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Figure 1: We introduce LabelAId, an ML-based inference system to provide just-in-time feedback during crowdsourced labeling 
to improve data quality and user expertise. LabelAId consists of: (1) a novel ML-based pipeline for detecting labeling mistakes, 
which is efciently trained to infer label correctness based on user behavior and domain knowledge; (2) a real-time ML model 
and UI that tracks worker behavior and intervenes when an inferred mistake is occurring. 

ABSTRACT 

Crowdsourcing platforms have transformed distributed problem-
solving, yet quality control remains a persistent challenge. Tra-
ditional quality control measures, such as prescreening workers 
and refning instructions, often focus solely on optimizing eco-
nomic output. This paper explores just-in-time AI interventions 
to enhance both labeling quality and domain-specifc knowledge 
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among crowdworkers. We introduce LabelAId, an advanced in-
ference model combining Programmatic Weak Supervision (PWS) 
with FT-Transformers to infer label correctness based on user be-
havior and domain knowledge. Our technical evaluation shows 
that our LabelAId pipeline consistently outperforms state-of-the-
art ML baselines, improving mistake inference accuracy by 36.7% 
with 50 downstream samples. We then implemented LabelAId into 
Project Sidewalk, an open-source crowdsourcing platform for ur-
ban accessibility. A between-subjects study with 34 participants 
demonstrates that LabelAId signifcantly enhances label precision 
without compromising efciency while also increasing labeler con-
fdence. We discuss LabelAId’s success factors, limitations, and its 
generalizability to other crowdsourced science domains. 
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CCS CONCEPTS 

• Computing methodologies → Machine learning; • Informa-

tion systems → Crowdsourcing; • Human-centered comput-

ing → Interactive systems and tools. 
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1 INTRODUCTION 

Crowdsourcing systems have transformed distributed human 
problem-solving, enabling large-scale collaborations that were pre-
viously infeasible [41]. Quality control, however, remains a per-
sistent challenge leading to noisy or unusable data [16, 48]. Ex-
isting quality control measures such as prescreening crowdwork-
ers [20, 44], refning instructions [24, 47, 81], manipulating incen-
tives [24, 47, 81], and majority vote fltering are designed to optimize 
economic output: data quality and worker efciency. Our research 
explores a subset of crowdsourcing that focuses on community sci-
ence, or crowdsourced science [74]. Platforms like Zooniverse [84] and 
FoldIt [46] engage non-professionals in scientifc tasks and serve 
as important means of public engagement and education [74, 90]. 
Since participants are primarily volunteers, crowdsourced science 
presents unique quality control challenges: users are primarily mo-
tivated by intrinsic interest, learning opportunities, and making a 
diference but may be unfamiliar with the domain [68]. Previous 
work in crowdsourcing has explored the dual objectives of enhanc-
ing work quality as well as learning experience in crowdsourcing 
systems by providing feedback to crowdworkers [21–23, 90, 99]. Yet, 
these approaches are less scalable because they require additional 
commitments from either crowdworker peers or external experts 
[22, 23, 90, 99]. 

Building on this prior work, we present LabelAId, a real-time 
inference model for providing just-in-time feedback during crowd-
source labeling to improve data quality and worker expertise. La-
belAId is composed of two parts: (1) a novel machine learning (ML) 
based pipeline for detecting labeling mistakes, which is efciently 
trained on unannotated data that contain those very mistakes; (2) a 
real-time system that tracks worker behavior and intervenes when 
an inferred mistake occurs. Unlike previous approaches that im-
prove crowdworkers’ learning experience through peer or expert 
feedback [23, 99], LabelAId reduces the reliance on human input, 
leveraging human-AI collaboration to provide targeted feedback 
for enhancing crowdworker performance and domain knowledge. 

To study LabelAId in a real crowdsourcing context, we instru-
mented the open-source crowdsourcing tool, Project Sidewalk, where 
online users virtually explore streetscape imagery to fnd, label, and 

assess sidewalk accessibility problems for people with mobility 
disabilities [80]. Since its launch in 2015, over 13,000 people across 
the world have used Project Sidewalk to audit 17,000 �� of streets 
across 20 cities in eight countries including the US, Mexico, Ecuador, 
Switzerland, New Zealand, and Taiwan, contributing over 1.5 mil-
lion data points1. 

Project Sidewalk provides a compelling use case for LabelAId 
because, unlike traditional image labeling tasks for object detection 
(e.g., ImageNet [19], COCO [58], Open Images Dataset [30]), crowd-
workers are asked to make careful judgments about a labeling target, 
which requires domain knowledge and training—similar to agri-
cultural image recognition [29], medical imagery labeling [79, 98], 
and wildlife image categorization [4]. Such labeling tasks refect 
a broader trend of crowdwork becoming increasingly complex, 
domain-specifc, and potentially error prone [48]. Second, as a com-
munity science project, Project Sidewalk aligns with the growing 
emphasis on both educational impact and data quality in crowd-
sourcing [21–23, 90, 99], which LabelAId provides. Finally, Project 
Sidewalk currently employs a common but limited quality control 
mechanism: users validate labeled images by other users. Since both 
labelers and validators are drawn from the same user population, 
repeated errors can pervade the system. 

To evaluate LabelAId, we conducted: (1) a technical performance 
evaluation of LabelAId’s inference model; and (2) a between-subjects 
user study of 34 participants. For the former, we demonstrate that 
the LabelAId pipeline consistently outperforms state-of-the-art 
baselines and can improve mistake inference accuracy by up to 
36.7%. With fne-tuning on as few as 50 expert-validated labels, La-
belAId outperforms traditional ML models such as XGBoost [17] and 
Multi-layer Perceptron (MLP) [87] trained on 20 times the amount 
of expert-validated labels. Furthermore, we showcase the robust 
generalizability of our pipeline across diferent deployment cities in 
Project Sidewalk. Since its initial deployment in Washington D.C., 
Project Sidewalk has expanded to 20 cities, with ongoing plans for 
further growth. To support future city deployments, it is important 
to minimize labor and confguration overhead of the mistake in-
ference model in new cities. Our study shows that LabelAId, even 
without fne-tuning, performs comparably in a new city to those in 
the pre-training set. 

For the between-subjects user study, participants were randomly 
assigned to one of two conditions: using Project Sidewalk in its orig-
inal form (control) or using Project Sidewalk with LabelAId (inter-
vention). Our fndings reveal that the intervention group achieved 
signifcantly higher label precision without sacrifcing labeling 
speed. While using Project Sidewalk enhanced participants’ under-
standing of urban accessibility and their confdence in identifying 
sidewalk problems in both groups, participants in the intervention 
group reported that LabelAId was helpful with decision-making, 
particularly in situations where they were initially uncertain. 

To summarize, our contributions are as follows: 

• A novel ML pipeline that allows for the integration of domain-
specifc knowledge and heuristics into the data annotation 
process, which facilitates the training of AI-based inference 
models for detecting crowdworker labeling mistakes across 

1https://projectsidewalk.org/ 
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various contexts, while minimizing the need for manual in-
tervention in downstream tasks. 
• A human-AI (HAI) collaborative system designed to create 
teachable moments in crowdsourcing workfows. This sys-
tem not only improves the quality of crowdsourced data, but 
also enriches the learning experience for participants. 
• A between-subjects user study involving 34 participants with 
no prior experience using Project Sidewalk, demonstrating 
that LabelAId signifcantly improves label precision by 19.2% 
without compromising efciency. 

While our empirical results focused on the performance of La-
belAId within the context of Project Sidewalk, we believe our frame-
work can be generalizable to other crowdsourcing platforms as well 
as the PWS-based ML pipeline and the two-step module design in-
tervention are easily replicable and tailorable in diferent contexts. 

2 RELATED WORK 

Our work draws on, and contributes to research in improving the 
quality of crowdsourcing, enhancing crowdworkers’ domain knowl-
edge, and inferring the correctness of labels using ML methods. 

2.1 Improving Quality of Crowdsourced Labels 

Distributed crowdwork has transformed how loosely connected in-
dividuals collaborate together to solve large-scale problems such as 
protein folding [18] map building [35], and writing compendiums of 
knowledge [93]. Despite decades of research, however, large-scale 
crowdwork remains susceptible to quality control problems [14, 48]. 
For example, studies have shown that over 30% of MTurk submis-
sions are likely to be poor quality [5, 47]. Current quality control 
methods can be broadly categorized into two groups: preventive 
techniques and post-hoc detections. Preventive measures include 
screening crowdworkers based on capabilities [20, 44], dividing 
work into fault-tolerant sub-tasks [5, 49, 65], improving instruc-
tions [24, 47, 81] and changing payment structures [13, 76, 81]. 
Post-hoc measures involve fltering based on majority vote [86] and 
employing additional crowdworkers to review others’ work [11, 36]. 
Project Sidewalk currently uses both strategies: an interactive tu-
torial to train crowdworkers as their “frst mission” and post-hoc 
validation where crowdworkers “vote” on the correctness of other 
users’ labels. 

Other quality control research examines how workers do their 
work rather than the end product itself, using ML algorithms to 
predict the quality of crowdworkers’ output based on their be-
haviors [28, 77, 78]. This method captures behavioral traces from 
workers during task execution and uses them to predict quality, 
errors, and the possibility of cheating [28, 77, 78]. These behav-
ioral traces are gathered by logging user interactions, which are 
then formulated into interaction patterns for monitoring real-time 
worker compliance [78]. This methodology, termed “fngerprinting” 
by Rzeszotarski and Kittur [78], has demonstrated its efcacy in pre-
dicting crowdworker output quality. Expanding Rzeszotarski and 
Kittur’s work, Kaza and Zitoun [45] investigated using the behav-
ior of trusted, trained judges to identify low-performing workers. 
Their study, which involved assessing the relevance of web pages 
to specifc queries, showed that the classifcation accuracy nearly 

doubled in some tasks. However, the approach is challenging to 
scale due to the need for trained judges. 

