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Figure 1: We introduce LabelAld, an ML-based inference system to provide just-in-time feedback during crowdsourced labeling
to improve data quality and user expertise. LabelAId consists of: (1) a novel ML-based pipeline for detecting labeling mistakes,
which is efficiently trained to infer label correctness based on user behavior and domain knowledge; (2) a real-time ML model
and UI that tracks worker behavior and intervenes when an inferred mistake is occurring,.

ABSTRACT

Crowdsourcing platforms have transformed distributed problem-
solving, yet quality control remains a persistent challenge. Tra-
ditional quality control measures, such as prescreening workers
and refining instructions, often focus solely on optimizing eco-
nomic output. This paper explores just-in-time Al interventions
to enhance both labeling quality and domain-specific knowledge
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among crowdworkers. We introduce LabelAld, an advanced in-
ference model combining Programmatic Weak Supervision (PWS)
with FT-Transformers to infer label correctness based on user be-
havior and domain knowledge. Our technical evaluation shows
that our LabelAld pipeline consistently outperforms state-of-the-
art ML baselines, improving mistake inference accuracy by 36.7%
with 50 downstream samples. We then implemented LabelAld into
Project Sidewalk, an open-source crowdsourcing platform for ur-
ban accessibility. A between-subjects study with 34 participants
demonstrates that Label Ald significantly enhances label precision
without compromising efficiency while also increasing labeler con-
fidence. We discuss LabelAld’s success factors, limitations, and its
generalizability to other crowdsourced science domains.
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1 INTRODUCTION

Crowdsourcing systems have transformed distributed human
problem-solving, enabling large-scale collaborations that were pre-
viously infeasible [41]. Quality control, however, remains a per-
sistent challenge leading to noisy or unusable data [16, 48]. Ex-
isting quality control measures such as prescreening crowdwork-
ers [20, 44], refining instructions [24, 47, 81], manipulating incen-
tives [24, 47, 81], and majority vote filtering are designed to optimize
economic output: data quality and worker efficiency. Our research
explores a subset of crowdsourcing that focuses on community sci-
ence, or crowdsourced science [74]. Platforms like Zooniverse [84] and
Foldlt [46] engage non-professionals in scientific tasks and serve
as important means of public engagement and education [74, 90].
Since participants are primarily volunteers, crowdsourced science
presents unique quality control challenges: users are primarily mo-
tivated by intrinsic interest, learning opportunities, and making a
difference but may be unfamiliar with the domain [68]. Previous
work in crowdsourcing has explored the dual objectives of enhanc-
ing work quality as well as learning experience in crowdsourcing
systems by providing feedback to crowdworkers [21-23, 90, 99]. Yet,
these approaches are less scalable because they require additional
commitments from either crowdworker peers or external experts
[22, 23, 90, 99].

Building on this prior work, we present LabelAld, a real-time
inference model for providing just-in-time feedback during crowd-
source labeling to improve data quality and worker expertise. La-
belAld is composed of two parts: (1) a novel machine learning (ML)
based pipeline for detecting labeling mistakes, which is efficiently
trained on unannotated data that contain those very mistakes; (2) a
real-time system that tracks worker behavior and intervenes when
an inferred mistake occurs. Unlike previous approaches that im-
prove crowdworkers’ learning experience through peer or expert
feedback [23, 99], LabelAld reduces the reliance on human input,
leveraging human-AI collaboration to provide targeted feedback
for enhancing crowdworker performance and domain knowledge.

To study LabelAld in a real crowdsourcing context, we instru-
mented the open-source crowdsourcing tool, Project Sidewalk, where
online users virtually explore streetscape imagery to find, label, and
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assess sidewalk accessibility problems for people with mobility
disabilities [80]. Since its launch in 2015, over 13,000 people across
the world have used Project Sidewalk to audit 17,000 km of streets
across 20 cities in eight countries including the US, Mexico, Ecuador,
Switzerland, New Zealand, and Taiwan, contributing over 1.5 mil-
lion data points!.

Project Sidewalk provides a compelling use case for Label Ald
because, unlike traditional image labeling tasks for object detection
(e.g., ImageNet [19], COCO [58], Open Images Dataset [30]), crowd-
workers are asked to make careful judgments about a labeling target,
which requires domain knowledge and training—similar to agri-
cultural image recognition [29], medical imagery labeling [79, 98],
and wildlife image categorization [4]. Such labeling tasks reflect
a broader trend of crowdwork becoming increasingly complex,
domain-specific, and potentially error prone [48]. Second, as a com-
munity science project, Project Sidewalk aligns with the growing
emphasis on both educational impact and data quality in crowd-
sourcing [21-23, 90, 99], which LabelAld provides. Finally, Project
Sidewalk currently employs a common but limited quality control
mechanism: users validate labeled images by other users. Since both
labelers and validators are drawn from the same user population,
repeated errors can pervade the system.

To evaluate Label Ald, we conducted: (1) a technical performance
evaluation of Label AId’s inference model; and (2) a between-subjects
user study of 34 participants. For the former, we demonstrate that
the LabelAlId pipeline consistently outperforms state-of-the-art
baselines and can improve mistake inference accuracy by up to
36.7%. With fine-tuning on as few as 50 expert-validated labels, La-
belAld outperforms traditional ML models such as XGBoost [17] and
Multi-layer Perceptron (MLP) [87] trained on 20 times the amount
of expert-validated labels. Furthermore, we showcase the robust
generalizability of our pipeline across different deployment cities in
Project Sidewalk. Since its initial deployment in Washington D.C.,
Project Sidewalk has expanded to 20 cities, with ongoing plans for
further growth. To support future city deployments, it is important
to minimize labor and configuration overhead of the mistake in-
ference model in new cities. Our study shows that LabelAld, even
without fine-tuning, performs comparably in a new city to those in
the pre-training set.

For the between-subjects user study, participants were randomly
assigned to one of two conditions: using Project Sidewalk in its orig-
inal form (control) or using Project Sidewalk with LabelAld (inter-
vention). Our findings reveal that the intervention group achieved
significantly higher label precision without sacrificing labeling
speed. While using Project Sidewalk enhanced participants’ under-
standing of urban accessibility and their confidence in identifying
sidewalk problems in both groups, participants in the intervention
group reported that LabelAld was helpful with decision-making,
particularly in situations where they were initially uncertain.

To summarize, our contributions are as follows:

o Anovel ML pipeline that allows for the integration of domain-
specific knowledge and heuristics into the data annotation
process, which facilitates the training of Al-based inference
models for detecting crowdworker labeling mistakes across

Uhttps://projectsidewalk.org/
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various contexts, while minimizing the need for manual in-
tervention in downstream tasks.

e A human-AI (HAI) collaborative system designed to create
teachable moments in crowdsourcing workflows. This sys-
tem not only improves the quality of crowdsourced data, but
also enriches the learning experience for participants.

o A between-subjects user study involving 34 participants with
no prior experience using Project Sidewalk, demonstrating
that Label AId significantly improves label precision by 19.2%
without compromising efficiency.

While our empirical results focused on the performance of La-
belAld within the context of Project Sidewalk, we believe our frame-
work can be generalizable to other crowdsourcing platforms as well
as the PWS-based ML pipeline and the two-step module design in-
tervention are easily replicable and tailorable in different contexts.

2 RELATED WORK

Our work draws on, and contributes to research in improving the
quality of crowdsourcing, enhancing crowdworkers’ domain knowl-
edge, and inferring the correctness of labels using ML methods.

2.1 Improving Quality of Crowdsourced Labels

Distributed crowdwork has transformed how loosely connected in-
dividuals collaborate together to solve large-scale problems such as
protein folding [18] map building [35], and writing compendiums of
knowledge [93]. Despite decades of research, however, large-scale
crowdwork remains susceptible to quality control problems [14, 48].
For example, studies have shown that over 30% of MTurk submis-
sions are likely to be poor quality [5, 47]. Current quality control
methods can be broadly categorized into two groups: preventive
techniques and post-hoc detections. Preventive measures include
screening crowdworkers based on capabilities [20, 44], dividing
work into fault-tolerant sub-tasks [5, 49, 65], improving instruc-
tions [24, 47, 81] and changing payment structures [13, 76, 81].
Post-hoc measures involve filtering based on majority vote [86] and
employing additional crowdworkers to review others’ work [11, 36].
Project Sidewalk currently uses both strategies: an interactive tu-
torial to train crowdworkers as their “first mission” and post-hoc
validation where crowdworkers “vote” on the correctness of other
users’ labels.

Other quality control research examines how workers do their
work rather than the end product itself, using ML algorithms to
predict the quality of crowdworkers’ output based on their be-
haviors [28, 77, 78]. This method captures behavioral traces from
workers during task execution and uses them to predict quality,
errors, and the possibility of cheating [28, 77, 78]. These behav-
ioral traces are gathered by logging user interactions, which are
then formulated into interaction patterns for monitoring real-time
worker compliance [78]. This methodology, termed “fingerprinting’
by Rzeszotarski and Kittur [78], has demonstrated its efficacy in pre-
dicting crowdworker output quality. Expanding Rzeszotarski and
Kittur’s work, Kaza and Zitoun [45] investigated using the behav-
ior of trusted, trained judges to identify low-performing workers.
Their study, which involved assessing the relevance of web pages
to specific queries, showed that the classification accuracy nearly
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doubled in some tasks. However, the approach is challenging to
scale due to the need for trained judges.

Building on this body of research, we introduce an ML pipeline
that combines crowdworker behavioral data with expert domain
knowledge (in our case, drawn from urban accessibility but the
approach should generalize to other domains). This model aims to
more effectively and automatically guide crowdworkers through
their efforts in identifying street-level accessibility issues.

