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Parallelization of Adaptive Quantum Channel
Discrimination in the Non-Asymptotic Regime

Bjarne Bergh , Nilanjana Datta, Robert Salzmann , and Mark M. Wilde , Fellow, IEEE

Abstract— We investigate the performance of parallel and
adaptive quantum channel discrimination strategies for a finite
number of channel uses. It has recently been shown that,
in the asymmetric setting with asymptotically vanishing type I
error probability, adaptive strategies are asymptotically not
more powerful than parallel ones. We extend this result to
the non-asymptotic regime with finitely many channel uses,
by explicitly constructing a parallel strategy for any given adap-
tive strategy, and bounding the difference in their performances,
measured in terms of the decay rate of the type II error
probability per channel use. We further show that all parallel
strategies can be optimized over in time polynomial in the
number of channel uses, and hence our result can also be used to
obtain a poly-time-computable asymptotically tight upper bound
on the performance of general adaptive strategies.

Index Terms— Quantum information theory, Shannon theory,
error exponents, channel discrimination, adaptive strategies,
parallel strategies.

I. INTRODUCTION

B
INARY quantum state discrimination is one of the oldest
and most studied tasks in quantum information theory [1],

[2]. The task involves determining the state of a quantum sys-
tem, given the side information that it is in one of two possible
states. This is done by performing suitable measurements on
the state. This task has been studied in both the n-shot regime,
in which a finite number (n) of identical copies of the unknown
state are available, and in the asymptotic limit in which
one assumes that an infinite number of copies are available
(i.e., n → ∞). The task of binary state discrimination,
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which can be viewed as that of binary hypothesis testing
for quantum states, is a fundamental primitive of quantum
information theory since many other information processing
tasks can be reduced to it. Known results for this problem
now include optimal decision strategies and the behavior of
the error probabilities of misidentification in both these finite
and asymptotic regimes [1], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12]. There are generally two possible errors that
can be incurred: the system is inferred to be in the second
state when it is actually in the first (type I error) or vice versa
(type II error). There are two different settings in which the
state discrimination task is usually studied: in the symmetric

setting, the probabilities of these two errors are treated on an
equal footing, while in the asymmetric setting, one minimizes
the probability of type II error under the constraint that the
type I error is below a given threshold.

Similar in nature, but a lot less understood, is the task of
binary quantum channel discrimination: given an unknown
quantum channel as a black box and the side information that
it is one of two possible channels, the task is to determine
the channel’s identity [13], [14], [15], [16]. The additional
complexity here comes from the fact that, on top of finding
the best measurement to perform on the output of the channel,
we also have to figure out which quantum states to send as
input to the channel. Say we are given access to n copies
of the channel (i.e., we are given n identical black boxes,
each of which can be used once); then there are different
strategies (sometimes also called protocols) in which we could
set up our decision experiment – the so-called parallel and
adaptive strategies. In a parallel strategy one prepares a joint
state, usually entangled between the input systems of all
the n copies of the channel and an additional reference (or
memory) system. This state is then fed as input to all the n
channels at once (with the state of the reference system being
left undisturbed). Finally, a binary positive operator-valued
measure (POVM) is performed on the joint state at the output
of the channels and the reference system in order to arrive at
a decision for the channel’s identity. In an adaptive strategy,
on the other hand, one prepares a state of the input system
of a single copy of the channel (again usually entangled with
a reference system) which is fed into the first copy of the
channel, with the state of the reference system being left
undisturbed. The input to the next use of the channel is then
chosen depending on the output of the first channel and the
state of our reference system. This is done, most generally,
by subjecting the latter to an arbitrary quantum operation (or
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channel), which we call a preparation operation. This step
is repeated for each successive use of the channel until all
the n black boxes have been used. Then a binary POVM is
performed on the joint state of the output of the last use of the
channel and the reference system. See Figure 1 for a depiction
of an adaptive strategy. Adaptive strategies are also sometimes
called sequential, which however should not be confused with
the setting of sequential hypothesis testing [17], [18], [19],
where samples (i.e., states or channels) can be requested one
by one.

One particularly interesting question is whether and to what
degree adaptive strategies give an advantage over parallel
ones. Note that any parallel strategy can be written as an
adaptive strategy by taking all but one channel input as part
of the reference system, and then choosing each preparation
operation such that it extracts the next part of the joint input
state for the next channel use and replaces it by the output of
the previous channel use. However, the converse is not true,
and so adaptive strategies are more general. Parallel strategies
are conceptually a lot simpler than adaptive ones – aside from
the measurement, everything is specified just by the joint input
state – in contrast to adaptive strategies, in which after each
channel use we can perform an arbitrary quantum operation
to prepare the input to the next use of the channel. It is thus
interesting to determine to what degree parallel strategies can
still be optimal. It is known that in certain cases adaptive
strategies can give an advantage over parallel ones. In [16] the
authors constructed an example in which an adaptive strategy
with only two channel uses could be used to discriminate the
channels with certainty, which is not possible with a parallel
strategy, even if arbitrarily many channel uses are allowed.

Interestingly, asymptotically, there are multiple known cases
in which adaptive strategies give no advantage over parallel
ones, i.e., the optimal exponential decay rate of the error
probability per channel use is the same in the asymptotic
limit. For example, this is the case both in the symmetric
and asymmetric settings when the channels are classical [15]
or classical-quantum [20], [21]. For arbitrary quantum chan-
nels, the recently shown chain rule for the quantum relative
entropy [22] and the characterization of asymmetric channel
discrimination in terms of amortized relative entropy [20],
[23], also imply that in the asymmetric setting, in the asymp-
totic limit where we also require the type I error to vanish,
adaptive strategies give no advantage over parallel ones (i.e.,
the optimal asymptotic exponential decay rate of the type II
error per channel use is the same for parallel and adaptive
strategies; see Section II below for more details). This is in
contrast to the symmetric setting in which the example of [21]
shows that there always is an advantage of adaptive strategies,
also in the asymptotic limit.

In this paper, our aim is to move from these purely asymp-
totic results to statements comparing adaptive and parallel
strategies for finite n. In our main result (Corollary 1 and
Theorem 1), we relate the type I and type II errors of an
arbitrary adaptive strategy with those of a suitably chosen
parallel strategy. Specifically, given an adaptive strategy with n
channel uses, we construct a parallel strategy with m channel
uses (where m can be chosen at will), such that for arbitrary

fixed type I errors of the two strategies, we find an explicit
bound on the difference between their type II error decay rates.
This difference goes to zero in a suitably chosen asymptotic
limit m,n → ∞ if also the type I error vanishes, hence also
implying the known asymptotic equivalence in the asymmetric
case. Our result answers the following interesting question
which is of practical relevance: Given an adaptive strategy

involving n uses of the channel, if one instead employs a

parallel strategy with m channel uses, how much worse are

the errors going to be?

Note that the asymptotic results obtained in [20] and [23] do
not purely come from finite-length considerations, and hence
results analogous to ours are not directly obtainable from these
references.

Our main result becomes particularly interesting consid-
ering that we additionally show that one can optimize over
all parallel strategies in time polynomial in the number of
channel uses (Lemma 3), whereas optimizing over all adaptive
strategies seems to require exponential time (see Remark 6
below). Hence we can also use our theorem to give a bound
related to the following practically relevant question: Given

that one computed the optimal parallel strategy involving m
uses of the channel, how much better could the errors of the

best adaptive strategy with n channel uses possibly be?

Note that the upper bound on the finite-n performance of
adaptive strategies that can be obtained like this by optimizing
over all parallel strategies, is to our knowledge the first upper
bound on this quantity that is computable in time polynomial
in the number of channel uses and also asymptotically tight.

On the way to proving our main theorem, we also prove the
following two technical results: first, a slightly refined bound
on the difference between the Petz–Rényi relative entropy
D³ and the Umegaki relative entropy D (Lemma 5), and
secondly, a bound on the convergence speed in the asymptotic
equipartition property of the smoothed max-relative entropy
(Lemma 6), which turns out to be better suited to our appli-
cation than previous results (see Remark 8 and Remark 9 for
a detailed explanation of the differences).

We start by introducing all of the required notation and
previous results in Section II. Then we state and prove
our main theorem (Theorem 1) in Section III. Section IV
illustrates how adaptive and parallel strategies can differ in
the finite regime with an example, and it also demonstrates an
application of our result.

II. PRELIMINARIES, NOTATION, AND PREVIOUS RESULTS

A. Notation

We write H for a complex finite-dimensional Hilbert space
and B (H) for the set of linear operators acting on H. We write
P(H) for the set of positive semi-definite operators acting on
H. For A,B ∈ P(H) we further write Aj B if supp (A) ¦
supp (B) and A ̸j B if supp (A) ̸¦ supp (B). Let D (H)
denote the set of density matrices, i.e., the set of positive
semi-definite operators with trace one. A quantum channel (in
this paper usually denoted as E or F) is a completely positive,
trace-preserving map between density operators. We will label
different quantum systems by capital Roman letters (A, B,
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C, etc.) and often use these letters interchangeably with the
corresponding Hilbert space or set of operators or density
matrices (i.e., we write Ä ∈ D (A) instead of Ä ∈ D (HA)
and E : A→ B instead of E : D (HA) → D (HB)). We write
log for the logarithm to the base two.

B. Quantum Information Measures

For Ä ∈ D (H) and Ã ∈ P(H) the (Umegaki) quantum
relative entropy is defined as [24]

D(Ä∥Ã) := Tr(Ä(log Ä− log Ã)), (1)

if Ä j Ã and D(Ä∥Ã) := ∞ if Ä ̸j Ã. One of its most
important properties is the data-processing inequality [25],
which states that for every quantum channel E :

D(Ä∥Ã) g D(E(Ä)∥E(Ã)). (2)

A self-contained proof can be found, e.g., in [26]. More
generally, we call a function of Ä and Ã a divergence if it
satisfies the data-processing inequality.

Below we also make use of the binary entropy, which is
the Shannon entropy of a classical random variable that takes
two possible values. It is uniquely specified by the probability
p ∈ [0, 1] of one of the values and is given by

h(p) := −p log p− (1 − p) log(1 − p). (3)

It satisfies

0 f h(p) f 1 ∀ p ∈ [0, 1]. (4)

1) Fidelity and Sine Distance: For two quantum states
Ä, Ã ∈ D (H), we define the fidelity as [27]

F (Ä, Ã) := Tr

(√√
ÃÄ

√
Ã

)
. (5)

Note that this is sometimes also called the square root fidelity
due to different conventions on whether to include a square or
not. We define the sine distance as [28], [29], [30], [31]

P (Ä, Ã) :=
√

1 − F (Ä, Ã)2, (6)

which satisfies the properties of a metric (especially the
triangle inequality) and also the data-processing inequality
(see, e.g., [26]). This quantity is also known as the purified
distance.

2) (Smoothed) Max-Divergence: For Ä ∈ D (H) and Ã ∈
P(H), define the quantum max-divergence (or the max-
relative entropy) as [32]

Dmax(Ä∥Ã) := log inf { ¼ ∈ R | Ä f ¼Ã } . (7)

The quantum max-divergence also satisfies the data-processing
inequality [32]. Let

B◦
ε (Ä) := { Ä̃ ∈ D (H) | P (Ä, Ä̃) f ε } (8)

be the ε-ball of normalized states around Ä in sine distance.
Then, we define the smoothed max-divergence as [32]

Dε
max(Ä∥Ã) := Dε,◦

max(Ä∥Ã) = inf
Ä̃∈B◦

ε (Ä)
Dmax(Ä̃∥Ã). (9)

Note that this is sometimes defined differently in the literature,
where one allows the infimum to also include sub-normalized
states.