Building on this body of research, we introduce an ML pipeline 
that combines crowdworker behavioral data with expert domain 
knowledge (in our case, drawn from urban accessibility but the 
approach should generalize to other domains). This model aims to 
more efectively and automatically guide crowdworkers through 
their eforts in identifying street-level accessibility issues. 

2.2 Teachable Moments in Crowdsourcing for 
Community Science 

Crowdsourcing for community science are initiatives where profes-
sional scientists seek the assistance of crowds in contributing to sci-
entifc research [35, 74]. Platforms like Zooniverse [84], FoldIt [46], 
and SciStarter [40] are notable for having involved non-professionals 
in signifcant scientifc discoveries. Beyond contributing to science, 
these platforms serve as tools for public engagement, outreach, 
and education [90]. Unlike crowdworkers driven by monetary in-
centives (e.g., on MTurk and Prolifc), participants of community 
science projects are primarily volunteers motivated by desires to 
learn and contribute to scientifc research [69, 73]. 

Recent crowdsourcing research has been investigating ways 
to not only enhance the quality of work but also the learning 
experience of participants [21–23, 90, 99]. For instance, Dow et 
al. [23] demonstrated that timely, task-specifc feedback can help 
crowdworkers learn, preserve, and produce better results. Projects 
like Crowdclass [54] and CrowdSCIM [90] introduced in-task learn-
ing modules for community science initiatives. Despite these ad-
vances, current methods facilitating learning through crowdsourc-
ing, such as peer-review [23, 99], expert feedback [23], and self-
assessment [23], all require additional commitments from either 
the crowdworkers or external experts, limiting their scalability. 

Recent developments in HAI collaboration presents new ways 
to tackle these scalability issues. Matsubara et al. [61] suggest us-
ing machine predictions as reference answers for self-correction. 
Nakayama et al. [62] extended this concept, proposing workfows 
where AI learns alongside human workers without prior training. 
Inspired by this evolving landscape, we propose an add-on system 
for crowdsourcing systems like Project Sidewalk that enhances both 
task quality and educational outcomes. It leverages HAI collabo-
ration to enable in-context learning without requiring additional 
commitments from participants. 

2.3 Machine Learning to Infer Label Correctness 

To create teachable moments in crowdsourcing workfows, it is 
essential to develop inference models for detecting crowdworker 
labeling mistakes. Recent research has harnessed the power of ML 
to infer crowdsourced label quality. For instance, computer vision-
based neural networks are applied to validate crowdsourced labels 
of sidewalk accessibility problems in Google Street View (GSV) im-
agery [91], and also ofer reference answers to image recognition 
labelers enabling self-correction [61, 62]. These deep learning meth-
ods present promising solutions for aiding crowdsourced labeling 
tasks, but they often require substantial training data. While general 
labeled image datasets such as [19, 30, 58] are available, domain-
specifc datasets are relatively rare and expensive to produce. 
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Figure 2: An overview of our LabelAId pipeline. Programmatic weak supervision, utilizing domain-specifc knowledge and 
heuristics, is employed to annotate the raw data. Subsequently, the automatically imperfectly annotated data generated from 
PWS are used to pre-train the inference model. Lastly, the inference model is fne-tuned using expert-validated labels for the 
target downstream task. Diagram adapted from [70]. 

In this paper, we aim to minimize the need for manually-annotated 
data for training AI-based inference models. The recently proposed 
Programmatic Weak Supervision (PWS) framework [70–72] pro-
vides a promising approach: aggregating noisy votes from domain 
knowledge, heuristics, external patterns and rules to assign annota-
tions to the raw data. Subsequently, this annotated data serves to 
train models for a range of domain-specifc tasks, including video 
analysis [89], text classifcation [83], and sensor data analysis [27]. 
However, its potential for inferring and improving the quality of 
crowdsourced labels remains unexplored. 

3 LABELAID: A LABEL CORRECTNESS 
INFERENCE FRAMEWORK 

LabelAId is a novel ML pipeline designed to provide just-in-time 
intervention in crowdsourced labeling tasks, inferring and identify-
ing labeling mistakes as they occur. At its core, LabelAId tackles 
a major hurdle in deploying such AI-based inference models: the 
need for large volumes of annotated training data, which is partic-
ularly scarce in crowdsourced environments. LabelAId introduces 
both (1) a programmatic pipeline to train an efcient ML inference 
model to detect crowdworker labeling mistakes, which is trained 
on unannotated data that contain those very mistakes and mini-
mal expert-validated data, and (2) an example application of the 
LabelAId pipeline to a crowdsourcing system to recognize and in-
tervene when a user is making a labeling mistake. Our overarching 
goal is to create a full end-to-end HAI pipeline with minimal expert 
involvement for model training, thereby facilitating rapid deploy-
ment of LabelAId mistake inference models in real-world crowd-
sourcing contexts. In this section, we describe LabelAId’s pipeline 
design, how we implemented LabelAId in Project Sidewalk, and 
our technical evaluation. Our code is available on Github.2 

3.1 LabelAId Pipeline 

Developing an inference model capable of discerning specifc user 
mistakes while also being generalizable to general crowdworkers’ 

2https://github.com/makeabilitylab/LabelAId 

behaviors is challenging and necessitates the consideration of a 
variety of quality signals. Our LabelAId pipeline is composed of 
three core phases (Figure 2): (1) Programmatic weak supervision 
(PWS) uses domain-specifc knowledge about crowdsourcing tasks 
and historical heuristics from crowdworker behavior; this phase 
generates a set of Automatically, Imperfectly Annotated (AIA) prob-
abilistic training data. (2) We then pre-train an ML model using 
the AIA data generated from PWS. The inference model learns 
general features and representations of the target crowdsourcing 
task in this phase. (3) Finally, we fne-tune the inference model 
using a small number of expert-validated labels to further enhance 
its performance for the target task. 

3.1.1 Programmatic Weak Supervision (PWS). Due to the inher-
ently noisy nature of crowdsourced data, LabelAId adopts PWS as 
its foundational architecture. PWS takes unannotated data and pro-
duces probabilistic training labels, and has demonstrated efective-
ness in tasks like document and numerical data classifcation [6, 97]. 
We use the popular Snorkel [70] platform as the backbone of our 
PWS pipeline. PWS allows for the integration of domain knowl-
edge and heuristic guidelines into the data annotation process and 
provides a method for estimating their confict and correlation in 
a programmatic manner. As a result, the probabilistic training la-
bels can be reweighted and combined to create high-quality labels. 
This approach aligns well with our objectives for two key reasons: 
frst, it allows us to train models on unannotated data, eliminat-
ing the need for manually labeling large datasets; and second, it 
enables the incorporation of domain-specifc knowledge related to 
crowdsourcing tasks into our pipeline. 

One of the core components of Snorkel is Labeling Functions 
(LFs), which are rules or heuristics humans code to annotate raw 
data programmatically. When incorporating a set of LFs, they intro-
duce distinct characteristics and correlations that extend beyond 
disparities in accuracy and coverage. It is important to recognize 
that LFs are not equal in their contribution to the annotation. LFs 
may also overlap and confict, which cannot be resolved by a sim-
plistic hard-rule-based approach (see Appendix A.2 for additional 
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Seattle Chicago Oradell 

Unannotated 
Expert-

Validated 
Unannotated 

Expert-
Validated 

Unannotated 
Expert-
Validated 

Total 

Curb Ramp 70,690 5,333 5,710 2,386 660 859 85,638 
Missing Curb Ramp 32,968 4,239 463 1,294 325 396 39,685 
No Sidewalk 36,021 3,460 2,211 48 3,949 1,217 46,906 
Surface Problem 26,912 2,909 2,136 1,651 2,544 1,222 37,374 
Obstacle 10,103 407 1,254 320 106 158 12,348 
All Label Types 176,694 16,348 11,774 5,699 7,584 3,852 221,951 

Table 1: Set sizes of unannotated and expert-validated labels, contain Project Sidewalk labels from Seattle, WA; Chicago, IL; and 
Oradell, NJ. The unannotated set is used to pre-train the model after our PWS annotation process. The expert-validated set is 
used to fne-tune and evaluate the inference model, which was created from labels manually-validated by the Project Sidewalk 
research team. 

discussion). While previous approaches used majority-vote-based 
models to handle these intricacies, it can result in an overrepresenta-
tion of specifc signals when two features are highly correlated [70]. 
To address this, we instead opt for probabilistic graphical models to 
integrate the outputs of LFs. We use the Snorkel label model to take 
the complete set of LFs as its input and generate a matrix of LFs, Λ. 
We aim to maximize the probability of the outputs of the LFs [96] 
in the context of our label correctness inference task, i.e., a binary 
classifcation. Assuming � is the set of model parameters and � is 
the prediction class, this objective transforms into an optimization 
problem as the following equation: 

∑ 
max � (Λ; � ) = � (Λ, � ; � )
� 

� 

The label model generates a single set of noise-aware, proba-
bilistic training labels, which can be used to train an ML model or 
neural network. 

3.1.2 Transfer Learning from AIA to Expert-Validated Labels. The 
ultimate goal is to train a discriminative ML model—such as a neural 
network classifer—that can generalize beyond the label model. The 
choice of the specifc ML model architecture should be tailored to 
the requirements of the downstream task. 

While PWS produces a set of AIA probabilistic training data, an 
ML model trained on a large yet noisy dataset could potentially 
overft to the noise, which should be avoided. Fine-tuning large pre-
trained models is a popular methodology for leveraging knowledge 
from a related source domain to improve the learning performance 
in a target task with limited clean samples [100]. 

Since the source domain and target task in our LabelAId pipeline 
share the same feature space, we introduce a two-phase transfer 
learning pipeline from AIA data to expert-validated labels: (1) Pre-
training the ML model on the AIA dataset D� produced by our PWS 
pipeline; (2) Fine-tuning the pre-trained model on a small number 
of expert-validated downstream labels D� for a specifc task. Our 
pre-training and fne-tuning pipeline is illustrated in Figure 2. This 
approach aims to minimize the requirement of manual intervention 
in annotating downstream data for a target task. 

