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Fidelity-Based Smooth Min-Relative Entropy:
Properties and Applications
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Abstract— The fidelity-based smooth min-relative entropy is
a distinguishability measure that has appeared in a variety
of contexts in prior work on quantum information, including
resource theories like thermodynamics and coherence. Here we
provide a comprehensive study of this quantity. First we prove
that it satisfies several basic properties, including the data-
processing inequality. We also establish connections between the
fidelity-based smooth min-relative entropy and other widely used
information-theoretic quantities, including smooth min-relative
entropy and smooth sandwiched Rényi relative entropy, of which
the sandwiched Rényi relative entropy and smooth max-relative
entropy are special cases. After that, we use these connections
to establish the second-order asymptotics of the fidelity-based
smooth min-relative entropy and all smooth sandwiched Rényi
relative entropies, finding that the first-order term is the quantum
relative entropy and the second-order term involves the quantum
relative entropy variance. Utilizing the properties derived, we also
show how the fidelity-based smooth min-relative entropy provides
one-shot bounds for operational tasks in general resource theories
in which the target state is mixed, with a particular example
being randomness distillation. The above observations then lead
to second-order expansions of the upper bounds on distillable
randomness, as well as the precise second-order asymptotics of
the distillable randomness of particular classical–quantum states.
Finally, we establish semi-definite programs for smooth max-
relative entropy and smooth conditional min-entropy, as well as
a bilinear program for the fidelity-based smooth min-relative
entropy, which we subsequently use to explore the tightness of a
bound relating the last to the first.

Index Terms— Fidelity based smoothing, quantum resource
theories, randomness distillation, second-order asymptotics,
smoothed Rényi divergences, smooth min-relative entropy.

I. INTRODUCTION

A. Background

DISTINGUISHABILITY plays a fundamental role across
all fields of sciences. The core toolbox in this

regard involves distinguishability measures. In quantum
information theory, these distinguishability measures then
lead to information measures including mutual information
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and conditional entropy, as well as entanglement measures
(see [1, Chapters 4 and 5] for a review). Furthermore, they
also appear in resource theories as conversion rates [2].

The min-relative entropy is one such distinguishability
measure [3], defined for a pure state È := |ÈðïÈ| and a positive
semi-definite operator Ã as

Dmin(È∥Ã) := − log2 Tr[ÈÃ] (1)

= − log2 F (È, Ã). (2)

In (2) above, we made use of the fidelity [4], defined generally
for two positive semi-definite operators É and Ä as

F (É, Ä) :=
∥∥√É√Ä

∥∥2

1
. (3)

In the case that Ã is a state, we can interpret the expression
Tr[ÈÃ] in (1) as the probability that the first measurement
outcome occurs when performing the measurement {È, I−È}
on the state Ã. Alternatively, we can interpret the expression
F (È, Ã) in (2) as the fidelity between the states È and Ã.
Thus, in the first case, we are interpreting È as a measurement
operator, and in the second case, we are interpreting È as a
state.

Given the above, there are at least two ways of generalizing
the min-relative entropy when Ä is a general state. The first
approach, originally introduced in [3] as the min-relative
entropy, defines it as

Dmin(Ä∥Ã) := − log2 Tr[ΠÄÃ], (4)

where ΠÄ denotes the projection onto the support of Ä.
Clearly, this definition generalizes the expression in (1),
interpreting ΠÄ as a measurement operator. As discussed
in [3], this interpretation is directly linked with the operational
meaning of the min-relative entropy in asymmetric hypothesis
testing, as the minimum Type II error exponent if the Type I
error probability is constrained to be equal to zero. This
quantity has been further interpreted in a resource-theoretic
manner as the maximum number of exact bits of asymmetric
distinguishability that can be distilled from the pair (Ä, Ã)

[5]. Given the strong link between hypothesis testing and
information theory [6], the min-relative entropy finds further
use as the basic quantity underlying optimal rates at which
zero-error distillation is possible [5], [7].

The second generalization of min-relative entropy to a
general state Ä employs the formula in (2), and is defined
as follows [8]:

Dmin,F (Ä∥Ã) := − log2 F (Ä, Ã). (5)
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In the above definition and throughout, we use the extra
subscript F to indicate that this generalization is based on
fidelity, and we refer to it as the F -min-relative entropy. This
quantity is also equal to the sandwiched Rényi relative entropy
of order 1/2 [9], [10]. It is not known to have an operational
meaning in hypothesis testing; however, it has appeared in a
variety of previous works in quantum information theory [8],
[11], [12], [13], [14].

In realistic experimental scenarios, it is pertinent to allow for
approximations in terms of a smoothing parameter [15], [16],
which characterizes the error that can occur in an experiment.
We can then consider smoothed versions of the quantities
in (4) and (5).

Let us first consider smoothing the quantity in (4). The
approach employed finds its roots naturally in asymmetric
hypothesis testing, given the operational scenario discussed
above. With this in mind, if we relax the aforementioned
Type I error probability constraint, such that it is allowed to
be larger than zero, then we arrive at the smooth min-relative
entropy with smoothing parameter ε ∈ [0, 1] [17], [18], [19]:

Dε
min(Ä∥Ã) := − log2 inf

0fΛfI
{Tr[ΛÃ] : Tr[ΛÄ] g 1 − ε} , (6)

with {Λ, I − Λ} being the measurement that distinguishes
between Ä and Ã. This quantity is referred to as the smooth
min-relative entropy in [5], [7], [20], and [21] and as the
hypothesis testing relative entropy in [19] and many other
papers, including [1], [8], [22], [23], [24], [25], and [26].
Considering that [5], [8]

lim
ε→0

Dε
min(Ä∥Ã) = Dmin(Ä∥Ã), (7)

it is clear that Dε
min(Ä∥Ã) is a smoothed version

of Dmin(Ä∥Ã).
Let us now consider smoothing the quantity in (5). Since Ä

is a state, the idea when smoothing is to search for a nearby
subnormalized state Ä̃, such that it satisfies F (Ä̃, Ä) g 1 − ε
for a fixed smoothing parameter ε ∈ [0, 1], and then replace Ä
with Ä̃ when comparing with Ã. This reasoning naturally leads
to the fidelity-based smooth min-relative entropy:

Dε
min,F (Ä∥Ã) := − log2 inf

Ä̃∈Df

{F (Ä̃, Ã) : F (Ä̃, Ä) g 1 − ε} ,

(8)

where Df denotes the set of sub-normalized states (see
Definition 1, as well as Remark 2 for the choice of sub-
normalized states). In what follows, we refer to it more simply
as the smooth F -min-relative entropy. This quantity has been
considered in several prior works [8], [11], [12], [13], [14]. It is
interesting to compare the expressions involved in (6) and (8),
where we observe that the main difference is that Dε

min

compares Ä and Ã to a measurement operator Λ via a trace
overlap, whereas Dε

min,F compares Ä and Ã to a subnormalized
state Ä̃ via the fidelity.

By building on the recent observations of [27], one
contribution of the present paper is that the smooth F -
min-relative entropy finds use in operational tasks such as
randomness distillation. In this task, the goal is to distill
a state that is close in fidelity to a maximally classically

correlated state, which is a mixed state. As such, the approach
to smoothing taken in (8) is more relevant in this scenario
than that in (6) and can be used to obtain upper bounds
on the one-shot distillable randomness of a bipartite state.
More generally, and as discussed in [27], we suspect that
the ideas put forward here will find use in quantum resource
transformations in which the target state is a mixed state,
and we provide some evidence in Section VI-F that this is
the case.

More broadly, the main goal of the present paper is to
provide a comprehensive study of the fidelity-based smooth
min-relative entropy in (8), which, as indicated above, could
be useful for understanding the fundamental limits of resource
transformations in general resource theories.

B. Contributions

In this paper, we first derive several properties of the
fidelity-based smooth min-relative entropy. In particular,
we prove that it satisfies data processing (Theorem 1), as well
as scaling, super-additivity, monotonicity, etc. (Theorem 2).
We note here that the data-processing inequality was already
established in [14, Theorem 3], but here we provide an
independent proof. Then we proceed to establish its con-
nections with other quantum information-theoretic quantities
including sandwiched Rényi relative entropy and its smooth
variants, smooth max-relative entropy, and smooth min-relative
entropy.

Next, with the assistance of the derived connections,
we provide a second-order asymptotic analysis for the smooth
F -min-relative entropy (Theorem 4). There we find that the
first-order term is the quantum relative entropy and the second-
order term involves the quantum relative entropy variance.
In addition, we derive the second-order behaviour of the
smooth sandwiched Rényi relative entropy (Corollary 4). This
corollary indicates that, in the asymptotic i.i.d. setting and up
to the second order, there is no difference between all of the
smooth sandwiched Rényi relative entropies for all ³ > 1:
they are all equivalent to the smooth max-relative entropy in
this setting. Similarly, in the asymptotic i.i.d. setting and up to
the second order, there is no difference between all of them for
³ ∈ [1/2, 1): they are all equivalent to the smooth min-relative
entropy in this setting.

Furthermore, we show how the smooth F -min-relative
entropy provides one-shot bounds for operational tasks in
general resource-theoretic settings, with a particular analysis
focusing on randomness distillation from bipartite states.
We derive second-order expansions of the upper bounds
on the LOCC-assisted distillable randomness (Theorem 6),
as well as the precise second-order asymptotics of the
distillable randomness of particular classical–quantum states
(Theorem 7).

Moreover, we provide a method to compute the smooth
F -min-relative entropy by means of a bilinear program (Propo-
sition 8). We also provide semi-definite programs (SDPs) for
smooth max-relative entropy and smooth conditional min-
entropy (Propositions 9 and 10), which may be of independent
interest.
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C. Organization

The rest of our paper is organized as follows. In Section II,
we introduce notation and preliminaries. The focus of
Section III is on deriving some basic properties of the
smooth F -min-relative entropy, including data processing.
Connections to other quantum information-theoretic quantities
are established in Section IV. In Section V, we study
the second-order asymptotics of the smooth F -min-relative
entropy. We explore how smooth F -min-relative entropy
provides bounds in operational tasks related to general
resource theories in Section VI. In Section VII we provide
methods to compute the smooth F -min-relative entropy and
related quantities, including the smooth max-relative entropy.
Finally, Section VIII provides concluding remarks and future
directions.

II. PRELIMINARIES

A. Basic Concepts and Notation

We begin by reviewing basic concepts from quantum
information theory and refer the reader to [1] for more details.
A quantum system R is identified with a finite-dimensional
Hilbert space HR. We denote the set of linear operators
acting on HR by L(HR). The support of a linear operator
X ∈ L(HR) is defined to be the orthogonal complement of
its kernel, and we denote it by supp(X). Let T(X) denote the
transpose of X . The partial transpose of CAB ∈ L(HA¹HB)
on the system A is represented as TA(CAB). Let Tr[CAB ]
denote the trace of CAB , and let TrA[CAB ] denote the partial
trace of C over the system A. We use the standard notation
CA ≡ TrB [CAB ] and CB ≡ TrA[CAB ] to denote the
marginals of CAB . The trace norm of an operator B is defined
as ∥B∥1 := Tr[

√
B B]. For Hermitian operators A and B, the

notation A g B indicates that A−B is a positive semi-definite
(PSD) operator, while A > B indicates that A−B is a positive
definite operator.

A quantum state ÄR ∈ L(HR) of system R is a PSD, unit-
trace operator acting on HR. We denote the set of all density
operators acting on HR as D(HR) (we also refer to the set of
density operators by D when there is no ambiguity regarding
the underlying Hilbert space). A rank-one state ÄR is called
pure, and in this case there exists a state vector |Èð ∈ HR

such that ÄR = |ÈðïÈ|. Otherwise, ÄR is called a mixed state.
By the spectral decomposition theorem, every state can be
written as a convex combination of pure, orthogonal states.
A quantum channel N : L(HA) → L(HB) is a linear,
completely positive and trace-preserving (CPTP) map from
L(HA) to L(HB). We denote the Hilbert–Schmidt adjoint of
N by N  . A measurement of a quantum system R is described
by a positive operator-valued measure (POVM) {My}y∈Y ,
which is defined to be a collection of PSD operators satisfying∑

y∈Y My = IR, where IR is the identity operator and Y is
a finite alphabet. The Born rule dictates that, when applying
the above POVM to a state Ä, the probability of observing the
outcome y is given by Tr[MyÄ].

B. Divergences

First, let us recall the definition of the fidelity-based smooth
min-relative entropy, which is the main distinguishability
measure of interest in our paper.

Definition 1 (Fidelity-Based Smooth Min-Relative

Entropy): Fix ε ∈ [0, 1]. The fidelity-based smooth min-
relative entropy of a state Ä and a PSD operator Ã is defined
as

Dε
min,F (Ä∥Ã) := − log2 inf

Ä̃∈Df

{F (Ä̃, Ã) : F (Ä̃, Ä) g 1 − ε} ,

(9)

where the fidelity of PSD operators É and Ä is defined in (3)
and Df denotes the set of subnormalized states; i.e.,

Df := {É : É g 0,Tr[É] f 1} . (10)

Hereafter, we simply abbreviate this quantity as the smooth
F -min-relative entropy. Recalling the definition in [8, Eq. (8)],
observe that when Ä is a state and Ã is a PSD operator, there
is no difference between Definition 1 and the definition given
in [8, Eq. (8)].

We call a distinguishability measure D(·∥·) a generalized
divergence [28] if it satisfies the data-processing inequality;
i.e., for every channel N , state Ä, and PSD operator Ã,

D(Ä∥Ã) g D(N (Ä)∥N (Ã)) . (11)

Fix ³ ∈ (0, 1) ∪ (1,∞). The sandwiched Rényi relative
entropy of a state Ä and a PSD operator Ã is defined as [9], [10]

D̃³(Ä∥Ã) :=



1
³−1 log2 Q̃³(Ä∥Ã) if ³ ∈ (0, 1), or

³ ∈ (1,∞), supp(Ä) ¦ supp(Ã),

+∞ otherwise,

(12)

where

Q̃³(Ä∥Ã) := Tr
[(
Ã

1−α

2α ÄÃ
1−α

2α

)³]
. (13)

It is a generalized divergence for ³ ∈ [1/2, 1) ∪ (1,∞)

[29] (see also [30], [31]), and satisfies the following ³-
monotonicity property [9]:

0 < ³ f ´ ⇒ D̃³(Ä∥Ã) f D̃´(Ä∥Ã). (14)

For ³ = 1/2, observe that

D̃1/2(Ä∥Ã) = − log2 F (Ä, Ã) = Dmin,F (Ä∥Ã). (15)

The special case of ³ → 1 reduces to the quantum relative
entropy [9], [10]:

lim
³→1

D̃³(Ä∥Ã) = D(Ä∥Ã), (16)

the latter defined as [32]

D(Ä∥Ã) := Tr[Ä(log2 Ä− log2 Ã)] (17)
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if supp(Ä) ¦ supp(Ã) and as +∞ otherwise. The relative
entropy variance V (Ä∥Ã) is defined as [22], [23]

V (Ä∥Ã) := Tr
[
Ä (log2 Ä− log2 Ã)

2
]
− (D(Ä∥Ã))

2
. (18)

The Petz–Rényi relative entropy is defined for ³ ∈ (0, 1)∪
(1,∞), a state Ä, and a PSD operator Ã as [33], [34]

D³(Ä∥Ã) :=



1
³−1 log2Q³(Ä∥Ã) if ³ ∈ (0, 1), or

³ ∈ (1,∞), supp(Ä) ¦ supp(Ã),

+∞ otherwise,

(19)

where

Q³(Ä∥Ã) := Tr[Ä³Ã1−³]. (20)

It is a generalized divergence for ³ ∈ (0, 1)∪ (1, 2] [33], [34].
The max-relative entropy of a state Ä and a PSD operator Ã

is defined as [3]

Dmax(Ä∥Ã) := log2 inf
¼g0

{¼ : Ä f ¼Ã} . (21)

It is known from [9] that

Dmax(Ä∥Ã) = lim
³→∞

D̃³(Ä∥Ã). (22)

The smooth max-relative entropy of a state Ä and a PSD
operator Ã is defined for ε ∈ [0, 1] as [3] (see also [35])

Dε
max(Ä∥Ã) := inf

Ä̃∈Df

{Dmax(Ä̃∥Ã) : F (Ä̃, Ä) g 1 − ε} . (23)

We also define the following variant

D̂ε
max(Ä∥Ã) := inf

Ä̃∈D
{Dmax(Ä̃∥Ã) : F (Ä̃, Ä) g 1 − ε} , (24)

and note that

Dε
max(Ä∥Ã) f D̂ε

max(Ä∥Ã), (25)

which follows since D ¦ Df.