3) Rényi Divergences: Let Ä ∈ D (H) and Ã ∈ P(H) be
two operators such that Ä j Ã. The definitions below can,
in some cases, also be extended with finite values to the case
where Ä ̸j Ã (see the references below or also [26]); however,
this is not going to be relevant for our work. For every ³ ∈
[0, 1) ∪ (1, 2] define the Petz–Rényi divergence as [33]:

D³(Ä∥Ã) :=
1

³− 1
log Tr

(
Ä³Ã1−³). (10)

Similarly, for every ³ ∈ (0, 1) ∪ (1, 2] define the geometric

Rényi divergence as [34]:

D̂³(Ä∥Ã) :=
1

³− 1
log Tr

(
Ã

1
2 (Ã−

1
2 ÄÃ−

1
2 )³Ã

1
2

)
. (11)

It was shown in [34] that the geometric Rényi divergence is
the largest Rényi divergence for every ³ ∈ (0, 1)∪ (1, 2], and
so

D³(Ä∥Ã) f D̂³(Ä∥Ã). (12)

4) Channel Divergences: We say that a function D of
Ä ∈ D (H) and Ã ∈ P(H) is a divergence if it satisfies the
data-processing inequality (recall (2) here). For every given
divergence D for states, one can define an associated channel
divergence [35] by performing a (stabilized) maximization
over all input states, i.e., with E ,F : A → B being quantum
channels

D(E∥F) := sup
ÄRA∈D(R¹A)

D
(
(idR ¹ E)(Ä)∥(idR ¹F)(Ä)

)
.

(13)

Since D satisfies the data-processing inequality by definition,
the supremum can be restricted to pure states such that the
reference system R is isomorphic to the channel input system
A.

Specifically relevant later will be the max channel diver-
gence, which has the following simple representation (see [36,
Definition 19] and [20, Lemma 12]):

Dmax(E∥F) := sup
ÈRA

Dmax

(
(idR ¹ E)(È)∥(idR ¹F)(È)

)

(14)

= Dmax

(
(idR ¹ E)(Φ)∥(idR ¹F)(Φ)

)
, (15)

where R ≃ A and Φ = ΦRA is a maximally entangled state.
Hence, the max channel divergence is easily computable as a
semidefinite program (SDP).

C. Quantum State Discrimination

In binary quantum state discrimination, a quantum system
with Hilbert space H is prepared in one of two states Ä or
Ã, and the objective is to perform a binary POVM {Π,1 −
Π} (where 1 denotes the identity operator acting on H and
Π ∈ B(H) satisfying 0 f Π f 1) in order to guess which
state was prepared (see [12] for a review). Performing this
measurement comes with the possibility of making an error of
misidentification. Generally one defines the type I and type II
error probabilities, respectively, as

³(Π, Ä, Ã) := Tr((1− Π)Ä), (16)
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´(Π, Ä, Ã) := Tr(ΠÃ). (17)

In the rest of the paper, we refer to the above simply as the
type I and type II errors. It is easy to see from the definition
that different choices of Π lead to different trade-offs between
the type I and type II errors.

In the asymmetric setting, we are interested in finding the
optimal type II error while keeping the type I error below a
threshold (usually denoted as ε). This optimal type II error is
then defined for all ε ∈ [0, 1] as

´ε(Ä∥Ã) := min
0fΠf1

Tr(ΠÄ)g1−ε

Tr(ΠÃ). (18)

The negative logarithm of this optimal type II error is called
the hypothesis testing relative entropy [37], [38], [39]:

Dε
H(Ä∥Ã) := − log ´ε(Ä∥Ã). (19)

It is also known as the smooth min-relative entropy [40],
[41]. The hypothesis testing relative entropy satisfies the data-
processing inequality [39] and can be related to other entropic
quantities. We will make use of the following known relations:

Lemma 1 (Upper Bound on Dε
H ): Let Ä, Ã ∈ D (H) be

quantum states. Then for all ε ∈ [0, 1)

Dε
H(Ä∥Ã) f 1

1 − ε

(
D(Ä∥Ã) + h(ε)

)
, (20)

where h(ε) is the binary entropy function.
This first Lemma is a very well-known consequence of the

data-processing inequality of the relative entropy and has been
used in converse proofs all throughout information theory.
A statement and proof using our notation can be found in [39],
although the essence of the statement can already be found
much earlier, for example in [4, Theorem 2.2] and also [42,
Eq. (3.30)]. We will also make use of the following Lemma:

Lemma 2 (Relation to Smoothed Max-Divergence [43, The-

orem 4]): Let Ä ∈ D (H) and Ã ∈ P(H). Then, for ε ∈ (0, 1)
and ¶ ∈ (0, 1 − ε2):

D1−ε2−¶
H (Ä∥Ã)− log

(
4(1 − ε2)

¶2

)
f Dε

max(Ä∥Ã)

f D1−ε2
H (Ä∥Ã) − log

(
1 − ε2

)
. (21)

Remark 1: Note that [43] defines the smoothed
max-divergence using sub-normalized smoothing; however,
the proof of this lemma goes through also when restricting
to normalized states. Note also that the arXiv version (v1)
of [43] has a typo in the admissible range of ¶, which has
been corrected in the published version.

D. Quantum Channel Discrimination

Let E and F be two quantum channels, each taking system
A to system B. In the discrimination setting we will generally
use inputs to the channels that are entangled with a reference
system. To simplify notation we will usually not make the
identity channel on the reference system explicit. Hence,
if ÄRA ∈ D (R¹A) is a state, we will write

E(Ä) := EA→B(ÄRA) = (idR ¹ EA→B)(ÄRA), (22)

and similarly also for F .

Fig. 1. Illustration of a general adaptive protocol with n uses of the black-box
channel. The top row makes use of the given black-box E|F , which is either
E or F , while the bottom row depicts the memory system R. At various
stages in the protocol, the green states Ä occur if the channel is E and the
purple states Ã occur if the channel is F .

The most general channel discrimination protocol will
choose input states based on the outputs of previous channel
uses. This is called an adaptive protocol. A general adaptive
channel discrimination protocol with n uses of the black-box
channel (E or F), can be fully specified by an initial state
Ä1 = Ã1 ∈ D (R¹A), a set of n−1 CPTP maps Λi : R¹B →
R ¹ A, that transform the state before it is fed into the next
black-box channel, and a final binary POVM {Π,1 − Π} on
R¹B. We will assume the size of reference system R to be
fixed and identical throughout the protocol (this is without loss
of generality). The protocol consists of alternating applications
of the black-box channel and the preparation CPTP maps Λi
(see Figure 1). We define for i ∈ {2, . . . , n}:

Äi := Λi(E(Äi−1)), Ãi := Λi(F(Ãi−1)), (23)

and so the final state before the action of the POVM will
be E(Än) if the channel is E and F(Ãn) if the channel is
F . The distinguishability of the channels then comes down
to the distinguishability of the two states E(Än) and F(Ãn).
We will be focussing again on the asymmetric setting, with
the main object of study being the hypothesis testing relative
entropy Dε

H(E(Än)∥F(Ãn)). We write the optimal adaptive
type II error rate for a given finite number of channel uses n
as [44]

sup
Ä1,{Λi}i

1

n
Dε
H(E(Än)∥F(Ãn)) (24)

where the supremum is over every initial input state Ä1 =
Ã1 and all subsequent input preparation CPTP maps {Λi}ni=2.
It was shown in [45, Prop. 3] that this is computable as a
semi-definite program.

1) Asymptotic Equivalence of Adaptive and Parallel Strate-

gies: It has been shown recently [20], [23] that asymptotically,
when the number of channel uses goes to infinity, the best
exponential decay rate of the type II error (per channel use)
such that the type I error still goes to zero is given by the
amortized Umegaki channel divergence, i.e.

lim
ε→0

lim
n→∞

sup
Ä1,{Λi}i

1

n
Dε
H(E(Än)∥F(Ãn)) = DA(E∥F) (25)

where

DA(E∥F) := sup
Ä,Ã∈D(R¹A)

[
D(E(Ä)∥F(Ã)) −D(Ä∥Ã)

]
. (26)

Note that the dimension of the reference system R in this last
supremum can be arbitrarily large.
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The chain rule from [22] states that this amortized diver-
gence is in fact equal to the regularized channel divergence,
i.e.

DA(E∥F) = Dreg(E∥F) :=

lim
n→∞

1

n
sup

¿∈D(R¹n¹A¹n)

D(E¹n(¿)∥F¹n(¿)), (27)

the latter of which can be achieved by parallel protocols,
as a consequence of [23, Theorem 3]. Note that the reference
system R in the latter optimization can be chosen isomorphic
to A. Hence, asymptotically (and in the regime in which
the type I error goes to zero) adaptive strategies offer no
advantage over parallel ones. We provide a finite n version
of this statement, by giving explicit bounds on how much the
error probabilities of adaptive and parallel strategies can differ
for a finite number of channel uses.

III. PARALLELIZING AN n-SHOT ADAPTIVE PROTOCOL

We state our main result in two forms, first in a simple
manner that illustrates the main idea and structure of the result,
and secondly a more detailed theorem that gives a tighter
bound, and which states in detail what one can choose as
a parallel input state.

Remember that there is a tradeoff in minimizing the type I
and type II errors. In the context of a strategy, for a given
type I error ³ we will write the best achievable type II error
as ´(³). We are especially interested in the exponential decay
rate of the type II error with the number of channel uses; i.e.,
if some strategy involving n uses of the channel has type II
error ´(³), we are interested in the quantity − 1

n log(´(³)).
Our main result compares this error decay rate per channel
use between adaptive and parallel strategies:

Corollary 1 (Main Result, Simple Version): Let E ,F : A→
B be two quantum channels such that Dmax(E∥F) <∞. Let
there be an adaptive discrimination protocol with n channel
uses, that – for an arbitrary type I error ³a ∈ [0, 1] – achieves
type II error ´a(³a). Then, for all ³p ∈ (0, 1] there exists a
parallel protocol with m channel uses and type II error ´p(³p)
such that for all ³a ∈ [0, 1] the type II error rates per channel
use obey the following relation:

− 1

m
log(´p(³p)) g− 1 − ³a

n
log(´a(³a))

− Cn√
m

log

(
8

³p

)
− 1

n
. (28)

That is, the type II error rate of the parallel protocol is
essentially at least as good as the adaptive one modulo an
additional error term, which decays as m→ ∞. The constant
C is given by

C := 7 log
(
2D2(E∥F) + 2

)
f 7 log

(
2Dmax(E∥F) + 2

)
. (29)

Remark 2: If we take the limit m → ∞ in (28), then
n → ∞, and finally ³a → 0 and ³p → 0, we find that
asymptotically there exist parallel strategies with better or at
least equal type II error decay than an adaptive one, and
hence our result also implies the known result [22] that,

asymptotically (and with ³ → 0), adaptive strategies offer
no advantage over parallel ones.

Remark 3: It is known that for small n and m, and suitably
chosen ³a and ³p, the type II error rates for adaptive and
parallel strategies can be arbitrarily far apart (see Section IV
below for an example). From the asymptotic equivalence,
we know that this difference has to vanish as n and m go to
infinity, but the purely asymptotic statement does not tell us
how exactly this vanishes, and what the required relationship
between n and m is (in principle the required m to reach
a similar rate as a given adaptive strategy with n channel
uses could grow arbitrarily fast with n). Corollary 1 now
tells us that the difference of type II error rates between
an adaptive strategy and the corresponding parallel one will
become arbitrarily small if m = É(n2) (i.e., m has to
grow faster than n2). Hence, given a sequence of adaptive
strategies with n channel uses, we can convert these into
parallel strategies using at most quadratically (or a little bit
more than quadratically) as many channel uses each, and
will achieve matching rates once n gets large enough. This
quadratic relationship is universal in the sense that it holds for
all pairs of channels E , F with Dmax(E∥F) <∞ (where only
the prefactor depends on the value of Dmax(E∥F)).

Note again that we are not comparing type II errors in
Corollary 1, but rather decay rates of the type II error per
channel use. When we say that the rates of a parallel strategy
with m = É(n2) channel uses and an adaptive strategy with n
channel uses are roughly equal, the parallel strategy will have
much smaller type II error because it has many more channel
uses.