3.2 Applying LabelAId to Project Sidewalk 

We present a specifc implementation of our end-to-end LabelAId 
pipeline using domain knowledge in urban accessibility for Project 

Sidewalk (Figure 3), a large-scale and widely used sidewalk ac-
cessibility platform leveraging crowdsourced labels. We describe 
the dataset, details of labeling functions and features, and model 
training process below. 

3.2.1 Dataset Description. At the time of our analysis, Project Side-
walk had 757,730 crowdsourced image labels applied on top of 
Google Street View (GSV) panoramas across 15 cities in the US, Mex-
ico, and Europe. Project Sidewalk has fve main label types: Curb 
Ramp, Missing Curb Ramp, Sidewalk Obstacle, Surface Problem, Miss-

ing Sidewalk. Each label includes a severity assessment on a scale 
of 1 to 5, with 5 being the most severe, indicating a sidewalk issue 
that is impassable for a wheelchair user. Labels may also include 
an open-ended description and label-specifc tags. Additionally, all 
labels are accompanied by implicitly captured metadata, such as 
the GSV image date, the label timestamp, and geographical location 
(latitude and longitude). 

As urban composition and sidewalk accessibility guidelines dif-
fer across regions, our initial proof-of-concept of LabelAId focuses 
on three U.S. cities: Seattle, WA; Chicago, IL; and Oradell, NJ. These 
three cities ofer distinct urban and geographical characteristics: 
Seattle represents a major city in the Pacifc Northwest, the Chicago 
data provides a mix of dense downtown area and satellite towns 
in the Midwest, and Oradell is a suburban locale on the East Coast 
outside of New York City. We anticipate that this selection will help 
us develop ML models that could efectively account for diverse 
urban compositions. The ground truth dataset D� is validated by 
the Project Sidewalk research team; two researchers worked collab-
oratively to verify each crowdsourced label, reaching unanimous 
agreement. The fnalized dataset sizes alongside the distribution of 
each label type are shown in Table 1. 

3.2.2 Input Features & Labeling Functions. The suitability of PWS 
for Project Sidewalk comes from two key factors: the integration 
of domain-specifc knowledge (e.g., urban planning guidelines) and 
user behavior insights into our labeling process. 

Drawing on observations of user behavior in Project Sidewalk 
and research in urban planning guidelines, we propose the follow-
ing hypotheses: 

• Severity Rating. Project Sidewalk’s label severity ranges 
between 1 to 5. Severity ratings closer to the extremes (1 & 
5) are more likely to be correct. 
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Figure 3: (A) Project Sidewalk Labeling Interface. (B) Project Sidewalk Label Types. (C) Examples of Project Sidewalk severity 
ratings for surface problems. Severity 5 is the most severe, indicating a scenario impassable by wheelchair users. 

• Optional input. Labels that include optional data are more 
likely to be accurate, because such information requires ad-
ditional thought and efort. These optional felds include a 
free-form description (comment) and relevant tags, such as 
fre hydrant and pole for the obstacle label type. 
• GSV zoom/pitch/heading. In most cases, changing the 
default parameters of GSV results in a more accurate label. 
For example, when a user zooms in to place a Surface Problem 
label, it is more likely to be correct. 
• Distance to other crowdworkers’ labels. A label is more 
likely to be correct if it is placed closer to existing labels 
of the same type. To determine this distance, we adopt the 
two-step spatial clustering approach employed in Project 
Sidewalk [80]. 
• Distance to urban infrastructure. The positioning of a 
label in relation to urban infrastructure can serve as an indi-
cator of its accuracy. For example, US federal legislation [66] 
requires the installation of curb ramps at all intersections 
and at midblock locations where pedestrian crossings are 
present. Given that midblock crossings are relatively rare 
compared to those at intersections, and considering that the 
most common error in Project Sidewalk is mislabeling drive-
ways as curb ramps [91], we hypothesize that a Curb Ramp 
label situated outside a specifed radius from an intersection 
is likely to be incorrect. 

We then derived eight LFs from our hypotheses for Project Side-
walk and integrated all these LFs into the PWS pipeline to ensure 
a diverse coverage and minimize overftting (see Appendix A.1 
for additional discussion). One example algorithm (Algorithm 1) 
is based on the observation that users often mislabel driveways 
as curb ramps in residential areas. The algorithm proposes that a 
Curb Ramp or Missing Curb Ramp in a residential area is likely to 
be wrong when it is far away from an intersection. 

3.2.3 Multi-city Pre-training. To train a discriminative model, we 
start by pre-training on the AIA dataset D� to initialize the weights 
for high-level patterns of sidewalk accessibility labels and user 
behaviors. Due to the mix of categorical and numerical features 
within Project Sidewalk’s datasets, we chose the Feature Tokenizer 
+ Transformer (FT-Transformer) [31]. FT-Transformer represents a 

novel adaptation of the Transformer architecture for tabular data 
domains. Prior research [31, 56] has shown that the FT-Transformer 
is a more universal architect for tabular data, and consistently 
outperforms other state-of-the-art deep tabular models across a 
variety of downstream sample regimes. A high-level view of our 
FT-Transformer-based model architecture is illustrated in Figure 4. 

We employ three distinct datasets to train, validate, and test our 
backbone FT-Transformer-based model. We used the AIA datasets 
D� from three cities generated from our PWS pipeline, which 
consists of 176,694, 11,774, and 7,584 labels for Seattle, Chicago, and 
Oradell, respectively. We balanced and randomly partitioned these 
labels into training, validation, and testing sets following a 70/20/10 
split. In each subset, a minimum of 20 labels were guaranteed for 
every class of every label type. 

We trained an FT-Transformer from scratch. To map all inputs 
into the same embedding space, we encode the numerical data 
through a single-layer perceptron with a dimension of four, and 
embed categorical data with one-hot embeddings of the same size. 
Then, we stack them to formulate the input embeddings for the 
Transformer module. The encoder was confgured with a depth 
of two layers, each comprised of two attention heads. To prevent 

Algorithm 1 Example Labeling Function encoding a heuristic about 
errors made in (Missing) Curb Ramp labels 

Require: labels ∈ CurbRamp or NoCurbRamp 
Ensure: labels ∈ Residential Area 
� ← Intersection Distance Threshold 
for each label � do 

for each intersection � in nearby intersections � do 
Compute spatial distance between � and � 

end for 
if min distance(�, � ) > � then 

� ← wrong 
else 

� ← correct 
end if 

end for 
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Figure 4: Conceptual diagram of our FT-Transformer-based model architecture. First, the model transforms the hybrid features 
(e.g., two numerical and two categorical features) into unifed embeddings. Subsequently, these embeddings are processed 
iteratively by the Transformer layer. The fnal output is based on the [CLS] token. Diagram adapted from [31]. 

overftting and to provide regularization, we incorporated atten-
tion and feed-forward dropouts, both set at 0.2. Additional optimal 
hyperparameters were tuned via grid search, according to the full 
upstream dataset: the AdamW optimizer, a learning rate of 1×10−4, 
and a weight decay of 1 × 10−5 were selected. Given our binary 
classifcation objective, we employed the Binary Cross-Entropy loss 
function coupled with a sigmoid activation function. We employed 
200 epochs for training with early stops on validation loss. The 
average training duration was approximately 5 minutes on a single 
RTX 4070Ti GPU. 

3.2.4 Fine-tuning on a Specific City. Upon delving deeper into our 
pipeline, the pre-trained model, which learned underlying patterns 
of sidewalk accessibility labels and a broad understanding of high-
level user behaviors, can subsequently be fne-tuned on a smaller, 
city-specifc D� to elevate its performance for city-specifc tasks. 
The rationale behind this is that each city has unique attributes 
that might not be entirely captured during this pre-training phase. 
Through fne-tuning, the model can adapt its previously acquired 
knowledge to the unique characteristics and nuances of the target 
city. This not only enables more precise inferences and understand-
ing of the distinctive topologies of the target city, but also ensures 
that the model remains robust. To evaluate its performance en-
hancement, we conducted city-specifc fne-tuning. The pre-trained 
FT-Transformer was fne-tuned end-to-end [56] with 200 down-
stream samples (40 per label type) sourced from Seattle, Chicago, 
and Oradell’s D� , with a reduced learning rate of 3×10−5 to prevent 
overftting to downstream samples. 

3.3 Technical Evaluation 

We evaluate the performance of our pipeline, which involves the 
PWS pipeline integrated with city-specifc fne-tuning of a pre-
trained inference model. We examine the following aspects: (1) How 
our pipeline performs in comparison to traditional ML methods 
in inferring label correctness; (2) The generalization of our model 
across cities after target-city-specifc fne-tuning; (3) The model’s 
generalizability to new cities that were not included in our pre-
training dataset; (4) How diferent types of LFs complement each 
other in achieving LabelAId’s performance through analysis of 
feature importance. 

For testing purposes, we utilized the remaining D� after remov-
ing the samples used for fne-tuning. This allowed us to evaluate the 
performance and generalizability of the fnal model on a previously 
unseen dataset. Specifcally, the remaining D� comprises 16,148, 
5,499, and 3,652 expert-validated labels for Seattle, Chicago, and 
Oradell, respectively. 

3.3.1 Pipeline Performance. We compared our performance against 
two widely adopted ML classifers–random forest and logistic re-
gression, and a GBDT tabular method XGBoost [17]. We also con-
sidered an MLP classifer which is known to be a consistent and 
competitive baseline [31]. All baselines are trained on the equiva-
lent volumes of expert-validated downstream samples |D� | and do 
not undergo pre-training using D� produced by our PWS pipeline. 