III. PROPERTIES OF SMOOTH F -MIN-RELATIVE ENTROPY

In this section, we derive some basic properties satisfied by
the smooth F -min-relative entropy, including data processing,
scaling, super-additivity, monotonicity, etc. Then in subsequent
sections, we utilize these properties to obtain bounds on
operational quantities arising in general resource-theoretic
settings, in particular on the net rate of the distillable
randomness of a bipartite state.

Before deriving these properties, let us first observe that we
can always restrict the constraint in the definition of Dε

min,F

to be an equality constraint, by following the same line of
reasoning from [36, Appendix B].

Remark 1 (Inequality Constraint in the Definition of

Smooth F -Min-Relative Entropy): For ε ∈ [0, 1), the smooth
F -min-relative entropy in (9) can be rewritten as

Dε
min,F (Ä∥Ã) = − log2 inf

Ä̃∈Df

{F (Ä̃, Ã) : F (Ä̃, Ä) = 1 − ε} .

(26)

Indeed, if Ä̃ is such that F (Ä̃, Ä) > 1− ε, then we can choose
a positive constant c = (1 − ε) /F (Ä̃, Ä) ∈ (0, 1) such that
F (Ä′, Ä) = 1 − ε, where Ä′ = cÄ̃ and Ä′ ∈ Df. Furthermore,
we also have that F (Ä̃, Ã) > F (Ä′, Ã), so that the objective
function only decreases under this change.

A. Data Processing

In this section, we prove the data-processing inequality for
the smooth F -min relative entropy. As noted previously, this
finding was already established in [14, Theorem 3], but here
we provide an independent proof. Before establishing the data-
processing inequality, we prove the unitary invariance of the
smooth F -min-relative entropy, which assists in proving the
data-processing inequality.

Lemma 1 (Unitary Invariance): The smooth F -min-
relative entropy Dε

min,F is invariant under the action of a
unitary channel U , i.e.,

Dε
min,F (Ä∥Ã) = Dε

min,F (U(Ä)∥U(Ã)). (27)

for all ε ∈ [0, 1), every state Ä, and PSD operator Ã.
Proof: Let Ä̃ ∈ Df satisfy F (Ä̃, Ä) g 1− ε. Then, by the

unitary invariance of fidelity, we conclude that

F (U(Ä̃),U(Ä)) = F (Ä̃, Ä). (28)

Thus, F (U(Ä̃),U(Ä)) g 1 − ε, and

− log2 F (Ä̃, Ã) = − log2 F (U(Ä̃),U(Ã)) (29)

f Dε
min,F (U(Ä)∥U(Ã)). (30)

Since the inequality holds for every Ä̃ ∈ Df satisfying
F (Ä̃, Ä) g 1 − ε, we conclude that

Dε
min,F (Ä∥Ã) f Dε

min,F (U(Ä)∥U(Ã)). (31)

To prove the opposite inequality, let Ä̂ ∈ Df satisfy
F (Ä̂,U(Ä)) g 1 − ε. Then, by unitary invariance of fidelity,

F (Ä̂,U(Ä)) = F (U (Ä̂), (U ◦ U)(Ä)) (32)

= F (U (Ä̂), Ä). (33)

Thus, F (U (Ä̂), Ä) g 1 − ε, and

− log2 F (Ä̂,U(Ã)) = − log2 F (U (Ä̂), (U ◦ U)(Ã)) (34)

= − log2 F (U (Ä̂), Ã) (35)

f Dε
min,F (Ä∥Ã). (36)

Since the inequality holds for every Ä̂ ∈ Df satisfying
F (Ä̂,U(Ä)) g 1 − ε, we conclude that

Dε
min,F (U(Ä)∥U(Ã)) f Dε

min,F (Ä∥Ã). (37)

Then (27) follows from (31) and (37).

Now, we are ready to present and prove the data-processing
inequality for the smooth F -min-relative entropy.

Theorem 1: The smooth F -min-relative entropy obeys the
data-processing inequality:

Dε
min,F (Ä∥Ã) g Dε

min,F (N (Ä)∥N (Ã)), (38)

for all ε ∈ [0, 1), every state Ä, PSD operator Ã, and
channel N .
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Proof: First, let us show that data processing holds under
the partial trace channel. That is, for every bipartite state ÄAB

and bipartite positive semi-definite operator ÃAB :

Dε
min,F (ÄAB∥ÃAB) g Dε

min,F (ÄA∥ÃA). (39)

To this end, let Ä̃A ∈ Df satisfy F (Ä̃A, ÄA) g 1 − ε. Then,
by Uhlmann’s theorem [4] there exists Ä̃AB ∈ Df such that
F (Ä̃AB , ÄAB) = F (Ä̃A, ÄA). Thus, F (Ä̃AB , ÄAB) g 1−ε, and

− log2 F (Ä̃A, ÃA) f − log2 F (Ä̃AB , ÃAB) (40)

f Dε
min,F (ÄAB∥ÃAB). (41)

The first inequality follows from the data-processing inequality
for fidelity, and the second follows from the definition of
Dε

min,F . Since this inequality holds for every Ä̃A ∈ Df
satisfying F (Ä̃A, ÄA) g 1 − ε, we conclude (39).

Note that the same argument used for Dε
min,F (Ä∥Ã) f

Dε
min,F (U(Ä)∥U(Ã)) (Lemma 1) holds whenever U is an

isometric channel, due to the isometric invariance of fidelity.
Since the embedding É → É ¹ |0ðï0| is an isometric channel,
we conclude that

Dε
min,F (Ä∥Ã) f Dε

min,F (Ä¹ |0ðï0|∥Ã ¹ |0ðï0|). (42)

Now let Ä̃SE ∈ Df satisfy F (Ä̃SE , ÄS ¹ |0ðï0|E) g 1 − ε.
By applying Lemma 2, we conclude that

F (Ä̃SE , ÄS ¹ |0ðï0|E) = F (Ä̃0
S , ÄS), (43)

where Ä̃0
S := ï0|E Ä̃SE |0ðE . Thus, Ä̃0

S is a subnormalized state
that satisfies

F
(
Ä̃0

S , ÄS

)
= F (Ä̃SE , ÄS ¹ |0ðï0|) g 1 − ε. (44)

Furthermore, again applying Lemma 2, we conclude that

F (Ä̃SE , ÃS ¹ |0ðï0|E) = F (Ä̃0
S , ÃS). (45)

Thus, it follows that

− log2 F (Ä̃SE , ÃS ¹ |0ðï0|E) = − log2 F
(
Ä̃0, Ã

)
(46)

f Dε
min,F (Ä∥Ã). (47)

Since the inequality holds for every Ä̃SE ∈ Df satisfying
F (Ä̃SE , Ä¹ |0ðï0|) g 1 − ε, we conclude that

Dε
min,F (Ä¹ |0ðï0|∥Ã ¹ |0ðï0|) f Dε

min,F (Ä∥Ã). (48)

Putting together (42) and (48), we find that

Dε
min,F (Ä¹ |0ðï0|∥Ã ¹ |0ðï0|) = Dε

min,F (Ä∥Ã). (49)

Finally, since, by the Stinespring dilation theorem [37] (see
also [1]), every channel can be realized in terms of

1) the map É → É ¹ |0ðï0|,
2) a unitary channel, and
3) a partial trace,

we conclude the desired inequality in (38), after putting
together (27), (39), and (49).

Remark 2 (On the Choice of Subnormalized States): It is
only this last step (i.e., proving (48)) in which we required
the assumption of smoothing over subnormalized states in the
definition of the smooth F -min-relative entropy, rather than
smoothing over normalized states.

We used the following lemma in the proof of Theorem 1.
Lemma 2: Let ÉSE be a bipartite PSD operator, and let ÃS

be a PSD operator. Then

F (ÉSE , ÃS ¹ |0ðï0|E) = F (É0
S , ÃS), (50)

where É0
S := ï0|EÉSE |0ðE .

Proof: Consider that
√
F (ÉSE , ÃS ¹ |0ðï0|E)

= Tr

[√√
ÃS ¹ |0ðï0|EÉSE

√
ÃS ¹ |0ðï0|E

]
(51)

= Tr

[√√
ÃS ¹ |0ðï0|EÉSE

√
ÃS ¹ |0ðï0|E

]
(52)

= Tr

[√√
ÃSï0|EÉSE |0ðE

√
ÃS ¹ |0ðï0|E

]
(53)

= Tr

[√√
ÃSï0|EÉSE |0ðE

√
ÃS ¹ |0ðï0|E

]
(54)

= Tr

[√√
ÃSï0|EÉSE |0ðE

√
ÃS

]
(55)

=
√
F (ï0|EÉSE |0ðE , ÃS) (56)

=
√
F
(
É0

S , ÃS

)
, (57)

concluding the proof.

With Theorem 1 in hand, it thus follows that the smooth
F -min-relative entropy is a particular kind of generalized
divergence (here recall (11)). Hence it possesses some basic
properties satisfied by generalized divergences, as listed next.

Corollary 1: Let Ä be a state and Ã a PSD operator.
The smooth F -min-relative entropy satisfies the following
properties:

1) Isometric invariance: For every isometry V ,

Dε
min,F (Ä∥Ã) = Dε

min,F (V ÄV  ∥V ÃV  ). (58)

2) Stability: For every state Ä ,

Dε
min,F (Ä∥Ã) = Dε

min,F (Ä¹ Ä∥Ã ¹ Ä). (59)

The proof directly follows from [1, Proposition 7.14], along
with Theorem 1.

B. Other Properties

In this section, we derive some other properties of the
smooth F -min-relative entropy.

Theorem 2: For all ε ∈ [0, 1), every state Ä, and PSD
operator Ã, the smooth F -min-relative entropy Dε

min,F (Ä∥Ã)
satisfies the following properties:

1) Scaling: For c > 0, we have

Dε
min,F (Ä∥cÃ) = Dε

min,F (Ä∥Ã) + log2

(
1

c

)
. (60)

2) Monotonicity: For ε f ε′ ∈ [0, 1),

Dε
min,F (Ä∥Ã) f Dε′

min,F (Ä∥Ã). (61)
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3) Superadditivity: For ε1, ε2 ∈ [0, 1), states Ä1 and Ä2, and
PSD operators Ã1 and Ã2, we have

Dε1

min,F (Ä1∥Ã1) +Dε2

min,F (Ä2∥Ã2)

f Dε′

min,F (Ä1 ¹ Ä2∥Ã1 ¹ Ã2), (62)

where ε′ := ε1 + ε2 − ε1ε2. By monotonicity, we can
also choose ε′ = ε1 + ε2.

4) Convexity in the second argument: Let {Ãi}i be a
set of PSD operators, and let {pi}i be a probability
distribution. Then

Dε
min,F (Ä∥Ã) f

∑

i

piD
ε
min,F (Ä∥Ãi), (63)

where

Ã :=
∑

i

piÃi. (64)

5) Non-negativity: For ε ∈ [0, 1), we have

Dε
min,F (Ä∥Ã) g log2

(
1

1 − ε

)
g 0, (65)

with the first inequality saturated if Ä = Ã.
6) If 0 f Ã f Ã′, then

Dε
min,F (Ä∥Ã) g Dε

min,F (Ä∥Ã′). (66)

7) Zero-error bounds: For ε ∈ [0, 1),

Dmin,F (Ä∥Ã) f Dε
min,F (Ä∥Ã) (67)

and for ε ∈ [0, F (Ä, Ã̂)], with Ã̂ := Ã
Tr[Ã] ,

Dε
min,F (Ä∥Ã) f − log2[1 − g(ε, Ä, Ã)] − log2 Tr[Ã],

(68)

where

g(ε, Ä, Ã) :=
(√
ε
√
F (Ä, Ã̂)+

√
1−F (Ä, Ã̂)

√
1−ε

)2

.

(69)

As such,

lim
ε→0

Dε
min,F (Ä∥Ã) = Dmin,F (Ä∥Ã). (70)

Proof:

Property 1: Consider that

Dε
min,F (Ä∥cÃ)

= sup
Ä̃∈Df

{− log2 F (Ä̃, cÃ) : F (Ä̃, Ä) g 1 − ε} (71)

= sup
Ä̃∈Df

{− log2 (cF (Ä̃, Ã)) : F (Ä̃, Ä) g 1 − ε} (72)

= sup
Ä̃∈Df

{− log2 F (Ä̃, Ã) − log2 c : F (Ä̃, Ä) g 1 − ε} (73)

= sup
Ä̃∈Df

{− log2 F (Ä̃, Ã) : F (Ä̃, Ä) g 1 − ε} − log2 c (74)

= Dε
min,F (Ä∥Ã) − log2 c. (75)

This concludes the proof.
Property 2: Let Ä′ ∈ Df satisfy F (Ä, Ä′) g 1 − ε. Then

F (Ä, Ä′) g 1 − ε′ since ε′ g ε. This leads to

− log2 F (Ä′, Ã) f Dε′

min(Ä∥Ã). (76)

The above inequality holds for every Ä′ ∈ Df such that
F (Ä, Ä′) g 1 − ε. Thus, we have

Dε
min,F (Ä∥Ã) f Dε′

min,F (Ä∥Ã). (77)

Property 3: In this proof, we use the multiplicativity of
fidelity with respect to tensor products:

F (Ä1 ¹ Ä2, Ã1 ¹ Ã2) = F (Ä1, Ã1)F (Ä2, Ã2). (78)

Let Ä′1, Ä
′
2 ∈ Df satisfy F (Ä1, Ä

′
1) g 1 − ε1 and F (Ä2, Ä

′
2) g

1 − ε2. Consider that

− log2 F (Ä′1, Ã1) − log2 F (Ä′2, Ã2) (79)

= − log2 F (Ä′1 ¹ Ä′2, Ã1 ¹ Ã2) (80)

f Dε′

min(Ä1 ¹ Ä2∥Ã1 ¹ Ã2), (81)

where the last inequality follows because

F (Ä′1 ¹ Ä′2, Ä1 ¹ Ä2) = F (Ä′1, Ä1) · F (Ä′2, Ä2) (82)

g (1 − ε1)(1 − ε2) (83)

= 1 − ε′, (84)

with ε′ as stated just after (62). Then, supremizing (79) over Ä′1
and Ä′2 satisfying F (Ä1, Ä

′
1) g 1− ε1 and F (Ä2, Ä

′
2) g 1− ε2,

we arrive at the desired inequality in (62).
Property 4: Let Ä′ ∈ Df satisfy F (Ä, Ä′) g 1 − ε. By

concavity of fidelity [1, Theorem 3.60] (while rescaling for
a subnormalized state Ä′), we have that

F (Ä′, Ã) g
∑

i

piF (Ä′, Ãi). (85)

Then consider that

− log2 F (Ä′, Ã) f − log2

[
∑

i

piF (Ä′, Ãi)

]
(86)

f
∑

i

pi [− log2 F (Ä′, Ãi)] (87)

f
∑

i

piD
ε
min,F (Ä∥Ãi), (88)

where the first inequality follows from (85) and monotonicity
of − log2, the second inequality from the convexity of − log2,
and the last due to F (Ä, Ä′) g 1 − ε. Lastly, by optimizing
over all Ä′ satisfying the required condition, we conclude the
proof.

Property 5: By the data-processing inequality derived in
Theorem 1 and choosing the quantum channel N (X) =
Tr[X]É, where X is a linear operator, and É is a quantum
state, we have

Dε
min,F (Ä∥Ã) g Dε

min,F (É∥É). (89)

Then with the constraint F (Ä̃, É) = 1 − ε (recall Remark 1),
it follows that Dε

min,F (É∥É) = − log2(1−ε) for every state É.
Combining that with (89) concludes the proof.

Property 6: Let Ä̃ ∈ Df be such that F (Ä̃, Ä) g 1 − ε.

By [1, Proposition 7.33], D̃1/2(Ä∥Ã) g D̃1/2(Ä∥Ã′) for Ã f
Ã′. Then, by (15), we have that

− log2 F (Ä̃, Ã) g − log2 F (Ä̃, Ã′).
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Supremizing over Ä̃ ∈ Df such that F (Ä̃, Ä) g 1−ε, we arrive
at the desired inequality.