The following is the more refined version of our result, with
a tighter bound and a description of the parallel input state:

Theorem 1 (Main Result, Technical Version): Let E ,F :
A → B be quantum channels such that Dmax(E∥F) < ∞.
Given an arbitrary adaptive protocol with n channel uses,
we write Äi, Ãi ∈ D (Ra ¹A), i ∈ {1, . . . , n} for the states
that are input into the channel during the adaptive protocol (Äi
if the channel is E , and Ãi if the channel is F ; see Section II-D
and Figure 1 above for a more detailed explanation of this
notation). We define ℓ ∈ {1, . . . , n} as the step in the protocol
where the distinguishability increases the most, i.e.,

ℓ := arg max
k∈{1,...,n}

[
D(E(Äk)∥F(Ãk)) −D(Äk∥Ãk)

]
. (30)

Then, for all ³p ∈ (0, 1], and m ∈ N, there exists a state
¿ ∈ D (R¹m ¹A¹m) such that for all ³a ∈ [0, 1]:

1

m
D
³p

H

(
E¹m(¿)∥F¹m(¿)

)
g 1 − ³a

n
D³a

H

(
E(Än)∥F(Ãn)

)

− c′ℓ√
m

[
log

(
4

³p

)
+K

]
− 1

m

[
log

(
1

³p

)
− log

(
1 − ³p

4

)]

− h(³a)

n
, (31)

where

K :=
ln(2) log2(3)

8
cosh

(
log(3)

2

)
f 0.29 (32)
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and c′ℓ depends on the pair of channels E , F and can be
bounded as follows:

c′ℓ :=
4

log(3)
inf

µ1,µ2∈(0,1]
[cµ1(E(Äℓ)∥F(Ãℓ)) + cµ2(Äℓ∥Ãℓ)]

(33)

f 8ℓ

log(3)
inf

µ∈(0,1]
ĉµ(E∥F) (34)

f 8n

log(3)
inf

µ∈(0,1]
ĉµ(E∥F). (35)

where

cµ(Ä∥Ã) :=
1

µ
log
(
2µD1+µ(Ä∥Ã) + 2−µD1−µ(Ä∥Ã) + 1

)
, (36)

ĉµ(E∥F) :=
1

µ
log
(
2µD̂1+µ(E∥F) + 2

)
. (37)

Moreover, if

m g log

(
4

³p

)(
4

log(3)
√

2 ln(2)

)2

, (38)

then we have the following tighter bound

1

m
D
³p

H

(
E¹m(¿)∥F¹m(¿)

)
g 1 − ³a

n
D³a

H

(
E(Än)∥F(Ãn)

)

− cℓ√
m

√

log

(
4

³p

)
− 1

m

[
log

(
1

³p

)
− log

(
1 − ³p

4

)]

− h(³a)

n
, (39)

where cℓ is defined in a similar way as c′ℓ but with different
numerical constants K1 and K2:

K1 := 2

√

2 ln(2) cosh

(
log(3)

2

)
f 2.72, (40)

K2 := 2
√

2 ln(2) f 2.36, (41)

cℓ := inf
µ1,µ2∈(0,1]

[K1cµ1(E(Äℓ)∥F(Ãℓ)) +K2cµ2(Äℓ∥Ãℓ)]

(42)

f ℓ(K1 +K2) inf
µ∈(0,1]

ĉµ(E∥F) (43)

f n(K1 +K2) inf
µ∈(0,1]

ĉµ(E∥F). (44)

The parallel input state ¿ can be chosen as either:

• An optimizer in the smoothing of the max-divergence
Dε

max(Ä
¹m
l ∥Ã¹ml ), where ε = 1

2

(
1 −

√
1 − ³p

)
, i.e.,

¿ = ¿̃Rm
a A

m := arg min
Ä̃∈B◦

ε (Ä¹m
ℓ

)

Dmax(Ä̃∥Ã¹mℓ ). (45)

Note that the reference system Ra depends on the adap-
tive protocol and can be arbitrarily large, and hence also
¿̃ might have an arbitrarily large reference system.

• The canonical (or any other) purification of the Am-
marginal ¿̃Am = TrRm

a
(¿̃Rm

a A
m). That is, we can choose

¿ = |ÈRmAmðïÈRmAm |, with

|ÈRmAmð = 1Rm ¹
√
¿̃Am |ΦRmAmð (46)

where R is isomorphic to A and |ΦRmAmð is an unnor-
malized maximally entangled state.

Remark 4: Even though the second choice for the parallel
input state ¿ might seem preferable in most cases (due to
the control over the size of the reference system R), it is
not necessarily so. This is because even though the reference
system of the first choice for ¿ could be very large, it is not
always so. Since the overall state can be mixed, it might
actually be smaller than the canonical purification of its
marginal. Additionally, with the first choice for ¿, one gets
a bound that this parallel input state is ε-close to the input
state of the adaptive strategy, which might be useful in cases
where one wants to show that some property of the adaptive
strategy (e.g., a satisfied energy constraint for the input states)
is (approximately) satisfied also for the parallel strategy.

Remark 5: The constraint Dmax(E∥F) < ∞ is necessary
in general, as the example of [16] (see also [21]) serves as
a counterexample to our statement without this constraint.
Specifically, [16] constructs two channels E , F for which its
authors then show that there exists an adaptive strategy with
only two channel uses that achieves perfect discrimination,
i.e., both ³a = 0 and ´a = 0. In our terminology this implies
that for all ³a ∈ [0, 1]

D³a

H (E(Ä2)∥F(Ã2)) = ∞. (47)

On the other hand, [16] shows for these two channels that
with a parallel strategy, even with arbitrarily many channel
uses, perfect discrimination can never be achieved (i.e., ³p
and ´p cannot both be zero), which in our notation implies
that for all m and for all ¿ ∈ D (R¹A¹m)

D0
H(E¹m(¿)∥F¹m(¿)) <∞ , (48)

Since it is well known (see, e.g., [26, Prop. 4.66]) that for all
states Ä, Ã

lim
³p→0

D
³p

H (Ä∥Ã) = D0
H(Ä∥Ã) (49)

this means that for all m, one can find a sufficiently small ³p
such that for all ¿ ∈ D (R¹A¹m)

D
³p

H (E¹m(¿)∥F¹m(¿)) <∞. (50)

and thus a relation like (39) cannot hold for these two channels.
Note that, even in this example, the Stein exponent, i.e., the
optimal exponential decay rate of the type II error such that the
type I error still goes to zero, is still identical for the parallel
and adaptive strategies, as it is infinite also for the optimal
parallel strategy. This follows from

Dmax(E∥F) = ∞ ⇒ D(E∥F) = Dreg(E∥F) = ∞.

(51)

A. Computability

Remark 6: The usefulness of finite-length bounds often cru-
cially depends on whether the quantities involved can actually
be efficiently computed [46], [47], [48]. To demonstrate this
for our bound, we consider the following two applications:

1) We are given an adaptive strategy, where we
know (potentially only a lower bound on)
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D³a

H (E(Än)∥F(Ãn)), and want to employ the theorem
to get a lower bound on the performance of the
best-possible parallel strategy (i.e., we want to know
how much worse could a parallel strategy potentially
be).
Such a lower bound can be computed using Theorem 1
in time O(1) (i.e., the computational complexity is
independent of the number of channel uses n and m),
by using the bound on cℓ from (44). A potentially much
tighter bound, obtained by finding ℓ explicitly and then
calculating cℓ, can be computed in time O(n).

2) We want to upper bound the performance of the best pos-
sible adaptive strategy with n channel uses, by finding
the best possible parallel strategy and then using Theo-
rem 1. We show in Lemma 3 below that the best possible
parallel strategy with m channel uses can actually be
calculated in O(poly(m)) time, and hence by choosing
m = n2+À for À > 0 we also obtain asymptotically tight
upper bounds on any adaptive strategy with n channel
uses in O(poly(n)) time.
To our knowledge this is the first such poly-time
bound obtained in the literature. Specifically, computing
the best parallel strategy and then using our bound
is exponentially faster than any currently known way
of optimizing over all adaptive strategies. While the
authors of [45] showed that optimizing over all adaptive
strategies can be phrased as an SDP, the size of this
SDP grows exponentially in n, and there is no obvious
symmetry (like the permutation invariance in the parallel
case) that allows one to reduce the number of variables.

Lemma 3: Let E , F : A → B be two quantum channels
such that Dmax(E∥F) < ∞. Then, for a fixed ε ∈ [0, 1), the
quantity

1

n
Dε
H(E¹n∥F¹n)=

1

n
sup

¿∈D(R¹n¹A¹n)

Dε
H(E¹n(¿)∥F¹n(¿))

(52)

can be computed up to an additive error ¶ > 0 in time
O(poly(n) log

(
1
¶

)
) as n→ ∞ and ¶ → 0.

Proof: As shown in [23, Prop. 2], the quantity
2−D

ε
H(E¹n∥F¹n) can be expressed as the following

semidefinite program (SDP) over operators ΩRnBn ∈
B
(
H¹n
R ¹H¹n

B

)
and ÄRn ∈ B

(
H¹n
R

)

minimize
ΩRnBn ,ÄRn

Tr
(
ΩRnBnΓF¹n

RnBn

)

subject to Tr
(
ΩRnBnΓE¹n

RnBn

)
g 1 − ε (53)

0 f ΩRnBnf ÄRn ¹ 1Bn

Tr(ÄRn)= 1,

where ΓE
RB is the Choi matrix of E and it is easy to see

that ΓE¹n

RnBn = (ΓE
RB)¹n. The operators ΩRnBn and ÄRn

in this SDP have a number of parameters exponential in n,
but we will show that we can use the permutation symmetry
of this problem to rephrase it as an SDP polynomial in n.
Throughout this proof we use H to denote a general Hilbert
space, which we will then choose to be either HR, HB ,

or HR¹HB in different situations. We will denote any objects
that depend on the chosen Hilbert space with a subscript or
superscript H (such as PH in the following paragraph), where
we then replace the subscript or superscript with R, B, or RB
whenever we choose a specific Hilbert space; e.g., we write
PR, PB , or PRB .

For any permutation Ã ∈ Sn (where Sn is the symmetric
group) we write PH(Ã) for the permutation matrix correspond-
ing to the action of Ã on H¹n by permuting the n copies of H.
It is then easy to see that these permutation matrices are unitary
and PH(Ã) = PH(Ã−1). For any operator X ∈ B (H¹n) we
also write the group average as

X :=
1

|Sn|
∑

Ã∈Sn

PH(Ã)XPH(Ã) , (54)

and the set of all permutation invariant operators as

EndSn(H¹n) :=

{A ∈ B
(
H¹n) |PH(Ã)APH(Ã) = A, ∀Ã ∈ Sn}. (55)

We start by showing that the minimum in our SDP (53)
is always achieved by permutation invariant operators. Let
(ΩRnBn , ÄRn) be feasible for the optimization problem; i.e.,
they satisfy the constraints of (53). Let Ã ∈ Sn be any
permutation; then

Tr
(
PR(Ã) ÄRn PR(Ã) 

)
= Tr(ÄRn) (56)

since the PR(Ã) are unitary, and thus also Tr(ÄRn) =
Tr(ÄRn). Similarly, we get

0 f PRB(Ã) ΩRnBn PRB(Ã) f PR(Ã)ÄRnPR(Ã) ¹ 1Bn

(57)

since positivity is preserved under unitary conjugation, and we
also used

PRB(Ã) = (1Rn ¹ PB(Ã))(PR(Ã) ¹ 1Bn) (58)

which is immediate from the definition. This again implies
that

0 f ΩRnBn f ÄRn ¹ 1Bn . (59)

By the cyclicity of the trace, and the fact that ΓE¹n

RnBn =
(ΓE
RB)¹n, we also see that

Tr
(
ΩRnBnΓE¹n

RnBn

)
= Tr

(
ΩRnBnΓE¹n

RnBn

)
, (60)

Tr
(
ΩRnBnΓF¹n

RnBn

)
= Tr

(
ΩRnBnΓF¹n

RnBn

)
. (61)

Hence, also (ΩRnBn , ÄRn) are feasible for the optimization
problem (i.e., they satisfy the constraints) and also achieve the
exact same value as (ΩRnBn , ÄRn) does. The group averages
are elements of EndSn(RnBn) and EndSn(Rn) respectively,
and hence we can restrict the optimization in (53) to such
permutation invariant operators.

