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Abstract

We propose XVO, a semi-supervised learning method
for training generalized monocular Visual Odometry (VO)
models with robust off-the-self operation across diverse
datasets and settings. In contrast to standard monocu-
lar VO approaches which often study a known calibration
within a single dataset, XVO efficiently learns to recover
relative pose with real-world scale from visual scene se-
mantics, i.e., without relying on any known camera param-
eters. We optimize the motion estimation model via self-
training from large amounts of unconstrained and hetero-
geneous dash camera videos available on YouTube. Our
key contribution is twofold. First, we empirically demon-
strate the benefits of semi-supervised training for learn-
ing a general-purpose direct VO regression network. Sec-
ond, we demonstrate multi-modal supervision, including
segmentation, flow, depth, and audio auxiliary prediction
tasks, to facilitate generalized representations for the VO
task. Specifically, we find audio prediction task to signifi-
cantly enhance the semi-supervised learning process while
alleviating noisy pseudo-labels, particularly in highly dy-
namic and out-of-domain video data. Our proposed teacher
network achieves state-of-the-art performance on the com-
monly used KITTI benchmark despite no multi-frame opti-
mization or knowledge of camera parameters. Combined
with the proposed semi-supervised step, XVO demonstrates
off-the-shelf knowledge transfer across diverse conditions
on KITTI, nuScenes, and Argoverse without fine-tuning.

1. Introduction

Monocular Visual Odometry (VO) methods for recov-
ering ego-motion from a sequence of images have mostly
been studied within a restricted scope, where a single
dataset, such as KITTI [28], may be used for both training
and evaluation under a fixed pre-calibrated camera [37, 45,
54, 77, 109, 112, 116, 124, 126, 128]. However, very few
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Figure 1: Learning General-Purpose Monocular Vi-
sual Odometry (VO) Models from Multi-Modal and
Pseudo-Labeled Videos. Our proposed XVO framework
first trains an ego-motion prediction teacher model over a
small initial dataset, e.g., nuScenes [7]. We then expand
the original dataset through pseudo-labeling of in-the-wild
videos. Motivated by how humans learn general repre-
sentations through observation of large amounts of multi-
modal data, we employ multiple auxiliary prediction tasks,
including segmentation, flow, depth, and audio, as part of
the semi-supervised training process. Finally, we lever-
age uncertainty-based filtering of potentially noisy pseudo-
labels and train a robust student model.

studies have analyzed the task of generalized VO, i.e., rel-
ative pose estimation with real-world scale across differing
scenes and capture setups.

For instance, consider an autonomous robot or vehicle
deployed at a large scale. The robot is highly likely to en-
counter environments for which no ground truth ego-motion
data was previously collected. In such novel settings, cur-
rent VO methods will quickly exhibit poor ego-motion esti-
mation and drift [23, 24, 29, 46, 47, 65, 96, 128]. Moreover,
our robot may be required to adjust its camera setup over its
lifetime (e.g., to a new camera) or leverage data from a fleet
of robots with varying or perhaps unknown camera config-
urations. Yet, existing VO methods generally assume care-
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fully calibrated camera parameters during training [23, 24,
65, 77, 96, 109, 128]. Specifically, to simplify the ill-posed
monocular pose recovery task, researchers often resort to
relying on knowledge of the camera intrinsic parameters to
incorporate various geometric or photometric consistency-
based mechanisms [37, 45, 54, 89, 112, 116, 124, 126]. In
this work, we do not make such an assumption as we are
concerned training VO models that can learn from and oper-
ate under diverse unconstrained videos in the wild. Specifi-
cally, we pursue an orthogonal direction to prior work based
on semi-supervised learning and explore more scalable and
camera-agnostic deployment settings.

Our key hypothesis is that neural network models can
learn to circumvent issues related to pose and scale ambigu-
ity in generalized VO settings through observation of ample
amounts of diverse scene and motion video data. This ap-
proach is motivated by humans’ ability to flexibly estimate
motion in arbitrary conditions through a general under-
standing of salient scene properties (e.g., object sizes) [73].
This general understanding is developed over large amounts
of perceptual data, often multi-modal in nature [71, 81, 81].
For instance, cross-modal information processing between
audio and video has been shown to play a role in spatial
reasoning and proprioception [57, 58, 67, 74, 99]. Indeed,
collected online videos often have audio, which can be used
as a further source of cross-modal supervision. As further
discussed in Sec. 3, we find ambient audio to correlate at
times with scenarios where monocular VO tends to fail,
such as determining ego-speed when the vehicle is stopped
at a dense intersection or as context for the current traffic
scenario when estimating translation (e.g., highway driv-
ing). Extracting information related to flow, segmentation,
or depth can also further guide learning generalized repre-
sentations. To fully explore the utility of self-training VO
models, we analyze a unified multi-modal framework and
its impact on guiding semi-supervised VO learning from
large amounts of unconstrained sources.

