA(ρT )

]
+ δ′ + (δ − δ′)

+ (eε−eε
′
)Tr
[
MA(ρT )

]
(352)

= eε
′
Tr
[
MA(ρT )

]
+ δ′

+ (eε−eε
′
)
(

Tr
[
MA(ρT )

]
− 1− δ

eε + 1

)
. (353)

Since ε′ ≤ ε, we get the desired inequality if Tr
[
MA(ρT )

]
≤

1−δ
eε+1 .

By choosing the measurement operator I−M, we also have
by assumption that

Tr
[
(I−M)A(ρT )

]
≤ eεTr

[
(I−M)A(ρR)

]
+ δ. (354)

Rewriting (354), we arrive at

Tr
[
MA(ρR)

]
≤ 1− e−ε(1− δ) + e−ε Tr

[
MA(ρT )

]
.

(355)

Similar to the previous manipulations, we get

Tr
[
MA(ρR)

]
≤ eε

′
Tr
[
MA(ρT )

]
+ δ′

+ (eε
′
− e−ε)

(
−Tr

[
MA(ρT )

]
+

1− δ

eε + 1

)
. (356)

Fig. 9. Setup relevant to Proposition 15: X is a classical random variable that
determines ρX , which is the input into the channel A : L(HA) → L(HB).
Then Y is a random variable describing the outcome after applying the POVM
{My}y∈Y . Note that here the classical systems related to X, Y are also given
by the same system labels X, Y .

Since ε′ ≤ ε, we arrive at the desired inequality when
Tr
[
MA(ρT )

]
≥ 1−δ

eε+1 . By these two arguments, the desired
inequality holds for either of the cases, proving its validity.

A similar inequality holds for every (R, T ) ∈ Q and PX ∈
Θ. Thus, the desired implication has been proved.

APPENDIX X
BOUNDS ON HOLEVO INFORMATION

FROM QDP AND QLDP
Let X ∼ PX be a random variable, which can take values

in an alphabet X . Depending on X , the state ρX is chosen
from the set {ρ1, . . . , ρ|X |}. Then the state ρX is sent through
a quantum channel A : L(HA) → L(HB) satisfying QLDP
(recall this notion from Remark III-C2). Afterwards the goal
is to identify X by performing a measurement described by
the POVM {My}y∈Y , which realizes the output Y . The flow
diagram relevant to this setup is shown in Fig. 9.

Here, we focus on how much information about X can be
learned from the output of the quantum privacy mechanism
A(ρX) and the classical output Y , with an emphasis on the
quantities I(X;B)σ and I(X;Y ), respectively, where

σXB =
∑
x∈X

PX(x) |x⟩⟨x| ⊗ A(ρx). (357)

We define the Holevo information of the classical–quantum
state σXB as

I(X;B)σ := S

(∑
x∈X

PX(x)A(ρx)

)
−
∑
x∈X

PX(x) S(A(ρx)) . (358)

By data processing of the Holevo information, we have that
I(X;Y ) ≤ I(X;B)σ . Next, we provide bounds for I(X;B)σ
when A satisfies ε-quantum local DP (QLDP). Recall that,
to achieve QLDP, the algorithm A is designed so that the
output of A may not release much information about the input
states (recall Remark III-C2).

Proposition 15 (Bounds on Holevo Information Due to
QLDP): Let A : L(HA) → L(HB) be a quantum channel.
If A satisfies ε-QLDP, then

I(X;B)σ ≤ min
{
ε,
ε2

2

}
. (359)

Furthermore, if A is (ε, δ)-QLDP, then

I(X;B)σ ≤ δ′ ln(d− 1) + h(δ′), (360)

if δ′ ∈ [0, 1 − 1/d], where δ′ = 1 − 2(1− δ)/(eε + 1), d is
the dimension of the Hilbert space HB , and

h(δ′) := −δ′ ln(δ′)− (1− δ′) ln(1− δ′) (361)

is the binary Shannon entropy in nats.
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Proof: The following proof ideas are inspired by the works
on mutual information based classical DP and PP presented
in [11, Theorem 1] and [10, Theorem 1], respectively. For the
proof of the first part, consider that

I(X;B)σ

=
∑
x∈X

PX(x) D

(
A(ρx)

∥∥∥∥∥∑
x′∈X

PX(x′)A(ρx
′
)

)
(362)

≤
∑
x∈X

∑
x′∈X

PX(x)PX(x′) D
(
A(ρx)

∥∥∥A(ρx
′
)
)

(363)

≤ min
{
ε,
ε2

2

}
, (364)

where the first inequality follows from the joint convexity of
quantum relative entropy [88]. The final inequality follows
because A satisfies ε-QLDP, as well as from Proposition 9
and the setup for QLDP in Remark III-C2.