To ensure a robust evaluation, the optimal hyperparameters for 
baseline models were tuned via a grid search, executed on a single, 
randomly split downstream dataset. This procedure ensures that all 
baselines are tuned with an equivalent number of samples, given 
that the hyperparameters are profoundly infuenced by sample size. 
Each baseline model underwent training using 50, 100, 200, 500, 
and 1000 expert-validated labels from Seattle D� . The samples were 
equally distributed across two classes and fve label types. For our 
experiment, we fne-tuned the pre-trained FT-Transformer end-to-
end [56] on the equivalent number of expert-validated downstream 
samples from Seattle D� with the baselines. 

The results demonstrate that our pipeline enhances the efciency 
of neural network training. The integration of relevant domain 
knowledge through PWS bypasses the resource-intensive task of 
manually labeling and validating the unannotated Project Sidewalk 
repository. As shown in Figure 5, our proposed pipeline with as 
few as 50 expert-validated labels (10 per label type), achieved a 
test accuracy and precision of 73.3% and 83.6%, respectively. It 
outperformed all baselines of traditional ML methods, even when 
those were trained on substantially more expert-validated labels. 
Our pipeline improved accuracy by up to 36.7%, 28.0%, 15.3%, 16.3%, 
16.5% for |D� | = 50, 100, 250, 500, 1000, respectively. Our pipeline 
also demonstrated an average 0.0859 boost in F1 score compared to 
the second-best method. 
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Chicago Oradell 

accuracy F1 accuracy F1 
Pre-trained on multi-city’ D� 0.679 0.787 0.808 0.893 
Fine-tuned on target city’s D� 0.719 0.814 0.914 0.945 

Table 2: Improvements of inference model in accuracy and F1 
score for Chicago and Oradell after city-specifc fne-tuning 
(fold K = 5). 

3.3.2 Generalizability Across Cities. As shown in Table 2, in Oradell, 
the pre-trained model, without fne-tuning, achieved an accuracy, 
precision, and recall of 80.8%, 91.9%, and 86.9%, respectively. After 
the fne-tuning process, these fgures rose to 91.4%, 92.4%, and 96.8%. 
Similarly, for Chicago, the pre-trained model achieved accuracy, 
precision, and recall values of 67.9%, 80.4%, and 77.0%, respectively. 
Post fne-tuning, these metrics improved to 71.9%, 82.8%, and 80.1%. 
One plausible explanation for this lower performance could be the 
non-continuous geographic distribution of Project Sidewalk’s data 
in Chicago, which includes a mix of dense urban downtown areas 
and pockets of suburbia. Variations in road width and intersection 
distances across these areas could complicate the model’s ability to 
make accurate inferences. 

3.3.3 Generalizability in New City. To fully evaluate the model’s 
generalizability, we deployed it to a new city: Newberg, OR—a 
small town in the Portland metropolitan area with a population of 
25k, similar in urban composition to Oradell. When applying the 
pre-trained model to Newberg, which was neither previously pre-
trained nor fne-tuned, the model showcased accuracy, precision, 
and recall of 78.3%, 88.2%, and 86.0%, respectively. These scores 
represent on-par performance with the cities in the pre-training 
set, such as Oradell, NJ. This not only underscores the robust gen-
eralizable foundation of the multi-city pre-trained inference model, 
but also highlights that the pre-trained model can be deployed in a 
new city without any manual intervention and achieve respectable 

Figure 5: Overall performance of our LabelAId pipeline com-

pared to the traditional ML methods as the number of expert-
validated downstream labels increases. Note that the x-axis 
is on a log scale (N = 3, error bar = ±�). 

Curb Missing Surface Missing
City Obstacle

Ramp Curb Ramp Problem Sidewalk 

Seattle 0.971 0.966 0.766 0.861 0.942 
Chicago 0.968 0.494 0.693 0.718 0.929 
Oradell 0.972 0.768 0.793 0.944 0.988 

Table 3: Performance by label type of our inference model 
in F1 score for Seattle, Chicago, and Oradell. Missing Curb 
Ramp is a notable area of difculty in Chicago. Obstacle is a 
low performer in Seattle and Chicago. 

performance if the new city has a similar urban composition and 
crowdworker behavior to those in the pre-training set. 

3.3.4 Performance by Label Type. We also analyzed performance 
as a function of label type for each city-specifc fne-tuned model 
(Table 3). The model performs best for Curb Ramp and Missing 
Sidewalk across all cities, followed by Surface Problem. However, 
Obstacle is a low performer, especially in Seattle and Chicago. A 
close look at the tags associated with Obstacle labels revealed that 
the observed discrepancies might be explained by the complexity 
of sidewalk obstacles in these two cities. Specifcally, in Oradell, 
obstacles were primarily associated with trees/vegetation (40%), 
whereas in Seattle, Obstacle were tagged with poles, trash/recycling 
cans, vegetation, and parked cars in similar frequencies of ~20%. 
Another low performer in Chicago is Missing Curb Ramp, with a 
low F1 score of 0.494. This is associated with user behavior exclu-
sive to Chicago, where curb ramps lacking tactile strips are often 
mislabeled as Missing Curb Ramp. These fndings highlight the high 
performance of our inference model for most scenarios, however 
further refnement is necessary to accommodate diferent urban 
environments and user behaviors. 

3.3.5 Feature Importance. To explore feature importance, we used 
attention maps [31]. We expect that if certain features are used as in-
put variables in LFs for a specifc sidewalk label type, these features 
will be highly signifcant in the model’s inference for that label type. 
For instance, the feature "distance to intersection" is an input fea-
ture for our model and also a variable in the LF (min distance(�, � )
in Algorithm 1) for Curb Ramp and Missing Curb Ramp. 

The feature importance results of the model fne-tuned on Seattle 
D� are shown in Table 4. For label types Curb Ramp and Missing 
Curb Ramp, “distance to intersection" is the most important; while 
for Obstacle and Surface Problem, features like “zoom”, “cluster” and 
“description” are more crucial. This diference suggests that the 
features infuencing Curb Ramps are related to LFs based on urban 
planning knowledge, whereas those afecting Obstacles and Surface 
Problems are tied to user behavior. Specifcally, mislabeled Curb 
Ramps exhibit a spatial pattern, making them identifable using 
domain knowledge (e.g. Algorithm 1). In contrast, Obstacle and 
Surface Problem labeling mistakes are less about spatial distribution 
and more about user labeling diligence, characterized by zooming 
in and adding optional descriptions. The results of our feature im-
portance ranking show how LFs based on urban planning and user 
behavior are complementary in achieving LabelAId’s performance. 
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#Rank Curb Ramp Missing Curb Ramp Obstacle Surface Problem Missing Sidewalk 

1 
2 
3 

distance_i 
way_type 
severity 

0.173 
0.103 
0.103 

distance_i 
way_type 
tag 

0.177 
0.106 
0.103 

clustered 
zoom 
description 

0.145 
0.135 
0.134 

zoom 
clustered 
description 

0.143 
0.135 
0.132 

severity 
tag 
distance_r 

0.129 
0.116 
0.101 

Table 4: Top 3 features and their importance coefcient per label type in Seattle. Note: distance_i is the distance to intersection, 
distance_r is the distance to road, and way_type is the road hierarchy according to OpenStreetMap. 

We believe such techniques generalize to other crowdsourcing plat-
forms where user mistakes can be identifed through a combination 
of domain guidelines as well as platform specifc behaviors. 

3.3.6 Inference Limitations. Finally, to understand the limitations 
of our model and identify opportunities for improvement, we con-
ducted a qualitative assessment of our inference model by manually 
reviewing 100 randomly selected false positives and false negatives 
across each label type, and presented the results in Figure 6 & 7. 

In analyzing false positives (where the model incorrectly infers 
the label as correct when, in fact, the label is wrong), we observed 
two key sources of error for Curb Ramp and Missing Curb Ramp: (1) 
The model fails to diferentiate between a Curb Ramp and a Missing 
Curb Ramp (Figure 6a, c). (2) In edge cases, users labeled a drainage 
swale near an intersection as Curb Ramp (Figure 6b), and Missing 
Curb Ramp where there was no sidewalk present (Figure 6d). For 
Obstacle, Surface Problem, and Missing Sidewalk, misclassifcations 
typically occurred when a user’s label included attributes for a 
correct label, but there was in fact ample space for wheelchair users 
to avoid the problem (Figure 6e-j). For false negatives, common 
sources of errors for Curb Ramp and Missing Curb Ramp included: 
(1) When users labeled mid-block crossings, geospatial informa-
tion for such footpaths/crossings are incomplete in OpenStreetMap, 
causing inaccuracies when computing the distance to the nearest 
intersection (Figure 7a-c). (2) The model struggled to correctly clas-
sify rare cases such as an exit for a public facility (Figure 7d). For 
Obstacle, and Surface Problem, misclassifcations happened when 
the problem could be easily identifed without zooming in, thus 

Figure 6: Selected typical inference false positives per label 
type (the actual label is wrong but was inferred as correct). a, 
c, failed to diferentiate between a Curb Ramp and a Missing 
Curb Ramp. b, labeled a drainage swale near an intersection 
as Curb Ramp. d, labeled Missing Curb Ramp where there is 
no sidewalk. e-j, label has attributes for a correct label but 
there is ample space for a wheelchair user to pass. 

contradicting the hypothesis that labels placed without zooming in 
are likely to be incorrect. Similar mistakes were found when the 
labels lacked inputs of tags, severity, and description—all of which 
are signals for a diligent crowdworker who typically produces more 
accurate labels (Figure 7e-h). For Missing Sidewalk, misclassifca-
tions often occurred when a user’s label had a low severity rating, 
since the absence of sidewalks is supposed to be a high-severity 
issue (Figure 7i, j).We refrain from further tuning of parameters in 
LFs post-analysis to prevent overftting to specifc scenarios in test-
ing sets the model failed to learn, thereby preserving the model’s 
generalizability. 