As far as we are aware, we are the first to study the
feasibility of self-training for direct, calibration-free, ego-
motion pose regression with an absolute real-world scale.
Specifically, we find that incorporating additional modali-
ties via simple multi-task learning can significantly enhance
model robustness and generalization. When paired with
an uncertainty-based filtering module, we achieve state-
of-the-art VO performance with a single broadly usable
model which we validate for the autonomous driving use-
case. Moreover, our training and inference is highly effi-
cient as the auxiliary learning formulation does not alter the
two-frame input, i.e., in contrast to methods relying on ex-
tracting rich intermediate representations [4, 96, 112, 124].
We demonstrate state-of-the-art results on KITTI using the
proposed two-frame VO model structure without requiring
elaborate long-term memory, computationally expensive it-

erative refinement steps, or knowledge of camera param-
eters. Our code is available at https://github.com/h2xlab/
XVO.

2. Related Work
Monocular Visual Odometry: Despite recent advances,
both geometrical and learning-based VO approaches are
still mostly evaluated over limited datasets under similar
training and testing conditions [9, 25, 40, 64, 72, 90, 92, 94].
For instance, training and evaluation are both conducted on
KITTI [28], which contains a fixed camera setup with lim-
ited diversity and density of scenarios [96]. More recently,
learning-based approaches leveraging unsupervised learn-
ing for VO [45, 47, 75, 112, 115, 126], have shown state-of-
the-art performance on KITTI. Notably, UnDeepVO [45]
utilizes stereo imagery for training to recover real-world
scale without the need for labeled datasets. GeoNet [112]
combines depth, optical flow, and camera pose to holisti-
cally learn a VO prediction model. TartanVO [96] con-
ditions the VO model on the intrinsic parameters in order
to achieve robust generalized performance. However, the
aforementioned methods all require known camera intrin-
sics [45, 112] in inference resulting in a restricted use-case
and cannot leverage data with unknown camera parameters.
In light of these challenges, our work develops mechanisms
to enable VO models to learn from and operate over di-
verse datasets without known calibration. Specifically, our
method leverages semi-supervised and multi-modal learn-
ing techniques to learn robust generalized representations
for estimating motion and real-world scale. Therefore, our
approach is orthogonal to most related methods which em-
phasize self- and un-supervised learning of models based on
warping and consistency tasks which rely on precise camera
calibration [37, 45, 112].

Semi-Supervision for Computer Vision Tasks: Semi-
supervised learning approaches have been extensively stud-
ied within the computer vision and machine learning com-
munities [18, 44, 55, 82, 87, 111]. However, prior works
have not yet focused on the monocular VO task, instead em-
phasizing object detection [8], semantic segmentation [98],
3D reconstruction [102], action recognition [101] or low-
level computer vision tasks [6, 10, 17, 33, 38, 59, 61, 70,
84, 107, 110]. Consequently, fundamental research ques-
tions related to the impacts of improving VO model gener-
alization remain unanswered, e.g., whether semi-supervised
learning can be used to enhance reasoning over real-world
scale [43, 76, 97, 120] and long-tail scenarios [119] or how
uncertainty mechanisms can contribute to more robust train-
ing from heterogeneous video data. Specifically, we explore
the role of multi-task and multi-modal learning in order to
improve semi-supervised VO model training.

Auxiliary Learning: Our proposed method primarily aims
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to enhance the performance of a VO model through aux-

iliary tasks within a semi-supervised learning framework.

Auxiliary learning [49, 51, 122] aims to use auxiliary tasks

to enhance the performance of the primary tasks. It has been

effectively employed in diverse domains, including com-

puter vision [15, 41, 60, 104], natural language process-

ing [16, 19, 42], and robotics [36, 66, 68, 83, 93, 117, 118].

Xu et al. [104] applied auxiliary image classification and

saliency detection to improve the performance of the se-

mantic segmentation. Song et al. [83] leverages an aux-

iliary task of velocity estimation to enhance the ability to

avoid obstacles of an indoor mobile robot. While several

related studies employ auxiliary supervision derived from

the ground-truth depth and optical flow [88, 89], in this

work our goal is to explore the use of such supervision from

potentially noisy pseudo-labels, e.g., as regularization for

learning robust internal representations for VO.

Cross-Modal Learning: Cross-modal learning is inspired

by how biological systems learn by incorporating comple-

mentary information from multiple modalities, such as vi-

sion, sound, and touch. Prior research in computational

cross-modal learning has focused on learning a shared rep-

resentation space where samples from distinct modalities

i.e., image, audio, text, can be aligned [3, 34, 125]. More-

over, the addition multiple tasks and modalities have been

shown to benefit generalization for various machine per-

ception and learning tasks [2, 34, 78, 113, 114, 114]. For

instance, audio generation [21, 86, 127], image caption-

ing [48, 103], speech recognition [1, 80], navigation [13],

and multimedia retrieval [11, 27, 35] have all shown im-

proved performance due to cross-modal training. However,

such studies tend to focus on simplified domains, e.g., re-

stricted acoustic or haptic environments, whereas we ana-

lyze dense and dynamic scenes in the wild.