While the dimension of the subspace of these permutation
invariant operators is polynomial in n, this does not yet show
computability in poly(n) time using standard SDP solvers,
as the problem is not phrased using matrices of size poly(n).
In order to rephrase our problem in this way we follow the
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approach of [49], where a similar statement has been shown
for the sharp Rényi divergence D#

³ (E¹n∥F¹n). The key idea
is to construct a suitable basis of the permutation invariant
subspaces and then rephrase the SDP as one in which we
minimize over (now only O(poly(n)) many) basis coefficients.
As explained in [49, page 7352] (see also [50], [51]), one
can construct such an orthogonal basis CH

r , r ∈ {1, . . . ,mH}
of EndSn(H¹n) (where orthogonality is with respect to the
Hilbert-Schmidt inner product, and mH = dimEndSn(H¹n))
as follows: Let {|ið}dHi=1 be an orthonormal basis of H. Then,
for any multi-index i ∈ {1, . . . , dH}n define the associated
vector |ið =

⊗n
k=1 |ikð on the tensor-product system H¹n,

and it is immediate that the set of all these vectors forms an
orthonormal basis of H¹n. For any pair of such multi-indices
(i, j) – this pair should be thought of as indexing a matrix
element of an operator on H¹n – we write the group orbit of
these indices under the action of Sn as

O(i, j) := { (Ã(i), Ã(j)) | Ã ∈ Sn } , (62)

where Ã(i) permutes the components of i, i.e., Ã(i)k =
iÃ−1(k) for k ∈ {1, . . . , n}. There are exactly mH =

dim EndSn(H¹n) such group orbits, which we will label as
OH
r , r ∈ {1, . . . ,mH}, and a representative element of each

such orbit (i.e., a pair (i, j) ∈ OH
r ) can be efficiently computed

given r, as shown in [49, page 7352]. This corresponds to
the intuition that for A ∈ EndSn(H¹n) we require Aij =
AÃ(i)Ã(j) for any Ã ∈ Sn; hence the matrix elements of A
have to be constant on each group orbit, and so the number
of group orbits is equal to the dimension of EndSn(H¹n).
The basis elements CH

r ∈ EndSn(H¹n) are now defined by
specifying their matrix elements as

(CH
r )ij :=

{
1 if (i, j) ∈ OH

r

0 otherwise.
r = 1, . . . ,mH. (63)

It follows immediately from the definition that the CH
r are

orthogonal, and since we have mH = dim EndSn(H¹n) of
them, they form a basis.

As explained in [49, page 7353], for any matrix A¹n ∈
EndSn(H¹n), its coefficients with respect to the basis CH

r

can be computed straightforwardly from a description of A by
picking a representative of each orbit, and these coefficients
are hence computable in O(poly(n)) time. Specifically, one
can show that for any r and any pair of indices in the group
orbit (i, j) ∈ OH

r , the corresponding basis coefficient is given
by

µr :=

n∏

k=1

Aikjk ; (64)

i.e., we get

A¹n =

mH∑

r=1

µrC
H
r . (65)

This can be applied to the Choi matrix ΓE¹n

RnBn = (ΓE
RB)¹n,

and hence we write

(ΓE
RB)¹n =

mRB∑

r=1

µEr C
RB
r (66)

and similarly when E is replaced by F .
Additionally, for any finite-dimensional Hilbert space H,

there exists a ∗-algebra isomorphism from EndSn(H¹n) to
block-diagonal matrices [52, Theorem 1]

ϕH : EndSn(H¹n) →
tH⊕

i=1

C
mi×mi , (67)

where

tH f (n+ 1)dH , (68)

dH = dim(H), (69)
tH∑

i=1

m2
i = dim(EndSn(H¹n)) f (n+ 1)d

2
H . (70)

Introducing the notation MH :=
∑tH
i=1mi, for any A ∈

EndSn(H¹n) we have that ϕH(A) ∈ C
MH×MH , and we

write JϕH(A)Ki for the i-th block of ϕH(A). Crucially, by [49,
Lemma 3.3], [53, Prop. 2.4.4],

A g 0 ô ϕH(A) g 0 ô JϕH(A)Ki g 0 ∀i ∈ {1, . . . , tH}.
(71)

From [52, Theorem 1] it also follows that ϕH pre-
serves orthogonality; i.e., if Tr

(
A B

)
= 0 then also

Tr
(
ϕH(A) ϕH(B)

)
= 0. Remember that {CH

r }r∈{1,...,mH} is
a basis for EndSn(H¹n), and hence we can expand ΩRnBn ∈
EndSn(RnBn) and ÄRn ∈ EndSn(Rn) as follows:

ΩRnBn =

mRB∑

r=1

yrC
RB
r , (72)

ÄRn =

mR∑

r=1

zrC
R
r , (73)

where {yr ∈ C}mRB

r=1 and {zr ∈ C}mR

r=1 are the respective
basis coefficients. Note that since the Cr are not necessarily
Hermitian, the coefficients are not necessarily real. Since
optimizing over elements is obviously equivalent to optimizing
over their basis coefficients, we can rephrase our SDP as
follows:

minimize
{yr}mRB

r=1
,{zr}mR

r=1

mRB∑

r=1

yr(µ
F
r )∗ Tr

(
(CRBr ) CRBr

)

subject to
mRB∑

r=1

yr(µ
E
r )∗ Tr

(
(CRBr ) CRBr

)
g 1 − ε

tR∑

r=1

zr Tr
(
CRr
)

= 1 (74)

0 f
mRB∑

r=1

yrJϕRB(CRBr )Ki

f
mR∑

r=1

zrJϕRB(CRr ¹ IBn)Ki ∀i ∈ {1, . . . , tRB}

where we also used (71) and (66).
We will show that this is an SDP in poly(n) variables

with poly(n) constraints by casting it into standard form.
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To simplify notation we will write the Hilbert-Schmidt inner
product using ï·, ·ð, i.e., ïA,Bð := Tr

(
A B

)
and also write

M = MRB (i.e., M = MH as below (70) with H = HR ¹
HB). For s ∈ C, consider the following (2M+1)×(2M+1)
block-diagonal matrix

X :=

[
mRB∑

r=1

yrϕRB(CRBr )

]

·
[
mR∑

r′=1

zr′ϕRB(CRr′ ¹ IBn) −
mRB∑

r=1

yrϕRB(CRBr )

]
· s

(75)

where s is a slack variable that turns the one inequality
constraint into an equality constraint (see further below). From
here on, we write ( · )· ( · )· ( · ) to specify a block-diagonal
matrix with block sizes equal to the ones in (75). The
constraint X g 0 now implies

0 f
mRB∑

r=1

yrJϕRB(CRBr )Ki f
mR∑

r=1

zrJϕRB(CRr ¹ IBn)Ki (76)

for i = 1, . . . , tRB . Additionally, since ϕRB preserves orthog-
onality, we can recover the coefficients yr and zr from X
by taking inner products with suitable operators. Specifically,
with

Ỹr := ϕRB(CRBr ) · 0 · 0, (77)

Yr :=
Ỹr

ïỸr, Ỹrð
, (78)

for r ∈ {1, . . . ,mRB}, and with

Z̃r := ϕRB(CRr ¹ 1Bn) · ϕRB(CRr ¹ 1Bn) · 0, (79)

Zr :=
Z̃r

ïZ̃r, Z̃rð
, (80)

for r ∈ {1, . . . ,mR}, we have

yr = ïYr, Xð, (81)

zr = ïZr, Xð. (82)

Hence we can rephrase the expressions in (74) as inner
products with X . Specifically,

mRB∑

r=1

yr(µ
E
r )∗ Tr

(
(CRBr ) CRBr

)
=

〈
mRB∑

r=1

Yr(µ
E
r )∗ Tr

(
(CRBr ) CRBr

)
, X

〉
(83)

and one can do the same with E replaced by F .
We want to transform our SDP into one where we optimize

over X , and for that we need to impose the necessary
block-diagonal structure of X (including the block-diagonal
substructure that comes from its parts being images of ϕRB).
For this, consider the following linear space
{

[ϕRB(Ω)] · [ϕRB(Ä¹ 1Bn) − ϕRB(Ω)] · s
∣∣∣

Ω ∈ EndSn(RnBn), Ä ∈ EndSn(Rn), s ∈ C

}
(84)

and define A to be a set of matrices that form a basis of the
orthogonal complement of this linear space, where we take
the orthogonal complement within C

(2M+1)×(2M+1). It is then
easy to see that |A| f dim(C(2M+1)×(2M+1)) = (2M+1)2 =
O(poly(n)).

With S := (0 · 0 · 1), we can then introduce the following
SDP

minimize
X

〈
mRB∑

r=1

Yr(µ
F
r )∗ Tr

(
(CRBr ) CRBr

)
, X

〉

subject to
〈(

mRB∑

r=1

Yr(µ
E
r )∗ Tr

(
(CRBr ) CRBr

)
)

− S,X

〉
= 1 − ε

(85)

X ∈ C
(2M+1)×(2M+1)

X g 0
〈

tR∑

r=1

Zr Tr
(
CRr
)
, X

〉
= 1

ïA,Xð = 0 ∀A ∈ A

which is in standard form with O(poly(n)) many constraints
and matrices of size O(poly(n)).

This new SDP is equivalent to (74), which can be seen as
follows: From (75) and the calculations thereafter it follows
that for every feasible ({yr}mRB

r=1 , {zr}mR

r=1) in (74) there is
a corresponding feasible X in (85) which achieves the same
value. Conversely, every X that satisfies the constraints of (85)
has to lie in the subspace (84), and it is then immediate that
it can be represented as in (75) for suitable yr and zr. These
yr and zr then also achieve the same value in (74) as X did
in (85).

It now only remains to show that we can also efficiently
calculate all that is required to parameterize this SDP. It was
shown in [49, pages 7352-7353] (see also [54]) that the
JϕH(CH

r )Ki (and hence also the ϕH(CH
r )) can be computed

in poly(n) time. As IBn = I¹nB , the coefficients of IBn with
respect to the {CBr } can be computed efficiently just as for the
Choi matrices above, and additionally, from the construction of
the CH

r , there is an obvious one-to-one mapping CRr ¹CBr′ =
CRBr′′ ; hence also ϕRB(CRr ¹ IBn) is efficiently computable.
This gives a generating set of the subspace (84) and a basis
for its orthogonal complement is then also computable in
O(poly(n)) time. Finally, from the construction of the CH

r ,
it is immediate that the norm Tr

(
(CH

r ) CH
r

)
is given by the

size of the group orbit, which is equal to the number of distinct
permutations of an element (i, j) in the orbit. Concretely, if ℓ ∈
{1, . . . , d2

H} indexes all pairs of single-system indices (i, j),
i, j ∈ {1, . . . , dH}, then given (i, j) ∈ OH

r , let Kℓ denote the
number of occurrences of ℓ = (i, j) in the multi-index (i, j),
i.e., the number of different k values (k ∈ {1, . . . , n}) for
which ik = i, jk = j. The size of the group orbit is then
given by

Tr
(
(CH

r ) CH
r

)
= |OH

r | =

(
n

K1, . . . ,Kd2
H

)
(86)
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and this multinomial coefficient can be calculated in time
O(d2

H); see, e.g., [55].
Also, Tr

(
CRr
)

can be efficiently computed by picking a
representative (i, j) of the orbit ORr and counting the number
of different k where ik = jk. Thus, we can compute all
the coefficients in our SDP in poly(n) time. An SDP with
poly(n) variables and poly(n) constraints can be solved up
to an additive error ¶′ in time O(poly(n) log(1/¶′)); see, e.g.,
[56]. The final step in our proof is to pick a suitable ¶′ so
that we can solve our original problem (52) up to an additive
error ¶. For any n we write the solution for our SDP as

Rn := 2−D
ε
H(E¹n∥F¹n). (87)

Let us start by showing that − log(Rn) = O(n) as n → ∞.
By Lemma 2, we have for all µ ∈ (0, 1 − ε) that

Dε
H(E¹n∥F¹n)

f D
√

1−ε−µ
max (E¹n∥F¹n) + log

(
4(ε+ µ)

µ2

)
(88)

f Dmax(E¹n∥F¹n) + log

(
4(ε+ µ)

µ2

)
(89)

= nDmax(E∥F) + log

(
4(ε+ µ)

µ2

)
= O(n). (90)

Note that the case ε = 0 (while not directly covered
by Lemma 2) also follows immediately by first using that
D0
H(E∥F) f Dε′

H(E∥F) for all ε′ ∈ (0, 1).
Now, for any given ¶ > 0, let us pick ¶′ := (2¶ − 1)Rn.