Property 7: We first prove (67). For all ε ∈ [0, 1), we choose
Ä̃ = Ä and thus have that F (Ä̃, Ä) = 1 g 1 − ε. This leads to

− log2 F (Ä, Ã) f Dε
min,F (Ä∥Ã). (90)

Now we prove (68) and first do so in the case that Ã is a
state. Let Ä1 ∈ Df satisfy F (Ä1, Ä) = 1 − ε. Now construct
the following normalized states:

Ä′1 := Ä1 · (1 − Tr[Ä1]), (91)

Ä′ := Ä· 0, (92)

Ã′ := Ã · 0, (93)

so that

F (Ä′1, Ã
′) = F (Ä1, Ã), (94)

F (Ä′1, Ä
′) = F (Ä1, Ä), (95)

F (Ä′, Ã′) = F (Ä, Ã). (96)

By assumption, ε satisfies 0 f ε f F (Ä, Ã), which implies that
ε+(1−F (Ä, Ã)) f 1. We can thus apply the refined triangular
inequality for the sine distance

√
1 − F [35, Proposition 3.16]

to find that
√

1 − F (Ä1, Ã)

f
√

1 − F (Ä1, Ä)
√
F (Ä, Ã)

+
√

1 − F (Ä, Ã)
√
F (Ä1, Ä) (97)

=
√
ε
√
F (Ä, Ã) +

√
1 − F (Ä, Ã)

√
1 − ε. (98)

After an algebraic manipulation of the inequality above,
we arrive at

− log2 F (Ä1, Ã) f
− log2

(
1 −

(√
ε
√
F (Ä, Ã) +

√
1 − F (Ä, Ã)

√
1 − ε

)2
)
.

(99)

This inequality holds for all Ä1 satisfying F (Ä1, Ä) = 1 − ε.
Then supremizing over all such candidates belonging to Df,
we conclude that

Dε
min,F (Ä∥Ã) f

− log2

(
1 −

(√
ε
√
F (Ä, Ã) +

√
1 − F (Ä, Ã)

√
1 − ε

)2
)
.

(100)

This concludes the proof of (68) when Ã is a state.
When Ã is a general PSD operator, we can write Ã = c

(
1
cÃ
)

with c := Tr[Ã], so that 1
cÃ is a state. We then apply (100) to

1
cÃ and use the scaling property (Property 1 of Theorem 2) to
conclude (68) in the general case.

To conclude (70), we take the following limits
of (67) and (68), respectively:

Dmin,F (Ä∥Ã) f lim inf
ε→0

Dε
min,F (Ä∥Ã), (101)

lim sup
ε→0

Dε
min,F (Ä∥Ã) f − log2 F

(
Ä,
Ã

c

)
− log2 c (102)

= − log2 F (Ä, Ã) (103)

= Dmin,F (Ä∥Ã). (104)

This concludes the proof.

IV. RELATING SMOOTH F -MIN-RELATIVE ENTROPY TO

OTHER DISTINGUISHABILITY MEASURES

In this section, we establish connections between the
smooth F -min-relative entropy and other information-theoretic
quantities such as the sandwiched Rényi relative entropy, its
smooth versions, as well as the smooth max- and min-relative
entropies. Then, we utilize these connections in subsequent
sections to establish the second-order asymptotics of the
smooth F -min-relative entropy.

A. Relation to Sandwiched Rényi Relative Entropy and Its

Smoothed Variants

The smoothed sandwiched Rényi relative entropies were
defined recently in [14], and we recall their definitions here.

Definition 2: Let Ä be a state, and let Ã be a PSD operator.
Fix ε ∈ [0, 1] and ³ ∈ (0, 1)∪(1,∞). The smooth sandwiched
Rényi relative entropy is defined for ³ > 1 as

D̃ε
³(Ä∥Ã) := inf

Ä̃∈Df

{
D̃³(Ä̃∥Ã) : F (Ä̃, Ä) g 1 − ε

}
. (105)

and for ³ ∈ (0, 1) as

D̃ε
³(Ä∥Ã) := sup

Ä̃∈Df

{
D̃³(Ä̃∥Ã) : F (Ä̃, Ä) g 1 − ε

}
. (106)

In the above definitions, we use precisely the mathematical
expression in (12) for evaluating D̃³(Ä̃∥Ã), even though we
only defined it in (12) for (normalized) states.

Note that the smooth sandwiched Rényi relative entropy for
³ = 1/2 is equivalent to the smooth F -min relative entropy
(recall Definition 1).

Remark 3 (Inequality Constraint in Smooth Sandwiched

Rényi Relative Entropy Definition): Note that the smooth
sandwiched Rényi relative entropy can be rewritten for
³ > 1 as

D̃ε
³(Ä∥Ã) := inf

Ä̃∈Df

{
D̃³(Ä̃∥Ã) : F (Ä̃, Ä) = 1 − ε

}
, (107)

and for ³ ∈ (0, 1) as

D̃ε
³(Ä∥Ã) := sup

Ä̃∈Df

{
D̃³(Ä̃∥Ã) : F (Ä̃, Ä) = 1 − ε

}
, (108)

Indeed, let us first consider when ³ > 1. If Ä̃ is such that
F (Ä̃, Ä) > 1−ε, then we can set c = (1 − ε) /F (Ä̃, Ä) ∈ (0, 1)
such that F (Ä′, Ä) = 1 − ε, where Ä′ = cÄ̃ and Ä′ ∈ Df.
Furthermore, we also have that D̃³(Ä̃∥Ã) > D̃³(Ä′∥Ã), so that
the objective function only decreases under this change. The
statement for ³ ∈ (0, 1) follows from a similar argument.

Theorem 3: Let Ä be a state and Ã a positive semi-definite
operator. Let ε1, ε2 ∈ [0, 1] be such that ε1 + ε2 f 1, and let

ε′ :=
[√
ε1
√

1 − ε2 +
√

1 − ε1
√
ε2
]2
, (109)

so that ε′ ∈ [0, 1]. Then for ³ ∈ (1/2, 1) and ´ = ³
2³−1 > 1,

we have that

D̃ε1

´ (Ä∥Ã) +
´

´ − 1
log2

(
1

1 − ε′

)
g D̃ε2

³ (Ä∥Ã). (110)
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Proof: Let Ä1 be optimal for D̃ε1

´ (Ä∥Ã), and let Ä2 be

optimal for D̃ε2
³ (Ä∥Ã). Then it follows from Remark 3 that

F (Äi, Ä) = 1 − εi, (111)

for i ∈ {1, 2}. Let

Ä′1 := Ä1 · (1 − Tr[Ä1]) · 0, (112)

Ä′2 := Ä2 · 0 · (1 − Tr[Ä2]), (113)

Ä′ := Ä· 0 · 0. (114)

Note that Ä′1 and Ä′2 are normalized states satisfying the
equalities

F (Ä′1, Ä
′
2) = F (Ä1, Ä2), (115)

F (Ä′i, Ä
′) = F (Äi, Ä), (116)

for i ∈ {1, 2}. Then, by applying the refined triangular
inequality for the sine distance

√
1 − F of normalized states

[35, Proposition 3.16], along with the assumption that ε1 +
ε2 f 1), we arrive at

√
1 − F (Ä1, Ä2)

f
√

1 − F (Ä1, Ä)
√
F (Ä, Ä2)

+
√

1 − F (Ä, Ä2)
√
F (Ä1, Ä) (117)

=
√
ε1
√

1 − ε2 +
√
ε2
√

1 − ε1. (118)

Then it follows that

F (Ä1, Ä2) g 1 −
[√
ε1
√

1 − ε2 +
√
ε2
√

1 − ε1
]2

(119)

= 1 − ε′. (120)

To arrive at the desired inequality in (110), let us recall
the following inequality from [5, Lemma 1]. Let Ä1 and Ä2

be subnormalized states, and let Ã be a positive semi-definite
operator such that supp(Ä1) ¦ supp(Ã). For ³ ∈ (1/2, 1) and
´ = ³/(2³− 1) > 1,

D̃´(Ä1∥Ã) − D̃³(Ä2∥Ã) g ³

1 − ³
log2 F (Ä1, Ä2) (121)

=
´

´ − 1
log2 F (Ä1, Ä2). (122)

We note here that the proof of [5, Lemma 1] was only given
therein for states, but it is clear by inspection that the same
proof holds for subnormalized states. This implies that

D̃´(Ä1∥Ã) +
´

´ − 1
log2

(
1

F (Ä1, Ä2)

)
g D̃³(Ä2∥Ã). (123)

Then, by the inequality in (120), we have

D̃´(Ä1∥Ã) +
´

´ − 1
log2

(
1

1 − ε′

)
g D̃³(Ä2∥Ã). (124)

Lastly, we conclude the proof by noting the assumption
that Ä1 and Ä2 are optimal for D̃ε1

´ (Ä∥Ã) and D̃ε2
³ (Ä∥Ã),

respectively.

Applying Theorem 3 and the limits ε1 → 0 and ³ → 1/2
(or alternatively directly from (124) with ε1 = 0 and taking the
limit ³ → 1/2 while employing the ³-monotonicity of D̃³),
we arrive at the following corollary:

Corollary 2: For all ε ∈ [0, 1), every state Ä, PSD
operator Ã, and ´ > 1, the following inequality holds

D̃´(Ä∥Ã) +
´

´ − 1
log2

(
1

1 − ε

)
g Dε

min,F (Ä∥Ã). (125)

By applying (22) and Proposition 2, we arrive at the
following inequality:

Dmax(Ä∥Ã) + log2

(
1

1 − ε

)
g Dε

min,F (Ä∥Ã). (126)

We can also arrive at an inequality relating the smooth
F -min relative entropy to the smooth max-relative entropy.
By taking the limits ´ → ∞ and ³ → 1/2 in Theorem 3,
while employing the ³-monotonicity of D̃´ , we obtain the
following inequality:

Corollary 3: Let Ä be a state and Ã a PSD operator. Let
ε1, ε2 ∈ [0, 1] be such that ε1 + ε2 f 1, and let

ε′ :=
[√
ε1
√

1 − ε2 +
√

1 − ε1
√
ε2
]2
, (127)

so that ε′ ∈ [0, 1]. Then

Dε1
max(Ä∥Ã) + log2

(
1

1 − ε′

)
g Dε2

min,F (Ä∥Ã). (128)

We note here that the inequality in (128) appeared in
[13, Lemma III.8] via a different proof strategy. This kind
of inequality was interpreted in a resource-theoretic manner
in [5], [7], [38], and [39]—it would thus be interesting if it
were possible to do so for (110) and (128).

B. Relation to Smooth Min-Relative Entropy

Definition 3: Recall that the smooth min-relative entropy is
defined for ε ∈ [0, 1], a state Ä, and a PSD operator Ã as

Dε
min(Ä∥Ã) := − log2 inf

Λg0
{Tr[ΛÃ] : Tr[ΛÄ] g 1 − ε,Λ f I} .

(129)

As mentioned before, it is also known as the hypothesis testing
relative entropy.

Proposition 1: For every ε ∈ (0, 1), state Ä, and PSD Ã,
the following inequality holds

Dε
min(Ä∥Ã) f Dε

min,F (Ä∥Ã) + log2

(
1

1 − ε

)
. (130)

Proof: Let Λ be an arbitrary measurement operator
satisfying Tr[ΛÄ] g 1− ε. By the gentle measurement lemma
from [40, Eq. (9.202)], we know that Tr[ΛÄ] g 1− ε implies
that

F (Ä̃, Ä) g 1 − ε, (131)

where Ä̃ = 1
Tr[ΛÄ]

√
ΛÄ

√
Λ. An alternative way to see the

inequality in (131) is by the proof in Lemma 5 in Appendix A.
Now we should relate Tr[ΛÃ] to F (Ä̃, Ã). Consider from

Lemma 6 in Appendix A that

F (Ä̃, Ã) =
1

Tr[ΛÄ]
F (Ä,

√
ΛÃ

√
Λ) (132)

f 1

1 − ε
F (Ä,

√
ΛÃ

√
Λ) (133)
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f 1

1 − ε
Tr[ΛÃ]. (134)

The last inequality follows from data processing for fidelity
under the trace channel. Then

− log2 Tr[ΛÃ] f − log2(F (Ä̃, Ã) (1 − ε)) (135)

= − log2 F (Ä̃, Ã) + log2

(
1

1 − ε

)
(136)

f Dε
min,F (Ä∥Ã) + log2

(
1

1 − ε

)
. (137)

Since this holds for an arbitrary measurement operator
satisfying Tr[ΛÄ] g 1 − ε, we conclude that

Dε
min(Ä∥Ã) f Dε

min,F (Ä∥Ã) + log2

(
1

1 − ε

)
, (138)

which is the desired statement.

The following was established in [12], but we give an
alternative proof for it.

Proposition 2: For every ε ∈ (0, 1), state Ä, and PSD
operator Ã, the following inequality holds

Dε
min(Ä∥Ã) f D

ε(2−ε)
min,F (Ä∥Ã). (139)

Proof: The proof is similar to the proof of Proposition 1.
See Appendix B for details.

We note here that Proposition 1 derived in this work is
useful in obtaining the second-order asymptotics presented in
Section V.

Remark 4 (Lower Bound for Smooth F -Min-Relative

Entropy via Petz–Rényi Relative Entropy): For ³ ∈ (0, 1),
by [41, Proposition 3], we have

Dε
min(Ä∥Ã) g ³

³− 1
log2

(
1

ε

)
+D³(Ä∥Ã). (140)

Then by Proposition 1, we find that

Dε
min,F (Ä∥Ã)+log2

(
1

1 − ε

)
g D³(Ä∥Ã)+

³

³− 1
log2

(
1

ε

)
.

(141)

It is an open question to establish a tighter lower bound on
the smooth F -min-relative entropy in terms of the Petz–Rényi
relative entropy of order ³ ∈ (0, 1).

V. SECOND-ORDER ASYMPTOTICS

In this section, we establish the second-order asymptotics of
the smooth F -min-relative entropy (Theorem 4), as well as for
the smooth sandwiched Rényi relative entropy (Corollary 4).
Before doing so, let us first define a set of quantities that are
needed in what follows. The cumulative distribution function
of a standard normal random variable and its inverse are
respectively given by

Φ(a) :=
1√
2Ã

∫ a

−∞
dx exp

(−x2

2

)
, (142)

Φ−1(ε) := sup{a ∈ R | Φ(a) f ε}. (143)

For ε ∈ (0, 1), recall that

Φ−1(1 − ε) = −Φ−1(ε), (144)

and note that Φ−1(ε) < 0 for ε < 1/2 and Φ−1(ε) > 0
for ε > 1/2. For a state Ä and PSD operator Ã such that
supp(Ä) ¦ supp(Ã) and V (Ä∥Ã) > 0, the following second-
order expansion is known:

1

n
Dε

min

(
Ä¹n∥Ã¹n

)
=

D(Ä∥Ã) +

√
1

n
V (Ä∥Ã) Φ−1(ε) +O

(
log n

n

)
. (145)

This expansion gives a refined understanding of Stein’s lemma
for asymmetric hypothesis testing [22], [23] and has been
useful in various developments toward establishing second-
order asymptotic characterizations of information-theoretic
tasks (see, e.g., [24], [25], [42]). For the finite-dimensional
scenario, (145) was proven in [22] and [23]. For a state Ä
and PSD trace-class Ã acting on a separable Hilbert space,
the inequality f was established in [26] and [36], while the
inequality g was shown in [23], [26], and [43].

Theorem 4: For a state Ä, a PSD operator Ã, and ε ∈ (0, 1),
such that supp(Ä) ¦ supp(Ã) and V (Ä∥Ã) > 0, the following
second-order expansion holds:

1

n
Dε

min,F

(
Ä¹n∥Ã¹n

)
=

D(Ä∥Ã) +

√
1

n
V (Ä∥Ã) Φ−1(ε) +O

(
log n

n

)
. (146)

Proof: For the lower bound, we apply Proposition 1 to
find that

1

n
Dε

min,F (Ä¹n∥Ã¹n) (147)

g 1

n
Dε

min(Ä¹n∥Ã¹n) − 1

n
log2

(
1

1 − ε

)
(148)

= D(Ä∥Ã) +

√
1

n
V (Ä∥Ã) Φ−1(ε) +O

(
log n

n

)
, (149)

where the last inequality follows from (145).
For the upper bound, we use Corollary 3 for ε, ¶ ∈ (0, 1)

such that ε+ ¶ ∈ (0, 1) to find that

1

n
Dε

min,F (Ä¹n∥Ã¹n)

f 1

n
D1−ε−¶

max (Ä¹n∥Ã¹n) +
1

n
log2

(
1

1 − f(ε, ¶)

)
, (150)

where

f(ε, ¶) :=
[√

ε
√
ε+ ¶ +

√
1 − ε− ¶

√
1 − ε

]2
, (151)

so that f(ε, ¶) ∈ (0, 1). Indeed, f(ε, ¶) can be understood
as a classical fidelity of two binary random variables with
parameters ε and ε+ ¶, which we know is f 1. We also note
that

1

1 − f(ε, ¶)
=

4ε (1 − ε)

¶2
+

2 (1 − 2ε)

¶
− 1

4ε (1 − ε)
+O (¶) .