4 LABELAID: IMPLEMENTATION & USER 
EVALUATION 

Having demonstrated the technical efcacy of our LabelAId system 
in inferring label correctness, we implemented the LabelAId infer-
ence model in Project Sidewalk, and evaluated the user experience 
and performance of the end-to-end system with users in the loop. 
Our study aimed to answer the following questions: 

• RQ1: Can LabelAId’s feedback improve the performance of 
minimally-trained crowdworkers in labeling urban accessi-
bility issues compared to a no feedback condition? 
• RQ2: Can LabelAId’s feedback enhance minimally-trained 
crowdworkers’ self-efcacy and perceived learning when 
labeling urban accessibility issues compared to a no feedback 
condition? 
• RQ3: How do participants perceive LabelAId’s feedback in 
terms of usefulness, content, and frequency? 

Figure 7: Selected typical inference false negatives per label 
type (the actual label is correct but was inferred as wrong). 
a-c, labeled mid-block crossings, geospatial information for 
such footpaths/crossings are incomplete in OpenStreetMap. 
d, an exit for a public facility. e-h, missing optional inputs. i, 
j, rated Missing Sidewalk with low severity. 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Li et al. 

Figure 8: A user fow diagram of LabelAId implemented in Project Sidewalk. (1) A user places a label using the Project Sidewalk 
interface. (2) If LabelAId detects a mistake, the system displays a just-in-time intervention dialog. (3) The user can choose to 
keep the label, delete the label, or opt to view common mistakes associated with that label type. From the "View Common 
Mistakes" page, the user can navigate to the "View Correct Examples" page. See Figure 9 for actual screenshots. 

To address these questions, we designed and conducted a between-
subjects study of our LabelAId implementation, described below. 

4.1 Implementing LabelAId in Project Sidewalk 

To incorporate LabelAId into Project Sidewalk, we needed to inte-
grate a real-time mistake inference model (as described in Section 3) 
and to design and develop a just-in-time UI intervention to help 
warn users of potential labeling mistakes (using the said inference 
model). We frst highlight design considerations situated in the 
literature, before describing implementation details. 

Design considerations. To design LabelAId’s UI intervention, 
we frst reviewed literature regarding the design space for crowd 
feedback [22, 23, 60, 90, 99] and guidelines for HAI design [1]. Stud-
ies have emphasized the importance of timeliness in feedback de-
livery [23], which led us to opt for real-time feedback, as it delivers 
feedback during a teachable moment when people are still thinking 
about the task. Additionally, the importance of contextual help 
for learning assistance has been well-documented in psychology 
literature [2] and demonstrated through HCI work (e.g., [33, 95]). 
To further refne the user interface, we consulted best practices 
for dialog design [64], emphasizing specifc response options that 
clearly outline the consequences of each choice, as well as employ-
ing progressive disclosure techniques [63] to help users understand 
the implications of their actions before committing to them [1]. 
Based on these insights, we iteratively designed LabelAId, starting 
with hand sketches and Figma mock-ups before implementing the 
tool in JavaScript (front-end) and Scala with QGIS (back-end). 

System implementation. We integrated the city-specifc, fne-
tuned FT-Transformer into LabelAId using the Open Neural Network 
Exchange (ONNX) runtime standard. An important objective is to 
reduce latency and facilitate seamless HAI collaboration.The most 
time consuming step in the preparation stage is to assess whether 
the label belongs to a pre-existing cluster. To expedite calculation 
time, we simplifed by calculating the spatial haversine distance 

of the input to a pre-computed cluster centroid, maintaining a 
threshold consistent with the clustering algorithm at 10 meters. We 
found in of-line experiments that this approach was 8-20 times 
faster (speed varies based on label type) and a mere 1.6% of labels 
(27 out of 1659) had a diferent clustering result. 

We implemented the inference model on the front-end rather 
than server-side for the following reasons: (1) Latency: considering 
the small model size (~100 KB), inference can be performed locally in 
the user’s browser, thereby avoiding communication with a remote 
server and network latency. (2) Privacy: we reduced potential user 
privacy concerns, as no data is transmitted to a remote server for 
processing. Notably, during the user study, we found an average 
preparation time of 1.5 �� and an average model inference time of 
1.7 �� across various hardware and platforms. 

User fow. Drawing on previous research on crowdworker feed-
back [23, 39], HAI [1], and UI design [63], we provide a two-stage 
intervention. After a user places a label, if LabelAId infers a mistake, 
we pop-up a just-in-time intervention dialog (Figure 9A) composed 
of three parts: a mistake title, a rotating set of labeling tips for that 
label type (e.g., "Do not label driveways as curb ramps."; see Fig-
ure 9A), and three buttons: "Yes, I am sure," "No, remove the label" 
or "View Common Mistakes". Hovering over the "i" icon beside the 
mistake title will display an explanation that the reminder system 
is powered by AI and may make mistakes. If the user selects "View 
Common Mistake", they enter the second stage of customized in-
formation about common mistakes and correct examples for that 
label type. To minimize users’ cognitive load [8], both the "View 
Common Mistakes" and "View Correct Examples" screens present a 
screen capture of the user’s current label alongside three to four ex-
ample labels, facilitating more straightforward comparison. These 
example images are curated based on an analysis of frequent mis-
takes and efective labeling practices on Project Sidewalk. Our user 
fow (Figure 8) prompts users to refect on their labeling decisions 
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Figure 9: System screenshots of LabelAId implemented in Project Sidewalk. (A) When detecting a user label error: LabelAId 
pops up a just-in-time intervention dialog composed of three parts: a mistake title, a rotating set of labeling tips for that label 
type, and three buttons. "Yes, I am sure," "No, remove the label" or "View Common Mistakes". Hovering over the "i" icon will 
display a note explaining how the reminder is powered by AI and the system may make mistakes. (B) Common Mistakes Page. 
(C) Correct Examples Page. Both (B) and (C) present a screen capture of the user’s current label alongside three to four example 
labels, facilitating more straightforward comparison. 

and then educate them through examples, both of which have been 
proven to enhance crowdwork quality [23, 99]. 

4.2 Study Design 

To examine our research questions, we conducted a between-subjects 
study with and without LabelAId. Inspired by previous Project Side-
walk mapathons, the study sessions were conducted in groups via 
Zoom based on condition. While this setup difers from traditional 
crowdsourcing studies conducted on platforms like MTurk or Pro-
lifc, mapathons and other synchronous social data collection events 
are key methods for participant involvement in crowdsourced 

mapping projects like Project Sidewalk and OpenStreetMap3. For 
example, in Project Sidewalk’s 18-month deployment in Oradell, NJ, 
two single-day mapathons contributed over 2,056 labels, accounting 
for 22% of all labels [57]. 

Prior to the actual study sessions, we conducted pilot studies with 
one participant for each condition, during which two researchers 
observed the participants’ labeling behaviors in-person and screen-
recorded the process for post-analysis. Based on insights from these 
pilot studies, we refned the moderation workfow. 

For the actual study, two study moderators led six online ses-
sions, three for each condition. Each session had fve to seven 

3https://www.openstreetmap.org/ 
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participants and lasted between 90 and 120 minutes. The sessions 
were composed of three parts, and the moderator adhered to a 
script to ensure consistency. First, we provided a brief orientation 
of urban accessibility and disability, guided the participants through 
platform account registration, and asked the participants to fnish 
Project Sidewalk’s standard ~5-minute interactive tutorial. Second, 
participants labeled eight curated routes on Project Sidewalk; the 
routes were carefully chosen by the research team to ensure they in-
cluded frequent sidewalk accessibility features and problems. Both 
groups labeled identical routes. Participants were asked to mute 
themselves during the labeling tasks, and any questions were ad-
dressed privately via Zoom chat or in a breakout room. Although 
the intervention group had access to correct and incorrect examples 
through the LabelAId UI fow, both groups were shown illustrated 
tutorial screens in the beginning of each route, which is the stan-
dard Project Sidewalk UI (Figure 11). Furthermore, all participants 
could refer to these examples as well as the How to Label section on 
the platform during labeling (Figure 11), a practice we observed in 
both groups during the pilot studies. Third, after completing their 
routes, participants flled out a post-study questionnaire followed 
by a semi-structured group debriefng session. The debriefng ses-
sions were video and audio recorded. Please see the supplementary 
materials for our orientation slide deck and pre- and post-study 
questionnaires. 

4.3 Participant Recruitment 

For our user study, we recruited participants via university mailing 
lists and snowball sampling. Our study size of 34 participants was 
determined through a power analysis using G*Power [25], aiming 
for an efect size of 1 and a statistical power of 0.8. Participants 
were randomly assigned to either the control or the intervention 
group depending on their availability. Based on self-reported de-
mographics, we had 21 participants aged 18-24 (12 in the control 
group), 11 aged 25-34 (5 in the control group), and 2 aged 35-44 
(none in the control group); 18 women (10 in the control group), 15 
men (6 in the control group), and 1 non-binary individual (1 in the 
control group). As for computer experience, 2 participants reported 
having basic skills, 4 had intermediate skills, and 28 considered 
themselves experts; these numbers were evenly split between the 
two groups. Before the study session, all participants were required 
to sign a research consent form and complete a pre-study question-
naire. Each participant was compensated at a rate of $30 per hour 
for their participation. 

4.4 Evaluation Measures 

Our study had a dual focus of understanding the objective perfor-
mance of LabelAId users compared to the baseline as well as to 
examine their subjective experiences. For our objective measures, 
we collected and examined: 

• Labeling precision. The number of correct labels compared 
to the total number of labels, measuring the correctness of 
user input. 
• Labeling time. Time for participants to complete the label-
ing tasks, recorded per each route. 
• Learning gain in urban accessibility. We designed quiz 
questions that were included in both pre- and post-study 

questionnaires (see supplementary materials). Participants 
were shown four images for each of the fve label types 
and were asked to select the correct ones. A sum score was 
calculated for all participants: each correct answer earned 
1 point, and each incorrect answer was penalized with -1 
point. 