Remember that ¶′ was the additive error we make when
solving the SDP (74), and this error then propagates to our
original problem via

− 1

n
log(Rn + ¶′) = − 1

n
log
(
Rn2

¶
)

(91)

= − 1

n
log(Rn) −

¶

n
(92)

=
1

n
Dε
H(E¹n∥F¹n) − ¶

n
(93)

and hence this leads to an additive error of ¶/n f ¶ for the
original problem.1 It is easy to see that log

(
2¶ − 1

)
= log(¶)+

O(1) as ¶ → 0, which implies log(1/¶′) = − log(Rn) −
log
(
2¶ − 1

)
= O(n) + O(log(1/¶)) = O(n log(1/¶)) and

hence our original problem can be calculated up to an error ¶
in time O(poly(n) log(1/¶′)) = O(poly(n) log(1/¶)).

B. A Simple One-Shot Version of the Chain Rule

The remainder of this section proves Theorem 1. The
general idea of the proof is the following: We will start
by moving from the hypothesis testing relative entropy of
the adaptive strategy to the Umegaki relative entropy, using
Lemma 1. Then, we will see that by using an amortization
argument (equations (124)–(127) below), we can bound the

1This last inequality might seem very far from optimal, and if one wants to
make further assumptions on how n¶ behaves as n → ∞, ¶ → 0 our runtime
bounds can indeed be improved; however, this is not required for what we
desire to show. Also, the signs here are chosen as the errors appear in practice:
the SDP (74) is a minimization, so any numerical approximation will be larger
than the true value and the additive error hence positive, which then translates
to a value smaller than the true value for our original problem (52).

Fig. 2. Illustration of a key step in our proof, the construc-
tion of the parallel input state. We start by picking a single step
ℓ ∈ {1, . . . , n} out of the adaptive protocol, where the distinguishability
increase D(E(Äℓ)∥F(Ãℓ)) − D(Äℓ∥Ãℓ) is maximal (this corresponds to the
step from the orange to the dotted grey line in the diagram). Now consider
m copies of the adaptive strategy in parallel. We construct our parallel input
state ¿ starting from m copies of the input state of the adaptive strategy at
this step ℓ if the channel was E (this is Ä⊗m

ℓ
). The state ¿ is then smoothed

a bit to reduce its distance to Ã⊗m
ℓ

(which is the input state that we would
have if the channel was F ). The degree to which we smooth depends on the
type I error ³p we want to achieve with the parallel strategy. Having a small
type I error means that the state ¿ is very close to Ä⊗m

ℓ
, whereas allowing

for a larger type I error will move the state closer to Ã⊗m
ℓ

.

performance of the adaptive strategy by the performance of
just one of its steps, the step where the distinguishability of the
two states (that occur if the channel is either E or F) increases
the most. We then consider m parallel copies of this step
and construct a parallel input state using a chain rule for the
smoothed max-relative entropy (Lemma 4); see Figure 2 below
for an illustration of this step. The smoothed max-relative
entropies can be related to the Umegaki relative entropies
we used in the amortization argument by the non-asymptotic
bounds presented in Lemma 6. Finally we connect to the
hypothesis testing relative entropy of a parallel protocol using
Lemma 2.

This subsection and the following one present lemmas we
will use as part of our proof of Theorem 1.

The following is a variant of [22, Prop. 3.2], where
our different convention of smoothing the max-divergence
(smoothing only over normalized states) leads to a tighter and
simpler bound, and restricting to the case of a single input
system also makes things a bit simpler.

Lemma 4: Let E and F be arbitrary quantum channels from
system A to system B, and let Ä ∈ D (A), Ã ∈ P(A). Then
for all ε, ε′ ∈ [0, 1] there exists a state ¿ ∈ B◦

ε (Ä) such that

Dε+ε′

max (E(Ä)∥F(Ã)) f Dε
max(Ä∥Ã) +Dε′

max(E(¿)∥F(¿)).

(94)
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Moreover, ¿ can be chosen as

¿ = arg min
Ä̃∈B◦

ε (Ä)

Dmax(Ä̃∥Ã). (95)

Proof: Let ¿ ∈ B◦
ε (Ä) be an optimal choice for

Dε
max(Ä∥Ã); i.e.,

¿ f 2D
ε
max(Ä∥Ã)Ã. (96)

Since F is a positive map, this implies that

F(¿) f 2D
ε
max(Ä∥Ã)F(Ã). (97)

Furthermore, let Ä ∈ B◦
ε′(E(¿)) be an optimal choice for

Dε′

max(E(¿)∥F(¿)), so that

Ä f 2D
ε′

max(E(¿)∥F(¿))F(¿). (98)

Combining the last two inequalities leads to

Ä f 2D
ε′

max(E(¿)∥F(¿))+Dε
max(Ä∥Ã)F(Ã). (99)

It remains to show that P (Ä, E(Ä)) f ε + ε′ (where P is the
sine distance). This follows from

P (Ä, E(Ä)) f P (Ä, E(¿)) + P (E(¿), E(Ä)) (100)

f ε′ + P (¿, Ä) (101)

f ε′ + ε , (102)

where we used the triangle inequality and the data-processing
inequality for the sine distance (see, e.g., [26]).

C. Non-Asymptotic Bounds for the Smoothed Max-Relative

Entropy

The asymptotic equipartition property for the smoothed
max-relative entropy states that [57]

lim
n→∞

1

n
Dε

max(Ä
¹n∥Ã¹n) = D(Ä∥Ã) ∀ε ∈ (0, 1). (103)

For our proof of Theorem 1, we will require a bound on
the speed of this convergence. Results in this direction have
appeared before in the literature; however, none of the previous
results turn out to be directly applicable for our purposes (see
Remark 8 and Remark 9 below). To prove our result we follow
the established path of using quantum Rényi divergences. One
key ingredient is a bound on the distance between the Petz–
Rényi divergence and relative entropy, where the following is
a slight refinement of [58, Lemma 6.3]:

Lemma 5: Let Ä, Ã ∈ D (H) be quantum states. For µ ∈
(0, 1], define

cµ(Ä∥Ã) :=
1

µ
log
(
2µD1+µ(Ä∥Ã) + 2−µD1−µ(Ä∥Ã) + 1

)
.

(104)

Then, for all µ ∈ (0, 1] and ¶ ∈ (0, µ2 ]:

D1+¶(Ä∥Ã) f D(Ä∥Ã) + ln(2)¶(cµ(Ä∥Ã))2 (105)

f D(Ä∥Ã) + ¶(cµ(Ä∥Ã))2. (106)

Furthermore, if D(Ä∥Ã) < ∞, then for all µ ∈ (0, 1] and
¶ ∈ (0, µ2 ]

D1−¶(Ä∥Ã) g D(Ä∥Ã)

− ln(2)¶(cµ(Ä∥Ã))2 cosh(ln(2)¶cµ(Ä∥Ã)). (107)

and for all ¶ ∈ (0, log 3
2cµ(Ä∥Ã) ]:

D1−¶(Ä∥Ã) g D(Ä∥Ã) − ln(2) cosh(log(3)/2)¶(cµ(Ä∥Ã))2

(108)

g D(Ä∥Ã) − ¶(cµ(Ä∥Ã))2. (109)

The proof of this lemma appears in Appendix A.
Remark 7: The previously known bound [58, Lemma 6.3]

states only an analogue of (106) and follows from Lemma 5
after setting µ = 1/2. Note that in its analogue of (106), [58,
Lemma 6.3] also has a stronger constraint on the range of ¶,
which turns out not to be necessary.

Using Lemma 5 we can then establish a bound on the
convergence speed in the asymptotic equipartition property:

Lemma 6: Let Ä, Ã ∈ D (H) be quantum states, and for
µ ∈ (0, 1], take cµ(Ä∥Ã) as in (104). Then, for all ε ∈ (0, 1)
and n ∈ N:

1

n
Dε

max(Ä
¹n∥Ã¹n) g D(Ä∥Ã)

− cµ(Ä∥Ã)√
n

[
ln(2) log(3)

2
cosh

(
log(3)

2

)

+
4

log(3)
log

(
1

1 − ε

)]
, (110)

1

n
Dε

max(Ä
¹n∥Ã¹n) f D(Ä∥Ã)

+
cµ(Ä∥Ã)√

n

[
ln(2) log(3)

2
+

4

log(3)
log

(
1

ε

)]

+
1

n
log

(
1

1 − ε2

)
, (111)

which implies

1

n
Dε

max(Ä
¹n∥Ã¹n) g D(Ä∥Ã) − 4cµ(Ä∥Ã)√

n
log

(
2

1 − ε

)
,

(112)

1

n
Dε

max(Ä
¹n∥Ã¹n) f D(Ä∥Ã) +

4cµ(Ä∥Ã)√
n

log

(
2

ε

)

+
1

n
log

(
1

1 − ε2

)
. (113)

These bounds can be tightened by adding a condition on n to
be large enough. Define first the numerical constants

K1 := 2

√

2 ln(2) cosh

(
log(3)

2

)
f 2.72, (114)

K2 := 2
√

2 ln(2) f 2.36. (115)

Then, if

n g log

(
1

1 − ε

)(
8

log(3)K1

)2

, (116)

we have the stronger bound

1

n
Dε

max(Ä
¹n∥Ã¹n)gD(Ä∥Ã)−K1√

n
cµ(Ä∥Ã)

√

log

(
1

1 − ε

)
,

(117)
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and similarly, if

n g log

(
1

ε

)(
8

µcµ(Ä∥Ã)K2

)2

, (118)

it holds that

1

n
Dε

max(Ä
¹n∥Ã¹n) f D(Ä∥Ã) +

K2√
n
cµ(Ä∥Ã)

√

log

(
1

ε

)

+
1

n
log

(
1

1 − ε2

)
. (119)

Remember that µcµ(Ä∥Ã) g log(3), and hence (118) is also
always satisfied if

n g log

(
1

ε

)(
8

log(3)K2

)2

. (120)

The proof of this lemma appears in Appendix B.
Remark 8: Our Lemma 6 can be seen an extension of

[58, Theorem 6.4], where a similar bound to (119) is shown
(however with a worse constant and different smoothing
convention). Note that [58] uses the notation S(Ä∥Ã) :=
−D(Ä∥Ã) and Sεmin(Ä∥Ã) := −Dε

max(Ä∥Ã), and hence [58,
Theorem 6.4], while looking like a lower bound, actually is
an upper bound on Dε

max. An equivalent of (117) is shown
in [58] only for the smoothed conditional min-entropy and
not for the (more general) smoothed max-relative entropy.

Remark 9: Another already existing bound for the AEP con-
vergence is the so-called second-order expansion [59], which
gives a tight asymptotic characterization also of the second-
order

√
n term in the convergence to the relative entropy.

There, the second-order term is shown to be proportional to
the square root of the relative entropy variance

V (Ä∥Ã) := Tr
(
Ä(log(Ä) − log(Ã) −D(Ä∥Ã))2

)
. (121)

Later in the proof of Theorem 1, we want to apply these
convergence bounds to the case in which Ä = Än and Ã = Ãn
are the states in an adaptive protocol, and we would like to
obtain a bound on the convergence parameter in n. We will
see that by using chain rules for the geometric relative Rényi
entropy (or the max-relative entropy) we will be able to show
that cµ(Än∥Ãn) = O(n), while we are not aware of any way
of obtaining such a bound for V (Än∥Ãn), and hence cannot
directly use second-order asymptotics.