3. Method
Our proposed framework comprises three main steps: (1)

uncertainty-aware training of an initial (i.e., teacher) VO

model (Sec. 3.2); (2) pseudo-labeling with the removal of

low-confidence and potentially noisy samples (Sec. 3.3); (3)

self-training with pseudo-labeled and auxiliary prediction

tasks of a robust VO student model (Sec. 3.4).

3.1. Problem Setting

Direct Pose Regression: Our goal is to learn a gen-

eral function for mapping two observed image frames

xi = {Ii−1, Ii}, with I ∈ RW×H×3, to a relative cam-

era pose with real-world scale yi = [Ri|ti] ∈ SE(3) with

rotation Ri ∈ SO(3) and translation ti ∈ R
3. Given a

dataset comprising annotated labels of pose ground-truth,

DL = {(xi,yi)}Ni=1, learning-based approaches for VO of-

ten optimize for a regression loss [5, 75, 89, 94, 112]. In

practice, the direct pose regression task often exhibits drift

due to issues with absolute scale ambiguity and compound

errors, particularly in cases of dense and dynamic scenes.

For instance, small errors in rotation estimation can result in

large errors over multiple time steps which impact the eval-

uation. While we formulate a two-frame regression task,

prior methods have relied on longer-term memory in order

to improve model robustness [37, 47, 94, 106], however,

this comes at a computational and memory cost. Moreover,

most monocular methods only produce up-to-scale predic-

tions [46, 96, 112], as will be further discussed in Sec 4.

Instead, we rely on a semi-supervised training process to

mitigate issues in absolute scale recovery while enabling a

simple two-frame model to achieve state-of-the-art results.

Self-Training with Auxiliary Tasks: In addition to a la-

beled odometry dataset DL, our framework assumes ac-

cess to a large dataset that is not annotated with respect

to the ego-motion task but potentially other complementary

tasks that are auxiliary to the main VO task, i.e., DU =
{(xi,y

aux
i )}Mi=1. Moreover, we assume access to a set of

models for generating a pseudo-labeled dataset [8, 43, 76,

107, 120], i.e., DPL = {(xi, ỹi,y
aux
i , ỹaux

i )}Mi=1 which

can be joined with the original dataset D̃ = DL ∪ DPL

for supervised training (Sec. 3.4). We note that this is a

practical assumption as there are abundant computer vision

models for obtaining various pseudo-labels. As will be dis-

cussed in Sec. 3.3, these pseudo-labels may be filtered by re-

moving high-uncertainty samples. Overall, the cross-modal

self-training objective can be defined as

Lxvo = Lvo(y) + λuLunc(y) + Laux(y
aux, ỹaux) (1)

where Lvo is a main VO task loss, Lunc is an uncertainty es-

timation loss, Laux is defined over the auxiliary prediction

tasks, and λu is a scalar hyper-parameter. We demonstrate

our semi-supervised formulation to benefit various known

issues with VO, e.g., improving scale recovery. Moreover,

our formulation is kept efficient during inference as it does

not alter the two-frame input x, i.e., in contrast to methods

relying on extracting intermediate representations as input,

such as flow [96] or depth [124]. Next, we define our net-

work structure and training.

3.2. Ego-Motion Network Training

Our approach first trains a direct ego-motion teacher

model (shown as the main encoder and middle branch in

Fig. 1) over the labeled dataset DL. To enable learn-

ing from an unconstrained video, we do not incorporate

any dependency on intrinsic parameters, i.e., either as in-

put [23, 24, 96] or for computing a supervisory loss [45, 77,

89, 109, 112]. We find our network design to provide an

efficient but surprisingly strong baseline, matching state-of-

the-art on the KITTI benchmark despite no elaborate multi-

frame optimization.
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Figure 2: Network Architecture. Our initial teacher model

(used for pseudo-labeling and filtering) encodes two con-

catenated image frames and predicts relative camera pose

and its uncertainty. The complete cross-modal architecture

leverages a similar architecture but with added auxiliary

prediction branches with complementary tasks that can fur-

ther guide self-training, e.g., prediction branches for audio

reconstruction, dynamic object segmentation, optical flow,

and depth.

Encoder: We employ a high-capacity feature extractor

for effectively leveraging the rich multi-task supervision in

later stages (Sec. 3.4). The feature extractor is a Mask-

Flownet encoder [123], which was found to outperform

the commonly used PWC-Net [85, 96], followed by four

transformer self-attention layers [14, 22]. The patch size is

12×16, with each layer comprising four heads and 256 hid-

den parameters. The encoder structure for the initial teacher

model and cross-modal student is kept the same.

VO Decoder: The VO decoder branch consists of three

Fully Connected (FC) layers that regress relative pose

y = [R|t] and an uncertainty estimate for the prediction.