We also captured subjective measures through 5-point Likert 
scale questions: 

• Confdence in response. e.g., “How confdent are you in 
labeling curb ramps?” 
• Self-efcacy gain. e.g. “I feel more confdent about identify-
ing problems on sidewalks faced by people with disabilities.” 
• Perceived learning gains in urban accessibility. e.g. “Par-
ticipating in the study gave me more ideas to make sidewalks 
accessible for people with disabilities.” 
• Perceived usefulness. e.g. “I liked the pop-up prompts.” 
• Perceived AI intervention. “I felt that an AI agent was 
watching my performance/helping me while I was labeling.” 

Full list of questions can be found in our supplementary materials. 

4.5 Analysis Approach 

To analyze our results, two researchers independently validated 
all participant labels (N=3,574). In cases of disagreements (N=74, 
IRR=0.98), a third researcher was consulted to reach a consensus. 
Validations were then used to calculate the precision of user input. 
For subjective measures captured through Likert scale questions, we 
mapped responses such as "Strongly disagree" to "Strongly agree" 
or "Not confdent at all" to "Very confdent" onto a numerical scale 
ranging from 1 to 5. We then use descriptive statistics to explore the 
dataset and to assess the participant performance across diferent 
conditions. Due to the between-subjects study and the distribu-
tion of the data, we use Mann-Whitney U tests to compare label 
precision, labeling time, and Likert scale responses between the 
two groups [75]. Additionally, both the debriefng sessions and the 
post-study questionnaire included open-ended questions to capture 
nuanced feedback about perceived learning experience, self-efcacy, 
and overall user experience. Our analysis for these responses fo-
cused on summarizing high-level themes. One researcher developed 
a set of themes through qualitative open coding [15] based on the 
video transcript and the questionnaire responses, then coded the 
responses according to the themes. Participant quotes have been 
slightly modifed for concision, grammar, and anonymity. 

4.6 Results 

During the study, participants contributed a total of 3,574 labels, 
with 2,091 from the control group and 1,483 from the interven-
tion group. A detailed breakdown of the labels’ types and their 
correctness can be found in Table 6. Our open-encoding process 
highlighted several key themes, as outlined in Table 5. When asked 
what helped the participants to label, a majority of intervention 
participants mentioned the pop-up screens. Regarding labeling con-
fdence, they reported that their confdence varied across diferent 
label types and generally increased as they progressed through the 
tasks. In terms of future improvements, many suggested implement-
ing AI-assisted labeling followed by human verifcation. Below, we 
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Labeling confdence Count Helpful elements during the Count Future improvement ideas Count 
labeling process 

Confdence varies across difer- 10 Pop-ups 11∗ Implementing AI labeling fol- 10 
ent label types lowed by human verifcation 
Confdent grows with the label- 6 Tutorial 6 Providing rationales/confdence 3 
ing process levels for the pop-ups 
High confdence in label type 4 Hover-over images 5 Introducing practice quiz to pre- 2 
but uncertainty in severity rat- flter participants 
ings 
Unsure of potential missed la- 1 Option to disable AI-generated 1 
bels pop-ups 

Table 5: During the study’s semi-structured group debriefng session, we asked participants (N=34) open-response questions 
about their confdence levels during the labeling task, what was most helpful during the labeling process, and ideas for future 
improvements. Participants were not required to answer all questions. We manually coded the participants’ responses to 
identify themes. The count column indicates the number of participants who mentioned each theme. ∗Note that only the 
intervention group (N=17) was shown the pop-ups. 

delve into an in-depth analysis that integrates both qualitative and 
quantitative evaluations to address each research question. 

4.6.1 Task Performance (RQ1). We frst seek to examine whether 
there are signifcant diferences between groups in task perfor-
mance and how intervention level correlates with labeling precision 
within the intervention group. 

Labeling precision and task completion time. As summa-
rized in Figure 10, the intervention group demonstrated higher 
precision overall and across all label types compared to the control 
group. The Mann-Whitney U results indicate a signifcant difer-
ence in precision between the two groups both overall (� ≤0.01) 
and for Curb Ramp (� ≤0.05) and Missing Curb Ramp (� ≤0.05) 
label types. For route completion time, we found no signifcant 
diference between the two groups (�=0.693). The control group 
had a mean completion time of 2303.3 seconds (SD=1240.3), while 
the intervention group spent 2801.4 seconds (SD=2035.3). Similarly, 
no signifcant diferences were observed when examining the time 
taken for each of the eight routes (p-values ranged from 0.143 to 

Label Type Correct Incorrect Total 

C I C I C I 
Curb Ramp 
Missing Curb Ramp 
Obstacle 

436 
265 
309 

454 
245 
298 

487 
61 
124 

23 
29 
77 

923 
326 
433 

477 
274 
375 

Surface Problem 243 249 55 26 298 275 
Missing Sidewalk 
Overall 

94 
1347 

72 
1318 

17 
744 

10 
165 

111 
2091 

82 
1483 

Table 6: Distribution of participants’ labels across all label 
types. C stands for Control group and I stands for Interven-
tion group. 

0.971). These fndings indicate that the use of LabelAId resulted in 
improved labeling precision without compromising labeling speed. 

Labeling precision and level of intervention. While the in-
tervention group clearly performed better, two pertinent questions 
are: how ofen did a LabelAId participant receive a just-in-time 
AI-assisted prompt and how accurately did LabelAId perform, i.e., 
what was the true positive and false positive rate for intervening? 

Towards examining the frst question: within the intervention 
group, there were a total of 172 instances where LabelAId inter-
vened with a just-in-time prompt (10.9% of total labels; 10.1 per 
intervention group participant). When broken down by label type, 
LabelAId demonstrated high precision in predicting Curb Ramp 
(0.882), Missing Curb Ramp (0.750), and Missing Sidewalk (1.000) 
mistakes. However, the model’s precision was notably lower for Ob-
stacle (0.362) and Surface Problem (0.377). Upon closer examination, 
we found that these less accurate inferences often corresponded 
with user behaviors that are likely to result in incorrect labels, such 
as not zooming in or failing to provide severity ratings or tags. 

Within the 17 participants in the intervention group, our anal-
ysis revealed no signifcant correlation between the frequency of 
interventions by LabelAId and participants’ labeling precision, ei-
ther overall or for specifc label types. Similarly, the number of 
times participants viewed common mistakes or correct examples 
UI screens did not correlate with their labeling accuracy (Table 10). 
We will return to this point in Section 5. 

Despite the relatively low view frequency of the "Common Mis-
takes" UI screens (24 views in total, 1.4 views per person) and 
correct examples (6 views in total, 0.4 per person), qualitative feed-
back indicated their usefulness for those who chose to engage with 
them. During the debriefng sessions, several participants cited 
these screens when asked about what helped them during the la-
beling tasks. For instance, one participant noted a shift in their 
labeling approach after viewing the AI-triggered common mistake 
screen, stating, “Midway through, I saw the common mistakes, and 
it totally shifted my perspective. I had been labeling driveways from 
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Figure 10: User labeling precision in the intervention group was higher across all categories, and the diference was statistically 
signifcant for the overall category, as well as for Curb Ramp and Missing Curb Ramp label types (∗� ≤ 0.05, ∗ ∗ � ≤ 0.01). (A) A 
raincloud plot (a half violin plot and a boxplot) shows user labeling precision between the control group and the intervention 
group, both overall and for the fve specifc label types. (B) A complementary table displays the precision mean, standard 
deviation, Mann-Whitney U value, and p-value for both the control and intervention groups. 

houses, but the screen clarifed that those should not be labeled as 
curb cuts.” 

4.6.2 Self-eficacy & Learning Gains (RQ2). While the above fnd-
ings demonstrate users’ improvements in terms of task performance, 
we are also interested in self-efcacy and learning. 

Self-efcacy. In the post-study questionnaire, we asked all par-
ticipants about their confdence in identifying sidewalk features 
or problems. On average, participants rated their self-confdence 
higher in the intervention group (Avg=4.47; SD=0.88) than the 
control group (Avg=4.53; SD=0.52) with a statistically signifcant 
diference for Missing Curb Ramps (Avg=4.6; SD=0.7 vs. Avg=3.8; 
SD=0.9, � ≤ 0.05), as shown in Table 12. However, when partic-
ipants were asked if they felt more confdent about identifying 
problems on sidewalks faced by people with disabilities, the difer-
ence between groups was not statistically signifcant (�=0.721, see 
Q5 in Table 13). 

Perceived learning gains. While task performance serves as 
one indicator of learning outcomes, we also used quizzes to as-
sess objective learning gains and Likert scale questions to measure 
perceived learning gains. For objective learning gains, the mean 
improvement between the pre- and post-study quizzes was 1.35 
(SD=1.73) for the control group and 1.31 (SD=1.54) for the interven-
tion group, showing only a minor diference between the two. In 
terms of perceived learning gains, both groups demonstrated an 
enhanced understanding of curb ramps and accessibility challenges. 
Although the means were higher for the intervention group across 
all questions, no statistically signifcant diference was observed, 
except for the question, “Participating in the study gave me more 
ideas to make sidewalks accessible for people with disabilities.”, where 
the mean score for the control group was 4.35 (SD=0.7), compared 
to 4.82 (SD=0.53) for the intervention group (� ≤0.05). 

4.6.3 Perceived Usefulness & Presence of AI (RQ3). Having explored 
the overall user performance, confdence and learning gain, we now 
turn to the perceived usefulness and presence of AI in LabelAId. 

Perceived usefulness. Participants generally expressed a favor-
able view of LabelAId. When asked to what extent they agreed with 
the statements that the pop-up prompts were helpful and likable, 
the majority responded with "Somewhat Agree" or "Strongly Agree" 

(82.35% and 64.7%, respectively). In the post-study questionnaire 
and debriefng sessions, 11 out of 17 participants in the interven-
tion group specifcally cited the pop-up screens from LabelAId as a 
feature they appreciated or found helpful for labeling tasks. These 
timely reminders were particularly valued when participants were 
uncertain about their initial judgments. One participant mentioned: 
“There were times when I was not sure if I should label it, and the 
system popped-up for me and said ‘Are you sure about this?’ I found 
that really helpful.” When asked about whether the prompts were 
distracting or appeared too frequently, the responses were more 
mixed—with a relatively even distribution across Likert responses. 