D. Proof of Our Main Result (Theorem 1)

Proof: We start by applying Lemma 1 to
D³a

H (E(Än)∥F(Ãn)):

1

n
D³a

H (E(Än)∥F(Ãn))

f 1

n

1

1 − ³a

(
D(E(Än)∥F(Ãn)) + h(³a)

)
. (122)

Note that a classical version of this equation in the context
of channel discrimination was previously obtained in [15, Eq.
(33)]. Note now that we can write

D(E(Än)∥F(Ãn)) (123)

= D(E(Än)∥F(Ãn)) −D(Än∥Ãn) +D(Än∥Ãn) (124)

= D(E(Än)∥F(Ãn)) −D(Än∥Ãn)
+D(Λn(E(Än−1))∥Λn(F(Ãn−1))) (125)

f D(E(Än)∥F(Ãn)) −D(Än∥Ãn) +D(E(Än−1)∥F(Ãn−1))

(126)

f . . . f
n∑

k=1

[
D(E(Äk)∥F(Ãk)) −D(Äk∥Ãk)

]
, (127)

where we used the definition of Äk and Ãk, the data-processing
inequality, and the fact that Ä1 = Ã1. Let us use the index
ℓ for the step in the adaptive protocol where this amortized
difference is the largest, i.e.

ℓ := arg max
k∈{1,...,n}

[
D(E(Äk)∥F(Ãk)) −D(Äk∥Ãk)

]
. (128)

Then,

1

n
D(E(Än)∥F(Ãn)) f D(E(Äℓ)∥F(Ãℓ)) −D(Äℓ∥Ãℓ). (129)

We can convert this to smoothed max-relative entropies by
using Lemma 6. We will proceed with the bound requiring
a condition on m (or n as it is called in Lemma 6); the m-
independent bound is achieved in complete analogy by just
taking the alternative statements from Lemma 6. We get:

D(E(Äℓ)∥F(Ãℓ)) −D(Äℓ∥Ãℓ) f
1

m

(
Dε1

max

(
E¹m(Ä¹mℓ )∥F¹m(Ã¹mℓ )

)
−Dε2

max

(
Ä¹mℓ ∥Ã¹mℓ

))

+
1√
m

[
K1cµ1

(
E(Äℓ)∥F(Ãℓ)

)
√

log

(
1

1 − ε1

)

+ K2cµ2(Äℓ∥Ãℓ)
√

log

(
1

ε2

)]
+

1

m
log

(
1

1 − ε22

)

(130)

where µ1, µ2 ∈ (0, 1] and ε1, ε2 ∈ (0, 1) are arbitrary. It will
be very convenient to choose 1−ε1 = ε2 =: ε, which is almost
optimal as K1 ≈ K2 and cµ

(
E(Äℓ)∥F(Ãℓ)

)
≈ cµ(Äℓ∥Ãℓ) for

large ℓ (which is the regime we are most interested in). Then,

D(E(Äℓ)∥F(Ãℓ)) −D(Äℓ∥Ãℓ) f
1

m

(
D1−ε

max

(
E¹m(Ä¹mℓ )∥F¹m(Ã¹mℓ )

)
−Dε

max

(
Ä¹mℓ ∥Ã¹mℓ

))

+
cℓ√
m

√

log

(
1

ε

)
+

1

m
log

(
1

1 − ε2

)
, (131)

where

cℓ := inf
µ1,µ2∈(0,1]

[
K1cµ1

(
E(Äℓ)∥F(Ãℓ)

)
+K2cµ2(Äℓ∥Ãℓ)

]
,

(132)

and the conditions on m from Lemma 6 will be satisfied if

m g log

(
1

ε

)(
8

log(3)K2

)2

. (133)

Taking ε f 1/2, we can apply Lemma 4 to (131). We then
get a state ¿̃ ∈ B◦

ε (Ä
¹m
ℓ ) such that

D(E(Äℓ)∥F(Ãℓ)) −D(Äℓ∥Ãℓ)
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f 1

m
D1−2ε

max

(
E¹m(¿̃)∥F¹m(¿̃)

)
+

cℓ√
m

√

log

(
1

ε

)

+
1

m
log

(
1

1 − ε2

)
. (134)

Note that ¿̃ = ¿̃Rm
a A

m ∈ D (R¹m
a ¹A¹m) is the first of

the two possible choices for ¿ given in Theorem 1. For the
other one, let ¿̃R′Rm

a A
m be a purification of ¿̃Rm

a A
m , and hence

also a purification of ¿̃Am . As the smoothed max-divergence
satisfies the data-processing inequality (see, e.g., [26, Prop.
4.60]) we have

D1−2ε
max

(
E¹m(¿̃Rm

a A
m)∥F¹m(¿̃Rm

a A
m)
)

f D1−2ε
max

(
E¹m(¿̃R′Rm

a A
m)∥F¹m(¿̃R′Rm

a A
m)
)
. (135)

Now, let ¿ be the canonical purification of ¿̃Am , as specified
in Theorem 1. Since all purifications are equivalent up to an
isometry on the purifying system (see, e.g., [26]) on which
the channels E¹m and F¹m act as an identity, and since
the smoothed max-divergence is invariant under isometries,
we have

D1−2ε
max

(
E¹m(¿̃R′Rm

a A
m)∥F¹m(¿̃R′Rm

a A
m)
)

= D1−2ε
max

(
E¹m(¿)∥F¹m(¿)

)
. (136)

We will proceed with ¿ as the chosen state, but note that
everything works analogously by choosing ¿̃. We now further
apply the upper bound from Lemma 2 to find:

D(E(Äℓ)∥F(Ãℓ)) −D(Äℓ∥Ãℓ)

f 1

m
D

1−(1−2ε)2

H

(
E¹m(¿)∥F¹m(¿)

)
+

cℓ√
m

√

log

(
1

ε

)

+
1

m

[
log

(
1

1 − ε2

)
+ log

(
1

1 − (1 − 2ε)2

)]
.

(137)

To get our desired expression we set ³p := 1 − (1 − 2ε)2,
or equivalently ε = 1

2 (1 −
√

1 − ³p). Using the estimates

1 −
√

1 − ³p

2
g ³p

4
(138)

and

1 − ε2 =
1 +

√
1 − ³p

2
+
³p
4

g 1 − ³p
4
, (139)

we arrive at the expression

D(E(Äℓ)∥F(Ãℓ)) −D(Äℓ∥Ãℓ) f
1

m
D
³p

H

(
E¹m(¿)∥F¹m(¿)

)

+
cℓ√
m

√

log

(
4

³p

)
+

1

m

[
log

(
1

³p

)
− log

(
1 − ³p

4

)]
,

(140)

which we can insert into (129) and then (122) to get

1

n
D³a

H (E(Än)∥F(Ãn))

f 1

1 − ³a

[
1

m
D
³p

H (E¹m(¿)∥F¹m(¿)) +
cℓ√
m

√

log

(
4

³p

)

+
1

m

[
log

(
1

³p

)
−log

(
1−³p

4

)]
+
h(³a)

n

]
, (141)

which leads to the desired statement in (39).

For the bounds on cℓ, we start with

cµ(E(Äℓ)∥F(Ãℓ))

=
1

µ
log
(
2µD1+µ(E(Äℓ)∥F(Ãℓ)) + 2−µD1−µ(E(Äℓ)∥F(Ãℓ)) + 1

)

f 1

µ
log
(
2µD̂1+µ(E(Äℓ)∥F(Ãℓ)) + 2

)
, (142)

where we used (12) for the inequality. Now, by repeated use
of the chain rule for the geometric Rényi divergence [60, Thm
3.4] we get

D̂1+µ(E(Äℓ)∥F(Ãℓ))

f D̂1+µ(E∥F) + D̂1+µ(Äℓ∥Ãℓ) (143)

= D̂1+µ(E∥F) + D̂1+µ(Λℓ(E(Äℓ−1))∥Λℓ(F(Ãℓ−1))) (144)

f D̂1+µ(E∥F) + D̂1+µ(E(Äℓ−1)∥F(Ãℓ−1)) (145)

f . . . f ℓD̂1+µ(E∥F). (146)

Defining the corresponding channel quantity

ĉµ(E∥F) :=
1

µ

(
2µD̂1+µ(E∥F) + 2

)
, (147)

we find that

cµ(E(Äℓ)∥F(Ãℓ)) f
1

µ
log
(
2ℓD̂1+µ(E∥F) + 2

)
(148)

f ℓ

µ
log
(
2D̂1+µ(E∥F) + 2

)
(149)

= ℓ ĉµ(E∥F). (150)

Using the same argument, we find that also D̂1+µ(Äℓ∥Ãℓ) f
ℓD̂1+µ(E∥F) and hence also

cµ(Äℓ∥Ãℓ) f ℓ ĉµ(E∥F). (151)

Thus,

cℓ f ℓ(K1 +K2) inf
µ∈(0,1]

ĉµ(E∥F) (152)

f n(K1 +K2) inf
µ∈(0,1]

ĉµ(E∥F) , (153)

concluding the proof.
1) Proof of Corollary 1:

Proof: Corollary 1 follows from (31) by making the
following estimates

h(³a) f 1, (154)

K f 1, (155)

c′ℓ f
8n

log(3)
ĉ1(E∥F) ≈ 5.05n ĉ1(E∥F)

f 6n ĉ1(E∥F), (156)

− log
(
1 − ³p

4

)
f 1. (157)

Combining all of these we can bound the error term by

6n√
m
ĉ1(E∥F) log

(
8

³p

)
+

1

m
log

(
2

³p

)
+

1

n
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f 7n√
m
ĉ1(E∥F) log

(
8

³p

)
+

1

n
, (158)

where we used that ĉµ(E∥F) g 1 for all µ ∈ (0, 1]. Note
finally that D̂2(E∥F) = D2(E∥F) f Dmax(E∥F), which
leads to the desired expression of C in (28).

IV. AN EXAMPLE

In this section we provide an example that illustrates how
adaptive and parallel strategies can differ in the finite-length
regime, and how our result bounds this difference. Specifically,
we construct an example where the number of channel uses
required by a parallel strategy to match a specific adaptive
strategy turns out to be arbitrarily large. This demonstrates
that the relation between adaptive and parallel strategies in
the finite-length regime is in general complex, and one cannot
expect a substantially simpler relationship between adaptive
and parallel strategies than what we obtain in Corollary 1 and
Theorem 1.

Our example is inspired by the already mentioned example
from [16] and [21] that shows a separation between the
asymptotic error decay rate of adaptive and parallel strategies
in the symmetric setting. For a specific pair of channels (E , F),
they construct an adaptive strategy with two channel uses that
achieves perfect discrimination (i.e., type I and type II error
are equal to zero), whereas for parallel strategies they upper
bound the symmetric error exponent by a finite value (i.e., they
upper bound the rate at which both errors can simultaneously
go to zero); so in particular, perfect discrimination is never
possible with parallel strategies. Looking at this example in the
asymmetric setting, one finds that there exists an input state
¿ ∈ D (A) such that for any arbitrary type I error ³p there
exists an m such that D³p

H ((E(¿))¹m∥(F(¿))¹m) = ∞; i.e.,
already with a parallel strategy with product inputs one can
achieve zero type II error with an arbitrary small type I error if
one only makes m large enough. Hence, unlike the symmetric
setting, in the asymmetric setting there is no asymptotic gap
between adaptive and parallel strategies, but there is still a
significant difference for finite m, as the adaptive strategy
achieves ³a = 0, ´a = 0 with only two channel uses,
whereas the parallel strategy requires a large m to achieve
³p f ε, ´p = 0. As mentioned in Remark 5, the two channels
E and F used in this example have Dmax(E∥F) = ∞ and
hence Theorem 1 does not immediately apply. What we are
going to do though, is use a slightly noisy version of this
channel F , which makes Dmax(E∥F) finite.

Define the channels E ,F : D
(
C

2 ¹ C
2
)
→ D

(
C

2
)

for
» ∈ [0, 1] as follows:

E(Ä¹ É) := |0ðï0| ï0|É|0ð + |0ðï0| ï0|Ä|0ðï1|É|1ð

+
1

2
ï11|Ä¹ É|11ð (159)

F(Ä¹ É) := (1 − »)

[
|+ðï+| ï0|É|0ð

+ |1ðï1| ï+|Ä|+ðï1|É|1ð

+
1

2
ï−1|Ä¹ É |−1 ð

]
+ »

1

2
. (160)

It is easy to see that

E
(
E
(
|00ðï00|

)
¹ |1ðï1|

)
= |0ðï0| , (161)

F
(
F
(
|00ðï00|

)
¹ |1ðï1|

)
= (1 − ¶(»)) |1ðï1| + ¶(») |0ðï0| .

