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Abstract Surface deformation plays a key role in illuminating magma transport at active volcanoes,
however, unambiguous separation of deep and shallow transport remains elusive. The Socorro Magma Body
(SMB) lacks an upper crustal magma transport system, allowing us to link geodetic measurements with
predictions of numerical models investigating rheologic heterogeneities and magma-mush interaction in the
mid-/lower crust. New InSAR observations confirm that a pattern of central surface uplift surrounded by a
region of subsidence (previously coined “sombrero” deformation) has persisted over >100 years at the SMB.
Our models suggest this pattern may reflect the presence of a large (>100 km width), weaker-than-ambient,
compliant region (CR) surrounding the mid-crustal magma body. Interactions between a pressurizing (e.g., due
to melt injection and/or volatile exsolution) sill-like magma body and CR drive the sombrero pattern, depending
on both viscoelastic relaxation and pressurization timescales, explaining its rare observation and transient
nature.

Plain Language Summary Magma in the crust is transported and stored within magma bodies
(regions that are mostly liquid magma) and “mush” (mostly solid crystals and some liquid magma). Mush
zones are thought to be too viscous to be erupted but are likely to be weaker than the surrounding rock. To
understand volcanic eruptions, it is important to understand the distribution of magma and mush, and their
mutual interactions. Here we study these interactions in a mid-crustal magma body, the Soccorro Magma Body
(SMB), that does not have a surface volcano. Surface deformation at the SMB helps us study magma-mush
interaction, especially in the middle or lower crust. Previous surface deformation measurements at the SMB
show “sombrero” deformation: a central area of uplift surrounded by a ring of subsidence. New satellite radar
measurements are consistent with the previously reported pattern, confirming that this deformation remained
remarkably constant through nearly 100 years. We suggest this is due to a large weak, mush region surrounding
the SMB. Our computer models reproduce a long-lasting, consistent sombrero deformation pattern depending
on mush properties as well as pressurization history of the magma body, and we suggest these factors may
explain why this pattern is relatively rare.

1. Introduction

Long-lived active volcanic centers are the uppermost expression of a complex transcrustal transport system
bringing magma from beneath and within the lithosphere to the surface (e.g., Cashman et al., 2017; Hildreth &
Wilson, 2007). These systems comprise partially molten regions, thought to be a combination of crystal-poor
magma bodies surrounded by crystal-rich “mush” zones near solidus (Cooper & Kent, 2014; Glazner et al., 2016;
Jackson et al., 2018). Mush zones, where crystal volume fractions exceed 50%—60%, are thought to be deformable
but not readily eruptible (e.g., Bachmann & Bergantz, 2008; A. Costa et al., 2009). Within them, the formation
of crystal-poor (<50% crystals by volume) eruptible magma (e.g., Hughes et al., 2021) by heat and mass trans-
fer is the subject of multidisciplinary exploration (e.g., Bergantz et al., 2015; F. Costa et al., 2020). Magma-
mush interactions have been modeled as (visco)poroelastic coupling over length scales of intrusions (Alshembari
et al., 2023; Liao et al., 2018, 2021; Mullet & Segall, 2022), or permeable flow and transport (Liu & Lee, 2021),
possibly including the effects of volatiles (e.g., Parmigiani et al., 2014).

Mush zones in the upper crust are well documented at a number of active volcanic centers (e.g., Hamling
et al., 2015), however, the role of mush in the mid-/lower crust is poorly understood (Annen et al., 2006; Magee
et al., 2018; Maguire et al., 2022). For example, seismic observations at two large and dynamic mid-crustal
magma bodies, the Socorro Magma Body (SMB) and the Altiplano-Puna Magma Body (APMB), suggest a broad
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Figure 1. (a) Topographic relief map of the seismically derived extent of the Socorro Magma Body (SMB), New Mexico
(Balch et al., 1997; Rinehart & Sanford, 1981), within southwestern North America (inset). Quaternary faults (magenta lines),
three continuous GPS stations (red diamonds), and locations of the La Ristra seismic stations (black dots) (West et al., 2004)
indicated for reference. The orange polygon outlines the NW-SE extent of low mid-crustal seismic wavespeeds (relative

V, < —=5% at 20 km depth, from West et al. (2004). (b). InSAR measurements of the SMB spanning 01/07/2017 through
12/21/2021 showing the observed sombrero-style surface deformation. GPS stations (red) and the SMB outline (solid yellow)
are as in (a). The yellow ellipse (long-dashes) outlines the pressure source and the larger yellow circle (short-dashes) shows
the map-extent of the CR in the SMB-realistic model (Figure 5).