2.2 Teachable Moments in Crowdsourcing for
Community Science

Crowdsourcing for community science are initiatives where profes-
sional scientists seek the assistance of crowds in contributing to sci-
entific research [35, 74]. Platforms like Zooniverse [84], FoldIt [46],
and SciStarter [40] are notable for having involved non-professionals
in significant scientific discoveries. Beyond contributing to science,
these platforms serve as tools for public engagement, outreach,
and education [90]. Unlike crowdworkers driven by monetary in-
centives (e.g., on MTurk and Prolific), participants of community
science projects are primarily volunteers motivated by desires to
learn and contribute to scientific research [69, 73].

Recent crowdsourcing research has been investigating ways
to not only enhance the quality of work but also the learning
experience of participants [21-23, 90, 99]. For instance, Dow et
al. [23] demonstrated that timely, task-specific feedback can help
crowdworkers learn, preserve, and produce better results. Projects
like Crowdclass [54] and CrowdSCIM [90] introduced in-task learn-
ing modules for community science initiatives. Despite these ad-
vances, current methods facilitating learning through crowdsourc-
ing, such as peer-review [23, 99], expert feedback [23], and self-
assessment [23], all require additional commitments from either
the crowdworkers or external experts, limiting their scalability.

Recent developments in HAI collaboration presents new ways
to tackle these scalability issues. Matsubara et al. [61] suggest us-
ing machine predictions as reference answers for self-correction.
Nakayama et al. [62] extended this concept, proposing workflows
where Al learns alongside human workers without prior training.
Inspired by this evolving landscape, we propose an add-on system
for crowdsourcing systems like Project Sidewalk that enhances both
task quality and educational outcomes. It leverages HAI collabo-
ration to enable in-context learning without requiring additional
commitments from participants.

2.3 Machine Learning to Infer Label Correctness

To create teachable moments in crowdsourcing workflows, it is
essential to develop inference models for detecting crowdworker
labeling mistakes. Recent research has harnessed the power of ML
to infer crowdsourced label quality. For instance, computer vision-
based neural networks are applied to validate crowdsourced labels
of sidewalk accessibility problems in Google Street View (GSV) im-
agery [91], and also offer reference answers to image recognition
labelers enabling self-correction [61, 62]. These deep learning meth-
ods present promising solutions for aiding crowdsourced labeling
tasks, but they often require substantial training data. While general
labeled image datasets such as [19, 30, 58] are available, domain-
specific datasets are relatively rare and expensive to produce.



CHI ’24, May 11-16, 2024, Honolulu, HI, USA

Domain Knowledge +
Heuristics

Li et al.

N o @
e -
Unannotated Labeling Functions Label Model  Automatically Imperfectly Pre-trained Expert-Validated Fine-tuned Downstream
Data Annotated Data Model Data Model Tasks

Programmatic Weak Supervision (PWS)

Pre Training + Fine Tuning

Figure 2: An overview of our LabelAld pipeline. Programmatic weak supervision, utilizing domain-specific knowledge and
heuristics, is employed to annotate the raw data. Subsequently, the automatically imperfectly annotated data generated from
PWS are used to pre-train the inference model. Lastly, the inference model is fine-tuned using expert-validated labels for the

target downstream task. Diagram adapted from [70].

In this paper, we aim to minimize the need for manually-annotated
data for training Al-based inference models. The recently proposed
Programmatic Weak Supervision (PWS) framework [70-72] pro-
vides a promising approach: aggregating noisy votes from domain
knowledge, heuristics, external patterns and rules to assign annota-
tions to the raw data. Subsequently, this annotated data serves to
train models for a range of domain-specific tasks, including video
analysis [89], text classification [83], and sensor data analysis [27].
However, its potential for inferring and improving the quality of
crowdsourced labels remains unexplored.

3 LABELAID: A LABEL CORRECTNESS
INFERENCE FRAMEWORK

LabelAld is a novel ML pipeline designed to provide just-in-time
intervention in crowdsourced labeling tasks, inferring and identify-
ing labeling mistakes as they occur. At its core, LabelAld tackles
a major hurdle in deploying such Al-based inference models: the
need for large volumes of annotated training data, which is partic-
ularly scarce in crowdsourced environments. LabelAld introduces
both (1) a programmatic pipeline to train an efficient ML inference
model to detect crowdworker labeling mistakes, which is trained
on unannotated data that contain those very mistakes and mini-
mal expert-validated data, and (2) an example application of the
Label AId pipeline to a crowdsourcing system to recognize and in-
tervene when a user is making a labeling mistake. Our overarching
goal is to create a full end-to-end HAI pipeline with minimal expert
involvement for model training, thereby facilitating rapid deploy-
ment of Label Ald mistake inference models in real-world crowd-
sourcing contexts. In this section, we describe LabelAld’s pipeline
design, how we implemented LabelAld in Project Sidewalk, and
our technical evaluation. Our code is available on Github.?

3.1 LabelAld Pipeline

Developing an inference model capable of discerning specific user
mistakes while also being generalizable to general crowdworkers’

Zhttps://github.com/makeabilitylab/Label ATd

behaviors is challenging and necessitates the consideration of a
variety of quality signals. Our LabelAld pipeline is composed of
three core phases (Figure 2): (1) Programmatic weak supervision
(PWS) uses domain-specific knowledge about crowdsourcing tasks
and historical heuristics from crowdworker behavior; this phase
generates a set of Automatically, Imperfectly Annotated (AIA) prob-
abilistic training data. (2) We then pre-train an ML model using
the AIA data generated from PWS. The inference model learns
general features and representations of the target crowdsourcing
task in this phase. (3) Finally, we fine-tune the inference model
using a small number of expert-validated labels to further enhance
its performance for the target task.

3.1.1  Programmatic Weak Supervision (PWS). Due to the inher-
ently noisy nature of crowdsourced data, LabelAld adopts PWS as
its foundational architecture. PWS takes unannotated data and pro-
duces probabilistic training labels, and has demonstrated effective-
ness in tasks like document and numerical data classification [6, 97].
We use the popular Snorkel [70] platform as the backbone of our
PWS pipeline. PWS allows for the integration of domain knowl-
edge and heuristic guidelines into the data annotation process and
provides a method for estimating their conflict and correlation in
a programmatic manner. As a result, the probabilistic training la-
bels can be reweighted and combined to create high-quality labels.
This approach aligns well with our objectives for two key reasons:
first, it allows us to train models on unannotated data, eliminat-
ing the need for manually labeling large datasets; and second, it
enables the incorporation of domain-specific knowledge related to
crowdsourcing tasks into our pipeline.

One of the core components of Snorkel is Labeling Functions
(LFs), which are rules or heuristics humans code to annotate raw
data programmatically. When incorporating a set of LFs, they intro-
duce distinct characteristics and correlations that extend beyond
disparities in accuracy and coverage. It is important to recognize
that LFs are not equal in their contribution to the annotation. LFs
may also overlap and conflict, which cannot be resolved by a sim-
plistic hard-rule-based approach (see Appendix A.2 for additional
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Seattle Chicago Oradell
Expert- Expert- Expert- Total
Unannotated Vali di ted Unannotated ValiI()iate d Unannotated ValiI()iate d
Curb Ramp 70,690 5,333 5,710 2,386 660 859 85,638
Missing Curb Ramp 32,968 4,239 463 1,294 325 396 39,685
No Sidewalk 36,021 3,460 2,211 48 3,949 1,217 46,906
Surface Problem 26,912 2,909 2,136 1,651 2,544 1,222 37,374
Obstacle 10,103 407 1,254 320 106 158 12,348
All Label Types 176,694 16,348 11,774 5,699 7,584 3,852 221,951

Table 1: Set sizes of unannotated and expert-validated labels, contain Project Sidewalk labels from Seattle, WA; Chicago, IL; and
Oradell, NJ. The unannotated set is used to pre-train the model after our PWS annotation process. The expert-validated set is
used to fine-tune and evaluate the inference model, which was created from labels manually-validated by the Project Sidewalk

research team.

discussion). While previous approaches used majority-vote-based
models to handle these intricacies, it can result in an overrepresenta-
tion of specific signals when two features are highly correlated [70].
To address this, we instead opt for probabilistic graphical models to
integrate the outputs of LFs. We use the Snorkel label model to take
the complete set of LFs as its input and generate a matrix of LFs, A.
We aim to maximize the probability of the outputs of the LFs [96]
in the context of our label correctness inference task, i.e., a binary
classification. Assuming 0 is the set of model parameters and Y is
the prediction class, this objective transforms into an optimization
problem as the following equation:

P(A;0) = P(AY; 0
max P(A; 0) Zy]< )

The label model generates a single set of noise-aware, proba-
bilistic training labels, which can be used to train an ML model or
neural network.

3.1.2  Transfer Learning from AIA to Expert-Validated Labels. The
ultimate goal is to train a discriminative ML model—such as a neural
network classifier—that can generalize beyond the label model. The
choice of the specific ML model architecture should be tailored to
the requirements of the downstream task.

While PWS produces a set of AIA probabilistic training data, an
ML model trained on a large yet noisy dataset could potentially
overfit to the noise, which should be avoided. Fine-tuning large pre-
trained models is a popular methodology for leveraging knowledge
from a related source domain to improve the learning performance
in a target task with limited clean samples [100].

Since the source domain and target task in our LabelAld pipeline
share the same feature space, we introduce a two-phase transfer
learning pipeline from AIA data to expert-validated labels: (1) Pre-
training the ML model on the AIA dataset D, produced by our PWS
pipeline; (2) Fine-tuning the pre-trained model on a small number
of expert-validated downstream labels Dy for a specific task. Our
pre-training and fine-tuning pipeline is illustrated in Figure 2. This
approach aims to minimize the requirement of manual intervention
in annotating downstream data for a target task.