(152)
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Thus, when we choose ¶ = 1/
√
n (and n sufficiently large so

that ε+ ¶ < 1) for the second-order expansion, we find that

log2

(
1

1 − f(ε, ¶)

)
= O(log n). (153)

Recall from [44, Theorem 4] that

Dε
max(Ä∥Ã) f D1−ε

min (Ä∥Ã) + log2

(
1

1 − ε

)
. (154)

Note that the choice of ε instead of
√
ε as in [44, Theorem 4] is

due to the fact that the smooth max-relative entropy is defined
in [44] in terms of the sine distance

√
1 − F (Ä̃, Ä) [45],

[46], [47], [48]. Combining the above inequalities together
with (150), we arrive at

1

n
Dε

min,F (Ä¹n∥Ã¹n) (155)

(a)

f 1

n
D1−ε−¶

max (Ä¹n∥Ã¹n) +
1

n
log2

(
1

1 − f(ε, ¶)

)
(156)

(b)

f 1

n
Dε+¶

min (Ä¹n∥Ã¹n) +
1

n
log2

(
1

ε+ ¶

)

+
1

n
log2

(
1

1 − f(ε, ¶)

)
(157)

(c)

f D(Ä∥Ã) +

√
1

n
V (Ä∥Ã) Φ−1(ε+ ¶) +O

(
log n

n

)
(158)

(d)

f D(Ä∥Ã) +

√
1

n
V (Ä∥Ã) Φ−1(ε) +O

(
log n

n

)
. (159)

In the above, (a) follows from (25), (b) from (150) and (154),
(c) from (145), and lastly (d) from the following argument
given below. As stated in [24, Eq. (4)] in the proof of [24,
Lemma 3.7]: for f a continuously differentiable function,
by Taylor’s theorem,

f

(
x± 1√

n

)
= f(x) ± 1√

n
f ′(¸), (160)

where ¸ ∈
(
x− 1√

n
, x
)

in the case − and ¸ ∈
(
x, x+ 1√

n

)

in the case +. By choosing ¶ = 1/
√
n, the function Φ−1(ε+¶)

also satisfies the said property.
With the upper bound in (159), together with the lower

bound in (149), we conclude the proof.
Corollary 4 (Second-Order Asymptotics of Smooth Sand-

wiched Rényi Relative Entropy): Let Ä be a state and Ã a
PSD operator. Fix ε ∈ (0, 1). The smooth sandwiched Rényi
relative entropy of order ³ > 1 has the following second-order
expansion

1

n
D̃ε

³

(
Ä¹n∥Ã¹n

)
=

D(Ä∥Ã) −
√

1

n
V (Ä∥Ã) Φ−1(ε) +O

(
log n

n

)
. (161)

For ³ ∈ [1/2, 1), the smooth sandwiched Rényi relative
entropy has the following second-order expansion:

1

n
D̃ε

³

(
Ä¹n∥Ã¹n

)
=

D(Ä∥Ã) +

√
1

n
V (Ä∥Ã) Φ−1(ε) +O

(
log n

n

)
. (162)

Proof: This follows from techniques similar to those in
the proof of Theorem 4, as well as from the ³-monotonicity
of the sandwiched Rényi relative entropy and Theorem 3. See
Appendix F for a proof.

Remark 5 (Equivalence of Smooth Relative Entropies Up

to the Second-Order): Corollary 4 indicates that, in the
asymptotic i.i.d. setting and up to the second order, there is
no difference between all of the smooth sandwiched Rényi
relative entropies for all ³ > 1. That is, they are all
equivalent to the smooth max-relative entropy. Similarly, in the
asymptotic i.i.d. setting and up to the second order, there is
no difference between all of them for ³ ∈ [1/2, 1): they are
all equivalent to the smooth min-relative entropy. This is a
unifying result that should find use in future works on quantum
resource theories.

A sequence {an}n is called a moderate sequence if an →
0 and

√
nan → ∞ when n→ ∞.

Proposition 3 (Moderate deviations): For a moderate
sequence {an}n and εn = e−na2

n , the smooth F -min-relative
entropy scales as follows:

1

n
Dεn

min,F

(
Ä¹n

∥∥Ã¹n
)

= D(Ä∥Ã)−
√

2V (Ä∥Ã) an+o(an).

(163)

Proof: This follows by utilizing the connections
established in the last section along with the moderate
deviation analysis for the smooth min-relative entropy in [49].
For completeness, we provide a proof in Appendix G.

Remark 6 (Moderate Deviations of Smooth Sandwiched

Rényi Relative Entropy): Similar to Proposition 3, we arrive
at the following scaling for smooth sandwiched Rényi relative
entropy: for a moderate sequence {an}n and εn = e−na2

n ,
1) ³ > 1:

1

n
D̃εn

³

(
Ä¹n

∥∥Ã¹n
)

= D(Ä∥Ã)+
√

2V (Ä∥Ã) an+o(an).

(164)

2) ³ ∈ [1/2, 1) :

1

n
D̃εn

³

(
Ä¹n

∥∥Ã¹n
)

= D(Ä∥Ã)−
√

2V (Ä∥Ã) an+o(an).

(165)

The proof follows by employing the techniques in the
derivation of second-order asymptotics (in Appendix F) and
proceeding as in Appendix G.

VI. APPLICATION TO RANDOMNESS DISTILLATION

A. 1W-LOCC-Assisted Randomness Distillation

The distillable randomness of a bipartite state is a measure
of classical correlations contained in that state. This quantity
was first proposed and characterized in [50], and later
studied in various guises in [27], [51], [52], [53], [54],
[55], [56], and [57]. It has applications to determining the
fundamental limitations on experiments in which the goal
is to distill randomness from bipartite states [58], [59]. For
completeness, we review the definition of a randomness
distillation protocol assisted by one-way local operations and
classical communications (1W-LOCC) (shown in Fig. 1).
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Fig. 1. One way local operations and classical communication protocol from
A to B. First, the channel EA→ML with classical outputs L and M is applied
by Alice. Then, system L is communicated to Bob via a noiseless classical
channel. Bob applies the decoding channel DLB→M′ to get the classical
output M ′. At the end of the protocol, the output state shared by Alice and
Bob is ωMM′ , and it should be close to a maximally classically correlated
state. In the above figure, classical systems are denoted by double lines.

We follow the recent presentation of [27]. In Section VI-B,
we recall the definition of randomness distillation assisted by
general LOCC, as also considered in [27].

Let ÄAB be a bipartite state. The protocol begins with Alice
applying a quantum channel EA→ML, with the output systems
L and M classical. Then, system L is communicated to Bob
over a noiseless classical channel. Having system L, Bob acts
with the decoding channel DLB→M ′ on his systems. At the
end of the protocol, the final state is

ÉMM ′ := (DLB→M ′ ◦ EA→ML)(ÄAB). (166)

A (d, ε) randomness distillation protocol satisfies

F
(
Φ

d

MM ′ , ÉMM ′

)
g 1 − ε, (167)

where Φ
d

MM ′ is the maximally classically correlated state of
rank d:

Φ
d

MM ′ :=
1

d

d−1∑

i=0

|iðïi|M ¹ |iðïi|M ′ . (168)

The one-shot distillable randomness of ÄAB is defined as

Rε(ÄAB) :=

sup
EA→ML
DLB→M′

{
log2 d− log2 dL : F

(
Φ

d

MM ′ , ÉMM ′

)
g 1 − ε

}
.

(169)

Intuitively, Rε(ÄAB) is the largest net number of maximally
classically correlated random bits that can be generated from
the state ÄAB . Here, we need to subtract the number of bits of
classical communication used in the protocol, in order to rule
out the possibility of distilling an infinite number of shared
random bits.

B. LOCC-Assisted Randomness Distillation

Here we review general LOCC protocols for randomness
distillation [27] (shown in Fig. 2). A general LOCC-
assisted randomness distillation protocol starts with Alice
performing the channel E(1)

A→A1L1
, with system L1 being

Fig. 2. General local operations and classical communication protocol from
A to B: First the channel E

(1)
A→A1L1

with classical output L1 is applied
by Alice. Then, system L1 is communicated to Bob via a noiseless classical
channel. Next Bob applies the channel D(2)

L1B→L2B2
, and the classical output

L2 is communicated to Alice. This procedure is continued for k − 1 rounds.
During the final round Alice performs E

(k)
Ak−2Lk−1→MLk

where both the
output systems are classical and communicates Lk to Bob. Bob completes the
protocol by applying the channel D(k+1)

LkBk−1→M′ . At the end of the protocol,
the output state shared by Alice and Bob is ωMM′ , and it should be close
to a maximally classically correlated state.

classical and communicated to Bob. Then, Bob performs the
channel D(2)

L1B→L2B2
, with system L2 being classical and

communicated to Alice. The above procedure continues for
k rounds. We denote the rest of the channels for Alice
and Bob as {E(i)

Ai−2Li−1→AiLi
}i for i ∈ {3, 5, . . .} and

{D(i)
Li−1Bi−2→LiBi

}i for i ∈ {4, . . .}, respectively. Without
loss of generality, we consider the last two channels of the
protocol to be E(k)

Ak−2Lk−1→MLk
and D(k+1)

LkBk−1→M ′ . The state
shared by Alice and Bob at the end of this protocol is

ÉMM ′ :=
(
D(k+1) ◦ E(k) ◦ . . . ◦ D(2) ◦ E(1)

)
(ÄAB) . (170)

The above-mentioned protocol has ε error if it satisfies

perr(Pk) := 1 − F
(
ÉMM ′ ,Φ

d

MM ′

)
f ε, (171)

where Pk corresponds to the protocol described above. With
that, the one-shot distillable randomness from ÄAB assisted by
LOCC is defined as

Rε
´(ÄAB) :=

sup
k∈N,Pk

{
log2 d−

k∑

i=1

log2 dLi
: perr(Pk) f ε

}
. (172)

Since general LOCC assistance contains 1W-LOCC assis-
tance as a special case, we obtain the following bound for
every state ÄAB and ε ∈ [0, 1]:

Rε(ÄAB) f Rε
´(ÄAB). (173)

C. Γ-Upper Bound on One-Shot Distillable Randomness

Let us recall the definition of the classical correlation
measure µ, defined recently in [27] for a PSD bipartite
operator ÃAB as

µ(ÃAB) := inf
KA,LB ,VAB∈Herm





Tr[KA ¹ LB ] :
TB(VAB ± ÃAB) g 0,
KA ¹ LB ± VAB g 0



 .

(174)

Some intuition for this quantity was not discussed in [27], and
so we provide some briefly here. For a classical correlation
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measure, it is desirable for it to indeed measure correlations,
meaning that it should be equal to zero for a product state,
be greater than zero for a state that is not product, and
should not increase under the action of local channels. For
this purpose, mutual information and its variants are helpful,
but they measure quantum correlations in addition to classical
correlations [60]. Mutual information can be written as the
minimum quantum relative entropy between the state of
interest and the set of product states [40, Exercise 11.8.2]:

I(A;B)Ä = inf
ÃA∈D(HA),
ÃB∈D(HB)

D(ÄAB∥ÃA ¹ ÃB). (175)

Using the max-relative entropy in place of the quantum relative
entropy, one can define the max-mutual information as [61]

Imax(A;B)Ä

:= inf
ÃA∈D(HA),
ÃB∈D(HB)

Dmax(ÄAB∥ÃA ¹ ÃB) (176)

=log2 inf
KA,LBg0

{Tr[KA ¹ LB ] : ÄAB fKA ¹ LB}. (177)

As mentioned above, this quantity measures quantum
correlations in addition to classical correlations; for example,
it is equal to 2 log2 d for a maximally entangled state of
Schmidt rank d, as we prove in Appendix C (we also prove
the equality above there). Given that the classical correlations
contained in or the distillable randomness extractable from
such a state is equal to log2 d, the mutual information is twice
as large as it should be for this case. To address this problem,
recall that the logarithmic negativity of a bipartite state is
defined as follows [62], [63]:

log2 ∥TB(ÄAB)∥1 = log2 inf
MAB ,

NABg0





Tr[MAB +NAB ] :
MAB g TB(ÄAB),
NAB g −TB(ÄAB)



 ,

(178)

where the second expression follows from [1, Proposi-
tion 3.53]. It is equal to log2 d for a maximally entangled
state and equal to zero for a maximally classically correlated
state of rank d. This latter property is also undesirable for
a classical correlation measure, which should be equal to
log2 d for such a state. The basic idea behind the measure
in (174) is to combine features of the max-mutual information
and logarithmic negativity into a single measure (the features
being the optimization over product positive semi-definite
operators and the use of the partial transpose). The resulting
measure is equal to log2 d for both a maximally entangled
state of Schmidt rank d and a maximally classically correlated
state of rank d, and it satisfies a number of desirable
properties expected of a classical correlation measure,
as shown in [27].

We can then use the definition in (174) and the general
construction in [27, Eq. (4)] to define the following classical
correlation measure for a bipartite state ÄAB , relevant for us
here:

Γε
min,F (A;B)Ä := inf

ÃABg0:
µ(ÃAB)f1

Dε
min,F (ÄAB∥ÃAB). (179)

Theorem 5: Fix ε ∈ (0, 1). The following bound holds
for the one-shot LOCC-assisted distillable randomness of a
bipartite state ÄAB :

Rε
´(ÄAB) f Γε

min,F (A;B)Ä. (180)

Proof: Let us begin by proving the bound

Rε(ÄAB) f Γε
min,F (A;B)Ä, (181)

and then we discuss afterward how to generalize it to get (180).
The proof of (181) follows similarly to the proof of [27,
Eq. (41)], by some properties satisfied by Dε

min,F (·∥·), which
include data processing (see Theorem 1) and scaling (see
Property 1 of Theorem 2). These properties of smooth F -
min-relative entropy result in Γε

min,F (A;B)Ä satisfying the
properties presented in [27]; out of those we use Proposition
1 on symmetry, Proposition 2 on data processing under local
channels, and Proposition 7 on scaling.

By Lemma 9 of [27], we have

sup
ÄMM′g0:

µ(ÄMM′ )f1

F
(
Φ

d

MM ′ , ÄMM ′

)
f 1

d
. (182)

Then, considering the constraint F
(
Φ

d

MM ′ , ÉMM ′

)
g 1 − ε

from (171), we arrive at

log2 d f − log2 F
(
Φ

d

MM ′ , ÄMM ′

)
(183)

f Dε
min,F (ÉMM ′∥ÄMM ′). (184)

The above inequality holds for all ÄMM ′ g 0 satisfying
µ(ÄMM ′) f 1. Thus we have

log2 d f inf
ÄMM′g0:

µ(ÄMM′ )f1

Dε
min,F (ÉMM ′∥ÄMM ′) (185)

= Γε
min,F (M ;M ′)É. (186)

By the data-processing inequality for the smooth-min relative
entropy (Theorem 1) applied to the channel DBL→M ′ , as well
as Proposition 2 of [27], we get

Γε
min,F (M ;M ′)É f Γε

min,F (M ;BL)E(Ä). (187)

Then applying Proposition 7 of [27] with the assistance of the
scaling property of Dε

min,F (·∥·) (Theorem 2), we find that

Γε
min,F (M ;BL)E(Ä)f log2 dL+Γε

min,F (LM ;B)E(Ä). (188)

Next, again applying data processing under the local channel
EA→LM , we conclude that

Γε
min,F (LM ;B)E(Ä) f Γε

min,F (A;B)Ä. (189)

Putting everything together, we arrive at

log2 d− log2 dL f Γε
min,F (A;B)Ä. (190)

Since the above inequality holds for an arbitrary (d, ε)
randomness distillation protocol, we conclude the desired
bound in (181).

The proof of (180) then follows by iterating the same
reasoning as in the proof above, while going backward through
the protocol Pk defined in Section VI-B. See the end of the
proof of [27, Theorem 11] for similar reasoning.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 20,2024 at 17:58:47 UTC from IEEE Xplore.  Restrictions apply. 



4182 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 6, JUNE 2024

Remark 7 (Comparison with other existing bounds): Note
that the bound provided in the previous work (Theorem
11 of [27]) is a consequence of Theorem 5. In particular, this
previous work established the following bound: For ³ > 1

Rε
´(ÄAB) f inf

ÃABg0,
µ(ÃAB)f1

D̃³(ÄAB∥ÃAB)+
³

³− 1
log2

(
1

1−ε

)
.

(191)

Together with the relationship between the sandwiched Rényi
relative entropy and the smooth F -min relative entropy derived
in Proposition 2, it can be seen that the bound derived in
Theorem 5 implies the previous bound.