(>100 km wide; e.g., Figure 1a) region of anomalously low seismic wavespeeds in the mid-crust (Gao et al., 2004;
Pritchard & Gregg, 2016; Ward et al., 2014; West et al., 2004; Wilson et al., 2005). These seismic anomalies coin-
cide with volcanism (e.g., at the APMB, Long Valley, or Yellowstone) or elevated surface heatflow (e.g., Reiter
et al., 2010), anomalous resistivity structure (e.g., Comeau et al., 2015), and anomalous seismicity (Hudson
et al., 2022; Jay et al., 2012; Rinehart & Sanford, 1981; Sanford et al., 2002; Stankova et al., 2008), suggesting
they are thermally/mechanically anomalous. While these regional mid-crustal seismic anomalies are consistent
with the presence of melt (Ake & Sanford, 1988; Magee et al., 2018; Maguire et al., 2022), we lack an understand-
ing of how magma and mush may be distributed within them and what role they play in the larger transcrustal
magma transport system. For example, the APMB underlies numerous volcanoes (Gottsmann et al., 2017; Magee
et al., 2018) and it is not clear how magma and mush are distributed within it. Thermal modeling of episodic melt
injection suggests prolonged heating is necessary to generate long-lived mush zones (Annen et al., 2015; Blundy
& Annen, 2016; Karakas et al., 2017). Such mush zones are likely weaker than the surrounding crust (Diener &
Fagereng, 2014), but the implications of the resulting rheologic heterogeneity have not been fully considered in
studies of surface deformation due to pressurizing mid-crustal magma bodies.

Inspired by regionally-extensive mid-crustal seismic anomalies, we use numerical models to study the role of
spatial (horizontal and vertical) heterogeneity within the mid-crust in controlling the surface deformation response
to mid-crustal magma pressurization. We are interested in the mechanical coupling between a mid-crustal
compliant region (CR) and a pressurizing sill-like magma body. Separating surface deformation patterns due to
mid-crustal magma injection and shallower magma dynamics proves difficult where the magma transport system
extends to a volcanic system (e.g., Uturuncu Volcano, Long Valley, or Yellowstone) as upper crustal deformation
obscures deeper processes (Biggs & Pritchard, 2017). The SMB (Figure 1), a large, seismically inferred, sill-
like magma body at 19 km depth (diameter 50—70 km and thickness <1 km; Rinehart & Sanford, 1981; Balch
et al., 1997; Fialko et al., 2001), does not have a volcanic expression. We exploit this lack of upper crustal magma
transport at the SMB to directly connect geodetic observations to mid-crustal drivers of deformation.

Our starting point is a pattern of central uplift surrounded by subsidence, so-called “sombrero uplift” (coined
by Fialko & Pearse, 2012), observed above both the SMB (Fialko & Pearse, 2012; Finnegan & Pritchard, 2009;
Larsen et al., 1986; Pearse & Fialko, 2010) and the APMB at Uturuncu volcano (Fialko & Pearse, 2012; Gottsmann
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et al., 2018; Henderson & Pritchard, 2017). For the APMB this deformation has been modeled as deformation
that couples magma injection at depth with either deeper crustal mechanics (Fialko & Pearse, 2012; Henderson
& Pritchard, 2017), or the dynamics of a shallow upper-crustal mush zone (Gottsmann et al., 2017). The SMB,
however, lacks an upper crustal expression of the magma transport system motivating the question of how such a
sombrero pattern might arise and what impact the presence of a CR may have.

A key finding of our study is that a mid-crustal CR surrounding the SMB leads to a spatial decoupling of surface

deformation. Generally, vertical surface uplift directly above a pressurizing sill-like body (radius r,, ) within a

source:

CR may be accompanied by surface subsidence of regions toward the edges of the CR (r Z 1.5r,, ), providing an

source

alternative mechanism for emergence of the sombrero pattern. The transient nature of the somberro pattern and its
duration (At

som

) is a strong function of the rheologic gradients within the CR and the pressure-time history within
the sill, providing an explanation for its rare observation. Importantly, the surface expression of the deformation
is controlled by the interplay of the pressurization timescale and the effective (viscoelastic) response timescale
in the CR.

2. Deformation Observations at the Socorro Magma Body

At the SMB, the sombrero pattern of surface motion has been measured over nearly 100 years through leve-
ling (Larsen et al., 1986) and Interferometric Synthetic Aperture Radar (InSAR) (Fialko et al., 2001; Pearse &
Fialko, 2010). These observations, together with other geodetic measurements (Berglund et al., 2012; Larsen
et al., 1986), suggest a maximum vertical uplift rate of ~2-2.5 mm/yr.

We acquire Synthetic Aperture Radar (SAR) observations on ascending path 49 frame 107 (Figure 1b), collected
by the European Space Agency's Sentinel-1 A/B mission (Torres et al., 2012), which we process with GMTSAR
(Sandwell et al., 2011) to create 2 pass interferograms spanning January 2017 though December 2021. We create
mean velocity stacks (Text S1 in Supporting Information S1) from individual interferograms which include
December through January multi-year pairs by averaging the observed line-of-sight (LOS) deformation over
the time interval of acquisition where observations are weighed by the time interval (e.g., Xiao et al., 2020).
The resulting LOS velocity field (Figure 1b), aligned with prior observations (Fialko et al., 2001; Finnegan
& Pritchard, 2009; Pearse & Fialko, 2010) to fit the magnitude of observations, reveals deformation overly-
ing the SMB. From the average LOS deformation map (Figure 1b), we extract profiles for comparison to our
SMB-specific finite-element model results (Figure 5c). We observe ~3 mm/yr of peak LOS uplift within the
SMB, with uplift limited to the central to western portion of the magma body. North-south and east-west profiles
across the peak deformation illustrate the sombrero uplift over the magma body as described by Pearse and
Fialko (2010). While residual topography impacts may bias the velocity field, we do not observe similar effects
over other nearby topography.