3.2 Applying LabelAld to Project Sidewalk

We present a specific implementation of our end-to-end Label Ald
pipeline using domain knowledge in urban accessibility for Project

Sidewalk (Figure 3), a large-scale and widely used sidewalk ac-
cessibility platform leveraging crowdsourced labels. We describe
the dataset, details of labeling functions and features, and model
training process below.

3.2.1 Dataset Description. At the time of our analysis, Project Side-
walk had 757,730 crowdsourced image labels applied on top of
Google Street View (GSV) panoramas across 15 cities in the US, Mex-
ico, and Europe. Project Sidewalk has five main label types: Curb
Ramp, Missing Curb Ramp, Sidewalk Obstacle, Surface Problem, Miss-
ing Sidewalk. Each label includes a severity assessment on a scale
of 1 to 5, with 5 being the most severe, indicating a sidewalk issue
that is impassable for a wheelchair user. Labels may also include
an open-ended description and label-specific tags. Additionally, all
labels are accompanied by implicitly captured metadata, such as
the GSV image date, the label timestamp, and geographical location
(latitude and longitude).

As urban composition and sidewalk accessibility guidelines dif-
fer across regions, our initial proof-of-concept of Label Ald focuses
on three U.S. cities: Seattle, WA; Chicago, IL; and Oradell, NJ. These
three cities offer distinct urban and geographical characteristics:
Seattle represents a major city in the Pacific Northwest, the Chicago
data provides a mix of dense downtown area and satellite towns
in the Midwest, and Oradell is a suburban locale on the East Coast
outside of New York City. We anticipate that this selection will help
us develop ML models that could effectively account for diverse
urban compositions. The ground truth dataset Dy is validated by
the Project Sidewalk research team; two researchers worked collab-
oratively to verify each crowdsourced label, reaching unanimous
agreement. The finalized dataset sizes alongside the distribution of
each label type are shown in Table 1.

3.22 Input Features & Labeling Functions. The suitability of PWS
for Project Sidewalk comes from two key factors: the integration
of domain-specific knowledge (e.g., urban planning guidelines) and
user behavior insights into our labeling process.

Drawing on observations of user behavior in Project Sidewalk
and research in urban planning guidelines, we propose the follow-
ing hypotheses:

o Severity Rating. Project Sidewalk’s label severity ranges
between 1 to 5. Severity ratings closer to the extremes (1 &
5) are more likely to be correct.



CHI 24, May 11-16, 2024, Honolulu, HI, USA

ent Neighborhood

E @ Curb Ramps

Li et al.

& No Curb Ramps

# Obstacles

@ Surface Problem @ Missing Sidewalk

© Severity 2

Figure 3: (A) Project Sidewalk Labeling Interface. (B) Project Sidewalk Label Types. (C) Examples of Project Sidewalk severity
ratings for surface problems. Severity 5 is the most severe, indicating a scenario impassable by wheelchair users.

e Optional input. Labels that include optional data are more
likely to be accurate, because such information requires ad-
ditional thought and effort. These optional fields include a
free-form description (comment) and relevant tags, such as
fire hydrant and pole for the obstacle label type.

e GSV zoom/pitch/heading. In most cases, changing the
default parameters of GSV results in a more accurate label.
For example, when a user zooms in to place a Surface Problem
label, it is more likely to be correct.

o Distance to other crowdworkers’ labels. A label is more
likely to be correct if it is placed closer to existing labels
of the same type. To determine this distance, we adopt the
two-step spatial clustering approach employed in Project
Sidewalk [80].

¢ Distance to urban infrastructure. The positioning of a
label in relation to urban infrastructure can serve as an indi-
cator of its accuracy. For example, US federal legislation [66]
requires the installation of curb ramps at all intersections
and at midblock locations where pedestrian crossings are
present. Given that midblock crossings are relatively rare
compared to those at intersections, and considering that the
most common error in Project Sidewalk is mislabeling drive-
ways as curb ramps [91], we hypothesize that a Curb Ramp
label situated outside a specified radius from an intersection
is likely to be incorrect.

We then derived eight LFs from our hypotheses for Project Side-
walk and integrated all these LFs into the PWS pipeline to ensure
a diverse coverage and minimize overfitting (see Appendix A.1
for additional discussion). One example algorithm (Algorithm 1)
is based on the observation that users often mislabel driveways
as curb ramps in residential areas. The algorithm proposes that a
Curb Ramp or Missing Curb Ramp in a residential area is likely to
be wrong when it is far away from an intersection.

3.2.3  Multi-city Pre-training. To train a discriminative model, we
start by pre-training on the AIA dataset D, to initialize the weights
for high-level patterns of sidewalk accessibility labels and user
behaviors. Due to the mix of categorical and numerical features
within Project Sidewalk’s datasets, we chose the Feature Tokenizer
+ Transformer (FT-Transformer) [31]. FT-Transformer represents a

novel adaptation of the Transformer architecture for tabular data
domains. Prior research [31, 56] has shown that the FT-Transformer
is a more universal architect for tabular data, and consistently
outperforms other state-of-the-art deep tabular models across a
variety of downstream sample regimes. A high-level view of our
FT-Transformer-based model architecture is illustrated in Figure 4.

We employ three distinct datasets to train, validate, and test our
backbone FT-Transformer-based model. We used the AIA datasets
D, from three cities generated from our PWS pipeline, which
consists of 176,694, 11,774, and 7,584 labels for Seattle, Chicago, and
Oradell, respectively. We balanced and randomly partitioned these
labels into training, validation, and testing sets following a 70/20/10
split. In each subset, a minimum of 20 labels were guaranteed for
every class of every label type.

We trained an FT-Transformer from scratch. To map all inputs
into the same embedding space, we encode the numerical data
through a single-layer perceptron with a dimension of four, and
embed categorical data with one-hot embeddings of the same size.
Then, we stack them to formulate the input embeddings for the
Transformer module. The encoder was configured with a depth
of two layers, each comprised of two attention heads. To prevent

Algorithm 1 Example Labeling Function encoding a heuristic about
errors made in (Missing) Curb Ramp labels

Require: labels € CurbRamp or NoCurbRamp
Ensure: labels € Residential Area
D « Intersection Distance Threshold
for each label I do
for each intersection i in nearby intersections I do
Compute spatial distance between [ and i
end for
if min distance(l,I) > D then
I « wrong
else
| « correct
end if
end for
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Figure 4: Conceptual diagram of our FT-Transformer-based model architecture. First, the model transforms the hybrid features
(e.g., two numerical and two categorical features) into unified embeddings. Subsequently, these embeddings are processed
iteratively by the Transformer layer. The final output is based on the [CLS] token. Diagram adapted from [31].

overfitting and to provide regularization, we incorporated atten-
tion and feed-forward dropouts, both set at 0.2. Additional optimal
hyperparameters were tuned via grid search, according to the full
upstream dataset: the AdamW optimizer, a learning rate of 1 x 1074,
and a weight decay of 1 x 107> were selected. Given our binary
classification objective, we employed the Binary Cross-Entropy loss
function coupled with a sigmoid activation function. We employed
200 epochs for training with early stops on validation loss. The
average training duration was approximately 5 minutes on a single
RTX 4070Ti GPU.

3.2.4  Fine-tuning on a Specific City. Upon delving deeper into our
pipeline, the pre-trained model, which learned underlying patterns
of sidewalk accessibility labels and a broad understanding of high-
level user behaviors, can subsequently be fine-tuned on a smaller,
city-specific Dy to elevate its performance for city-specific tasks.
The rationale behind this is that each city has unique attributes
that might not be entirely captured during this pre-training phase.
Through fine-tuning, the model can adapt its previously acquired
knowledge to the unique characteristics and nuances of the target
city. This not only enables more precise inferences and understand-
ing of the distinctive topologies of the target city, but also ensures
that the model remains robust. To evaluate its performance en-
hancement, we conducted city-specific fine-tuning. The pre-trained
FT-Transformer was fine-tuned end-to-end [56] with 200 down-
stream samples (40 per label type) sourced from Seattle, Chicago,
and Oradell’s Dy, with a reduced learning rate of 3x 1072 to prevent
overfitting to downstream samples.

3.3 Technical Evaluation

We evaluate the performance of our pipeline, which involves the
PWS pipeline integrated with city-specific fine-tuning of a pre-
trained inference model. We examine the following aspects: (1) How
our pipeline performs in comparison to traditional ML methods
in inferring label correctness; (2) The generalization of our model
across cities after target-city-specific fine-tuning; (3) The model’s
generalizability to new cities that were not included in our pre-
training dataset; (4) How different types of LFs complement each
other in achieving LabelAld’s performance through analysis of
feature importance.

For testing purposes, we utilized the remaining Dy after remov-
ing the samples used for fine-tuning. This allowed us to evaluate the
performance and generalizability of the final model on a previously
unseen dataset. Specifically, the remaining Dy comprises 16,148,
5,499, and 3,652 expert-validated labels for Seattle, Chicago, and
Oradell, respectively.

3.3.1 Pipeline Performance. We compared our performance against
two widely adopted ML classifiers-random forest and logistic re-
gression, and a GBDT tabular method XGBoost [17]. We also con-
sidered an MLP classifier which is known to be a consistent and
competitive baseline [31]. All baselines are trained on the equiva-
lent volumes of expert-validated downstream samples |Dy| and do
not undergo pre-training using D, produced by our PWS pipeline.

To ensure a robust evaluation, the optimal hyperparameters for
baseline models were tuned via a grid search, executed on a single,
randomly split downstream dataset. This procedure ensures that all
baselines are tuned with an equivalent number of samples, given
that the hyperparameters are profoundly influenced by sample size.
Each baseline model underwent training using 50, 100, 200, 500,
and 1000 expert-validated labels from Seattle 9. The samples were
equally distributed across two classes and five label types. For our
experiment, we fine-tuned the pre-trained FT-Transformer end-to-
end [56] on the equivalent number of expert-validated downstream
samples from Seattle Dy with the baselines.