D. Smooth F -Min- and Min-Mutual-Information Bounds on

One-Shot Distillable Randomness

In this section, we define the smooth F -min-mutual
information of a state and establish several of its properties,
thus justifying it as a correlation measure for bipartite states.
We also discuss how it leads to an alternative upper bound on
the one-shot distillable randomness.

Let us define the following mutual-information-like cor-
relation measure, which we call the smooth F -min-mutual
information:

Iε
min,F (A;B)Ä := inf

ÃA,ÃBg0:
Tr[ÃA]f1,Tr[ÃB ]f1

Dε
min,F (ÄAB∥ÃA ¹ ÃB).

(192)

Since every subnormalized product state ÃA ¹ ÃB satisfies
µ(ÃA ¹ ÃB) f 1 (as a consequence of Propositions 4 and
6 of [27]), we conclude that the following bound holds for
every state ÄAB :

Γε
min,F (A;B)Ä f Iε

min,F (A;B)Ä. (193)

Next, we prove various properties of Iε
min,F (A;B)Ä.

Lemma 3: Let ÄAB be a state. Then Iε
min,F (A;B)Ä satisfies

the following properties.

1) Symmetry:

Iε
min,F (A;B)Ä = Iε

min,F (B;A)Ä (194)

2) Data processing under local channels: Let NA→A′ and
MB→B′ be quantum channels, then

Iε
min,F (A;B)Ä g Iε

min,F (A′;B′)É, (195)

where ÉAA′ := (NA→A′ ¹MB→B′)(ÄAB).
3) Classical communication bound: Let ÄXAB be a

tripartite state:

ÄXAB :=
∑

x

p(x)|xðïx|X ¹ Äx
AB , (196)

where {p(x)}x is a probability distribution and {Äx
AB}x

is a set of states. Then, we have

Iε
min,F (AX;B)Ä f log2 dX +Iε

min,F (A;BX)Ä. (197)

Proof: Symmetry: This follows because ÃB ¹ ÃA g 0 if
and only if ÃA ¹ ÃB g 0, and by the unitary invariance

of Dε
min,F (·∥·). In particular, by applying the unitary SWAP

operation, we have

Dε
min,F (ÄAB∥ÃA ¹ ÃB) = Dε

min,F (ÄBA∥ÃB ¹ ÃA). (198)

Then, by definition of Iε
min,F (A;B)Ä, it satisfies symmetry.

Data processing under local channels: By the data-
processing inequality for the smooth F -min-relative entropy
(Theorem 1), we have

Dε
min,F (ÄAB∥ÃA ¹ ÃB) g
Dε

min,F (ÉA′B′∥NA→A′(ÃA) ¹MB→B′(ÃB)) . (199)

Since NA→A′ and MB→B′ are quantum channels, we find that
NA→A′(ÃA) ¹MB→B′(ÃB) g 0, Tr[NA→A′(ÃA)] f 1 and
Tr[MB→B′(ÃB)] f 1. With that, we conclude that

Dε
min,F (ÄAB∥ÃA ¹ ÃB) g

inf
ÄA′ ,ÄB′g0:

Tr[ÄA′ ]f1,Tr[ÄB′ ]f1

Dε
min,F (ÉA′B′∥ÄA′ ¹ ÄB′). (200)

Then, optimizing over ÃA, ÃB g 0,Tr[ÃA] f 1, and Tr[ÃB ] f
1, we arrive at the desired conclusion.

Classical communication bound: Fix ÃA and ÃBX such that
ÃA, ÃBX g 0,Tr[ÃA] f 1,Tr[ÃBX ] f 1. By scaling of
smooth F -min-relative entropy in Theorem 2, we have

log2 dX +Dε
min,F (ÄABX∥ÃA ¹ ÃBX)

= Dε
min,F

(
ÄABX

∥∥∥∥ÃA ¹ ÃBX

dX

)
. (201)

Denote the completely dephasing channel as

∆X(·) :=
∑

x

|xðïx|(·)|xðïx|, (202)

and set
∑

x Ã̃
x
B ¹ |xðïx| := ∆X(ÃBX). Consider that

Dε
min,F

(
ÄABX

∥∥∥∥ÃA ¹ ÃBX

dX

)

g Dε
min,F

(
∆X(ÄABX)

∥∥∥∥ÃA ¹ ∆X(ÃBX)

dX

)
(203)

= Dε
min,F

(
ÄAXB

∥∥∥∥∥ÃA ¹ 1

dX

∑

x

|xðïx| ¹ Ã̃x
B

)
(204)

g Dε
min,F

(
ÄAXB

∥∥∥∥∥ÃA ¹ I

dX
¹
∑

x

Ã̃x
B

)
(205)

g inf
ÄAX¹ÄBg0:

Tr[ÄAX ]f1,Tr[ÄB ]f1

Dε
min,F (ÄAXB∥ÄAX ¹ ÄB), (206)

where the first inequality follows from data processing under
the dephasing channel, the equality from the unitary invariance
of smooth F -min-relative entropy with the SWAP operator to
interchange the B and X systems, the next inequality from
Property 6 of Theorem 2 (since |xðïx| f I for every x), and the
final inequality because Tr[

∑
x Ã̃

x] f 1 given that Tr[ÃBX ] f
1 and Tr[ÃA ¹ I/dX ] f 1, given that Tr[ÃA] f 1.

Motivated by the expression for the distillable randomness
of classical–quantum states from [50], we present the
following upper bound on the one-shot distillable randomness.
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Indeed, it can be understood as a one-shot generalization of
the quantity from [50, Eq. (24)].

Proposition 4: Fix ε ∈ (0, 1). The following upper bound
holds for the one-shot distillable randomness of a classical-
quantum (cq) state ÄXB :

Rε(ÄXB) f Iε
min,F (X;B)Ä. (207)

Furthermore, for a bipartite quantum state ÄAB , we have

Rε(ÄAB) f sup
M:A→X

Iε
min,F (X;B)É, (208)

where ÉXB := MA→X(ÄAB) and the supremum is over
every measurement channel MA→X that takes a quantum
input A and outputs a classical system X , i.e., of the form
MA→X(·) =

∑
x Tr[Mx

A(·)]|xðïx|X , where {Mx
A}x is a

POVM.
Proof: The first inequality in (207) follows from similar

reasoning as in the proof of Theorem 5. For that to
follow, Lemmas 3 and 4 establish the required properties
for Iε

min,F (A;B)Ä. Note that these lemmas are proved for a
general bipartite state, and these also hold for the special case
of cq states.

The second inequality in (208) follows because the
inequality in (207) holds for an arbitrary cq state formed after a
measurement on the A system, and every such one-way LOCC
protocol for randomness distillation consists of a measurement
on Alice’s system as the first step.

Remark 8 (Classical Output State): Notice that for a fixed
measurement channel M acting on the system A, apply-
ing the completely dephasing channel ∆X in (202)
we have

Dε
min,F (MA→X(ÄAB)∥ÃX ¹ ÃB) g

Dε
min,F

(
MA→X(ÄAB)∥∆X(ÃX) ¹ ÃB

)
, (209)

which follows due to the data-processing inequality for the
smooth F -min-relative entropy and ∆X ◦MA→X = MA→X .
This shows that the infimum in the definition of Iε

min,F is
achieved by a state that is classical on X .

The following lemma was used in the proof of Proposi-
tion 4:

Lemma 4: The following bound holds:

sup
ÃA¹ÃBg0:

Tr[ÃA]f1,Tr[ÃB ]f1

F
(
Φ

d

AB , ÃA ¹ ÃB

)
f 1

d
, (210)

where Φ
d

AB is the maximally classically correlated state.
Proof: We give two proofs for this statement. A first

proof follows from the observation that every product
state ÃA ¹ ÃB satisfies µ(ÃA ¹ ÃB) = 1, by applying
Proposition 4 of [27]. Then we obtain the inequality µ(ÃA ¹
ÃB) f 1 for subnormalized states by applying Proposition
6 of [27]. This then proves that the set of subnormalized
product states is contained in the set {ÃAB g 0 :
µ(ÃAB) f 1}, so that the desired statement follows from
Lemma 9 of [27].

As an alternative proof, let ÃA, ÃB satisfy the constraints
ÃA ¹ ÃB g 0,Tr[ÃA] f 1, and Tr[ÃB ] f 1. By the data-
processing inequality for fidelity, consider that

F
(
Φ

d

AB , ÃA ¹ ÃB

)
f F

(
Φ

d

AB ,∆A(ÃA) ¹ ∆B(ÃB)
)
,

(211)

where ∆ is a dephasing channel defined as

∆(·) :=
d−1∑

m=0

|mðïm|(·)|mðïm|. (212)

With that, we have

∆A(ÃA) ¹ ∆B(ÃB)

=

d−1∑

m=0

|mðïm|ÃA|mðïm| ¹
d−1∑

ℓ=0

|ℓðïℓ|ÃB |ℓðïℓ| (213)

=

d−1∑

m,ℓ=0

ïm|ÃA|mðïℓ|ÃB |ℓð|mðïm| ¹ |ℓðïℓ|. (214)

Then, we obtain

F
(
Φ

d

AB ,∆A(ÃA) ¹ ∆B(ÃB)
)

=

(
d−1∑

m=0

√
1

d
ïm|ÃA|mðïm|ÃB |mð

)2

(215)

f 1

d

d−1∑

m=0

ïm|ÃA|mð
d−1∑

m=0

ïm|ÃB |mð (216)

=
1

d
Tr[ÃA]Tr[ÃB ] (217)

f 1

d
, (218)

where the first equality follows from the fidelity reducing to
a classical fidelity, the first inequality by Cauchy–Schwarz,
and last inequality from the assumptions that Tr[ÃA] f 1 and
Tr[ÃB ] f 1. Finally, we complete the proof of Lemma 4
by supremizing over ÃA and ÃB satisfying the required
constraints.

For a cq state with a uniform classical probability
distribution, in what follows we derive a lower bound for the
one-shot distillable randomness. We obtain this by devising
an achievable protocol that makes use of position-based
coding [64] and the square-root measurement at the decoder.
Let us recall that the smooth min-mutual information of a
bipartite state ÄAB is defined for ε ∈ [0, 1] as [19]

Iε
min(A;B)Ä := Dε

min(ÄAB∥ÄA ¹ ÄB). (219)

Proposition 5 (Lower bound): Fix ε ∈ (0, 1) and ¸ ∈
(0, ε). For a cq state ÄXB of the form

ÄXB :=
1

L

L∑

x=1

|xðïx|X ¹ Äx
B , (220)

the one-shot distillable randomness of ÄXB is bounded from
below as follows:

Rε(ÄXB) g
⌊
Iε−¸
min (X;B)Ä − log2

(
4ε

¸2

)⌋
. (221)
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Proof: We prove this lower bound by devising an
achievable one-way protocol from Alice to Bob. The proof
below follows by employing the idea behind the protocol
presented in the proof of [65, Theorem 6]. Prior to the
initiation of the protocol, Alice and Bob share the state ÄXB ,
Alice has access to the X system, and Bob has access to the
B system.

The protocol begins with Alice picking an index m ∈ M
uniformly at random and placing it in a classical register M .
She then labels her X system of ÄXB as Xm. She prepares
|M| independent instances of the classical state

ÄX =
1

L

L∑

x=1

|xðïx|X (222)

and labels them as X1, . . . , Xm−1, Xm+1, . . . , X|M|. She
sends the registers X1, . . . , X|M|, in this order, over a classical
channel to Bob, while keeping a copy of each of them in her
laboratory (denote the copies by X ′

1, . . . , X
′
|M|). For a fixed

value of m, the reduced state of Bob has the following form:

ÄX1
¹ · · · ¹ ÄXm−1

¹ ÄXmB ¹ ÄXm+1
¹ · · · ¹ Ä|M|, (223)

and his goal is to employ a decoding measurement to figure
out which X system is correlated with his B system. This
reduced state has exactly the form considered in position-
based coding [64] (see also [41], [42] and in particular [41,
Eq. (3.5)]). As such, at this point, we can invoke those results
to conclude that as long as

log2 |M| =

⌊
Iε−¸
min (X;B)Ä − log2

(
4ε

¸2

)⌋
, (224)

it is possible for Bob to decode the index m with an error
probability f ε. Furthermore, Bob can make use of the square-
root measurement construction to perform the decoding,
and due to the permutation symmetry of the protocol and
measurement, it follows that the error probability in decoding
each index m is equal to the same fixed value perr, for some
perr ∈ [0, 1] such that perr f ε (see [41, Eq. (3.10)]). After
performing the decoding, he places his measurement outcome
in a classical register M ′. Thus, the final state of registers M
and M ′ at the end of the protocol is given by

ÉMM ′ := (1 − perr)ΦMM ′ + perr
IMM ′ − ΦMM ′

|M| − 1
, (225)

for which we have that

1

2

∥∥ΦMM ′ − ÉMM ′

∥∥
1

= 1 − F (ΦMM ′ , ÉMM ′) = perr f ε.

(226)

Since the state ÄX is uniform, the cost for Alice to
communicate each of the registers X1, . . . , X|M| over a
classical channel is precisely equal to the amount of distillable
randomness contained in the register pairs (X1, X

′
1), . . . ,

(X|M|, X
′
|M|). Thus, the net number of random shared bits

generated by this protocol is equal to log2 |M|.

E. Second-Order Expansions for Randomness Distillation

Now we show how to utilize the second-order asymptotics
of the smooth F -min-relative entropy, as presented in
Theorem 4, to obtain upper and lower bounds on the rate at
which randomness distillation is possible. Before doing so, let
us define the following quantities:

Γ(A;B)Ä := inf
ÃABg0:

µ(ÃAB)f1

D(ÄAB∥ÃAB), (227)

where D(ÄAB∥ÃAB) is the quantum relative entropy
from (17). Then, denote Πµ ¦ {ÃAB g 0 : µ(ÃAB) f 1} as
the set of PSD operators achieving the infimum in Γ(A;B)Ä.
From that, we define the following variance quantity:

V ε
Γ (A;B)Ä :=

{
infÃAB∈Πγ

V (ÄAB∥ÃAB) if ε g 1
2 ,

supÃAB∈Πγ
V (ÄAB∥ÃAB) if ε < 1

2 .

(228)

Theorem 6 (Upper bound): Fix ε ∈ (0, 1). The LOCC-
assisted distillable randomness of a bipartite state ÄAB is
bounded from above as follows:

1

n
Rε

´(Ä¹n
AB) f

Γ(A;B)Ä +

√
1

n
V ε

Γ (A;B)ÄΦ
−1(ε) +O

(
log n

n

)
. (229)

Proof: Applying Theorem 5 and choosing ÃAB to be an
optimum in (228), we find that

1

n
Rε

´(Ä¹n
AB)

f 1

n
Γε

min,F (An;Bn)Ä¹n (230)

f 1

n
Dε

min,F (Ä¹n
AB∥Ã¹n

AB) (231)

= Γ(A;B)Ä +

√
1

n
V ε

Γ (A;B)ÄΦ
−1(ε) +O

(
log n

n

)
.

(232)

The second inequality follows from the definition of Γε
min,F ,

and the last equality follows from the second-order expansion
from Theorem 4.

In the above proof, once we restrict the second argument
in Γε

min,F (An;Bn)Ä¹n to be a tensor-power state, it follows

from [66, Lemma 63] that the choices we have made are
optimal.

Remark 9 (Computational efficiency): We note here that
we can further relax the upper bound in Theorem 6 to find an
efficiently computable upper bound, by following an approach
similar to that discussed in [27, Section VI].

Now let us recall the definition of the mutual information
variance of a bipartite state ÉAB [25, Section 2.2] as

V (A;B)É := V (ÉAB∥ÉA ¹ ÉB), (233)

where the relative entropy variance V is defined in (18).
Proposition 6 (Upper bound for cq states): Fix ε ∈ (0, 1).

The LOCC-assisted distillable randomness of a cq state ÄXB

Authorized licensed use limited to: Cornell University Library. Downloaded on August 20,2024 at 17:58:47 UTC from IEEE Xplore.  Restrictions apply. 



NURADHA AND WILDE: FIDELITY-BASED SMOOTH MIN-RELATIVE ENTROPY: PROPERTIES AND APPLICATIONS 4185

is bounded from above as follows:

1

n
Rε

´(Ä¹n
XB) f

I(X;B)Ä +

√
1

n
V (X;B)Ä Φ−1(ε) +O

(
log n

n

)
. (234)

Proof: Applying Theorem 5, consider that

1

n
Rε

´(Ä¹n
XB)

f 1

n
Γε

min,F (Xn;Bn)Ä¹n
XB

(235)

f 1

n
Dε

min,F

(
Ä¹n

XB∥(ÄX ¹ ÄB)¹n
)

(236)

= D(ÄXB∥ÄX ¹ ÄB)

+

√
1

n
V (ÄXB∥ÄX ¹ ÄB) Φ−1(ε) +O

(
log n

n

)
(237)

= I(X;B)Ä +

√
1

n
V (X;B)Ä Φ−1(ε) +O

(
log n

n

)
,

(238)

where the second inequality follows because µ(ÄX ¹ ÄB) =
1 for product states [27, Proposition 4], the first equality by
applying Theorem 4, and the last equality from the definitions
of mutual information and mutual information variance.