Perceived presence of AI. We asked participants whether they 
felt an AI agent was observing their performance or assisting them 
during the labeling task and found a statistically signifcant difer-
ences between the two groups. This suggests that the presence of 
LabelAId had a noticeable impact on participants’ perception of AI 
involvement. Interestingly, some participants in the control group 
explicitly expressed a desire for AI assistance. One control-group 
participant mentioned, “There was a section [in the post-study ques-
tionnaire] asking how I felt about AI helping me to label. Honestly, I 
didn’t notice any AI while I was labeling. It would be super convenient 
if there was one that could suggest labels and ask me to correct them 
or provide a confdence level.” This is exactly the intent of LabelAId. 

5 DISCUSSION 

Through our technical evaluation and user study, we showed how 
LabelAId improves both labeling data quality and crowdworkers’ 
domain knowledge. We now situate our fndings in related work, 
highlight key factors behind LabelAId’s success, its limitations, and 
directions for future research. We also discuss how LabelAId can 
be generalized to other domains of crowdsourced science. 

5.1 Refecting on LabelAId’s Performance 

Below, we refect on LabelAI’d performance and its relevance to fu-
ture research, including comparing the diferences between AI and 
human feedback, minimizing the overreliance on AI, and striking a 
balance between constructive feedback and perceived surveillance. 
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Can AI-assistance replicate human-based feedback? Prior 
work has shown that providing manual feedback to crowdwork-
ers can improve task performance and enhance self-efcacy [22, 
23, 60, 90, 99]. Our study further reveals that AI-feedback can im-
prove labeling performance, increase participants’ confdence, and 
enhance their domain knowledge—even with an imperfect ML infer-
ence model. While the nuances between human and AI-feedback in 
crowdsourcing have yet to be comprehensively studied, researchers 
in education have assessed the usage of automatic feedback as 
a learning tool [34, 38, 55, 92]. Findings suggest that automatic 
feedback can reduce bias and increase consistency in grading [38], 
liberate the instructor from grading to focus on other tasks [92], 
and allow more students to receive education simultaneously [85]. 
We believe that these benefts can well be extended to AI-generated 
feedback in crowdsourcing systems. 

Yet, automated feedback in education contexts has limitations. It 
excels in grading tasks with clear-cut solutions (e.g. programming 
questions), but may be challenging to implement in more subjective 
disciplines [34]. Moreover, automatic graders fail to recognize when 
students are very close to meeting the criteria, whereas human 
graders would identify and assign partial grades accordingly [55]. 
Future research in crowdsourcing should incorporate these insights 
from education science when designing AI-based feedback systems, 
and borrow approaches such as AI-feedback combined with human 
feedback on request [55]. 

Cognitive forcing function reduces overreliance on AI. An 
overarching concern with AI-based assistance—including systems 
like LabelAId—is how the presence and behavior of AI may actu-
ally reduce active cognitive functioning in humans as they defer 
to AI’s recommendations, which can then negatively impact over-
all task performance [42, 52]. For example, [9, 42] showed how 
users tend to overly depend on AI, following its suggestions even 
when their own judgment might be superior. Such a tendency is 
particularly problematic when the AI is inconsistent (e.g., across 
class categories), as in our case. Recent work has explored cognitive 
forcing functions [10]—functions that elicit thinking at decision-
making time. Because there is an anchoring bias [32] that occurs 
when presenting users with AI’s recommendations, one efective 
strategy is to ask the user to make a decision prior to seeing the 
AI’s recommendation [10]. Indeed, this is how LabelAId works: 
presenting suggestions only after the user makes an initial decision 
and places a label—which may mitigate such bias. 

Specifcally, in our user study, LabelAId performed particularly 
poorly for two label types Obstacles and Surface Problems with false 
positive feedback rates of 36.2% and 37.7% respectively. However, 
users rejected these suggestions 83% and 73% of the time, indicating 
that they preferred their own judgments to the AI. Although this 
design choice was dictated by LabelAI’s model requirements, it en-
couraged analytical thinking that boosted participants’ confdence 
in their own decisions. Our study contributes to the broader dis-
course of HAI, highlighting how system design can elicit analytical 
reasoning and reduce cognitive biases in decision-making. 

Striking a balance between constructive feedback and per-
ceived surveillance. We found a signifcant diference between the 
two groups regarding the perceived presence of AI (Section 4.6.3). 
Out of the 17 participants in the intervention group, eight felt ob-
served and nine felt assisted by an AI agent, while in the control 

group, none felt observed and only three sensed AI assistance. We 
speculate that this diference in perceived surveillance also con-
tributed to better intervention group performance, since they felt 
their work was being scrutinized. This observation raises questions 
regarding AI agents as a form of surveillance in crowdsourcing 
environments. When scholars apply a Foucauldian lens [26] to 
monitoring technology, some see AI monitoring as social control 
from existing power hierarchies [12], while others argue it can 
both restrict and empower individuals [50]. This dichotomy im-
plies that, if well-implemented, AI can encourage self-regulation 
among crowdworkers. A recent study confrms that digital feedback 
improves crowdwork outcomes when learning is the primary objec-
tive [94], which is often the case in crowdsourcing in community 
science. Therefore, we advocate for crowdsourcing platforms where 
the AI system strikes a balance between constructive feedback and 
perceived surveillance. 

5.2 LabelAId Limitations and Future Research 

We now refect on LabelAId’s limitations and future work, focusing 
on designing interactions with imperfect ML models, promoting 
user agency in mixed-initiative interfaces, improving interaction 
efciency in providing learning aids, and expanding participant 
diversity in future research. 

Designing interactions with imperfect ML models. With 
LabelAId, we were able to determine when a user likely made a 
mistake, but not the exact source of the error, which limited the 
types of prompting we could provide. As one participant mentioned: 
"It’ll be great to provide some rationale or explanation on why there’s a 
pop-up. Like maybe the location I placed my label is too far away from 
the obstacle.” Current approaches of ofering AI explainability falls 
into two categories: communicating information about the model 
inferences on a local level (e.g. confdence score and local feature 
importance) and communicating information about the model itself 
on a global level (e.g. model accuracy and global explanations) [51]. 
However, LabelAId’s current implementation does not incorporate 
explainability features. 

On a global level, we recognize that our implementation could 
better communicate the model’s varying accuracy levels across dif-
ferent label types. Despite a detailed technical analysis of LabelAId’s 
performance in Section 3, we did not surface accuracy scores or 
global feature importance to participants. Future iterations should 
address this shortcoming. On a local level, we intentionally ex-
cluded confdence scores. This choice was informed by research 
indicating that confdence scores have limited impact on improving 
HAI collaboration [3, 10], coupled with our concern about over-
cluttering the already busy UI. Future work may incorporate recent 
approaches to model the user’s level of confdence and provide 
adaptive recommendations, i.e., only display AI’s recommendations 
when the AI’s confdence level is higher than the human’s [59]. 

In summary, while our current design decisions were informed 
by a balance of user cognitive load considerations and technical 
constraints, future work should explore other methods to provide 
users with tailored explanations and rationale, enhancing their 
understanding and interaction with the ML model. 

Promoting user agency in mixed-initiative interfaces. Par-
ticipants had mixed opinions about the frequency of AI interventions, 
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with some fnding them distracting. One participant noted, “Some-

times the pop-ups were too frequent, so it might be helpful to give 
the user the option to disable them.” In addition, we also noticed the 
diminishing returns of increased intervention. During the study, 
there is no signifcant correlation between the frequency of inter-
vention and task performance (Table 10). One potential explanation 
is that users understood their mistakes after the frst few interven-
tions, thereby making fewer mistakes in subsequent tasks. These 
fndings, consistent with learning science research demonstrating 
that additional exposure or intervention does not necessarily im-
prove performance (known as the saturation efect [37]), are also 
supported by ongoing HAI research exploring ways to enhance 
human agency in mixed-initiative interfaces [1, 51, 82]. In future 
iterations, we would like to explore ofering users overall control 
to enable or disable AI, to provide adaptive suggestion frequency 
based on labeling rate, and to allow users to request AI assistance 
only when needed [10]. 

Designing efcient UI for learning aids. In addition to a 
lack of correlation between how often participants viewed example 
screens and their performance levels (Table 10), we observed that 
common mistakes and correct examples were only viewed a total 
of 30 times–six of the 17 intervention participants never viewed 
either of the screens. This could be due to the interaction cost [7]: 
the common mistakes screen requires two clicks and the correct 
examples screen three. While click count alone is not a meaning-
ful metric [53], it is important to minimize interaction costs [7] 
by making key information easily accessible. Future work should 
explore developing efective methods for presenting examples to 
crowdworkers while they are balancing high cognitive load tasks. 

Expanding participant diversity in future research. While 
our study size of 34 aligns with typical HCI between-subjects studies 
(e.g, [43, 67]), it is on the lower end for crowdsourcing research [48]. 
However, our study design choice facilitated in-depth interviews 
and focused analysis, allowing us to gather qualitative insights 
not typical in crowdsourcing studies. Participants were recruited 
through snowball sampling from the research team’s contacts and 
university mailing lists, which may not represent the comprehen-
sive user base of Project Sidewalk including disability advocates. In 
future studies, we aim to enhance the applicability of our fndings 
by expanding our participant base. 

5.3 Generalizability to Other Domains 

Our study demonstrates the efectiveness of LabelAId in a crowd-
sourcing tool for urban accessibility, yet, its generalizability remains 
an open question. We believe there are two primary generalizable 
components: 

• LabelAId’s PWS based ML pipeline. PWS does not re-
quire annotated data, it works on a set of LFs generalized 
from domain knowledge and user behavior. This is particu-
larly useful for crowdsourced community science because 
it allows organizers to transform their expertise and heuris-
tic into LFs, which can then programmatically label large 
quantities of data. It is also more cost-efective compared 
to traditional ML models, as LabelAId improves inference 
accuracy by 36.7% with only 50 downstream data points. 