The results demonstrate that our pipeline enhances the efficiency
of neural network training. The integration of relevant domain
knowledge through PWS bypasses the resource-intensive task of
manually labeling and validating the unannotated Project Sidewalk
repository. As shown in Figure 5, our proposed pipeline with as
few as 50 expert-validated labels (10 per label type), achieved a
test accuracy and precision of 73.3% and 83.6%, respectively. It
outperformed all baselines of traditional ML methods, even when
those were trained on substantially more expert-validated labels.
Our pipeline improved accuracy by up to 36.7%, 28.0%, 15.3%, 16.3%,
16.5% for |Dy| = 50, 100, 250, 500, 1000, respectively. Our pipeline
also demonstrated an average 0.0859 boost in F1 score compared to
the second-best method.
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Chicago Oradell Curb Missi Surf Missi
g City ur Lssmg Obstacle urbilce .dlssmlgk
accuracy F1 accuracy F1 Ramp Curb Ramp Problem Sidewa
Pre-trained on multi-city’ D,  0.679 0.787 | 0.808 0.893 Seattle 0.971 0.966 0.766 0.861 0.942
Fine-tuned on target City’S Z)g 0.719 0.814 0.914 0.945 ChiCﬂgO 0.968 0.494 0.693 0.718 0.929
Oradell 0.972 0.768 0.793 0.944 0.988

Table 2: Improvements of inference model in accuracy and F1
score for Chicago and Oradell after city-specific fine-tuning
(fold K = 5).

3.3.2  Generalizability Across Cities. As shown in Table 2, in Oradell,
the pre-trained model, without fine-tuning, achieved an accuracy,
precision, and recall of 80.8%, 91.9%, and 86.9%, respectively. After
the fine-tuning process, these figures rose to 91.4%, 92.4%, and 96.8%.
Similarly, for Chicago, the pre-trained model achieved accuracy,
precision, and recall values of 67.9%, 80.4%, and 77.0%, respectively.
Post fine-tuning, these metrics improved to 71.9%, 82.8%, and 80.1%.
One plausible explanation for this lower performance could be the
non-continuous geographic distribution of Project Sidewalk’s data
in Chicago, which includes a mix of dense urban downtown areas
and pockets of suburbia. Variations in road width and intersection
distances across these areas could complicate the model’s ability to
make accurate inferences.

3.3.3 Generalizability in New City. To fully evaluate the model’s
generalizability, we deployed it to a new city: Newberg, OR—a
small town in the Portland metropolitan area with a population of
25k, similar in urban composition to Oradell. When applying the
pre-trained model to Newberg, which was neither previously pre-
trained nor fine-tuned, the model showcased accuracy, precision,
and recall of 78.3%, 88.2%, and 86.0%, respectively. These scores
represent on-par performance with the cities in the pre-training
set, such as Oradell, NJ. This not only underscores the robust gen-
eralizable foundation of the multi-city pre-trained inference model,
but also highlights that the pre-trained model can be deployed in a
new city without any manual intervention and achieve respectable

Accuracy F1-Score
09 09
08 08
07 M 07 M
06 06
0.5 0.5
0.4 0.4
50 100 200 500 1000 50 100 200 500 1000

Number of Expert-Validated Data Number of Expert-Validated Data

LabelAld X6Boost —&- Random Forest —- MLP Logistic Regression
Figure 5: Overall performance of our LabelAld pipeline com-
pared to the traditional ML methods as the number of expert-
validated downstream labels increases. Note that the x-axis
is on a log scale (N = 3, error bar = +0).

Table 3: Performance by label type of our inference model
in F1 score for Seattle, Chicago, and Oradell. Missing Curb
Ramyp is a notable area of difficulty in Chicago. Obstacle is a
low performer in Seattle and Chicago.

performance if the new city has a similar urban composition and
crowdworker behavior to those in the pre-training set.

3.3.4  Performance by Label Type. We also analyzed performance
as a function of label type for each city-specific fine-tuned model
(Table 3). The model performs best for Curb Ramp and Missing
Sidewalk across all cities, followed by Surface Problem. However,
Obstacle is a low performer, especially in Seattle and Chicago. A
close look at the tags associated with Obstacle labels revealed that
the observed discrepancies might be explained by the complexity
of sidewalk obstacles in these two cities. Specifically, in Oradell,
obstacles were primarily associated with trees/vegetation (40%),
whereas in Seattle, Obstacle were tagged with poles, trash/recycling
cans, vegetation, and parked cars in similar frequencies of ~20%.
Another low performer in Chicago is Missing Curb Ramp, with a
low F1 score of 0.494. This is associated with user behavior exclu-
sive to Chicago, where curb ramps lacking tactile strips are often
mislabeled as Missing Curb Ramp. These findings highlight the high
performance of our inference model for most scenarios, however
further refinement is necessary to accommodate different urban
environments and user behaviors.

3.3.5 Feature Importance. To explore feature importance, we used
attention maps [31]. We expect that if certain features are used as in-
put variables in LFs for a specific sidewalk label type, these features
will be highly significant in the model’s inference for that label type.
For instance, the feature "distance to intersection" is an input fea-
ture for our model and also a variable in the LF (min distance(l, I)
in Algorithm 1) for Curb Ramp and Missing Curb Ramp.

The feature importance results of the model fine-tuned on Seattle
D, are shown in Table 4. For label types Curb Ramp and Missing
Curb Ramp, “distance to intersection” is the most important; while
for Obstacle and Surface Problem, features like “zoom”, “cluster” and
“description” are more crucial. This difference suggests that the
features influencing Curb Ramps are related to LFs based on urban
planning knowledge, whereas those affecting Obstacles and Surface
Problems are tied to user behavior. Specifically, mislabeled Curb
Ramps exhibit a spatial pattern, making them identifiable using
domain knowledge (e.g. Algorithm 1). In contrast, Obstacle and
Surface Problem labeling mistakes are less about spatial distribution
and more about user labeling diligence, characterized by zooming
in and adding optional descriptions. The results of our feature im-
portance ranking show how LFs based on urban planning and user
behavior are complementary in achieving LabelAld’s performance.
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#Rank  Curb Ramp Missing Curb Ramp  Obstacle Surface Problem Missing Sidewalk

1 distance i 0.173 distance_i 0.177 clustered 0.145 zoom 0.143  severity 0.129
2 way_type 0.103 way_type 0.106 zoom 0.135 clustered 0.135 tag 0.116
3 severity 0.103 tag 0.103 description 0.134 description 0.132 distance_r  0.101

Table 4: Top 3 features and their importance coefficient per label type in Seattle. Note: distance_i is the distance to intersection,
distance_r is the distance to road, and way_type is the road hierarchy according to OpenStreetMap.

We believe such techniques generalize to other crowdsourcing plat-
forms where user mistakes can be identified through a combination
of domain guidelines as well as platform specific behaviors.

3.3.6 Inference Limitations. Finally, to understand the limitations
of our model and identify opportunities for improvement, we con-
ducted a qualitative assessment of our inference model by manually
reviewing 100 randomly selected false positives and false negatives
across each label type, and presented the results in Figure 6 & 7.
In analyzing false positives (where the model incorrectly infers
the label as correct when, in fact, the label is wrong), we observed
two key sources of error for Curb Ramp and Missing Curb Ramp: (1)
The model fails to differentiate between a Curb Ramp and a Missing
Curb Ramp (Figure 6a, ). (2) In edge cases, users labeled a drainage
swale near an intersection as Curb Ramp (Figure 6b), and Missing
Curb Ramp where there was no sidewalk present (Figure 6d). For
Obstacle, Surface Problem, and Missing Sidewalk, misclassifications
typically occurred when a user’s label included attributes for a
correct label, but there was in fact ample space for wheelchair users
to avoid the problem (Figure 6e-j). For false negatives, common
sources of errors for Curb Ramp and Missing Curb Ramyp included:
(1) When users labeled mid-block crossings, geospatial informa-
tion for such footpaths/crossings are incomplete in OpenStreetMap,
causing inaccuracies when computing the distance to the nearest
intersection (Figure 7a-c). (2) The model struggled to correctly clas-
sify rare cases such as an exit for a public facility (Figure 7d). For
Obstacle, and Surface Problem, misclassifications happened when
the problem could be easily identified without zooming in, thus

CurbRamp  Missing Curb Ramp Obstacle

Surface Problem  Missing Sidewalk

Figure 6: Selected typical inference false positives per label
type (the actual label is wrong but was inferred as correct). a,
¢, failed to differentiate between a Curb Ramp and a Missing
Curb Ramp. b, labeled a drainage swale near an intersection
as Curb Ramyp. d, labeled Missing Curb Ramp where there is
no sidewalk. e-j, label has attributes for a correct label but
there is ample space for a wheelchair user to pass.

contradicting the hypothesis that labels placed without zooming in
are likely to be incorrect. Similar mistakes were found when the
labels lacked inputs of tags, severity, and description—all of which
are signals for a diligent crowdworker who typically produces more
accurate labels (Figure 7e-h). For Missing Sidewalk, misclassifica-
tions often occurred when a user’s label had a low severity rating,
since the absence of sidewalks is supposed to be a high-severity
issue (Figure 7i, j).We refrain from further tuning of parameters in
LFs post-analysis to prevent overfitting to specific scenarios in test-
ing sets the model failed to learn, thereby preserving the model’s
generalizability.