Proposition 7 (Lower bound for uniform cq states): Fix
ε ∈ (0, 1). For a cq state of the form

ÄXB :=
1

M

M∑

x=1

|xðïx| ¹ Äx
B , (239)

the 1W-LOCC-assisted distillable randomness of ÄXB satisfies
the following:

1

n
Rε(Ä¹n

XB) g

I(X;B)Ä +

√
1

n
V (X;B)Ä Φ−1(ε) +O

(
log n

n

)
. (240)

Proof: First by applying Proposition 5 for the state Ä¹n
XB

and choosing ¸ = 1/
√
n, consider that

1

n
Rε(Ä¹n

XB)

g 1

n
Iε−¸
min (Xn;Bn)Ä¹n − 1

n
log

(
4ε

¸2

)
− 1

n
(241)

= D(ÄXB∥ÄX ¹ ÄB) +

√
1

n
V (ÄXB∥ÄX ¹ ÄB) Φ−1(ε− ¸)

+O

(
log n

n

)
− 1

n
log

(
4ε

¸2

)
(242)

= I(X;B)Ä +

√
1

n
V (X;B)Ä Φ−1(ε) +O

(
log n

n

)
,

(243)

where the first equality follows from (221) and the second
equality by (145). For the latter, we choose n sufficiently
large so that ¸ = 1/

√
n ∈ (0, ε) and invoke a standard step

in [22, Footnote 6] applied to Φ−1(ε − ¸), which follows

from Taylor’s theorem: for f continuously differentiable, c is
a positive constant, and n g n0, the following equality holds

√
nf(x−c/√n) =

√
nf(x)−cf ′(a) (244)

for some a ∈ [x−c/√n, x] (note that the reasoning we used to
arrive at (159), in the proof of Theorem 4 is a special case of
this argument). The last equality follows from the definitions
of mutual information and mutual information variance.

Theorem 7: Fix ε ∈ (0, 1). For a cq state of the form

ÄXB :=
1

M

M∑

x=1

|xðïx| ¹ Äx
B , (245)

the 1W-LOCC-assisted and LOCC-assisted distillable random-
ness of ÄXB satisfy the following:

1

n
Rε(Ä¹n

XB) =
1

n
Rε

´(Ä¹n
XB)

= I(X;B)Ä +

√
1

n
V (X;B)Ä Φ−1(ε) +O

(
log n

n

)
.

(246)

Proof: First by applying (173), we get

1

n
Rε(Ä¹n

XB) f 1

n
Rε

´(Ä¹n
XB). (247)

Then, by applying Proposition 6, we arrive at the desired
upper bound. By obtaining a matching lower bound from
Proposition 7, we conclude the proof.

We suspect that Theorem 7 holds more generally for all cq
states. To establish this finding, it seems that one would need
to devise a protocol that has comparable performance to that
given in the proof of Proposition 5.

Remark 10: (Impact of Feedback on Distillable Random-

ness): Theorem 7 indicates that feedback does not improve
the distillable randomness of a cq state of the form in (245),
even up to the second order for this class of states. This
finding is in distinction to the findings of [67] for channel
coding, in which it was shown that feedback can improve
the classical communication rate up to the second order for
channels with compound dispersion. The example in [67,
Remark 1] provides an interesting case study. If we choose
the uniform distribution over the six channel input symbols,
this leads to a fixed bipartite classical state shared between
Alice and Bob, for which its distillable randomness cannot be
improved by feedback, even up to the second order. However,
in the channel coding setting, the sender can adjust the input
distribution based on feedback from the receiver, and this is
the mechanism underlying the improved performance found
in [67].

We now evaluate the upper bound from Theorem 6 and
the lower bound from Proposition 7 for a particular example.
Suppose that Alice and Bob share an isotropic state of the
form Ä

(d,p)
AB := (1 − p)Φd

AB + p IAB

d2 , where

Φd
AB :=

1

d

∑

i,j

|iðïj|A ¹ |iðïj|B . (248)

One scheme for obtaining a lower bound on the distillable
randomness of this state, as considered in [27], is for Alice to
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Fig. 3. For fixed ε = 0.0001, the plots depicts upper and lower bounds on the
randomness distillation rate of an isotropic state ρAB = (1−p)Φd

AB+p
IAB

d2

with p = 0.3 and d = 2. The horizontal lines depict asymptotic values of
the upper and lower bounds, while the curves depict the lower bound from
Proposition 7 and the upper bound from Theorem 6.

measure her system A in the computational basis. Note that
this measurement procedure has the same effect as applying
a completely dephasing channel on system A. The resulting
state is of the form in (245), and so then Proposition 7 applies
for obtaining a lower bound on its distillable randomness.
In Fig. 3, we show how the upper bound (from Theorem 6) and
the lower bound (from Proposition 7) on the LOCC-assisted
distillable randomness vary within the finite n regime for fixed
ε = 0.0001, when choosing Ä(d,p)

AB with p = 0.3 and d = 2.

F. Applications to General Resource Theories

In this section, we discuss how our approach can be
generalized beyond randomness distillation, to the distillation
of mixed states in a general resource theory (see [2] for a
review). Let us consider the following general scenario: let O

denote the set of free channels, and let F denote the set of
free states. Suppose that the goal of a protocol is to start
from an arbitrary state Ä and apply a free channel M ∈ O,
in order to approximately distill a state from the set {Äd}d∈Z+ ,
where d denotes the amount of the resource being distilled (a
concrete example of such a set is the set of maximally classical
correlated states, defined from (168)). The one-shot distillable
resource of Ä is then defined for ε ∈ [0, 1] as follows:

Gε(Ä) := sup
M∈O

{log2 d : F (M(Ä), Äd) g 1 − ε}. (249)

Now suppose that the following generalization of (182)
holds:

sup
Ã∈F

F (Äd, Ã) f 1

d
. (250)

Then the ideas presented in Section VI can be extended to this
more general scenario. In particular, we arrive at the following
upper bound on the one-shot distillable resource:

Gε(Ä) f inf
Ã∈F

Dε
min,F (Ä∥Ã), (251)

which follows because

log2 d f inf
Ã′∈F

− log2 F (Äd, Ã′) (252)

f inf
Ã′∈F

Dε
min,F (M(Ä)∥Ã′) (253)

f inf
Ã∈F

Dε
min,F (M(Ä)∥M(Ã)) (254)

f inf
Ã∈F

Dε
min,F (Ä∥Ã), (255)

where the first inequality follows from (250), the second from
the definition of the smooth F -min-relative entropy, the third
inequality from the assumption that M is a free channel (thus
preserving the set of free states), and the last inequality from
the data-processing inequality for the smooth F -min-relative
entropy (Theorem 1).

We can also obtain a second-order upper bound on the
asymptotic distillable resource, by following the approach
from Section VI-E. Indeed, let us define the following
quantities:

DF(Ä) := inf
Ã∈F

D(Ä∥Ã), (256)

where D(Ä∥Ã) is the quantum relative entropy from (17).
Then, denote ΠF ¦ F as the set of states achieving the
infimum in DF(Ä). From that, we define the following variance
quantity:

V ε
F (Ä) :=

{
infÃ∈ΠF

V (Ä∥Ã) if ε g 1
2 ,

supÃ∈ΠF
V (Ä∥Ã) if ε < 1

2 .
(257)

Fix ε ∈ (0, 1). Then the distillable resource of a state Ä is
bounded from above as follows:

1

n
Gε(Ä¹n) f DF(Ä)+

√
1

n
V ε

F
(Ä) Φ−1(ε)+O

(
log n

n

)
.

(258)

VII. COMPUTATIONAL ANALYSIS

In this section, we provide techniques based on semi-definite
programs (SDPs) to quantify the smooth F -min-relative
entropy and other related quantities, including the smooth
max-relative entropy and smooth conditional min-entropy.

First, we present a bilinear program to evaluate the
smooth F -min-relative entropy, which follows from the SDP
formulation of fidelity in [68].

Proposition 8: Given a state Ä, a PSD operator Ã, and ε ∈
(0, 1), the smooth F -min-relative entropy can be written in
terms of the following optimization:

Dε
min,F (Ä∥Ã) = −2 log2 a

⋆, (259)

where

a⋆ =
1

2
inf
Ä̃g0,

Y,Zg0,
X∈L(H)





Tr[Y Ä̃] + Tr[ZÃ] :[
Y I
I Z

]
g 0,

Re[Tr[X]] g
√

1 − ε,[
Ä̃ X
X Ä

]
g 0,

Tr[Ä̃] f 1





. (260)

Authorized licensed use limited to: Cornell University Library. Downloaded on August 20,2024 at 17:58:47 UTC from IEEE Xplore.  Restrictions apply. 



NURADHA AND WILDE: FIDELITY-BASED SMOOTH MIN-RELATIVE ENTROPY: PROPERTIES AND APPLICATIONS 4187

Proof: From the definition of the smooth F -min relative
entropy, consider that

Dε
min,F (Ä∥Ã) = − log2(a

⋆)2, (261)

where

a⋆ := inf
Ä̃∈Df

{√
F (Ä̃, Ã) :

√
F (Ä̃, Ä) g

√
1 − ε

}
. (262)

Recall that the root fidelity
√
F (Ä, Ã) :=

∥∥√Ä√Ã
∥∥

1
has the

following primal and dual SDP characterizations [68] (see also
[1, Proposition 6.6]):

√
F (Ä, Ã) = sup

X∈L(H)

{
Re[Tr[X]] :

[
Ä X
X Ã

]
g 0

}
(263)

=
1

2
inf

Y,Zg0

{
Tr[Y Ä] + Tr[ZÃ] :

[
Y I
I Z

]
g 0

}
.

(264)

We then find the following expression for the negative root
fidelity:

−
√
F (Ä, Ä̃) = − sup

X∈L(H)

{
Re[Tr[X]] :

[
Ä X
X Ä̃

]
g 0

}

(265)

= inf
X∈L(H)

{
−Re[Tr[X]] :

[
Ä X
X Ä̃

]
g 0

}
.

(266)

With these expressions in hand, consider from (262) and (264)
that

a⋆ =
1

2
inf

Ä̃g0,Y,Zg0





Tr[Y Ä̃] + Tr[ZÄ] :√
F (Ä̃, Ä) g

√
1 − ε,[

Y I
I Z

]
g 0,

Tr[Ä̃] f 1





(267)

=
1

2
inf

Ä̃g0,Y,Zg0





Tr[Y Ä̃] + Tr[ZÄ] :

−
√
F (Ä̃, Ä) f −

√
1 − ε,[

Y I
I Z

]
g 0,

Tr[Ä̃] f 1





(268)

=
1

2
inf
Ä̃g0,

Y,Zg0,
X∈L(H)





Tr[Y Ä̃] + Tr[ZÃ] :[
Y I
I Z

]
g 0,

−Re[Tr[X]] f −
√

1 − ε,[
Ä̃ X
X Ä

]
g 0,

Tr[Ä̃] f 1





. (269)

In the last line, we replaced the inequality −
√
F (Ä̃, Ä) f

−
√

1 − ε with the optimization in (266), to conclude
the proof.

Note that the optimization problem in (260) is not an SDP,
but it is rather a bilinear program, due to the bilinear term
Tr[Y Ä̃] in the objective function in (260). Thus, to estimate
the smooth F -min relative entropy, we can employ the seesaw
or mountain-climbing algorithm [69], which results in a lower
bound on the smooth F -min-relative entropy.

We apply the seesaw algorithm as follows. Set k = 0. For
fixed Ä̃ = Ä̃k, the optimization in (260) is an SDP with the
additional constraint Ä̃ = Ä̃k. By solving that SDP, we can
find a Y that achieves the optimum for the objective function,
which we denote as Yk. Next, by fixing Y = Yk, we solve the
respective SDP and find the optimum Ä̃k+1. Then, this iterative
process is continued for a fixed number of iterations. In a
finite (yet not necessarily polynomial) number of iterations,
the algorithm converges to the optimum value [69]. In practice,
it is guaranteed that we arrive at an upper bound on (260) by
this method, which will in turn provide a lower bound on the
smooth F -min-relative entropy. Note that one can employ the
more advanced algorithm from [70] as well for this purpose.

We use the seesaw method described above to investigate
the tightness of the lower bound from Corollary 3.
In particular, we obtain various upper bounds for the smooth
F -min-relative entropy by varying ¶ in

Dε
min,F (Ä∥Ã) f D1−ε−¶

max (Ä∥Ã) + log2

(
1

1 − f(ε, ¶)

)
,

(270)

where f(ε, ¶) is given in (151).
To compute the upper bound in (270), it is required to

compute the smooth max-relative entropy. For this purpose,
we derive an SDP for the smooth max-relative entropy with
fidelity smoothing, which may be of independent interest.
We consider two variants of that: D̂ε

max(Ä∥Ã) with smoothing
over normalized states and Dε

max(Ä∥Ã) with smoothing over
sub-normalized states. Then, we use the latter variant to
compute the right-hand side of (270).

Proposition 9: The smooth max-relative entropy with
fidelity smoothing over normalized states has the following
primal and dual SDP characterizations for a state Ä and PSD
operator Ã:

D̂ε
max(Ä∥Ã)

= log2 inf
Ä̃g0,¼g0,X∈L(H)





¼ : Ä̃ f ¼Ã,Tr[Ä̃] = 1,
Re[Tr[X]] g

√
1 − ε,[

Ä X
X Ä̃

]
g 0





(271)

=log2 sup
W,¿,Zg0,µ∈R





µ+ 2¿
√

1 − ε− Tr[ZÄ] :
Tr[WÃ] f 1,[

Z ¿I
¿I W − µI

]
g 0




. (272)

Proof: See Appendix D.

Following a similar approach, we obtain an SDP for
Dε

max(Ä∥Ã).
Proposition 10: The smooth max-relative entropy with

fidelity smoothing over sub-normalized states has the
following primal and dual SDP characterizations for a state
Ä, PSD operator Ã, and ε ∈ (0, 1):

Dε
max(Ä∥Ã)

=log2 inf
Ä̃g0,¼g0,X∈L(H)





¼ : Ä̃ f ¼Ã,Tr[Ä̃] f 1,
Re[Tr[X]] g

√
1 − ε,[

Ä X
X Ä̃

]
g 0




, (273)
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Fig. 4. This plot shows the tightness of the lower bound on Dε
min,F (ρ∥σ)

obtained from running the seesaw algorithm for 10 iterations for each ε,
where ρ, σ are random quantum states in a Hilbert space of dimension 2.
By changing δ, the upper bound D1−ε−¶

max (ρ∥σ) + log2

(

1
1−f(ε,¶)

)

is also
shown.

=log2 sup
W,¿,Z,µg0





−µ+2¿
√

1 − ε− Tr[ZÄ] :
Tr[WÃ] f 1,[
Z ¿I
¿I W+µI

]
g 0




.

(274)

Proof: We omit the proof since it is similar to the proof of
Proposition 9, except that we remove the constraint Tr[Ä̃] g 1.

Utilizing the methods explained above (specifically in
Propositions 8 and 10), Figure 4 shows the tightness of the
lower bound on the smooth F -min-relative entropy of two
random quantum states in a Hilbert space of dimension two,
by employing the seesaw method for ten iterations. In addition,
Figure 5 presents the obtained results under the same setting,
for two random quantum states in a Hilbert space of dimension
four.

Due to the close link between smooth max-relative entropy
and smooth conditional min-entropy, our SDP results apply
to this latter quantity as well. We highlight this observation
below, as it may be of independent interest for future work.

Remark 11 (Conditional smooth min-entropy): By Defini-
tions 11 and 12 of [71], for ÄAB ∈ D(HAB), the smooth
conditional min-entropy is defined as

Hε
min(A|B)Ä :=

max
Ä̃AB∈Bε(ÄAB)

max
ÃB∈D(HB)

−Dmax(Ä̃AB∥IA ¹ ÃB), (275)

where

Bε(Ä) := {Ä ∈ Df : P (Ä, Ä) f ε}, (276)

with P (Ä, Ä) :=
√

1 − F (Ä, Ä). Note that we can equivalently
define smooth conditional min-entropy by

Hε
min(A|B)Ä := − min

ÃB∈D(HB)
Dε2

max(ÄAB∥IA ¹ ÃB), (277)

with the association of smooth max-relative entropy in (23).