The VO task optimizes a Mean Squared Error (MSE) loss

over predicted translation t̂ ∈ R3 and Euler angle rotations

θ̂ ∈ R3,

Lvo = ‖t− t̂‖22 + λθ‖θ − θ̂‖22 (2)

Uncertainty Estimation: To account for the difficulty in

the absolute scale pose regression task, we propose to also

model prediction uncertainty. We adopt a matrix Fisher dis-

tribution [62], which provides a framework for modeling ro-

tation distribution on SO(3). The probability density func-

tion of the matrix Fisher distribution is as follows:

p(R|Ψ) =
1

c(Ψ)
exp(tr(Ψ�R)) (3)

where Ψ ∈ R
3×3 are the distribution parameters, R ∈

SO(3) is the pose rotation matrix, and c(Ψ) is a normal-

ization constant [56]. Given the estimated parameters Ψ̂

we use the negative log likelihood of R in the predicted dis-

tribution as a loss, i.e.,

Lunc = − log(p(R|Ψ̂)) (4)

As a proxy for prediction (i.e., pseudo-label) quality, we

find it is sufficient to model uncertainty in rotation predic-

tion, however more elaborate estimation methods can also

be used [39, 76, 108]. The confidence predictions will be

used to remove potentially noisy pseudo-labels prior to the

self-training process, as discussed next.

3.3. Pseudo-Label Selection

The VO model from Sec. 3.2 can be used to obtain

pseudo-labels over an unlabeled (i.e., with respect to the

main VO task) data DU . However, incorrect predictions can

introduce noise and heavily degrade model training [76, 82].

Hence, it is crucial to remove low-confidence samples prior

to the cross-modal self-training.

In our regression problem, we measure the confidence of

a pseudo-label based on the entropy of the predicted ma-

trix Fisher distribution (i.e., a lower entropy represents in-

creased confidence),

H(p(R|Ψ̂)) < τu (5)

where we set a fixed threshold τu to ensure the network

prediction is sufficiently certain to be selected. To gener-

ate pseudo-labels, the VO model is tested on out-of-domain

data with highly diverse and dynamic scenes. Based on our

analysis in Sec. 4, we find the uncertainty-aware selection

mechanism to be crucial for robust self-training irrespective

of the auxiliary training tasks.

3.4. Self-Training with Auxiliary Tasks

To learn effective representations for generalized VO at

scale, we propose to incorporate supervision from auxil-

iary but potentially complementary prediction tasks in ad-

dition to the generated VO pseudo-labels on DU . The in-

troduced auxiliary tasks regularize the self-training process,

particularly in cases where VO pseudo-labels may be inac-

curate but other modalities may contain relevant informa-

tion for reducing ambiguity. Our approach is motivated

by the success of multi-task frameworks for computer vi-

sion tasks [2, 30, 41, 113, 114, 121]. However, we em-

phasize that related studies often leverage high-quality an-

notated labels and not noisy pseudo-labels based on model

predictions. We sought to incorporate useful auxiliary tasks,

as unrelated or noisy supervision can impede the learning

process and result in a detrimental effect on the main task

model. We set the auxiliary labeled task as an audio predic-

tion task yaux
i := Ai ∈ R2×L, and the auxiliary pseudo-

labeled tasks ỹaux
i := [S̃i, D̃i, F̃i] ∈ RW×H×C as seg-

mentation, depth, and flow prediction, respectively. Subse-

quently, we leverage multi-task learning (as shown in Fig. 3)
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Figure 3: Illustration of the Importance of Audio. The

frame is consistent with the red arrow marked on the wave-

form. Left: audio amplitude decreases and maintains a low

level when the vehicle is going to wait for traffic lights.

Right: audio experiences many ups and downs represent-

ing acceleration and brake in a narrow urban area.

and minimize a loss composed of four terms,

Laux = λaLaudio + λsLseg + λfLflow + λdLdepth (6)

over the entire dataset D̃. We note that we drop the explicit

label source to avoid clutter. Next, we define each term and

corresponding decoder. We empirically observe the addi-

tional tasks to improve generalization in evaluation, both

within and across VO datasets.

Audio Decoder: We utilize audio labels, generally avail-

able for online videos, as an auxiliary prediction task. We

note that prior work often studies such cross-modal reason-

ing for basic navigation scenarios [12, 13, 26] and not for

in-the-wild videos where dense dynamic objects may gen-

erate significant ambient noise. In our settings, an audio

signal can provide complementary information to visual in-

formation regarding the overall traffic scenario as well as

ego-speed. This insight will be affirmed by our findings

in Sec. 4, where the audio task is shown to provide syn-

ergistic supervision, both for the main VO task and when

combined with other auxiliary tasks. For instance, Fig. 3

depicts how an idling ego-vehicle may generate lower au-

dio levels, which, in conjunction with the visual scene fea-

tures, can help disambiguate ego-motion from surrounding

motion when stopped at intersections. As drift due to sur-

rounding motion is a common failure mode for VO models,

we further incorporate a segmentation task for dynamic ob-

jects below.