4 LABELAID: IMPLEMENTATION & USER
EVALUATION

Having demonstrated the technical efficacy of our LabelAld system
in inferring label correctness, we implemented the LabelAld infer-
ence model in Project Sidewalk, and evaluated the user experience
and performance of the end-to-end system with users in the loop.
Our study aimed to answer the following questions:

e RQ1: Can LabelAld’s feedback improve the performance of
minimally-trained crowdworkers in labeling urban accessi-
bility issues compared to a no feedback condition?

e RQ2: Can LabelAld’s feedback enhance minimally-trained
crowdworkers’ self-efficacy and perceived learning when
labeling urban accessibility issues compared to a no feedback
condition?

e RQ3: How do participants perceive LabelAld’s feedback in
terms of usefulness, content, and frequency?

Curb Ramp

Missing Curb Ramp Obstacle Surface Problem  Missing Sidewalk

Figure 7: Selected typical inference false negatives per label
type (the actual label is correct but was inferred as wrong).
a-c, labeled mid-block crossings, geospatial information for
such footpaths/crossings are incomplete in OpenStreetMap.
d, an exit for a public facility. e-h, missing optional inputs. i,
J, rated Missing Sidewalk with low severity.
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Figure 8: A user flow diagram of LabelAld implemented in Project Sidewalk. (1) A user places a label using the Project Sidewalk
interface. (2) If LabelAId detects a mistake, the system displays a just-in-time intervention dialog. (3) The user can choose to
keep the label, delete the label, or opt to view common mistakes associated with that label type. From the "View Common

Mistakes" page, the user can navigate to the "View Correct Examples" page. See Figure 9 for actual screenshots.

To address these questions, we designed and conducted a between-
subjects study of our LabelAld implementation, described below.

4.1 Implementing LabelAld in Project Sidewalk

To incorporate LabelAld into Project Sidewalk, we needed to inte-
grate a real-time mistake inference model (as described in Section 3)
and to design and develop a just-in-time Ul intervention to help
warn users of potential labeling mistakes (using the said inference
model). We first highlight design considerations situated in the
literature, before describing implementation details.

Design considerations. To design LabelAld’s Ul intervention,
we first reviewed literature regarding the design space for crowd
feedback [22, 23, 60, 90, 99] and guidelines for HATI design [1]. Stud-
ies have emphasized the importance of timeliness in feedback de-
livery [23], which led us to opt for real-time feedback, as it delivers
feedback during a teachable moment when people are still thinking
about the task. Additionally, the importance of contextual help
for learning assistance has been well-documented in psychology
literature [2] and demonstrated through HCI work (e.g., [33, 95]).
To further refine the user interface, we consulted best practices
for dialog design [64], emphasizing specific response options that
clearly outline the consequences of each choice, as well as employ-
ing progressive disclosure techniques [63] to help users understand
the implications of their actions before committing to them [1].
Based on these insights, we iteratively designed LabelAld, starting
with hand sketches and Figma mock-ups before implementing the
tool in JavaScript (front-end) and Scala with QGIS (back-end).

System implementation. We integrated the city-specific, fine-
tuned FT-Transformer into Label AId using the Open Neural Network
Exchange (ONNX) runtime standard. An important objective is to
reduce latency and facilitate seamless HAI collaboration.The most
time consuming step in the preparation stage is to assess whether
the label belongs to a pre-existing cluster. To expedite calculation
time, we simplified by calculating the spatial haversine distance

of the input to a pre-computed cluster centroid, maintaining a
threshold consistent with the clustering algorithm at 10 meters. We
found in off-line experiments that this approach was 8-20 times
faster (speed varies based on label type) and a mere 1.6% of labels
(27 out of 1659) had a different clustering result.

We implemented the inference model on the front-end rather
than server-side for the following reasons: (1) Latency: considering
the small model size (~100 KB), inference can be performed locally in
the user’s browser, thereby avoiding communication with a remote
server and network latency. (2) Privacy: we reduced potential user
privacy concerns, as no data is transmitted to a remote server for
processing. Notably, during the user study, we found an average
preparation time of 1.5 ms and an average model inference time of
1.7 ms across various hardware and platforms.

User flow. Drawing on previous research on crowdworker feed-
back [23, 39], HAI [1], and UI design [63], we provide a two-stage
intervention. After a user places a label, if LabelAld infers a mistake,
we pop-up a just-in-time intervention dialog (Figure 9A) composed
of three parts: a mistake title, a rotating set of labeling tips for that
label type (e.g., "Do not label driveways as curb ramps."; see Fig-
ure 9A), and three buttons: "Yes, I am sure," "No, remove the label"
or "View Common Mistakes". Hovering over the "i" icon beside the
mistake title will display an explanation that the reminder system
is powered by Al and may make mistakes. If the user selects "View
Common Mistake", they enter the second stage of customized in-
formation about common mistakes and correct examples for that
label type. To minimize users’ cognitive load [8], both the "View
Common Mistakes" and "View Correct Examples” screens present a
screen capture of the user’s current label alongside three to four ex-
ample labels, facilitating more straightforward comparison. These
example images are curated based on an analysis of frequent mis-
takes and effective labeling practices on Project Sidewalk. Our user
flow (Figure 8) prompts users to reflect on their labeling decisions
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Figure 9: System screenshots of LabelAld implemented in Project Sidewalk. (A) When detecting a user label error: LabelAld
pops up a just-in-time intervention dialog composed of three parts: a mistake title, a rotating set of labeling tips for that label
type, and three buttons. "Yes, I am sure," "No, remove the label" or "View Common Mistakes". Hovering over the "i" icon will
display a note explaining how the reminder is powered by AI and the system may make mistakes. (B) Common Mistakes Page.
(C) Correct Examples Page. Both (B) and (C) present a screen capture of the user’s current label alongside three to four example

labels, facilitating more straightforward comparison.

and then educate them through examples, both of which have been
proven to enhance crowdwork quality [23, 99].

4.2 Study Design

To examine our research questions, we conducted a between-subjects
study with and without LabelAld. Inspired by previous Project Side-
walk mapathons, the study sessions were conducted in groups via
Zoom based on condition. While this setup differs from traditional
crowdsourcing studies conducted on platforms like MTurk or Pro-
lific, mapathons and other synchronous social data collection events
are key methods for participant involvement in crowdsourced

mapping projects like Project Sidewalk and OpenStreetMap>. For
example, in Project Sidewalk’s 18-month deployment in Oradell, NJ,
two single-day mapathons contributed over 2,056 labels, accounting
for 22% of all labels [57].

Prior to the actual study sessions, we conducted pilot studies with
one participant for each condition, during which two researchers
observed the participants’ labeling behaviors in-person and screen-
recorded the process for post-analysis. Based on insights from these
pilot studies, we refined the moderation workflow.

For the actual study, two study moderators led six online ses-
sions, three for each condition. Each session had five to seven

3https://www.openstreetmap.org/
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participants and lasted between 90 and 120 minutes. The sessions
were composed of three parts, and the moderator adhered to a
script to ensure consistency. First, we provided a brief orientation
of urban accessibility and disability, guided the participants through
platform account registration, and asked the participants to finish
Project Sidewalk’s standard ~5-minute interactive tutorial. Second,
participants labeled eight curated routes on Project Sidewalk; the
routes were carefully chosen by the research team to ensure they in-
cluded frequent sidewalk accessibility features and problems. Both
groups labeled identical routes. Participants were asked to mute
themselves during the labeling tasks, and any questions were ad-
dressed privately via Zoom chat or in a breakout room. Although
the intervention group had access to correct and incorrect examples
through the LabelAld UI flow, both groups were shown illustrated
tutorial screens in the beginning of each route, which is the stan-
dard Project Sidewalk UI (Figure 11). Furthermore, all participants
could refer to these examples as well as the How to Label section on
the platform during labeling (Figure 11), a practice we observed in
both groups during the pilot studies. Third, after completing their
routes, participants filled out a post-study questionnaire followed
by a semi-structured group debriefing session. The debriefing ses-
sions were video and audio recorded. Please see the supplementary
materials for our orientation slide deck and pre- and post-study
questionnaires.

4.3 Participant Recruitment

For our user study, we recruited participants via university mailing
lists and snowball sampling. Our study size of 34 participants was
determined through a power analysis using G*Power [25], aiming
for an effect size of 1 and a statistical power of 0.8. Participants
were randomly assigned to either the control or the intervention
group depending on their availability. Based on self-reported de-
mographics, we had 21 participants aged 18-24 (12 in the control
group), 11 aged 25-34 (5 in the control group), and 2 aged 35-44
(none in the control group); 18 women (10 in the control group), 15
men (6 in the control group), and 1 non-binary individual (1 in the
control group). As for computer experience, 2 participants reported
having basic skills, 4 had intermediate skills, and 28 considered
themselves experts; these numbers were evenly split between the
two groups. Before the study session, all participants were required
to sign a research consent form and complete a pre-study question-
naire. Each participant was compensated at a rate of $30 per hour
for their participation.

4.4 Evaluation Measures

Our study had a dual focus of understanding the objective perfor-
mance of LabelAld users compared to the baseline as well as to
examine their subjective experiences. For our objective measures,
we collected and examined:

o Labeling precision. The number of correct labels compared
to the total number of labels, measuring the correctness of
user input.

e Labeling time. Time for participants to complete the label-
ing tasks, recorded per each route.

e Learning gain in urban accessibility. We designed quiz
questions that were included in both pre- and post-study

Li et al.

questionnaires (see supplementary materials). Participants
were shown four images for each of the five label types
and were asked to select the correct ones. A sum score was
calculated for all participants: each correct answer earned
1 point, and each incorrect answer was penalized with -1
point.

We also captured subjective measures through 5-point Likert
scale questions:

e Confidence in response. e.g., “How confident are you in
labeling curb ramps?”

o Self-efficacy gain. e.g. “I feel more confident about identify-
ing problems on sidewalks faced by people with disabilities”

e Perceived learning gains in urban accessibility. e.g. “Par-
ticipating in the study gave me more ideas to make sidewalks
accessible for people with disabilities.”

e Perceived usefulness. e.g. “I liked the pop-up prompts.”

e Perceived Al intervention. ‘I felt that an Al agent was
watching my performance/helping me while I was labeling”

Full list of questions can be found in our supplementary materials.