Fig. 5. This plot shows the tightness of the lower bound on Dε
min,F (ρ∥σ)

obtained from running the seesaw algorithm for ten iterations for each ε,
where ρ, σ are random quantum states in a Hilbert space of dimension 4.
By changing δ, the upper bound D1−ε−¶

max (ρ∥σ) + log2

(

1
1−f(ε,¶)

)

is also
shown.

An SDP for Hε
min(A|B)Ä was first given in [72] if a

purification of ÄAB is available. In this work, Proposition 10
together with (277) lead to an SDP for smooth conditional
min-entropy directly in terms of the state ÄAB , as presented
in the next corollary.

Corollary 5: Let ÄAB be a state and fix ε ∈ (0, 1).
The smooth conditional min-entropy has the following SDP
characterization:

Hε
min(A|B)Ä

= − log2 inf
Ä̃ABg0,
SBg0,

XAB∈L(H)





Tr[SB ] : Ä̃AB f IA ¹ SB ,
Tr[Ä̃AB ] f 1,

Re[Tr[XAB ]] g
√

1 − ε2,[
ÄAB XAB

X 
AB Ä̃AB

]
g 0





(278)

= − log2 sup
WABg0,
ZABg0,
¿g0,µg0





−µ+ 2¿
√

1 − ε2 − Tr[ZABÄAB ] :
TrA[WAB ] f IB ,[

ZAB ¿IAB

¿IAB WAB + µIAB

]
g 0




.

(279)

Proof: We can write

Hε
min(A|B)Ä

= − log2 inf
Ä̃ABg0,
ÃBg0,
¼g0,

XAB∈L(H)





¼ : Ä̃AB f ¼IA ¹ ÃB ,
Tr[Ä̃AB ] f 1,

Re[Tr[XAB ]] g
√

1 − ε2,[
ÄAB XAB

X 
AB Ä̃AB

]
g 0,

Tr[ÃB ] = 1





(280)

as a direct result of the SDP for smooth max-relative entropy
in Proposition 10 and its connection to smooth conditional
min-entropy in (277). The characterization in (278) follows
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from the substitution SB = ¼ÃB in (280). The dual SDP for
Hε

min(A|B)Ä in (279) is proved in Appendix E.

VIII. CONCLUSION

In conclusion, we provided a comprehensive study of
the fidelity-based smooth min-relative entropy. In particular,
we proved some of its basic properties, including a proof of
data processing independent from that of [14, Theorem 3],
which is of interest for several operational tasks. With the use
of the derived relationships between smooth F -min-relative
entropy and other quantum information-theoretic quantities,
we derived the second-order asymptotics of the smooth F -
min-relative entropy and all smooth sandwiched Rényi relative
entropies. We explored applications where this quantity arises,
with a focus on randomness distillation, establishing an upper
bound on the one-shot distillable randomness that improves
upon the prior one from [27]. Furthermore, we obtained a
second-order expansion of this upper bound, as well as the
precise second-order asymptotics of the distillable randomness
of particular classical–quantum states. Lastly, we designed
methods to estimate the smooth F -min-relative entropy and
showed that the estimates are sufficiently tight for some
examples. To that end, we presented SDPs to compute the
smooth max-relative entropy and smooth conditional min-
entropy, which may be of independent interest.

Some future research directions are as follows. It would
be interesting to analyze the third-order asymptotics and
large deviations associated with the smooth F -min-relative
entropy. It might also be possible to devise efficient
computational methods for it and tighter connections to other
information-theoretic quantities. To that end, understanding
which parameter ε1 achieves the tightest bound in Corollary 3
when ε2 is fixed is a possible direction. We have shown
here that the smooth F -min-relative entropy is the core
quantity underlying an upper bound on the one-shot distillable
randomness, but finding an information-theoretic task that
provides an operational interpretation of the smooth F -min-
relative entropy itself is an open research question.

Another interesting future direction is to follow the
observation made after (8) in the introduction. Indeed, we see
that the main difference between the hypothesis testing
relative entropy and the smooth F -min relative entropy is
the replacement of the quantities Tr[ΛÄ] and Tr[ΛÃ] with
F (Ä̃, Ä) and F (Ä̃, Ã), respectively. Since Tr[ΛÄ] and Tr[ΛÃ]
are related to Type I and Type II error probabilities in quantum
hypothesis testing, one could consider a variant of quantum
hypothesis testing in which the “error probabilities” are then
related to F (Ä̃, Ä) and F (Ä̃, Ã). Specifically, one could consider
1− F (Ä̃, Ä) to be analogous to a Type I error probability and
F (Ä̃, Ã) to be analogous to a Type II error probability. Under
this perspective, Theorem 4 demonstrates that we have already
determined the second-order asymptotics of this variant of the
traditional asymmetric quantum hypothesis testing task and
that they are the same as the second-order asymptotics in the
standard setting of asymmetric quantum hypothesis testing.
What remains open is to determine the asymptotics of a variant
of symmetric hypothesis testing. That is, for fixed ¼ ∈ (0, 1),

what is the following quantity equal to?

lim
n→∞

− 1

n
ln pn

e (281)

where

pn
e := inf

Ä̃(n)∈Df

¼(1 − F (Ä̃(n), Ä¹n)) + (1 − ¼)F (Ä̃(n), Ã¹n).

(282)

Based on known results in symmetric quantum hypothesis
testing [73], [74] and the aforementioned coincidence for the
asymmetric setting, one might guess that (281) would be
equal to the quantum Chernoff divergence, but this remains
an intriguing open question for future work.

APPENDIX A
SUPPLEMENTARY LEMMAS

Lemma 5: Let Ä be a state, Λ a measurement operator, and
set Ä̃ :=

√
ΛÄ

√
Λ

Tr[ΛÄ] . Then

F (Ä̃, Ä) g Tr[ΛÄ]. (283)

Proof: Consider that

F (Ä̃, Ä) =

(
Tr

[√√
ÄÄ̃

√
Ä

])2

(284)

=
1

Tr[ΛÄ]

(
Tr

[√√
Ä
√

ΛÄ
√

Λ
√
Ä

])2

(285)

=
1

Tr[ΛÄ]

(
Tr

[√√
Ä
√

Λ
√
Ä
√
Ä
√

Λ
√
Ä

])2

(286)

=
1

Tr[ΛÄ]

(
Tr

[√(√
Ä
√

Λ
√
Ä
)2
])2

(287)

=
1

Tr[ΛÄ]

(
Tr
[√

Ä
√

Λ
√
Ä
])2

(288)

=
1

Tr[ΛÄ]

(
Tr
[√

ΛÄ
])2

(289)

g 1

Tr[ΛÄ]
(Tr [ΛÄ])

2 (290)

= Tr[ΛÄ], (291)

concluding the proof.
Lemma 6: Let Ä be a state, Λ a measurement operator, and

set Ä̃ :=
√

ΛÄ
√

Λ
Tr[ΛÄ] . Then

F (Ä̃, Ã) =
1

Tr[ΛÄ]
F (Ä,

√
ΛÃ

√
Λ). (292)

Proof: Let |ÈÃð purify Ã, and let |ÈÄð purify Ä. Let U
denote a unitary acting on the purifying system. Consider from
Uhlmann’s theorem [4] that

F (Ä̃, Ã)

= sup
U

1

Tr[ΛÄ]

∣∣∣ïÈÄ|
(√

Λ ¹ I
)

(I ¹ U) |ÈÃð
∣∣∣
2

(293)

=
1

Tr[ΛÄ]
sup
U

∣∣∣ïÈÄ|
√

Λ ¹ U |ÈÃð
∣∣∣
2

(294)

=
1

Tr[ΛÄ]
sup
U

∣∣∣ïÈÄ| (I ¹ U)
(√

Λ ¹ I
)
|ÈÃð

∣∣∣
2

(295)
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=
1

Tr[ΛÄ]
F (Ä,

√
ΛÃ

√
Λ). (296)

An alternative way of seeing this follows from

F (Ä̃, Ã) =

(
Tr

[√√
ÃÄ̃

√
Ã

])2

(297)

=
1

Tr[ΛÄ]

(
Tr

[√√
Ã
√

ΛÄ
√

Λ
√
Ã

])2

(298)

=
1

Tr[ΛÄ]

(
Tr

[√√
Ã
√

Λ
√
Ä
√
Ä
√

Λ
√
Ã

])2

(299)

=
1

Tr[ΛÄ]

(∥∥∥
√
Ã
√

Λ
√
Ä
∥∥∥

1

)2

(300)

=
1

Tr[ΛÄ]

(
Tr

[√√
Ä
√

Λ
√
Ã
√
Ã
√

Λ
√
Ä

])2

(301)

=
1

Tr[ΛÄ]

(
Tr

[√√
Ä
√

ΛÃ
√

Λ
√
Ä

])2

(302)

=
1

Tr[ΛÄ]
F (Ä,

√
ΛÃ

√
Λ). (303)

This concludes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

The proof is quite similar to the proof of the Proposition 1,
but we give it here for completeness. Let Λ be an arbitrary
measurement operator satisfying Tr[ΛÄ] g 1−ε. By the gentle
measurement lemma, we know that Tr[ΛÄ] g 1 − ε implies
that

F (Ä̃, Ä) g 1 − ε(2 − ε), (304)

where Ä̃ =
√

ΛÄ
√

Λ. To see the inequality in (304), consider
that

F (Ä̃, Ä) =

(
Tr

[√√
ÄÄ̃

√
Ä

])2

(305)

=

(
Tr

[√√
Ä
√

ΛÄ
√

Λ
√
Ä

])2

(306)

=

(
Tr

[√√
Ä
√

Λ
√
Ä
√
Ä
√

Λ
√
Ä

])2

(307)

=

(
Tr

[√(√
Ä
√

Λ
√
Ä
)2
])2

(308)

=
(
Tr
[√

Ä
√

Λ
√
Ä
])2

(309)

=
(
Tr
[√

ΛÄ
])2

(310)

g (Tr[ΛÄ])
2 (311)

g (1 − ε)
2 (312)

= 1 − ε (2 − ε) . (313)

Now we should relate Tr[ΛÃ] to F (Ä̃, Ã). Consider from
Uhlmann’s theorem [4] that

F (Ä̃, Ã) = sup
U

∣∣∣ïÈÄ|
(√

Λ ¹ I
)

(I ¹ U) |ÈÃð
∣∣∣
2

(314)

= sup
U

∣∣∣ïÈÄ|
√

Λ ¹ U |ÈÃð
∣∣∣
2

(315)

= sup
U

∣∣∣ïÈÄ| (I ¹ U)
(√

Λ ¹ I
)
|ÈÃð

∣∣∣
2

(316)

= F (Ä,
√

ΛÃ
√

Λ) (317)

f Tr[ΛÃ]. (318)

The last inequality follows from data processing for fidelity
under the trace channel. Then

− log2 Tr[ΛÃ] f − log2 F (Ä̃, Ã) (319)

f D
ε(2−ε)
min,F (Ä∥Ã). (320)

Since this holds for an arbitrary measurement operator
satisfying Tr[ΛÄ] g 1 − ε, we conclude that

Dε
min(Ä∥Ã) f D

ε(2−ε)
min,F (Ä∥Ã), (321)

which is the desired statement.

APPENDIX C
PROPERTIES OF MAX-MUTUAL INFORMATION

In this appendix, we prove the equality in (177),
we establish the bound Imax(A;B)Ä f 2 log2 min {dA, dB},
and we prove the equality Imax(A;B)Φ = 2 log2 d for a
maximally entangled state ΦAB of Schmidt rank d. To begin,
consider that

Imax(A;B)Ä

= inf
ÃA∈D(HA),
ÃB∈D(HB)

Dmax(ÄAB∥ÃA ¹ ÃB) (322)

= log2 inf
¼g0, ÃA∈D(HA),

ÃB∈D(HB)

{¼ : ÄAB f ¼ÃA ¹ ÃB} (323)

= log2 inf
KA,LBg0

{Tr[KA ¹ LB ] : ÄAB f KA ¹ LB}, (324)

where the last equality follows from the substitution ¼ÃA ¹
ÃB = KA ¹ LB and the fact that Tr[KA ¹ LB ] = Tr[¼ÃA ¹
ÃB ] = ¼. Now consider that, for every state ÄAB , the operator
inequality ÄAB f dAIA ¹ ÄB holds, because

1

d2
A

ÄAB f 1

d2
A

d2
A∑

i=1

U i
AÄAB

(
U i

A

) 
=
IA
dA

¹ ÄB , (325)

where
{
U i

A

}d2
A

i=1
is a set of Heisenberg–Weyl unitaries. So this

implies that the choices KA = dAIA and LB = ÄB are
feasible, leading to the claimed upper bound Imax(A;B)Ä f
2 log2 min dA. By a symmetric argument, the following bound
holds Imax(A;B)Ä f 2 log2 min dB . Finally, for a maximally
entangled state, we have Imax(A;B)Φ f 2 log2 d by the upper
bound just derived. We also have

Imax(A;B)Φ = inf
ÃA∈D(HA),
ÃB∈D(HB)

Dmax(ΦAB∥ÃA ¹ ÃB) (326)

g inf
ÃA∈D(HA),
ÃB∈D(HB)

D(ΦAB∥ÃA ¹ ÃB) (327)

= I(A;B)Φ (328)

= 2 log2 d, (329)
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where the inequality follows from (14) and the second
equality from [40, Exercise 11.8.2]. So we conclude that
Imax(A;B)Φ = 2 log2 d.

APPENDIX D
PROOF OF PROPOSITION 9

First, let us verify that strong duality holds for the primal
and dual SDPs. Consider the following feasible choices for the
primal SDP: Ä̃ = Ä, ¼ such that Ä f ¼Ã (one possible choice
would be ¼ = 2D̂max(Ä∥Ã)), and X =

√
1 − ε Ä. This follows

because
[
Ä X
X Ä̃

]
=

[
Ä

√
1 − ε Ä√

1 − ε Ä Ä

]
(330)

=

[
1

√
1 − ε√

1 − ε 1

]
¹ Ä (331)

g 0. (332)

In addition, choosing µ, ¿, W , and Z to satisfy µ > 0, ¿ > 0,
µ+¿ < 1/Tr[Ã], W = (µ+¿)I , and Z = ¿I leads to strictly
feasible choices for the dual program. Thus, strong duality
holds, due to Slater’s condition.

Considering the known SDP for negative root fidelity [68],
we have

−
√
F (Ä, Ä̃) = − sup

X∈L(H)

{
Re[Tr[X]] :

[
Ä X
X Ä̃

]
g 0

}

(333)

= inf
X∈L(H)

{
−Re[Tr[X]] :

[
Ä X
X Ä̃

]
g 0

}
.