Our audio decoder is based on a 1D U-Net archi-

tecture [79], consisting of a residual 1D convolutional

block [32] and an attention block [91], and reconstructs the

dual-channel raw audio of the two input frames using the

encoder features. We employ a two-term MSE and spectral

loss,

Laudio = ‖Ai − Âi‖22 + ‖FT(Ai)− FT(Âi)‖22 (7)

where FT represents the short-time Fourier transform [20].

Segmenting Dynamic Objects: The relative motion

caused by dynamic objects can often lead to inaccurate

pose predictions, e.g., when stopped at a traffic light with

oncoming traffic. To facilitate disambiguating potentially

dynamic objects from the static background, we incorpo-

rate a segmentation prediction for pedestrian and vehicle

classes [4]. As this task involves extensive manual anno-

tation, we intentionally do not assume it is provided as part

of the originally labeled dataset DL and instead leverage

an off-the-shelf model based on Mask R-CNN [31]. The

model is pre-trained on the COCO dataset [50]. We use the

detector to construct a pseudo-label semantic segmentation

S̃ ∈ RW×H×2 of foreground and background in the two

input frames. We leverage an FCN [52] decoder, consisting

of 11 transposed convolutional layers followed by a convo-

lutional layer and a final sigmoid activation function, and

minimize a Dice loss,

Lseg = 1− 2

∑
j,k,c S̃i ◦ Ŝi∑

j,k,c S̃
2
i +

∑
j,k,c Ŝ

2
i

(8)

where Ŝi ∈ R
H×W×2 is the decoder predicted segmenta-

tion, and j ∈ [1, H], k ∈ [1,W ], c ∈ [1, 2]. As dynamic

objects often cause ego-motion estimation drift, the predic-

tion task can regularize self-training by providing a useful

invariant prior (i.e., across datasets and settings) of back-

ground and foreground knowledge. Moreover, the segmen-

tation task complements the audio task in many scenarios

as dynamic objects may also generate ambient audio.

Depth and Flow Tasks: We explore two additional aux-

iliary tasks based on depth and optical flow estimation, as

they potentially offer valuable information about the struc-

ture of the surroundings and the camera motion and are fre-

quently employed in VO tasks [53, 63, 69, 96]. We utilize

an MSE as the loss function for both depth and flow tasks,

Lflow = ‖F̃i − F̂i‖22
Ldepth = ‖D̃i − D̂i‖22

(9)

To simplify the model, we maintain the identical decoder

structure used as in the dynamic object segmentation task

(see Fig. 2), with the exception of eliminating the final Sig-

moid layer.

3.5. Implementation Details

Our models are trained using three NVIDIA RTX 3090

GPUs using a batch size of six. The learning rate is set

to 0.001 and with decay 0.99. Given the main VO objec-

tive, we set λθ = 1 and λu = 0.1. Remaining auxiliary

loss hyper-parameters, i.e., λa, λs, λf , λd, are set to 0.01.

For our semi-supervised training, we obtain a diverse set

of 59,000 unlabeled samples across different geographical

locations, times of day, and environmental conditions. We

split the nuScenes benchmark [7] into training, validation,

and evaluation sets, to train an initial teacher model for 15
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epochs. The student model is trained for 15 epochs on a mix

of labeled nuScenes and pseudo-labeled YouTube data. We

note that we do not employ careful ratio optimization [8]

when mixing the datasets without and instead solely rely

on the uncertainty-based selection mechanism. We lever-

age data augmentation strategies, including random crop-

ping and resizing, for improving generalization and simu-

lating varying camera intrinsics [96]. During inference, the

model runs at 77 FPS on a single NVIDIA GTX 3090 GPU.

Additional details regarding the training and experiments

can be found in the supplementary.

4. Experiments
In this section, we comprehensively analyze our XVO

framework. As our goal is to build generalized VO sys-

tems, we emphasize generalization ability across different

datasets with various camera setups, specifically in the con-

text of varying autonomous driving settings.

Datasets: To understand the role of cross-modal self-

training on model generalization, we evaluate our proposed

XVO method using three commonly employed datasets,

KITTI [28], nuScenes [7] and Argoverse 2 [100]. Out of

the three, KITTI is the most popular VO benchmark, con-

sisting of 11 sequences 00-10 with ground truth. As KITTI

is an older benchmark (2012), its camera intrinsics vary sig-

nificantly from the other two benchmarks. nuScenes con-

sists of about 15 hours of driving data (totaling 197,000 im-

ages) from four regions in Boston and Singapore: Boston-

Seaport, Singapore-OneNorth, Singapore-Queenstown, and

Singapore-HollandVillage. In contrast to KITTI which

was captured in sunny driving with mostly static objects,

nuScenes incorporates complex real-world driving maneu-

vers in dense streets and various conditions, e.g., nighttime,

difficult illumination conditions with low visibility, as well

as artifacts on the camera lens, such as rain droplets or dirt.