4.5 Analysis Approach

To analyze our results, two researchers independently validated
all participant labels (N=3,574). In cases of disagreements (N=74,
IRR=0.98), a third researcher was consulted to reach a consensus.
Validations were then used to calculate the precision of user input.
For subjective measures captured through Likert scale questions, we
mapped responses such as "Strongly disagree" to "Strongly agree"
or "Not confident at all" to "Very confident" onto a numerical scale
ranging from 1 to 5. We then use descriptive statistics to explore the
dataset and to assess the participant performance across different
conditions. Due to the between-subjects study and the distribu-
tion of the data, we use Mann-Whitney U tests to compare label
precision, labeling time, and Likert scale responses between the
two groups [75]. Additionally, both the debriefing sessions and the
post-study questionnaire included open-ended questions to capture
nuanced feedback about perceived learning experience, self-efficacy,
and overall user experience. Our analysis for these responses fo-
cused on summarizing high-level themes. One researcher developed
a set of themes through qualitative open coding [15] based on the
video transcript and the questionnaire responses, then coded the
responses according to the themes. Participant quotes have been
slightly modified for concision, grammar, and anonymity.

4.6 Results

During the study, participants contributed a total of 3,574 labels,
with 2,091 from the control group and 1,483 from the interven-
tion group. A detailed breakdown of the labels’ types and their
correctness can be found in Table 6. Our open-encoding process
highlighted several key themes, as outlined in Table 5. When asked
what helped the participants to label, a majority of intervention
participants mentioned the pop-up screens. Regarding labeling con-
fidence, they reported that their confidence varied across different
label types and generally increased as they progressed through the
tasks. In terms of future improvements, many suggested implement-
ing Al-assisted labeling followed by human verification. Below, we
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Labeling confidence Count | Helpful elements during the Count | Future improvement ideas Count
labeling process

Confidence varies across differ- 10 | Pop-ups 11* | Implementing Al labeling fol- 10

ent label types lowed by human verification

Confident grows with the label- 6 | Tutorial 6 | Providing rationales/confidence 3

ing process levels for the pop-ups

High confidence in label type 4 | Hover-over images 5 | Introducing practice quiz to pre- 2

but uncertainty in severity rat- filter participants

ings

Unsure of potential missed la- 1 Option to disable Al-generated 1

bels pop-ups

Table 5: During the study’s semi-structured group debriefing session, we asked participants (N=34) open-response questions
about their confidence levels during the labeling task, what was most helpful during the labeling process, and ideas for future
improvements. Participants were not required to answer all questions. We manually coded the participants’ responses to
identify themes. The count column indicates the number of participants who mentioned each theme. *Note that only the

intervention group (N=17) was shown the pop-ups.

delve into an in-depth analysis that integrates both qualitative and
quantitative evaluations to address each research question.

4.6.1 Task Performance (RQ1). We first seek to examine whether
there are significant differences between groups in task perfor-
mance and how intervention level correlates with labeling precision
within the intervention group.

Labeling precision and task completion time. As summa-
rized in Figure 10, the intervention group demonstrated higher
precision overall and across all label types compared to the control
group. The Mann-Whitney U results indicate a significant differ-
ence in precision between the two groups both overall (p <0.01)
and for Curb Ramp (p <0.05) and Missing Curb Ramp (p <0.05)
label types. For route completion time, we found no significant
difference between the two groups (p=0.693). The control group
had a mean completion time of 2303.3 seconds (SD=1240.3), while
the intervention group spent 2801.4 seconds (SD=2035.3). Similarly,
no significant differences were observed when examining the time
taken for each of the eight routes (p-values ranged from 0.143 to

Label Type Correct  Incorrect Total
C I C I C I
Curb Ramp 436 454 487 23 923 477
Missing Curb Ramp 265 245 61 29 326 274
Obstacle 309 298 124 77 433 375
Surface Problem 243 249 55 26 298 275
Missing Sidewalk 94 7217 10 111 82
Overall 1347 1318 744 165 2091 1483

Table 6: Distribution of participants’ labels across all label
types. C stands for Control group and I stands for Interven-
tion group.

0.971). These findings indicate that the use of LabelAId resulted in
improved labeling precision without compromising labeling speed.

Labeling precision and level of intervention. While the in-
tervention group clearly performed better, two pertinent questions
are: how often did a LabelAld participant receive a just-in-time
Al-assisted prompt and how accurately did LabelAld perform, i.e.,
what was the true positive and false positive rate for intervening?

Towards examining the first question: within the intervention
group, there were a total of 172 instances where LabelAld inter-
vened with a just-in-time prompt (10.9% of total labels; 10.1 per
intervention group participant). When broken down by label type,
LabelAld demonstrated high precision in predicting Curb Ramp
(0.882), Missing Curb Ramyp (0.750), and Missing Sidewalk (1.000)
mistakes. However, the model’s precision was notably lower for Ob-
stacle (0.362) and Surface Problem (0.377). Upon closer examination,
we found that these less accurate inferences often corresponded
with user behaviors that are likely to result in incorrect labels, such
as not zooming in or failing to provide severity ratings or tags.

Within the 17 participants in the intervention group, our anal-
ysis revealed no significant correlation between the frequency of
interventions by LabelAld and participants’ labeling precision, ei-
ther overall or for specific label types. Similarly, the number of
times participants viewed common mistakes or correct examples
UI screens did not correlate with their labeling accuracy (Table 10).
We will return to this point in Section 5.

Despite the relatively low view frequency of the "Common Mis-
takes" UI screens (24 views in total, 1.4 views per person) and
correct examples (6 views in total, 0.4 per person), qualitative feed-
back indicated their usefulness for those who chose to engage with
them. During the debriefing sessions, several participants cited
these screens when asked about what helped them during the la-
beling tasks. For instance, one participant noted a shift in their
labeling approach after viewing the Al-triggered common mistake
screen, stating, “Midway through, I saw the common mistakes, and
it totally shifted my perspective. I had been labeling driveways from
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E Label Type Control

Overall
Curb Ramp

Intervention U p-value
0.699 (x0.199)  0.891(+0.053) 50.0 0.001**

0.686(+0.346)  0.956 (+0.067) 70.0 0.038*

No Curb Ramp 0.802(+0.164)  0.918 (x0.091) 80.5 0.025*

: Obstacle 0.7610 (+0.126) 0.812 (x0.1m) 85.5 0.183

Surface Problem ~ 0.812(:0.230) ~ 0.894(:0.116) 100.0 0.423

. No Sidewalk 0.842(:0.267)  0.867(x0.208) 66.5 0.480
precision low precision high

Figure 10: User labeling precision in the intervention group was higher across all categories, and the difference was statistically
significant for the overall category, as well as for Curb Ramp and Missing Curb Ramp label types (+p < 0.05, =« p < 0.01). (A) A
raincloud plot (a half violin plot and a boxplot) shows user labeling precision between the control group and the intervention
group, both overall and for the five specific label types. (B) A complementary table displays the precision mean, standard
deviation, Mann-Whitney U value, and p-value for both the control and intervention groups.

houses, but the screen clarified that those should not be labeled as
curb cuts.”

4.6.2  Self-efficacy & Learning Gains (RQ2). While the above find-
ings demonstrate users’ improvements in terms of task performance,
we are also interested in self-efficacy and learning.

Self-efficacy. In the post-study questionnaire, we asked all par-
ticipants about their confidence in identifying sidewalk features
or problems. On average, participants rated their self-confidence
higher in the intervention group (Avg=4.47; SD=0.88) than the
control group (Avg=4.53; SD=0.52) with a statistically significant
difference for Missing Curb Ramps (Avg=4.6; SD=0.7 vs. Avg=3.8;
SD=0.9, p < 0.05), as shown in Table 12. However, when partic-
ipants were asked if they felt more confident about identifying
problems on sidewalks faced by people with disabilities, the differ-
ence between groups was not statistically significant (p=0.721, see
Q5 in Table 13).

Perceived learning gains. While task performance serves as
one indicator of learning outcomes, we also used quizzes to as-
sess objective learning gains and Likert scale questions to measure
perceived learning gains. For objective learning gains, the mean
improvement between the pre- and post-study quizzes was 1.35
(SD=1.73) for the control group and 1.31 (SD=1.54) for the interven-
tion group, showing only a minor difference between the two. In
terms of perceived learning gains, both groups demonstrated an
enhanced understanding of curb ramps and accessibility challenges.
Although the means were higher for the intervention group across
all questions, no statistically significant difference was observed,
except for the question, “Participating in the study gave me more
ideas to make sidewalks accessible for people with disabilities.”, where
the mean score for the control group was 4.35 (SD=0.7), compared
to 4.82 (SD=0.53) for the intervention group (p <0.05).

4.6.3 Perceived Usefulness & Presence of Al (RQ3). Having explored
the overall user performance, confidence and learning gain, we now
turn to the perceived usefulness and presence of Al in LabelAld.
Perceived usefulness. Participants generally expressed a favor-
able view of LabelAId. When asked to what extent they agreed with
the statements that the pop-up prompts were helpful and likable,
the majority responded with "Somewhat Agree" or "Strongly Agree"

(82.35% and 64.7%, respectively). In the post-study questionnaire
and debriefing sessions, 11 out of 17 participants in the interven-
tion group specifically cited the pop-up screens from LabelAld as a
feature they appreciated or found helpful for labeling tasks. These
timely reminders were particularly valued when participants were
uncertain about their initial judgments. One participant mentioned:
“There were times when I was not sure if I should label it, and the
system popped-up for me and said ‘Are you sure about this?’ I found
that really helpful” When asked about whether the prompts were
distracting or appeared too frequently, the responses were more
mixed—with a relatively even distribution across Likert responses.