(334)

With that we find that

D̂ε
max(Ä∥Ã)

= log2 inf
Ä̃g0,¼g0,
X∈L(H)





¼ : Ä̃ f ¼Ã,Tr[Ä̃] = 1,
−Re[Tr[X]] f −

√
1 − ε,[

Ä X
X Ä̃

]
g 0





(335)

= log2 inf
Ä̃g0,¼g0,
X∈L(H)





¼ : Ä̃ f ¼Ã,Tr[Ä̃] = 1,
Re[Tr[X]] g

√
1 − ε,[

Ä X
X Ä̃

]
g 0




. (336)

Then, recall the standard form of dual and primal SDPs:

sup
Zg0

{Tr[AZ] : Φ(Z) f B} , (337)

inf
Y g0

{
Tr[BY ] : Φ (Y ) g A

}
. (338)

To that end, we find that

Y =

[
¼ 0 0
0 Z X
0 X Ä̃

]
, B =

[
1 0 0
0 0 0
0 0 0

]
, (339)

Φ (Y ) =




¼Ã − Ä̃ 0 0 0 0 0
0 Tr[Ä̃] 0 0 0 0
0 0 −Tr[Ä̃] 0 0 0
0 0 0 Re[Tr[X]] 0 0
0 0 0 0 0 X
0 0 0 0 X Ä̃



,

(340)

A =




0 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0

√
1 − ε 0 0

0 0 0 0 −Ä 0
0 0 0 0 0 0



. (341)

Setting

Z =




W 0 0 0 0 0
0 µ1 0 0 0 0
0 0 µ2 0 0 0
0 0 0 ¿ 0 0
0 0 0 0 Z1 V
0 0 0 0 V  Z2



, (342)

we find that

Tr[ZΦ (Y )]

= Tr[W (¼Ã − Ä̃)] + (µ1 − µ2) Tr[Ä̃] + ¿ Re[Tr[X]]

+ Tr

[[
Z1 V
V  Z2

] [
0 X
X Ä̃

]]
(343)

= ¼Tr[WÃ] + Tr[((µ1 − µ2) I −W ) Ä̃]

+ ¿ Re[Tr[X]] + Tr
[
V X + V  X + Z2Ä̃

]
(344)

= ¼Tr[WÃ] + Tr[((µ1 − µ2) I −W + Z2) Ä̃]

+ Re[Tr[
(
¿I + 2V  )X]] (345)

= Tr

[[
0 0
0 (µ1 − µ2) I −W + Z2

] [
Z X
X Ä̃

]]

+ Tr

[[
0 ¿

2 I + V
¿
2 I + V  0

] [
Z X
X Ä̃

]]
+ ¼Tr[WÃ] (346)

= Tr

[[
0 ¿

2 I + V
¿
2 I + V  (µ1 − µ2) I −W + Z2

] [
Z X
X Ä̃

]]

+ ¼Tr[WÃ].
(347)

This implies that

Φ(Z) =



Tr[WÃ] 0

0

[
0 ¿

2 I + V
¿
2 I+V

 (µ1−µ2) I−W+Z2

]



(348)

and we find that the dual SDP is given by

sup
Zg0

{Tr[AZ] : Φ(Z) f B}

= sup
W,µ1,µ2,¿g0





(µ1 − µ2) + ¿
√

1 − ε− Tr[Z1Ä] :
Tr[WÃ] f 1,[

0 ¿
2 I + V

¿
2 I + V  (µ1 − µ2) I −W + Z2

]
f 0,

[
Z1 V
V  Z2

]
g 0





(349)

= sup
W,¿g0,µ∈R





µ+ ¿
√

1 − ε− Tr[Z1Ä] :
Tr[WÃ] f 1,[

0 ¿
2 I + V

¿
2 I + V  µI −W + Z2

]
f 0,

[
Z1 V
V  Z2

]
g 0





(350)
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= sup
W,¿g0,µ∈R





µ+ 2¿
√

1 − ε− Tr[Z1Ä] :
Tr[WÃ] f 1,[

0 ¿I + V
¿I + V  µI −W + Z2

]
f 0,

[
Z1 V
V  Z2

]
g 0





(351)

Consider that
[

0 ¿I + V
¿I + V  µI −W + Z2

]
f 0

ô
[

0 V
V  Z2

]
f
[

0 −¿I
−¿I W − µI

]
(352)

ô
[
Z1 V
V  Z2

]
f
[
Z1 −¿I
−¿I W − µI

]
. (353)

Thus, we can eliminate the matrix variable

[
Z1 V
V  Z2

]
, and the

SDP reduces to

sup
W,¿,Z1g0,µ∈R





µ+ 2¿
√

1 − ε− Tr[Z1Ä] :
Tr[WÃ] f 1,[

Z1 −¿I
−¿I W − µI

]
g 0





= sup
W,¿,Zg0,µ∈R





µ+ 2¿
√

1 − ε− Tr[ZÄ] :
Tr[WÃ] f 1,[

Z −¿I
−¿I W − µI

]
g 0





(354)

= sup
W,¿,Zg0,µ∈R





µ+ 2¿
√

1 − ε− Tr[ZÄ] :
Tr[WÃ] f 1,[

Z ¿I
¿I W − µI

]
g 0




. (355)

APPENDIX E
SDP DUAL OF SMOOTH CONDITIONAL MIN-ENTROPY

In Corollary 5, we presented the primal SDP of the smooth
conditional min-entropy. The dual SDP for smooth conditional
min-entropy is as follows:

Hε
min(A|B)Ä =

− log2 sup
WABg0,
ZABg0,
¿g0,µg0





−µ+ 2¿
√

1 − ε2 − Tr[ZABÄAB ] :
TrA[WAB ] f IB ,[

ZAB ¿IAB

¿IAB WAB + µIAB

]
g 0




,

(356)

Before proving the dual, let us verify that strong duality
holds for the primal and dual SDPs. Consider the following
feasible choices for the primal SDP: Ä̃AB = ÄAB , SB =
dBÄB , and XAB = (

√
1 − ε2)ÄAB , where dB is the dimension

of the B system. This follows because the operator inequality
ÄAB f IA ¹ dBÄB holds for every state ÄAB (see, e.g., just
after Eq. (34) in [8]). Furthermore,
[
ÄAB XAB

X 
AB Ä̃AB

]
=

[
ÄAB

√
1 − ε2ÄAB√

1 − ε2ÄAB ÄAB

]
(357)

=

[
1

√
1 − ε2√

1 − ε2 1

]
¹ ÄAB (358)

g 0. (359)

In addition, choosing µ, ¿, WAB , and ZAB to satisfy ¿ >
µ > 0, dA(¿ − µ) < 1, WAB = (¿ − µ)IAB , ZAB = ¿IAB ,
and WAB = (¿ − µ)IAB leads to strictly feasible choices for
the dual program. Thus, strong duality holds, due to Slater’s
condition.

Recall the primal of smooth conditional min-entropy given
in (280) and the standard form of SDPs:

sup
Zg0

{Tr[AZ] : Φ(Z) f B} , (360)

inf
Y g0

{
Tr[BY ] : Φ (Y ) g A

}
. (361)

In standard form, this SDP is given by

Y =



SB 0 0
0 WAB XAB

0 X 
AB Ä̃AB


 , B =



IB 0 0
0 0 0
0 0 0


 ,

(362)

Φ (Y ) =




LAB 0 0 0 0
0 −Tr[Ä̃AB ] 0 0 0
0 0 Re[Tr[XAB ]] 0 0
0 0 0 0 XAB

0 0 0 X 
AB Ä̃AB



,

(363)

where LAB = IA ¹ SB − Ä̃AB , and

A =




0 0 0 0 0
0 −1 0 0 0

0 0
√

1 − ε2 0 0
0 0 0 −ÄAB 0
0 0 0 0 0



. (364)

Setting

Z =




Z1
AB 0 0 0 0
0 µ 0 0 0
0 0 ¿ 0 0
0 0 0 Z2

AB VAB

0 0 0 V  
AB Z3

AB



, (365)

we find that

Tr[ZΦ (Y )]

= Tr[Z1
AB(IA ¹ SB − Ä̃AB)] − µTr[Ä̃AB ]

+ Tr

[[
Z2

AB VAB

V  
AB Z3

AB

] [
0 XAB

X 
AB Ä̃AB

]]

+ ¿ Re[Tr[XAB ]] (366)

= Tr[TrA[Z1
AB ]SB ] + ¿ Re[Tr[XAB ]] + 2 Re[Tr[V  

ABXAB ]]

+ Tr[
(
−µIAB − Z1

AB + Z3
AB

)
Ä̃AB ] (367)

= Tr[TrA[Z1
AB ]SB ]

+ Tr

[[
0 LAB

L 
AB −µIAB − Z1

AB + Z3
AB

] [
WAB XAB

X 
AB Ä̃AB

]]
,

(368)

with the shorthand

LAB :=
¿

2
IAB + VAB . (369)
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This implies that

Φ(Z) =




TrA[Z1
AB ] 0 0

0 0 LAB

0 L 
AB −µIAB − Z1

AB + Z3
AB


 .

(370)

Then we find that the dual SDP is given by

sup
Zg0

{Tr[AZ] : Φ(Z) f B} (371)

= sup
Z1

ABg0,
µg0,
¿g0





−µ+ ¿
√

1 − ε2 − Tr[Z2
ABÄAB ] :

TrA[Z1
AB ] f IB ,[

0 LAB

L 
AB −µIAB − Z1

AB + Z3
AB

]
f 0

[
Z2

AB VAB

V  
AB Z3

AB

]
g 0





(372)

= sup
Z1

ABg0,
¿g0,
µg0





−µ+ ¿
√

1 − ε2 − Tr[Z2
ABÄAB ] :

TrA[Z1
AB ] f IB ,[

0 LAB

L 
AB −µIAB − Z1

AB + Z3
AB

]
f 0

[
Z2

AB VAB

V  
AB Z3

AB

]
g 0





(373)

= sup
Z1

ABg0,
¿g0,
µg0





−µ+ 2¿
√

1 − ε2 − Tr[Z2
ABÄAB ] :

TrA[Z1
AB ] f IB ,[

0 L′
AB

(L′
AB) −µIAB − Z1

AB + Z3
AB

]
f 0

[
Z2

AB VAB

V  
AB Z3

AB

]
g 0





,

(374)

where

L′
AB := ¿IAB + VAB . (375)

Then, as in derivations related to (353), we find that
[

0 ¿IAB + VAB

¿IAB + V  
AB −µIAB − Z1

AB + Z3
AB

]
f 0 (376)

ô
[
Z2

AB VAB

V  
AB Z3

AB

]
f
[
Z2

AB −¿IAB

−¿IAB Z1
AB + µIAB

]
, (377)

and we can again eliminate variables to reduce the SDP to

sup
Z1

AB
,¿g0,µg0





−µ+ 2¿
√

1 − ε2 − Tr[Z2
ABÄAB ] :

TrA[Z1
AB ] f IB ,[

Z2
AB −¿IAB

−¿IAB Z1
AB + µIAB

]
g 0





(378)

= sup
Z1

AB
,¿g0,µg0





−µ+ 2¿
√

1 − ε2 − Tr[Z2
ABÄAB ] :

TrA[Z1
AB ] f IB ,[

Z2
AB ¿IAB

¿IAB Z1
AB + µIAB

]
g 0





(379)

We then do a final rewriting as

sup
WAB ,ZABg0,

¿g0,µg0





−µ+ 2¿
√

1 − ε2 − Tr[ZABÄAB ] :
TrA[WAB ] f IB ,[

ZAB ¿IAB

¿IAB WAB + µIAB

]
g 0




.

(380)

APPENDIX F
SECOND-ORDER ASYMPTOTICS OF SMOOTH

SANDWICHED RÉNYI RELATIVE ENTROPY

Proposition 11: Fix ε ∈ (0, 1). For a state Ä and a PSD
operator Ã, the following second-order expansions hold:

1) For ³ > 1:

1

n
D̃ε

³

(
Ä¹n∥Ã¹n

)
=

D(Ä∥Ã) −
√

1

n
V (Ä∥Ã) Φ−1(ε) +O

(
log n

n

)
. (381)

2) For ³ ∈ [1/2, 1):

1

n
D̃ε

³

(
Ä¹n∥Ã¹n

)
=

D(Ä∥Ã)+

√
1

n
V (Ä∥Ã) Φ−1(ε)+O

(
log n

n

)
. (382)

Proof: Part (1):
For the upper bound, due to the ´-monotonicity of

sandwiched Rényi relative entropy for ´ > 1, we have

1

n
D̃ε

´

(
Ä¹n∥Ã¹n

)

f 1

n
Dε

max

(
Ä¹n∥Ã¹n

)
(383)

(a)

f 1

n
D1−ε

min

(
Ä¹n∥Ã¹n

)
+

1

n
log2

(
1

1 − ε

)
(384)

(b)
= D(Ä∥Ã) +

√
1

n
V (Ä∥Ã) Φ−1(1 − ε) +O

(
log n

n

)
(385)

(c)
= D(Ä∥Ã) −

√
1

n
V (Ä∥Ã) Φ−1(ε) +O

(
log n

n

)
(386)

where: (a) follows from (154); (b) from (145); and (c) from
Φ−1(1 − ε) = −Φ−1(ε).

For the lower bound, we use Theorem 3 for ε, ¶ ∈ (0, 1)
such that ε + ¶ ∈ (0, 1), as well as the ³ → 1/2 limit
of the lower bound, by ³-monotonicity of D̃³, and then
consider

1

n
D̃ε

´(Ä¹n∥Ã¹n)

g 1

n
D1−ε−¶

min,F (Ä¹n∥Ã¹n) − 1

n

´

´ − 1
log2

(
1

1 − f(ε, ¶)

)
,

(387)

where f(ε, ¶) is given in (151), and we know from (153) that
− log(1 − f(ε, ¶)) = O(log n) for ¶ = 1/

√
n and sufficiently

large n.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 20,2024 at 17:58:47 UTC from IEEE Xplore.  Restrictions apply. 



4194 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 6, JUNE 2024

Now, using Theorem 4, consider that

1

n
D1−ε−¶

min,F (Ä¹n∥Ã¹n)

=D(Ä∥Ã)+

√
1

n
V (Ä∥Ã) Φ−1(1−ε−¶)+O

(
log n

n

)
(388)

= D(Ä∥Ã) −
√

1

n
V (Ä∥Ã) Φ−1(ε+ ¶) +O

(
log n

n

)
(389)

= D(Ä∥Ã) −
√

1

n
V (Ä∥Ã) Φ−1(ε) +O

(
log n

n

)
, (390)

where the last equality holds from similar reasoning used to
arrive at (159), which was used in the proof of Theorem 4 by
the choice ¶ = 1/

√
n.

Then, combining the above inequality with (387), we obtain
the desired lower bound. Finally together with (386),
we complete the proof for the case ´ > 1.

Part (2): For ³ ∈ [1/2, 1), from the ³-monotonicity of the
sandwiched Rényi relative entropy, we have

1

n
D̃ε

³

(
Ä¹n∥Ã¹n

)

g 1

n
Dε

min,F

(
Ä¹n∥Ã¹n

)
(391)

= D(Ä∥Ã) +

√
1

n
V (Ä∥Ã) Φ−1(ε) +O

(
log n

n

)
, (392)

where the equality follows from Theorem 4.
For the upper bound, using Theorem 3, consider that

1

n
D̃ε

³

(
Ä¹n∥Ã¹n

)

f 1

n
D̃1−ε−¶

´

(
Ä¹n∥Ã¹n

)
+

1

n

´

´ − 1
log

(
1

1 − f(ε, ¶)

)

(393)

= D(Ä∥Ã) −
√

1

n
V (Ä∥Ã) Φ−1(1 − ε− ¶) +O

(
log n

n

)

+
1

n

´

´ − 1
log

(
1

1 − f(ε, ¶)

)
, (394)

where the last inequality follows from the second-order
expansion obtained in Part (1). Now observing that
− log(1 − f(ε, ¶)) = O(log n) for ¶ = 1/

√
n and sufficiently

large n, and following the same reasoning, we used to arrive
at (159), in the proof of Theorem 4, we get the matching upper
bound.

Combining the obtained upper bound and (392), we
conclude the proof.

APPENDIX G
MODERATE DEVIATION ANALYSIS FOR SMOOTH

F -MIN-RELATIVE ENTROPY (PROOF OF PROPOSITION 3)

In this appendix, we prove Proposition 3. Recall again that a
sequence {an}n is called a moderate sequence if an → 0 and√
nan → ∞ when n→ ∞. From [49], we have the following

scaling of the smooth min-relative entropy under moderate
deviations, where εn := e−na2

n ,

1

n
Dεn

min

(
Ä¹n∥Ã¹n

)
=D(Ä∥Ã)−

√
2V (Ä∥Ã) an + o(an).

(395)

Proof: [Proof of Proposition 3] For the lower bound,
we employ Proposition 1 to find that

1

n
Dεn

min,F (Ä¹n∥Ã¹n)

g 1

n
Dεn

min(Ä¹n∥Ã¹n) − 1

n
log2

(
1

1 − εn

)
(396)

= D(Ä∥Ã) −
√

2V (Ä∥Ã) an + o(an), (397)

where the last equality holds by (395). Then, we arrive at

1

n
Dεn

min,F (Ä¹n∥Ã¹n)gD(Ä∥Ã)−
√

2V (Ä∥Ã) an+o(an),

(398)

along with 1
n log2

(
1

1−εn

)
= o

(
1
n

)
leading to

1
n log2

(
1

1−εn

)
= o(an) since na2

n → ∞.
For the upper bound, similar to the proof of Theorem 4,

specifically using the relationship derived in (157), we have

1

n
Dεn

min,F (Ä¹n∥Ã¹n)

f 1

n
Dεn+¶

min (Ä¹n∥Ã¹n) +
1

n
log2

(
1

εn + ¶

)

+
1

n
log2

(
1

1 − f(εn, ¶)

)
. (399)

Since ¶ ∈ (0, 1), by choosing ¶ = εn, 1
n log2

(
1

1−f(εn,εn)

)
=

o(an) and 1
n log2

(
1

2εn

)
= o(an). Also observe that

2 e−na2
n = exp

(
−n
(
a2

n − ln 2

n

))
= e−nb2n , (400)

where bn := an + o(an). Collecting these observations
together, we obtain the upper bound

1

n
Dεn

min,F (Ä¹n∥Ã¹n)fD(Ä∥Ã)−
√

2V (Ä∥Ã) an+o(an).

(401)

We conclude the proof by combining (398) and (401).
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