Finally, Argoverse 2 is a large dataset with 1,000 driving

sequences across six US cities. We leverage a test dataset

that includes 150 sequences and 48,022 images.

Procedure and Baselines: We generally train within one

region on nuScenes (HollandVillage) and evaluate the re-

maining regions and datasets. This is in contrast to prior

evaluation procedures where models can learn to memorize

the scale and camera setup without generalization through

training and testing on the same camera setup and similar

environments. We also directly compare with prior state-of-

the-art using the standard KITTI protocol [45, 112]. As our

approach does not leverage known intrinsics, we separate

approaches that do assume such knowledge in their pipeline

to ensure meaningful analysis. We further indicate whether

methods predict pose with absolute scale, as some meth-

ods output up-to-scale estimates and use the ground-truth

scale to align and evaluate their model, e.g., TartanVO [96].

Nonetheless, TartanVO is one of the few approaches that

have shown generalization across datasets without the need

to fine-tune or perform online adaptation strategies and is

therefore our main baseline.

Metrics: We follow standard evaluation metrics of aver-

age translation trel (in %) and rotation rrel (in degrees

per 100 meters) errors, computed over all possible subse-

quences within a test sequence of lengths (100, ..., 800) me-

ters [28, 96]. We refer the reader to the KITTI leaderboard

for more details regarding the metric. However, we ob-

serve prior measures to only provide a proxy evaluation of

real-world scale predictions as the errors could potentially

vary along the trajectory independently of trajectory-level

measures (our supplementary contains additional details).

To explore the benefits of semi-supervised training on real-

world scale estimation, we sought to directly quantify scale

recovery within consecutive frames in a single metric. We

therefore also report the average scale error (se) over pre-

dicted and ground-truth translation,

se = 1−min

( ‖t̂‖2
max(‖t‖2, ε) ,

‖t‖2
max(‖t̂‖2, ε)

)
(10)

where ε prevents dividing by zero.

4.1. Results

We examine the role of the main components in the pro-

posed framework below. Complete ablation, e.g., across

modality combinations and training settings, can be found

in the supplementary.

Teacher Model Performance: Table 1 compares our pro-

posed encoder architecture for the main VO task with prior

methods. When trained in a supervised learning manner

on KITTI, our teacher model achieves the lowest transla-

tion error of 3.4% even without access to camera intrinsics

or multi-step optimization. This suggests that basic modi-

fications to underlying network structure, e.g., through an

improved encoder and attention-based mechanism, can re-

sult in significant gains for the monocular VO task. Given

the effective network structure, we now turn to analyzing

the benefits of the proposed semi-supervised framework.

Semi-Supervised VO Training: Table 1 also analyzes

the generalization performance of the proposed semi-

supervised learning framework on KITTI. Specifically, we

show our initial teacher model that is trained on the

nuScenes (HollandVillage) dataset to not generalize well to

the KITTI testing set (25.27% translation and 8.17◦ rota-

tion error) due to domain shift and differing camera set-

tings. However, after semi-supervised training, the errors

for the student model are reduced by 40% and 50% in trans-

lation and rotation errors, respectively. The best self-trained

model with auxiliary tasks (complete ablation can be found
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Table 1: Analysis on the KITTI Benchmark. We abbreviate ‘intrinsics-free’ as I (i.e., a method which does not assume the
intrinsics) and ‘real-world scale’ as S (i.e., a method is able to recover real-world scale). To ensure meaningful comparison,
we categorize models based on supervision type. Firstly, we present unsupervised learning methods, followed by supervised
learning methods, then generalized VO methods, and finally our XVO ablation. In the case of TartanVO, we analyze robust-
ness to noise applied to the intrinsics. We train two teacher models: one based on KITTI (as shown in supervised learning
approaches) and the other on nuScenes (as displayed at the end of the Table with ablations).

Method I S Seq 03 Seq 04 Seq 05 Seq 06 Seq 07 Seq 10 Avg
trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel trel rrel

Unsupervised Methods:

SfMLearner [126] ✗ ✗ 10.78 3.92 4.49 5.24 18.67 4.10 25.88 4.80 21.33 6.65 14.33 3.30 15.91 4.67
GeoNet [112] ✗ ✗ 19.21 9.78 9.09 7.55 20.12 7.67 9.28 4.34 8.27 5.93 20.73 9.10 14.45 7.40
Zhan et al. [115] ✗ ✓ 15.76 10.62 3.14 2.02 4.94 2.34 5.80 2.06 6.49 3.56 12.82 3.40 8.16 4.00
UnDeepVO [45] ✗ ✓ 5.00 6.17 4.49 2.13 3.40 1.50 6.20 1.98 3.15 2.48 10.63 4.65 5.48 3.15
Supervised Methods:

DeepVO [94] ✓ ✓ 8.49 6.89 7.19 4.97 2.62 3.61 5.42 5.82 3.91 4.60 8.11 8.83 5.96 5.79
ESP-VO [95] ✓ ✓ 6.72 6.46 6.33 6.08 3.35 4.93 7.24 7.29 3.52 5.02 9.77 10.2 6.16 6.66
GFS-VO [105] ✓ ✓ 5.44 3.32 2.91 1.30 3.27 1.62 8.50 2.74 3.37 2.25 6.32 2.33 4.97 2.26
Xue et al. [106] ✓ ✓ 3.32 2.10 2.96 1.76 2.59 1.25 4.93 1.90 3.07 1.76 3.94 1.72 3.47 1.75
Our Teacher (KITTI) ✓ ✓ 3.46 2.00 1.67 0.70 2.12 0.92 3.92 1.46 5.93 3.96 3.31 1.52 3.40 1.76

Baseline Generalized VO Methods:

TartanVO (TartanAir) [96] ✗ ✗ 4.20 2.80 6.19 4.35 5.84 3.24 4.21 2.51 7.11 4.96 8.00 3.21 5.93 3.51
TartanVO (10% Noise) ✗ ✗ 9.33 3.12 10.88 4.71 11.77 5.39 11.88 4.52 14.70 10.74 11.76 3.61 11.72 5.35
TartanVO (20% Noise) ✗ ✗ 17.79 4.42 21.58 5.04 20.12 8.54 18.80 6.26 21.34 16.27 17.45 5.03 19.51 7.59
TartanVO (30% Noise) ✗ ✗ 25.89 7.06 34.91 4.54 22.48 10.17 19.32 5.23 19.40 13.33 25.06 8.43 24.51 8.13
Proposed Generalized VO Methods:

Our Teacher (nuScenes) ✓ ✓ 26.78 4.92 26.02 2.42 23.65 8.85 23.97 6.47 30.66 20.32 20.57 6.01 25.27 8.17
Student w/o Filter ✓ ✓ 26.98 9.68 22.56 2.15 14.77 5.83 11.38 1.62 16.45 9.35 20.23 8.99 18.73 6.27
Student ✓ ✓ 20.30 3.97 16.33 1.57 11.12 4.19 15.60 5.69 7.77 3.48 19.91 5.59 15.17 4.08
XVO ✓ ✓ 14.53 3.93 16.29 0.96 8.31 2.76 15.31 5.49 5.86 3.00 12.17 3.45 12.08 3.27

Table 2: Average Quantitative Results across Datasets.
We test on KITTI (sequences 00-10), Argoverse 2, and the
unseen regions in nuScenes. All results are the average over
all scenes. We present translation error, rotation error and
scale error. Approaches such as TartanVO do not estimate
real-world scale but may be aligned with ground truth (GT)
scale in evaluation. A, S, F, D are the abbreviation of Audio,
Seg, Flow, Depth.

Method KITTI 00-10 Argoverse 2 nuScenes
terr rerr se terr rerr se terr rerr se

Baseline Generalized VO Methods:

TartanVO w/ GT Align 6.37 3.32 / 8.55 5.77 / 9.61 6.83 /
TartanVO w/o GT Align 21.67 3.33 0.29 41.11 5.77 0.40 28.23 6.83 0.29

Proposed Generalized VO Methods:

Teacher (nuScenes) 26.16 6.84 0.25 10.89 3.40 0.16 15.93 6.73 0.20
Student w/o Filter 20.64 5.68 0.21 10.80 7.33 0.14 9.32 4.60 0.14
Student 17.04 4.02 0.16 9.16 3.40 0.14 10.54 3.94 0.13
Student+Seg 16.31 3.77 0.16 9.17 3.18 0.13 11.35 4.05 0.14
Student+Flow 15.60 3.19 0.19 9.04 4.45 0.13 9.13 4.06 0.13
Student+Depth 17.49 3.89 0.20 9.25 4.11 0.13 11.86 6.46 0.15
Student+Audio 14.37 3.06 0.16 8.00 3.08 0.12 9.26 3.20 0.12
Student+Audio+Seg 14.20 3.02 0.16 8.67 3.63 0.13 11.29 3.70 0.14
Student+S+F+D 18.23 3.88 0.21 8.79 4.89 0.13 8.93 3.44 0.13
Student+A+S+F+D 16.74 4.40 0.18 7.89 3.54 0.12 9.98 4.36 0.15

in the supplementary) results in further student performance
gains, e.g., a further reduction in translation error by 20%.

We also compare with the most related TartanVO [96] base-
line which utilizes the ground-truth for scale alignment and
has access to camera intrinsics. However, even with the
ground-truth alignment, TartanVO exhibits quick degrada-
tion with minimal noise in the intrinsics (enabling a more
fair comparison as our method is not provided these as in-
put). Moreover, we explore the generalization of our train-
ing framework by evaluating on various datasets in Table 2.
We emphasize that none of the trained models have access
to samples from Argoverse 2 or KITTI dataset during train-
ing. By predicting real-world scale, our student model with
all auxiliary tasks outperforms the baseline TartanVO in all
three datasets, e.g., by 80% in translation and 70% scale
error on Argoverse 2, without any ground-truth alignment.
This indicates the proposed method to improve reasoning
over scale and scene semantics across arbitrary conditions.