Perceived presence of Al. We asked participants whether they
felt an Al agent was observing their performance or assisting them
during the labeling task and found a statistically significant differ-
ences between the two groups. This suggests that the presence of
LabelAld had a noticeable impact on participants’ perception of Al
involvement. Interestingly, some participants in the control group
explicitly expressed a desire for Al assistance. One control-group
participant mentioned, “There was a section [in the post-study ques-
tionnaire] asking how I felt about Al helping me to label. Honestly, I
didn’t notice any AI while I was labeling. It would be super convenient
if there was one that could suggest labels and ask me to correct them
or provide a confidence level.” This is exactly the intent of LabelAld.

5 DISCUSSION

Through our technical evaluation and user study, we showed how
LabelAld improves both labeling data quality and crowdworkers’
domain knowledge. We now situate our findings in related work,
highlight key factors behind LabelAId’s success, its limitations, and
directions for future research. We also discuss how LabelAld can
be generalized to other domains of crowdsourced science.

5.1 Reflecting on LabelAlId’s Performance

Below, we reflect on LabelAT'd performance and its relevance to fu-
ture research, including comparing the differences between Al and
human feedback, minimizing the overreliance on Al, and striking a
balance between constructive feedback and perceived surveillance.
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Can Al-assistance replicate human-based feedback? Prior
work has shown that providing manual feedback to crowdwork-
ers can improve task performance and enhance self-efficacy [22,
23, 60, 90, 99]. Our study further reveals that Al-feedback can im-
prove labeling performance, increase participants’ confidence, and
enhance their domain knowledge—even with an imperfect ML infer-
ence model. While the nuances between human and Al-feedback in
crowdsourcing have yet to be comprehensively studied, researchers
in education have assessed the usage of automatic feedback as
a learning tool [34, 38, 55, 92]. Findings suggest that automatic
feedback can reduce bias and increase consistency in grading [38],
liberate the instructor from grading to focus on other tasks [92],
and allow more students to receive education simultaneously [85].
We believe that these benefits can well be extended to Al-generated
feedback in crowdsourcing systems.

Yet, automated feedback in education contexts has limitations. It
excels in grading tasks with clear-cut solutions (e.g. programming
questions), but may be challenging to implement in more subjective
disciplines [34]. Moreover, automatic graders fail to recognize when
students are very close to meeting the criteria, whereas human
graders would identify and assign partial grades accordingly [55].
Future research in crowdsourcing should incorporate these insights
from education science when designing Al-based feedback systems,
and borrow approaches such as Al-feedback combined with human
feedback on request [55].

Cognitive forcing function reduces overreliance on Al. An
overarching concern with Al-based assistance—including systems
like LabelAld—is how the presence and behavior of AI may actu-
ally reduce active cognitive functioning in humans as they defer
to Al's recommendations, which can then negatively impact over-
all task performance [42, 52]. For example, [9, 42] showed how
users tend to overly depend on Al following its suggestions even
when their own judgment might be superior. Such a tendency is
particularly problematic when the Al is inconsistent (e.g., across
class categories), as in our case. Recent work has explored cognitive
forcing functions [10]—functions that elicit thinking at decision-
making time. Because there is an anchoring bias [32] that occurs
when presenting users with AI's recommendations, one effective
strategy is to ask the user to make a decision prior to seeing the
ATl's recommendation [10]. Indeed, this is how LabelAld works:
presenting suggestions only after the user makes an initial decision
and places a label—which may mitigate such bias.

Specifically, in our user study, LabelAld performed particularly
poorly for two label types Obstacles and Surface Problems with false
positive feedback rates of 36.2% and 37.7% respectively. However,
users rejected these suggestions 83% and 73% of the time, indicating
that they preferred their own judgments to the Al Although this
design choice was dictated by LabelAI's model requirements, it en-
couraged analytical thinking that boosted participants’ confidence
in their own decisions. Our study contributes to the broader dis-
course of HAI highlighting how system design can elicit analytical
reasoning and reduce cognitive biases in decision-making.

Striking a balance between constructive feedback and per-
ceived surveillance. We found a significant difference between the
two groups regarding the perceived presence of Al (Section 4.6.3).
Out of the 17 participants in the intervention group, eight felt ob-
served and nine felt assisted by an Al agent, while in the control
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group, none felt observed and only three sensed Al assistance. We
speculate that this difference in perceived surveillance also con-
tributed to better intervention group performance, since they felt
their work was being scrutinized. This observation raises questions
regarding Al agents as a form of surveillance in crowdsourcing
environments. When scholars apply a Foucauldian lens [26] to
monitoring technology, some see Al monitoring as social control
from existing power hierarchies [12], while others argue it can
both restrict and empower individuals [50]. This dichotomy im-
plies that, if well-implemented, Al can encourage self-regulation
among crowdworkers. A recent study confirms that digital feedback
improves crowdwork outcomes when learning is the primary objec-
tive [94], which is often the case in crowdsourcing in community
science. Therefore, we advocate for crowdsourcing platforms where
the Al system strikes a balance between constructive feedback and
perceived surveillance.

5.2 LabelAld Limitations and Future Research

We now reflect on LabelAld’s limitations and future work, focusing
on designing interactions with imperfect ML models, promoting
user agency in mixed-initiative interfaces, improving interaction
efficiency in providing learning aids, and expanding participant
diversity in future research.

Designing interactions with imperfect ML models. With
LabelAld, we were able to determine when a user likely made a
mistake, but not the exact source of the error, which limited the
types of prompting we could provide. As one participant mentioned:
"It’ll be great to provide some rationale or explanation on why there’s a
pop-up. Like maybe the location I placed my label is too far away from
the obstacle.” Current approaches of offering Al explainability falls
into two categories: communicating information about the model
inferences on a local level (e.g. confidence score and local feature
importance) and communicating information about the model itself
on a global level (e.g. model accuracy and global explanations) [51].
However, LabelAld’s current implementation does not incorporate
explainability features.

On a global level, we recognize that our implementation could
better communicate the model’s varying accuracy levels across dif-
ferent label types. Despite a detailed technical analysis of Label AId’s
performance in Section 3, we did not surface accuracy scores or
global feature importance to participants. Future iterations should
address this shortcoming. On a local level, we intentionally ex-
cluded confidence scores. This choice was informed by research
indicating that confidence scores have limited impact on improving
HAI collaboration [3, 10], coupled with our concern about over-
cluttering the already busy UL Future work may incorporate recent
approaches to model the user’s level of confidence and provide
adaptive recommendations, i.e., only display AI's recommendations
when the ATl’s confidence level is higher than the human’s [59].

In summary, while our current design decisions were informed
by a balance of user cognitive load considerations and technical
constraints, future work should explore other methods to provide
users with tailored explanations and rationale, enhancing their
understanding and interaction with the ML model.

Promoting user agency in mixed-initiative interfaces. Par-
ticipants had mixed opinions about the frequency of Al interventions,
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with some finding them distracting. One participant noted, “Some-
times the pop-ups were too frequent, so it might be helpful to give
the user the option to disable them.” In addition, we also noticed the
diminishing returns of increased intervention. During the study,
there is no significant correlation between the frequency of inter-
vention and task performance (Table 10). One potential explanation
is that users understood their mistakes after the first few interven-
tions, thereby making fewer mistakes in subsequent tasks. These
findings, consistent with learning science research demonstrating
that additional exposure or intervention does not necessarily im-
prove performance (known as the saturation effect [37]), are also
supported by ongoing HAI research exploring ways to enhance
human agency in mixed-initiative interfaces [1, 51, 82]. In future
iterations, we would like to explore offering users overall control
to enable or disable Al, to provide adaptive suggestion frequency
based on labeling rate, and to allow users to request Al assistance
only when needed [10].

Designing efficient UI for learning aids. In addition to a
lack of correlation between how often participants viewed example
screens and their performance levels (Table 10), we observed that
common mistakes and correct examples were only viewed a total
of 30 times-six of the 17 intervention participants never viewed
either of the screens. This could be due to the interaction cost [7]:
the common mistakes screen requires two clicks and the correct
examples screen three. While click count alone is not a meaning-
ful metric [53], it is important to minimize interaction costs [7]
by making key information easily accessible. Future work should
explore developing effective methods for presenting examples to
crowdworkers while they are balancing high cognitive load tasks.

Expanding participant diversity in future research. While
our study size of 34 aligns with typical HCI between-subjects studies
(e.g, [43, 67]), it is on the lower end for crowdsourcing research [48].
However, our study design choice facilitated in-depth interviews
and focused analysis, allowing us to gather qualitative insights
not typical in crowdsourcing studies. Participants were recruited
through snowball sampling from the research team’s contacts and
university mailing lists, which may not represent the comprehen-
sive user base of Project Sidewalk including disability advocates. In
future studies, we aim to enhance the applicability of our findings
by expanding our participant base.

5.3 Generalizability to Other Domains

Our study demonstrates the effectiveness of LabelAld in a crowd-
sourcing tool for urban accessibility, yet, its generalizability remains
an open question. We believe there are two primary generalizable
components:

e LabelAId’s PWS based ML pipeline. PWS does not re-
quire annotated data, it works on a set of LFs generalized
from domain knowledge and user behavior. This is particu-
larly useful for crowdsourced community science because
it allows organizers to transform their expertise and heuris-
tic into LFs, which can then programmatically label large
quantities of data. It is also more cost-effective compared
to traditional ML models, as LabelAld improves inference
accuracy by 36.7% with only 50 downstream data points.
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e LabelAlId’s mistake intervention design. LabelAld’s in-
situ intervention design is rooted in literature on crowd
feedback and contextual assistance, and aligns with recent
HAI research on using cognitive theories to reduce over
reliance on AL Its simple two-step formula can be easily
replicated in other platforms.