(162)

where ¶(») = (3» − »2)/4. For » = 0 (which corresponds
to the original example in [16]) we find ¶(0) = 0 and hence
the above gives an adaptive strategy that makes the channels
perfectly distinguishable with just two channel uses. The exact
same strategy will become arbitrarily good if » is nonzero but
small, specifically

1

2
D0
H(E(Ä2)∥F(Ã2)) = −1

2
log(¶(»)), (163)

where the adaptive strategy has Ä1 = Ã1 = |00ðï00| and Ä2 =
|01ðï01|, Ã2 = (1 − »/2) |+1ðï+1| + »/2 |−1ðï−1|. We also
find:

D(E(Ä1)∥F(Ã1)) −D(Ä1∥Ã1) = D(E(Ä1)∥F(Ä1))

= D(|0ðï0| ∥(1 − »/2) |+ðï+| + »/2 |−ðï−|)

= −1

2

[
log
(»

2

)
+ log

(
1 − »

2

)]
, (164)

D(E(Ä2)∥F(Ã2)) −D(Ä2∥Ã2)

= log(¶(»)) +
1

2

[
log
(»

2

)
+ log

(
1 − »

2

)]
, (165)

where interestingly (164) is always larger than (165), and so
it is the first step that increases the distinguishability the most
(when measured in terms of relative entropy). This also implies
that this adaptive strategy is not asymptotically optimal, as

1

2
D(E(Ä2)∥F(Ã2)) < D(E(Ä1)∥F(Ä1)), (166)

and hence it is asymptotically better to just use a parallel strat-
egy with tensor copies of Ä1 as an input state. Nevertheless,
we will see that the adaptive strategy is still far superior in a
regime where the number of channel uses m is not too large:
It is well known (see, e.g., [26, Prop. 4.66]) that for all states
Ä, Ã

lim
³p→0

D
³p

H (Ä∥Ã) = D0
H(Ä∥Ã) = − log

(
Tr
(
Ä0Ã
))
. (167)

In this specific example, for all input states ¿ ∈
D
(
HR ¹ C

2 ¹ C
2
)
, it can be shown that

D0
H(E(¿)∥F(¿)) f 2. (168)

To see this, we start by observing that the second input
system of our channels (previously called É) can be treated
as classical, and hence the maximum is attained at either
É = |0ðï0| or É = |1ðï1| (this follows from joint convexity).
If we choose the former, the channel output does not depend
on the remaining input state and one finds

D0
H(E(ÄRA ¹ |0ðï0|)∥F(ÄRA ¹ |0ðï0|))

= − log Tr
(
|0ðï0| (|+ðï+| (1 − »/2) + |−ðï−| (»/2))

)
= 1.

(169)
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For the second choice of É one finds that D0
H(E(¿)∥F(¿)) =

0 unless ¿ = ÄR ¹ |0ðï0| ¹ |1ðï1| and then

D0
H(E(|0ðï0| ¹ |1ðï1|)∥F(|0ðï0| ¹ |1ðï1|))

= − log Tr
(
|0ðï0| (1/4(1 + »))

)
f 2. (170)

An analogous argument also immediately yields
D0
H(E¹m(¿)∥F¹m(¿)) f 2 m for any (potentially

entangled) ¿. Hence, for fixed m, the rate

1

m
D
³p

H (E¹m(¿)∥F¹m(¿)) (171)

of any parallel strategy can be brought down to 2 by making
the type I error threshold ³p small enough, whereas the
mentioned adaptive strategy achieves zero type I error and
a type II error rate that becomes arbitrarily large as »→ 0.

To actually calculate the performance of a parallel strat-
egy where the input Ä1 is used m times, we can use the
second-order asymptotics of hypothesis testing relative entropy
to relative entropy [61] (this only works here because our input
state is a product state). Define Ä = E(Ä1), Ã = F(Ä1). Then
[61, Thm. 5] implies

1

m
D
³p

H (Ä¹m∥Ã¹m)

g D(Ä∥Ã) +

√
V

m
Φ−1

(
³p −

1√
m

CT 3

√
V 3

)
, (172)

1

m
D
³p

H (Ä¹m∥Ã¹m) f D(Ä∥Ã)

+

√
V

m
Φ−1

(
³p +

1√
m

(
CT 3

√
V 3

+ 2

))
, (173)

where Φ−1 is the inverse of the cumulative distribution func-
tion of the standard normal distribution, C f 0.4784, and

V ≡ V (Ä∥Ã) := Tr
[
Ä(log Ä− log Ã −D(Ä∥Ã))2

]
, (174)

T 3 ≡ T 3(Ä∥Ã) (175)

:=
∑

i,j

¼i|ïxi|yjð|2|log(¼i) − log(µj) −D(Ä∥Ã)|3 (176)

for spectral decompositions Ä =
∑
i ¼i |xiðïxi| and Ã =∑

j µj |yjðïyj |.
Note that, instead of comparing the type II error decay

rate of a parallel strategy with m channel uses to the cor-
responding rate of an adaptive strategy with two channel uses,
it might be more intuitive to compare the parallel strategy to
a setup where the adaptive strategy with two channel uses
is repeated m/2 times in parallel (so that the adaptive and
parallel strategies have the same number of channel uses, and
comparing rates is the same as comparing type II errors). For
this example, since the type I error of the adaptive strategy
was chosen to be zero, this is actually equivalent, as

1

2k
D0
H((E(Ä2))

¹k∥(F(Ã2))
¹k)

=
1

2
D0
H(E(Ä2)∥F(Ã2)) = −1

2
log(¶(»)). (177)

Our theorem (Theorem 1) gives an upper bound on the
extent to which all finite-length parallel strategies can have
worse type II errors compared to the adaptive strategy,

or equivalently how large m has to be chosen to achieve sim-
ilar performances. For this example specifically, due to (164)
and (165) we can choose ℓ = 1 in Theorem 1, and hence also
the parallel input state ¿ in Theorem 1 will just be ¿ = Ä¹m1 .

Figure 3 depicts our lower bound (from Theorem 1) on
the performance of a parallel strategy for the given adaptive
strategy, together with the actual performance of the parallel
strategy choosing Ä¹m1 as the input state. For the figure we
chose » = 2−50, ³a = 0, and ³p = 2−5. The parameters are
chosen to make the following features nicely visible simul-
taneously in one plot: (i) the range of m where the parallel
strategy is worse, (ii) the range of m where it surpasses the
adaptive strategy, and (iii) our bound. For cℓ in Theorem 1
we used (42) with a numerical optimization over µ1. One finds
that there is a range of values for m for which the adaptive
strategy is better, and the parallel strategy is lower bounded
fairly tightly by our bound. As the given adaptive strategy is
not asymptotically optimal it is eventually surpassed by the
parallel strategy.

V. DISCUSSION AND OUTLOOK

In this final section, we discuss several pathways through
which one could hope to improve or extend our result, together
with a discussion of obstacles we encountered on these path-
ways, and their relation to different open problems in quantum
channel discrimination.

First of all, one might hope to be able to remove the factor
of 1−³a appearing in (39), perhaps at the cost of an additional
error term proportional to log(1 − ³a). If this additional error
term decays in m and n (say, as long as ³a is bounded away
from one), this would prove the strong converse property for
quantum channel discrimination. To see this, suppose we could
show something along the lines of the following inequality:

1

m
D
³p

H (E¹m(¿)∥F¹m(¿))
?
g 1

n
D³a

H (E(Än)∥F(Ãn))

− C1n√
m

log

(
8

³p

)
− C2

n
log

(
1

1 − ³a

)
. (178)

Now, fixing any ³a ∈ (0, 1) and taking limits (in this order)
m→ ∞, n→ ∞, ³p → 0, we would find that for an arbitrary
³a ∈ (0, 1)

Dreg(E∥F) = lim
³p→0

lim
n→∞

D
³p

H (E¹n∥F¹n) (179)

?
g lim sup

n→∞

1

n
D³a

H (E(Än)∥F(Ãn)), (180)

i.e., allowing a finite type I error ³a ∈ (0, 1) does not improve
the best achievable type II error rate. This is precisely the
strong converse property. Establishing the strong converse
property for quantum channel discrimination is an important
and very interesting open problem, which is still unsolved
despite serious efforts. Significant progress has been made
in [62], and another recent attempt was made in [63]; see
also [64].

One might hope to obtain such a variant of our bound
without the factor 1 − ³a, by, instead of transitioning
from hypothesis testing entropy to relative entropy in (122),
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Fig. 3. Illustration of the type II error decay rate per channel use of a simple adaptive and parallel strategy for a specific pair of channels (see (159) and (160)
for the definitions of the channels E and F , respectively, where κ = 2

−50). We compare a fixed adaptive strategy with two channel uses (constant black
line) to (i) our lower bound on the performance of a parallel strategy (yellow line) and (ii) the actual performance of a parallel strategy (red and green lines),
which are plotted as functions of the number of parallel channel uses m. The black line shows the value of (163), i.e., the type II error exponent for the
given adaptive strategy with two channel uses and type I error αa = 0. This can alternatively be thought of as the rate of repeating the two-step adaptive
strategy m/2 times in parallel. The yellow line shows the lower bound on the parallel strategy from our theorem (i.e., the right-hand side of (39)), choosing
αp = 2

−5. For this specific example we can calculate the parallel input state ν of our theorem, and while we cannot explicitly find the optimal POVM and
corresponding type II error (i.e., we cannot explicitly calculate the left-hand side of (39)), we can bound it from above and below using the second-order
asymptotics of the hypothesis testing relative entropy, which is shown in the red and green lines, corresponding to the values of (173) and (172). We see that
for small m there is a gap between the adaptive and parallel strategies; i.e., the adaptive strategy offers an advantage. This advantage disappears once m gets
larger and in this specific example the chosen adaptive strategy even eventually gets surpassed by the parallel strategy, as the adaptive strategy turns out not
to be asymptotically optimal.

moving to an ³-Rényi relative entropy instead and subse-
quently employing the known relations between Rényi relative
entropies and smoothed max-relative entropies. It turns out that
this will at some point require bounding the difference between
Rényi relative entropies of order 1 − ³ and 1 + ³. This is
possible using Lemma 5, however at the cost of an error term
(cµ(Än∥Ãn))2, which will scale quadratically in n. As this does
not pick up any dependence in m, such an approach will not
lead to anything useful in the asymptotic limit, and is hence
unsuccessful.

One further interesting question deals with the relation
between ℓ and n in Theorem 1. One might hope that an
optimal adaptive strategy achieves the maximum possible
distinguishability gain per channel use, i.e.

DA(E∥F) = sup
Ä,Ã∈D(R¹A)

D(E(Ä)∥F(Ã)) −D(Ä∥Ã), (181)

after some finite number of channel uses, or at least comes
very close to it. If that was the case, one could bound ℓ by
a constant and would remove the dependence on n in (28).
However, note that the supremum in (181) goes over arbitrarily
large reference systems R and hence does not need to be
achieved, and we are not aware of any bounds on the system
size R to get close to the optimum value. Alternatively,
since DA(E∥F) = Dreg(E∥F) also a bound on the speed
of convergence of the regularized channel divergence would
do, which we are however also not aware of (Ref. [62] proves
such a bound for the sandwiched Rényi divergence, which
unfortunately cannot be extended straightforwardly to relative
entropy). Hence, for now we have to assume that ℓ can in
general be n, and that to adequately simulate an adaptive
strategy with n channel uses, one might need to employ more
than n2 parallel channel uses to keep the error term in our
bound small.
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While our result becomes quite powerful in the asymmetric
asymptotic setting, Theorem 1 can in principle be applied for
any combination of type I and II errors. Hence, it could be
interesting to apply it to scenarios where the type I error decays
with m, say as ³p = 2−km for some constant k. In this case,
one would want to apply (39), to have at least a chance of the
error term being bounded; however – depending on k – the
corresponding condition (38) might not always be fulfilled.
It would be interesting to see whether this condition on m
could perhaps be relaxed, to allow for a wider range of k in
this specific scenario.