• LabelAId’s mistake intervention design. LabelAId’s in-
situ intervention design is rooted in literature on crowd 
feedback and contextual assistance, and aligns with recent 
HAI research on using cognitive theories to reduce over 
reliance on AI. Its simple two-step formula can be easily 
replicated in other platforms. 

We believe our technique is most applicable to areas that require 
domain expertise and contextual understanding, such as medical 
image labeling [79, 98], galaxy classifcation [84], and wildlife cate-
gorization [4]. For example, the crowdsourcing application iNatu-
ralist uses identifcation technology and taxonomic experts to assist 
people in identifying natural species, and it achieves the best results 
when combined with traditional feld guides [88]. We envision these 
guides and knowledge from experts being translated into LFs in our 
pipeline, and with similar mistake intervention design, LabelAId 
can help iNaturalist users contribute data more efectively while 
learning more about biodiversity. 

6 CONCLUSION 

In conclusion, LabelAId ofers a practical approach to improving 
both crowdsourced data quality and domain knowledge of crowd-
workers. By using machine learning to provide real-time feedback, 
LabelAId reduces the need for extensive manual review while also 
helping workers learn throughout the crowdsourcing process. Our 
user study demonstrates that LabelAId can improve user label qual-
ity without sacrifcing speed, thereby ofering a scalable solution 
to enhance worker knowledge and label quality in crowdsourcing 
tasks. While our empirical results focused on the performance of 
LabelAId within the context of urban accessibility, our framework 
can be extended to other crowdsourcing platforms, such as agri-
cultural image recognition, medical imagery labeling, and wildlife 
biology image categorization. 
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A ADDITIONAL DISCUSSIONS ON LABELAID 
PIPELINE 

A.1 Labeling Functions 

LFs serve as fexible interfaces within the framework of PWS. We 
assess three aspects of each LF (Table 7): coverage (the proportion of 
examples each LF annotates), overlap (the proportion of examples 
each LF annotates that another LF also labels), and confict (the 
proportion of examples each LF annotates and annotated diferently 
by another LF). We note that it is necessary to apply as many LFs as 
possible for the best model performance due to the following rea-
sons: (1) Improve coverage: each LF could capture diferent features 
of the data. More LFs can cover a higher proportion of raw data 
instances, leading to a larger AIA dataset generated from the PWS 
pipeline. (2) Reduce bias and overftting: More LFs representing 
various heuristics or data insights, can mitigate systemic errors 
by averaging out individual LF bias. Incorporating multiple expert 
opinions and knowledge sources helps avoid overftting to specifc 
patterns or anomalies in the data, therefore making the model more 
generalizable. We assess the model performance with all LFs used 
during the PWS pipeline, and when removing one LF, the results 
(Table 8) show that even removing one LF during the PWS pipeline 
tends to hurt the end model’s performance. 

Polarity Coverage Overlaps Conficts 

distance_i [0] 0.032 0.017 0.017 
clustered [1] 0.383 0.252 0.033 
severity [0, 1] 0.066 0.062 0.051 
zoom [0, 1] 0.479 0.288 0.071 
tag [1] 0.324 0.210 0.037 
description [1] 0.010 0.010 0.004 
distance_r [0] 0.027 0.027 0.019 
way_type [0, 1] 0.030 0.023 0.016 

Table 7: Labeling function analysis using label matrix. [0] 
= Wrong, [1] = Correct.Note: distance_i is the distance to 
intersection, distance_r is the distance to road, and way_type 
is the road hierarchy according to OpenStreetMap. 
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A.2 Programmatic Weak Supervision vs. Hard 
Rule-based Approach 

A key aspect of PWS is its ability to handle noise and conficts in 
LFs [70–72]. Hard rule-based approaches would struggle in sce-
narios where LFs confict or where the data presents ambiguities. 
For instance, if a user places a Missing Curb Ramp label within the 
distance threshold to the intersection but fails to provide a tag, then 
LFs of distance_i and tag provide contradictory annotations. PWS 
integrates these imperfect LFs into a probabilistic graphical model, 
so it can evaluate these conficts based on the learned weight of each 
LF, whereas a hard rule-based approach would lack the mechanism 
to resolve such conficts. 

Our analysis indicates that LabelAId outperforms a hard rule-
based method across all fve label types (Table 9). To mitigate the 
complexity of resolving conficts, we selected the most important 
rule from our feature importance analysis for each label type (Ta-
ble 4). However, it is worth noting that hard rule-based approaches 
may still be valuable in low-resource scenarios. In situations where 
the raw dataset is small or when there is limited computational 
capacity to run an AI inference model, crafting a few expert-defned 
rules might be more feasible and efcient than establishing a com-
plex PWS setup. 

Curb Missing Obstacle Surface Missing 
Ramp Curb Problem Sidewalk 

With all LFs 0.971 0.966 0.766 0.861 0.942 
Without 0.909 0.918 0.695 0.803 0.836 
distance_r 
Without tag 0.910 0.885 0.556 0.677 0.722 

Table 8: Performance decreases by label type of our LabelAId 
pipeline in F1 score for Seattle after one LF being removed. 
Note: distance_r is the distance to the road. 

Curb Missing Obstacle Surface Missing 
Ramp Curb Problem Sidewalk 

LabelAId 0.971 0.966 0.766 0.861 0.942 
Hard Rule- 0.943 0.752 0.660 0.576 0.849 
based 

Table 9: Performance by label type of our LabelAId pipeline 
compared to the hard rule-based approach in F1 score for 
Seattle. 

Li et al. 

B USER EVALUATION TABLES 

rho p-value 

Number of times being intervened -0.141 0.589 
Total time spent interacting with UI -0.230 0.374 
Times viewed common mistakes -0.066 0.801 
Times viewed correct examples -0.004 0.989 
Total times viewed example screens -0.074 0.779 

Table 10: Spearman’s rho correlation results for the level of 
intervention and precision. 

Quiz Control Intervention U p-value 

Pre-study 5.53 (2.07) 5.06 (1.57) 163.50 0.51 
Post-study 6.88 (1.45) 6.38 (2.09) 174.00 0.30 
Delta 1.35 (1.73) 1.31 (1.54) 152.50 0.78 

Table 11: Quiz scores. In both pre- and post-study question-
naires, participants were shown four images for each of the 
fve label types and were asked to select the correct ones. A 
sum score was calculated for all participants: each correct an-
swer earned 1 point, and each incorrect answer was penalized 
with -1 point. There was no statistical diference between the 
two groups. 

Question Control Intervention U p-value 

Curb Ramp 4.65 4.71 
3.88 4.59 
4.35 4.76 
4.18 4.47 
4.41 4.65 

142.0 0.914 
Missing Curb 84.5 0.023* 
Obstacles 98.0 0.061 
Surface Problems 116.0 0.276 
Missing Sidewalk 123.5 0.392 

Table 12: Responses to the question: "How confdent are you 
that you can correctly recognize the following?" We mapped 
responses from "Not confdent at all" to "Very confdent" to 
1-5. (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0 .001). 
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# Question Control Intervention U p-value 

1 I feel that I have a better understanding of what a sidewalk curb ramp 4.59 4.71 

4.47 4.59 

4.71 4.71 

4.00 4.29 

4.24 4.47 
4.47 4.29 
1.82 3.00 

2.29 3.24 
3.88 3.24 

127.5 0.480 
(or curb cut) is. 

2 I feel that I understand better the accessibility challenges people with 146.0 0.952 
disabilities have to participate in society. 

3 I feel that I have a better understanding of the sidewalk barriers that 150.5 0.788 
impact people who use wheelchairs or walkers. 

4 I feel that I have a better understanding of the sidewalk barriers that 120.5 0.373 
impact people who are blind or low-vision. 

5 I feel more confdent about identifying problems on sidewalks faced by 4.47 4.53 153.5 0.721 
people with disabilities 

6 Participating in the study gave me more ideas to make sidewalks 4.35 4.82 87.5 0.017* 
accessible for people with disabilities. 

7 I enjoyed using Project Sidewalk. 119.5 0.336 
8 It was easy for me to use Project Sidewalk. 153.5 0.728 
9 I felt that an AI agent was watching my performance while I was 68.0 0.006** 

labeling. 
10 I felt that an AI agent was helping me throughout the task. 83.5 0.028* 
11 Overall, I desired more active help to complete the labeling tasks. 189.0 0.106 

Table 13: Responses to the question "To what extent do you agree with the following statements?". We mapped responses such 
as "Strongly disagree" to "Strongly agree" to 1-5. (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0 .001). 

C LABELING ASSISTANCE INTERFACE 

Figure 11: Project Sidewalk built-in labeling assistance. (A) & (B) Illustrated example screens shown in the beginning of each 
route. The label type is rotated every time. (C) & (D) The How to Label Section. Participants may access this section at any time 
during the labeling process. 


	Abstract
	1 Introduction
	2 Related Work
	2.1 Improving Quality of Crowdsourced Labels
	2.2 Teachable Moments in Crowdsourcing for Community Science
	2.3 Machine Learning to Infer Label Correctness

	3 LabelAId: A Label Correctness Inference Framework
	3.1 LabelAId Pipeline
	3.2 Applying LabelAId to Project Sidewalk
	3.3 Technical Evaluation

	4 LabelAId: Implementation & User Evaluation
	4.1 Implementing LabelAId in Project Sidewalk
	4.2 Study Design
	4.3 Participant Recruitment
	4.4 Evaluation Measures
	4.5 Analysis Approach
	4.6 Results

	5 Discussion
	5.1 Reflecting on LabelAId's Performance
	5.2 LabelAId Limitations and Future Research
	5.3 Generalizability to Other Domains

	6 Conclusion
	Acknowledgments
	References
	A Additional Discussions on LabelAId Pipeline
	A.1 Labeling Functions
	A.2 Programmatic Weak Supervision vs. Hard Rule-based Approach

	B User Evaluation Tables
	C Labeling Assistance Interface