For the second part, consider that

I(X;B)σ = S(A(ρ̄))−
∑
x∈X

PX(x)S(A(ρx)) (365)

≤ δ′ ln(d− 1) + h(δ′), (366)

where

ρ̄ =
∑
x∈X

PX(x)ρx, (367)

and the final inequality follows from the fact that
∥A(ρ̄)−A(ρx)∥1 ≤ 2δ′ due to A satisfying (ε, δ)-QPP along
with Proposition 10. Then, to arrive at the final expression,
we use the entropy continuity result known as the Fannes-
Audenaert Inequality [89]:

|S(A(ρ̄))− S(A(ρx))| ≤ δ′ ln(d− 1) + h(δ′), (368)

concluding the proof.

Next, we extend the earlier setup to the case in which
we generate n i.i.d. random variables from the distribution
of PX . Then, {X1, . . . , Xn} forms a database. Depending on
the value of the database, we choose ρX

n

:= ρX1⊗· · ·⊗ρXn .
Then ρX

n

is passed through a quantum algorithm A that
satisfies QDP, followed by a POVM {My}y∈Y that generates
the random outcome Y taking values in Y . In this formulation,
we take the convention that ρ ∼ σ (i.e., ρ and σ are
neighbors) in the QDP framework if Tri[ρ] = Tri[σ] for all
i ∈ {1, . . . , n}. Let

σXnB =
∑
x∈X

PXn(xn) |xn⟩⟨xn| ⊗ A(ρx
n

). (369)

Proposition 16 (Bounds on Mutual Information Due to
QDP): Let A : L(HA) → L(HB) be a quantum channel.
For all i ∈ {1, . . . , n}, suppose that Xi is drawn i.i.d. from
the distribution PX . If A satisfies ε-QDP, then

sup
i∈{1,...,n},PX

I(Xi;B|Xn\i)σ ≤ min
{
ε,
ε2

2

}
. (370)

Furthermore, if A satisfies (ε, δ)-QDP, then

sup
i∈{1,...,n},PX

I(Xi;B|Xn\i)σ ≤ δ′ ln(d− 1) + h(δ′), (371)

if δ′ ∈ [0, 1− 1/d], where δ′ = 1− 2(1− δ)/(eε + 1).
Proof: First, let us consider I(Xi;B|Xn\i = zn\i)σ .

Define the shorthands

ρn\i := ρz11 ⊗ . . . ρ
zi−1
i−1 ⊗ ρ

zi+1
i+1 ⊗ ρzn

n , (372)

ω :=
∑
x∈X

PXi
(x)ρxi ⊗ ρn\i, (373)

ωx := ρxi ⊗ ρn\i. (374)

Then ω ∼ ωx because Tri[σ] = Tri[σx].
For the first part, it thus follows that

I(Xi;B|Xn\i = zn\i)σ

=
∑
x∈X

PXi(x) D(A(ωx)∥A(ω)) ≤ min
{
ε,
ε2

2

}
. (375)

The last inequality holds because A satisfies ε-QDP, along
with Proposition 9. Since this inequality holds for all possible
zn\i such that {Xn\i = zn\i}, the desired relation holds.

For the second part, consider that

I(Xi;B|Xn\i = zn\i)σ

= S(A(ω))−
∑
x∈X

PXi(x)S(A(ωx)) (376)

≤ δ′ ln(d− 1) + h(δ′), (377)

where the last inequality holds because ∥A(ω)−A(ωx)∥1 ≤
2δ′ with A being (ε, δ)-QDP for the pair σ ∼ σx, and again
applying the continuity result for quantum entropy, as in the
proof of Proposition 15.

By the data processing inequality for mutual information,
we have I(Xi;Y |Xn\i) ≤ ε′ := min{ε, ε2/2}. This showcases
that the setup of Proposition 16 satisfies ε′-mutual information
differential privacy, as proposed in [11], where a randomized
mechanism A : Xn×k → Y is defined to be ε-mutual
information differentially private if

sup
PX∈P(Xn×k),
i∈{1,...,n}

I(Xi;A(X)|Xn\i) ≤ ε. (378)
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