As mentioned already in Remark 9, our bounds could be
significantly tightened if we were able to employ second-order
expansions, which however requires controlling the variance
of the relative entropy V (Än∥Ãn) in n, which we are unable
to do. This seems to be again related to the strong converse
problem, as second-order expansions for the hypothesis testing
relative entropy imply the strong converse property. Already
for the parallel case, if one was able to show

V (E¹n(¿)∥F¹n(¿)) = O(n), (182)

where ¿ ∈ D (R¹n ¹A¹n) is the optimal joint input state,
this would be a very significant step towards proving the strong
converse for quantum channel discrimination. Conversely,
examples where this scales faster than linearly in n are quite
likely to lend themselves to counterexamples for the strong
converse property. We are not aware of any such examples:
we leave this question open for further studies.

Finally, we believe that it should be possible to generalize
our result to the infinite-dimensional setting with only minor
modifications, which we also leave open to future investiga-
tions.

APPENDIX

A. Proof of Lemma 5 (Petz–Rényi Continuity Bound in ³

Proof of Lemma 5: Note first that for (105), where we did
not explicitly require D(Ä∥Ã) < ∞, we can restrict to that
case, as otherwise also D1+¶(Ä∥Ã) = ∞ and the statement is
trivial. Hence, we can assume Ã to be invertible (otherwise
restrict to the subspace where Ã is supported). Define the
operator X = Ä¹ (Ã−1)T , and the canonical purification of Ä
on H¹H:

|ϕð =
∑

i

√
Ä |ið ¹ |ið , (183)

where |ið is an orthonormal basis of H. Then, for all ¶ ∈
[−1, 1]:

D1+¶(Ä∥Ã) =
1

¶
log
(
ïϕ|X¶|ϕð

)
(184)

and

D(Ä∥Ã) = ïϕ| log(X)|ϕð. (185)

For all t > 0 and ¶ ∈ R, the first term in the expansion of t¶

around ¶ = 0 is ¶ ln(t). Hence let us write t¶ = 1 + ¶ ln(t) +
r¶(t) where r¶(t) := t¶ − ¶ ln(t) − 1. Since 1 + x f ex for
all x ∈ R we see that

r¶(t) = t¶ − ¶ ln(t) − 1 (186)

f t¶ + e−¶ ln(t) − 2 (187)

= e¶ ln(t) + e−¶ ln(t) − 2 (188)

= 2(cosh(¶ ln(t)) − 1) =: s¶(t). (189)

It is easy to see that s−¶(t) = s¶(t) and s¶(t) = sµ¶(t
1/µ) for

all µ ∈ R. Also, it is easy to verify that s¶(t) is monotonically
increasing in t for t g 1 and concave in t if ¶ f 1

2 and t g 3.
For all t g 0, either t or 1/t will be larger than or equal to
one, and so we can always use the monotonicity to write

s¶(t) = s¶

(
1

t

)
f s¶

(
t+

1

t

)
. (190)

Using this, we get for all t g 0 and µ ∈ (0, 1]

s¶(t) = s¶/µ(t
µ) f s¶/µ

(
tµ + t−µ

)
(191)

f s¶/µ
(
tµ + t−µ + 1

)
. (192)

It is easy to see that the real function x + 1/x has a global
minimum for x > 0 at x = 1 and hence the argument at the
right hand side is guaranteed to be larger than 3. Hence we
can use the concavity of s¶/µ to write

ïϕ|s¶(X)|ϕð f ïϕ|s¶/µ(Xµ +X−µ + 1)|ϕð (193)

f s¶/µ(ïϕ|Xµ +X−µ + 1|ϕð) (194)

= s¶/µ(2
µcµ(Ä∥Ã)), (195)

where the second inequality is a well-known property of
concave functions (Jensen’s inequality) and cµ is defined
in (104). Finally, we use Taylor’s theorem with the Lagrange
form of the remainder to bound

s¶(t) = s0(t) +
d

d¶
s¶(t)

∣∣
¶=0

¶ +
1

2

d2

d¶2
s¶(t)

∣∣
¶=À

¶2 (196)

= ¶2(ln(t))2 cosh(À ln(t)) (197)

f ¶2(ln(t))2 cosh(¶ ln(t)), (198)

for all t g 0 and some À ∈ (0, ¶), where we have used that
s0(t) = d

d¶ s¶(t)|¶=0 = 0. Hence,

ïϕ|s¶(X)|ϕð f s¶/µ(2
µcµ(Ä∥Ã))

f (¶ ln(2)cµ(Ä∥Ã))2 cosh(¶ ln(2)cµ(Ä∥Ã)). (199)

To finally prove our claims, let us start with the case where
¶ > 0. Then,

D1+¶(Ä∥Ã) =
1

¶
log
(
ïϕ|X¶|ϕð

)
(200)

=
1

¶
log(1 + ¶ ln(2)ïϕ| log(X)|ϕð + ïϕ|r¶(X)|ϕð) (201)

=
1

¶
log(1 + ¶ ln(2)D(Ä∥Ã) + ïϕ|r¶(X)|ϕð) (202)

f 1

¶
log(1 + ¶ ln(2)D(Ä∥Ã) + ïϕ|s¶(X)|ϕð) (203)

=
1

¶
log(1 + ¶ ln(2)D(Ä∥Ã))

+
1

¶
log

(
1 +

ïϕ|s¶(X)|ϕð
1 + ¶ ln(2)D(Ä∥Ã)

)
(204)

f D(Ä∥Ã) +
1

¶
log(1 + ïϕ|s¶(X)|ϕð) (205)

f D(Ä∥Ã)
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+
1

¶
log
(
1 + (¶ ln(2)cµ(Ä∥Ã))2 cosh(¶ ln(2)cµ(Ä∥Ã))

)

(206)

f D(Ä∥Ã) + ¶ ln(2)(cµ(Ä∥Ã))2, (207)

where the third-to-last inequality uses log(1 + x) f x
ln(2) and

(for the second term) the fact that ¶ and D(Ä∥Ã) are non-
negative. The final inequality follows from the fact that k2 −
ln
(
1 + k2 cosh(k)

)
is monotonically increasing in k and hence

positive.
If ¶ < 0, the issue arises that 1 + ¶ ln(2)D(Ä∥Ã) no longer

has to be greater than 1 (it might in fact be negative) and
so we have to apply a slightly different argument. Starting
analogously, we get

D1+¶(Ä∥Ã)

=
1

¶
log(1 + ¶ ln(2)D(Ä∥Ã) + ïϕ|r¶(X)|ϕð) (208)

g 1

¶
log(1 + ¶ ln(2)D(Ä∥Ã) + ïϕ|s¶(X)|ϕð) (209)

g D(Ä∥Ã) +
1

¶ ln(2)
ïϕ|s¶(X)|ϕð (210)

g D(Ä∥Ã) + ¶ ln(2)(cµ(Ä∥Ã))2 cosh(¶ ln(2)cµ(Ä∥Ã)),

(211)

where we used log(1 + x) f x
ln(2) in the second inequal-

ity. Finally, if we assume that |¶| f log 3
2cµ(Ä∥Ã) , then

ln(2) cosh(ln(3)/2) < 1 and so we get

D1+¶(Ä∥Ã) g D(Ä∥Ã) + ¶(cµ(Ä∥Ã))2. (212)

Note that since cµ(Ä∥Ã) g log(3)
µ the condition |¶| f µ/2 is

automatically fulfilled. □

B. Proof of Lemma 6 (AEP Convergence Bound)

Proof of Lemma 6: We start with the proof of (117). We use
[41, Prop. 4], which states that for all ³ ∈ [0, 1) and all ε ∈
[0, 1)

Dε
max(Ä∥Ã) g D³(Ä∥Ã) +

2

³− 1
log

(
1

1 − ε

)
. (213)

Note that the statement in [41] is given for smoothing in trace-
distance, but since the trace distance is always less than the
sine distance, for fixed ε the trace-distance-smoothed max-
divergence is smoothed over a larger ball, and hence also
always smaller, which is why the statement for the purified-
distance-smoothed max-divergence is implied. We apply this
to Ä¹n and Ã¹n and use the additivity of the Petz-Rényi
relative entropy to get:

1

n
Dε

max(Ä
¹n∥Ã¹n) g D³(Ä∥Ã) +

1

n

2

³− 1
log

(
1

1 − ε

)
.

(214)

Now, we combine this with (108) of Lemma 5 to get

1

n
Dε

max(Ä
¹n∥Ã¹n) g D(Ä∥Ã)

+ ln(2) cosh

(
log(3)

2

)
cµ(Ä∥Ã)2(³− 1)

+
1

n

2

³− 1
log

(
1

1 − ε

)
, (215)

together with the condition 0 f 1−³ f log 3
2cµ(Ä∥Ã) . We are now

free to choose ³ to optimize the right-hand side. It is easy to
see that the right-hand side will be maximal if both terms are
equal, which is achieved for

1 − ³ =

√√√√√
2 log

(
1

1−ε

)

n ln(2) cosh
(

log(3)
2

)
cµ(Ä∥Ã)2

=
4

K1cµ(Ä∥Ã)

√√√√ log
(

1
1−ε

)

n
. (216)

Hence we get

1

n
Dε

max(Ä
¹n∥Ã¹n) g D(Ä∥Ã) − K1√

n
cµ(Ä∥Ã)

√

log

(
1

1 − ε

)
,

(217)

together with the condition

n g log

(
1

1 − ε

)(
4

K1 log(3)

)2

. (218)

In order to get an expression without a condition on n we
have to choose a different ³. Choosing

1 − ³ =
log(3)

2cµ(Ä∥Ã)
√
n

(219)

satisfies the condition on 1 − ³ for all n and gives:

1

n
Dε

max(Ä
¹n∥Ã¹n) g D(Ä∥Ã)

− cµ(Ä∥Ã)√
n

[
ln(2) log(3)

2
cosh

(
log(3)

2

)

+
4

log(3)
log

(
1

1 − ε

)]
. (220)

The simplification (112) follows from log(3) > 1 and

ln(2) log(3)

2
cosh

(
log(3)

2

)
< 1. (221)

The second equation (119) is proved very analogously.
We start again with a relation to a Rényi relative entropy for
³ > 1 [26, Prop. 4.61]:

Dε
max(Ä∥Ã) f D³(Ä∥Ã)+

2

³− 1
log

(
1

ε

)
+log

(
1

1−ε2
)
.

(222)

Note that [26, Prop. 4.61] uses the sandwiched Rényi diver-
gence, which however is always less than the Petz, and hence
the above statement is implied. We again apply this to n tensor
powers of Ä and Ã and combine it with (105) from Lemma 5
to obtain:

1

n
Dε

max(Ä
¹n∥Ã¹n) f D(Ä∥Ã) + ln(2)cµ(Ä∥Ã)2(³− 1)

+
2

n(³− 1)
log

(
1

ε

)
+

1

n
log

(
1

1 − ε2

)
, (223)
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together with the condition

³− 1 f µ

2
. (224)

The right hand side is minimized again for

³− 1 =

√
2 ln(2) log

(
1
ε

)

ncµ(Ä∥Ã)2
=

4

K2cµ(Ä∥Ã)

√
log
(

1
ε

)

n
, (225)

which gives

1

n
Dε

max(Ä
¹n∥Ã¹n) f D(Ä∥Ã)

+
K2√
n
cµ(Ä∥Ã)

√

log

(
1

ε

)
+

1

n
log

(
1

1 − ε2

)
, (226)

as well as the condition

n g log

(
1

ε

)(
8

µcµ(Ä∥Ã)K2

)2

. (227)

Alternatively, choosing

³− 1 =
log(3)

2cµ(Ä∥Ã)
√
n

(228)

will again give (111), and the simplified form (113) follows
by the same argument that log(3) > 1 and

ln(2) log(3)

2
< 1. (229)

This concludes the proof. □
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