Impact of Uncertainty-Aware Sample Selection: When
inspecting the various pseudo-labels, we observed many
cases of drift and incorrect predictions due to the harsh gen-
eralization settings. Hence, the uncertainty-aware pseudo-
label selection mechanism plays a crucial role in the semi-
supervised learning process. As shown in Table 1 and Ta-
ble 2, discarding pseudo-labels with low confidence consis-
tently improves performance, both with and without multi-
modal supervision. We notice how a student model without
the uncertainty-aware sample removal (i.e., ‘Student w/o
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Figure 4: Qualitative Analysis on KITTI. We find that
incorporating audio and segmentation tasks as part of the
semi-supervised learning process significantly improves
ego-pose estimation on KITTI.

Filter’) provides only mild improvements compared to the
teacher. Once noisy samples are filtered out of the dataset,
the performance on KITTI and nuScenes improve signifi-
cantly, e.g., from 26.16 to 17.04 and 15.93 to 10.54 transla-
tion error respectively.

Ablation on Auxiliary Tasks: We sought to understand the
role of the various explored auxiliary tasks, i.e., audio, seg-
mentation, depth, and flow. We first analyze the impact of
adding an audio reconstruction task for the VO problem.
Although extracted audio includes some ambient noise, we
can see that XVO consistently benefits from the proposed
audio supervision across the evaluation datasets. This can
be explained by the consistent quality of the ground-truth
audio labels, i.e., when compared to the noise in pseudo-
labels generated by the auxiliary prediction models on our
unconstrained videos. In general, we find that audio, seg-
mentation, and flow tasks result in better performance when
compared to the depth prediction task. While prior research
often leverages monocular depth prediction for improv-
ing VO on KITTI, this is a significantly challenging task
in more general settings which results in noisier pseudo-
labels. We also investigate various combinations of auxil-
iary branches and find the combination of segmentation and
audio branch performs better than a single auxiliary task
on KITTI. While this is encouraging, KITTI contains sim-
pler scenarios with relatively few dynamic traffic partici-
pants. In such simpler settings, our segmentation branch
can be used to obtain reliable pseudo-labels and learn effi-

cient generalized features. However, this finding does not
extend to nuScenes and Argoverse 2 which frequently con-
tain dense and dynamic scenes. We also find that simply
adding prediction tasks does not provide further gains due
to the pseudo-label noise and a more brittle and difficult op-
timization process. Complete ablations on auxiliary tasks
can be seen in our supplementary.

4.2. Qualitative Results

Fig. 4 depicts the prediction of driving trajectories on
KITTI sequences 7, 8, 9, and 10. The trajectory predicted
using the teacher model that is trained on nuScenes is not
able to recover scale accurately. Due to the semi-supervised
training process, the student model is shown to have better
scale recovery and generalization despite the lack of cal-
ibration knowledge. Nonetheless, the student model fails
to estimate accurate rotation in more challenging scenes on
KITTI, e.g., top right and bottom left scenarios. Finally,
the cross-modal trained model is shown to robustly estimate
translation, rotation, and scale, even in the most compli-
cated route in Fig. 4-top right. Additional qualitative exam-
ples are provided in the supplementary.

5. Conclusion

In this paper, we present XVO, a novel method for gen-
eralized visual odometry estimation via cross-modal self-
training. Our efficient network structure achieves state-of-
the-art results on KITTI, despite having no knowledge of
camera parameters or multi-frame optimization as in prior
methods. Moreover, our framework leverages a mixed-
label semi-supervised setting over a large dataset of inter-
net videos to further enhance generalization performance.
Specifically, we show that additional auxiliary segmenta-
tion and audio reconstruction tasks can significantly impact
cross-dataset generalization. Our trained VO models can be
used across platforms and settings without fine-tuning, i.e.,
due to general reasoning over semantic visual characteris-
tics of scenes. Moreover, our training settings of improv-
ing the performance of a model that is initially trained on a
small and restricted dataset are broadly applicable to vari-
ous robotics use-cases. We hope our work can inspire future
researchers to explore scalable VO models that can bene-
fit a broad range of applications. Given the limited utility
of combining multiple auxiliary tasks in our settings, a fu-
ture direction would be to study better methods for learning
from noisy and diverse auxiliary pseudo-labels. Moreover,
while we achieved state-of-the-art results with a two-frame
approach, multi-frame optimization could provide further
benefits by alleviating drift.

Acknowledgments: We thank the Red Hat Collaboratory
and National Science Foundation (IIS-2152077) for sup-
porting this research.
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