We believe our technique is most applicable to areas that require
domain expertise and contextual understanding, such as medical
image labeling [79, 98], galaxy classification [84], and wildlife cate-
gorization [4]. For example, the crowdsourcing application iNatu-
ralist uses identification technology and taxonomic experts to assist
people in identifying natural species, and it achieves the best results
when combined with traditional field guides [88]. We envision these
guides and knowledge from experts being translated into LFs in our
pipeline, and with similar mistake intervention design, LabelAld
can help iNaturalist users contribute data more effectively while
learning more about biodiversity.

6 CONCLUSION

In conclusion, LabelAld offers a practical approach to improving
both crowdsourced data quality and domain knowledge of crowd-
workers. By using machine learning to provide real-time feedback,
LabelAld reduces the need for extensive manual review while also
helping workers learn throughout the crowdsourcing process. Our
user study demonstrates that LabelAld can improve user label qual-
ity without sacrificing speed, thereby offering a scalable solution
to enhance worker knowledge and label quality in crowdsourcing
tasks. While our empirical results focused on the performance of
LabelAld within the context of urban accessibility, our framework
can be extended to other crowdsourcing platforms, such as agri-
cultural image recognition, medical imagery labeling, and wildlife
biology image categorization.
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A ADDITIONAL DISCUSSIONS ON LABELAID
PIPELINE

A.1 Labeling Functions

LFs serve as flexible interfaces within the framework of PWS. We
assess three aspects of each LF (Table 7): coverage (the proportion of
examples each LF annotates), overlap (the proportion of examples
each LF annotates that another LF also labels), and conflict (the
proportion of examples each LF annotates and annotated differently
by another LF). We note that it is necessary to apply as many LFs as
possible for the best model performance due to the following rea-
sons: (1) Improve coverage: each LF could capture different features
of the data. More LFs can cover a higher proportion of raw data
instances, leading to a larger AIA dataset generated from the PWS
pipeline. (2) Reduce bias and overfitting: More LFs representing
various heuristics or data insights, can mitigate systemic errors
by averaging out individual LF bias. Incorporating multiple expert
opinions and knowledge sources helps avoid overfitting to specific
patterns or anomalies in the data, therefore making the model more
generalizable. We assess the model performance with all LFs used
during the PWS pipeline, and when removing one LF, the results
(Table 8) show that even removing one LF during the PWS pipeline
tends to hurt the end model’s performance.

Polarity Coverage Overlaps Conflicts

distance_i [0] 0.032 0.017 0.017
clustered [1] 0.383 0.252 0.033
severity [0, 1] 0.066 0.062 0.051
zZoom [0, 1] 0.479 0.288 0.071
tag [1] 0.324 0.210 0.037
description [1] 0.010 0.010 0.004
distance_r [0] 0.027 0.027 0.019
way_type [0, 1] 0.030 0.023 0.016

Table 7: Labeling function analysis using label matrix. [0]
= Wrong, [1] = Correct.Note: distance_i is the distance to
intersection, distance_r is the distance to road, and way_type
is the road hierarchy according to OpenStreetMap.
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A.2 Programmatic Weak Supervision vs. Hard
Rule-based Approach

A key aspect of PWS is its ability to handle noise and conflicts in
LFs [70-72]. Hard rule-based approaches would struggle in sce-
narios where LFs conflict or where the data presents ambiguities.
For instance, if a user places a Missing Curb Ramp label within the
distance threshold to the intersection but fails to provide a tag, then
LFs of distance_i and tag provide contradictory annotations. PWS
integrates these imperfect LFs into a probabilistic graphical model,
so it can evaluate these conflicts based on the learned weight of each
LF, whereas a hard rule-based approach would lack the mechanism
to resolve such conflicts.

Our analysis indicates that LabelAld outperforms a hard rule-
based method across all five label types (Table 9). To mitigate the
complexity of resolving conflicts, we selected the most important
rule from our feature importance analysis for each label type (Ta-
ble 4). However, it is worth noting that hard rule-based approaches
may still be valuable in low-resource scenarios. In situations where
the raw dataset is small or when there is limited computational
capacity to run an Al inference model, crafting a few expert-defined
rules might be more feasible and efficient than establishing a com-
plex PWS setup.

Curb  Missing Obstacle Surface  Missing
Ramp Curb Problem Sidewalk
With allLFs  0.971 0.966 0.766 0.861 0.942
Without 0.909 0.918 0.695 0.803 0.836
distance_r
Without tag  0.910  0.885 0.556 0.677 0.722

Table 8: Performance decreases by label type of our LabelAId
pipeline in F1 score for Seattle after one LF being removed.
Note: distance_r is the distance to the road.

Curb Missing Obstacle Surface  Missing

Ramp  Curb Problem  Sidewalk
LabelAId 0.971 0.966 0.766 0.861 0.942
Hard Rule- 0.943 0.752 0.660 0.576 0.849

based

Table 9: Performance by label type of our LabelAld pipeline
compared to the hard rule-based approach in F1 score for
Seattle.

Li et al.

B USER EVALUATION TABLES

rho p-value

Number of times being intervened ~ -0.141  0.589
Total time spent interacting with Ul  -0.230  0.374

Times viewed common mistakes -0.066  0.801
Times viewed correct examples -0.004  0.989
Total times viewed example screens -0.074 0.779

Table 10: Spearman’s rho correlation results for the level of
intervention and precision.

Quiz Control Intervention U p-value
Pre-study  5.53(2.07)  5.06 (1.57) 163.50 0.51
Post-study 6.88 (1.45)  6.38(2.09) 174.00 0.30
Delta 1.35(1.73)  1.31(1.54) 15250 0.78

Table 11: Quiz scores. In both pre- and post-study question-
naires, participants were shown four images for each of the
five label types and were asked to select the correct ones. A
sum score was calculated for all participants: each correct an-
swer earned 1 point, and each incorrect answer was penalized
with -1 point. There was no statistical difference between the
two groups.

Question Control Intervention U p-value
Curb Ramp 4.65 4.71 142.0 0.914
Missing Curb 3.88 4.59 84.5 0.023"
Obstacles 4.35 476 98.0 0.061
Surface Problems 4.18 447 116.0 0.276
Missing Sidewalk 441 4.65 1235 0.392

Table 12: Responses to the question: "How confident are you
that you can correctly recognize the following?" We mapped
responses from "Not confident at all" to "Very confident" to
1-5. (*p < 0.05, **p < 0.01, ***p < 0.001).
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# Question Control Intervention U p-value
1 Ifeel that I have a better understanding of what a sidewalk curb ramp 4.59 471 1275 0.480

(or curb cut) is.
2 Ifeel that I understand better the accessibility challenges people with 4.47 459 146.0 0.952
disabilities have to participate in society.
3 Ifeel that I have a better understanding of the sidewalk barriers that 4.71 471 1505 0.783
impact people who use wheelchairs or walkers.
4 Ifeel that I have a better understanding of the sidewalk barriers that 4.00 429 1205 0.373
impact people who are blind or low-vision.
5 Ifeel more confident about identifying problems on sidewalks faced by 4.47 453 1535 0.721
people with disabilities
6 Participating in the study gave me more ideas to make sidewalks 4.35 4.82 875 0.017*
accessible for people with disabilities.
7 Ienjoyed using Project Sidewalk. 4.24 447 1195 0.336
8 It was easy for me to use Project Sidewalk. 4.47 429 1535 0.728
9 Ifelt that an Al agent was watching my performance while I was 1.82 3.00 68.0 0.006"
labeling.
10 I felt that an AT agent was helping me throughout the task. 2.29 3.24 83.5 0.028"
11  Overall, I desired more active help to complete the labeling tasks. 3.88 3.24 189.0 0.106

Table 13: Responses to the question "To what extent do you agree with the following statements?". We mapped responses such

as "Strongly disagree" to "Strongly agree" to 1-5. (“p < 0.05, **p < 0.01, ***p < 0.001).
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Label these accessibility features in South Park

O e Missing Obstacle in

Curb Ramp Path

Surface
Problem

&
Sidewalk

Pedestrian
[ZE Signal

(@ COMMON MISTAKE

Driveway

Why is this wrong?

Driveways are not curb ramps. They
are designed for vehicles and not
pedestrians. Driveways should not
be labeled as Curb Ramps.

@ Common mistake
Do not place label

Start mission

) ( valicate

Howto Label | [ 4P ) ((Toots - ) ((seutte - ) [ Sgnin

,,,,,,, Explore

SIDEWALK @59 Us Englsh -

Surface Problems

Surface Problems

Introduction

Asurface problem i  problem thatwould cause 3 bumpy or otherws crence for a
wheelchair or other assistve devices. I something on a surface would make it hard o Impossible 0 cross. it should be
Curb Ramps labeled as a Surface Problem. For surface problems that cover a large area, you should place a Surface Problem label at the
Start of the problem, and then continue placing labels every few feet (sbout 1 per panorama) nt the end of the prabem,
Surface Problems .
How should I label sidewalk cracks?
Obeticies You should labe! sidewalk cracks that would resultin an p or other
R wsers. Small elevation changes, ke in the example on the leftbelow, wil ypicalybe of severity 1, since there are no other

issues with the surface. You should label sidewalk cracks that come from weathering in a similar manner.

Can't See the Sidewalk

This sidewalk has a moder
change and would get a severity rating
ofz

This sidewalk has a small elevation many cracks ant
change and would get a severity rating ‘may be difficult to pass It would geta

severity rating of .

Figure 11: Project Sidewalk built-in labeling assistance. (A) & (B) Illustrated example screens shown in the beginning of each
route. The label type is rotated every time. (C) & (D) The How to Label Section. Participants may access this section at any time

during the labeling process.
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