Previous InSAR observations over the SMB report deformation rates of 2—3 mm/yr (Fialko et al., 2001; Finnegan
& Pritchard, 2009; Pearse & Fialko, 2010), comparable to our observations during the duration of the SAR acqui-
sitions. We observe a north-south elongated region of uplift, more consistent with Fialko et al. (2001) than the
circular deformation shown by Finnegan and Pritchard (2009). Temporal changes in the InSAR-derived average
LOS velocities over the SMB were presented in Finnegan and Pritchard (2009), therefore, variations in the shape
of the region experiencing uplift during our study are not unprecedented.

This deformation signal is generally attributed to injection of magma in the mid-crust, however, many studies
suggest it cannot be due to solely elastic effects (e.g., Fialko & Pearse, 2012; Fialko et al., 2001; Pearse &
Fialko, 2010). Previous models of deformation at the SMB (Larsen et al., 1986; Fialko et al., 2001; Pearse &
Fialko, 2010; Finnegan & Pritchard, 2009; A. Newman et al., 2001; A. V. Newman et al., 2006) do not explicitly
consider material heterogeneity in a mid-crustal CR, the main target of our investigation.

3. Numerical Modeling Results

We present generic finite element models using PyLith (v2.2.2; Aagaard et al., 2019), to assess the role of a
CR surrounding a sill-like pressure source in the mid-crust. We target the role of the CR and its manifestation
in ground deformation (parameters and model details in Text S2, Table S1, and Figure S1 in Supporting Infor-
mation S1). Each model comprises a background layered structure, with deformation driven by time-varying
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Figure 2. (a) Cross-section cartoons of generic models with variable CR. All models share a layered background rheology (UC = upper crust, LC = lower crust,

LM = lithospheric mantle; see Text S2 in Supporting Information S1), within which a mid-crustal pressure source is embedded (black ellipse). The CR rheology is
specified with a single viscosity (uniform CR) or with horizontal gradient in nested cylinders (nested CR) or vertical gradient in stacked cylinders (stacked CR). The
nested CR viscosity increases radially and the stacked CR has viscosity increasing vertically. (b) After initial pressurization to a background pressure P, followed by a
prescribed “spin-up” time at constant pressure, one of two periodic pressure functions is applied: a sinusoid with amplitude AP and period T (black), or sawtooth with
pressure change AP and period T (red). The “re-pressurization” phase of a given pressure-time function refers to intervals with dP/dt > 0 as indicated (blue dashed

arrows). (c)—(f) Cross sections illustrating spatially-varying velocity (arrows) for models with the same r

=25km, P;=1MPa, AP = 500 kPa and T = 200 years,

source

(with sinusoidal pressurization), but with differing CR: (c) no CR, (d) a uniform CR, (e) nested CR, and (f) stacked CR. Velocity snapshots are shown halfway during
the sombrero (d-f; durations indicated) or halfway through a pressure cycle (c). Arrows show velocity direction; red arrows indicate upward surface motions and color
contours indicate velocity magnitude (mm/yr). Note the color bar range is different for each subplot.

pressurization of a mid-crustal sill (Figure 2b). We consider a suite of models, with and without a viscoelastic
CR surrounding the sill, and explore the effects of varying CR structure (Figure 2a; Table S1 in Supporting
Information S1).

A viscoelastic CR in the mid-crust (with lower viscosity than the ambient viscoelastic crust), leads to a phase-
lag in surface deformation. When the sill within the CR undergoes pressurization, regions above its center and

those to its edges (e.g., r > 1.5r,,,..) may be out of phase (demonstrated for vertical motions in Figure 3a and for

horizontal motions in Figure S3 in Supporting Information S1). This is the essence of the sombrero signal (central
uplift surrounded by an annular moat of subsidence), and we observe this pattern during the (re-)pressurization
phase (Figure 2b), where the center begins to uplift while the edges are still subsiding due to viscoelastic relax-
ation of the CR. The sombrero pattern is only observed in the presence of a CR (Figure 3a); without it, surface

velocities are in phase everywhere and have the same sign (Figure 3b).

When a CR exists, surface motions above the source (within #/r < 1) and outside it (#/r 2 1.5) depend

source — source N

on: (a) rheologic gradients within the CR and (b) the applied pressurization history (Figures 3c—3f). Depending
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Figure 3. (a) Normalized vertical surface velocity, V,, profiles (normalized relative to the maximum velocity of the no

CR case), illustrating the role of the CR in the sombrero pattern of deformation in four models with varying CR; all with
P, =1MPa, AP = 500 kPa and T = 200 years. Each profile is shown at the same times as the corresponding velocity fields
in Figures 2c-2f; see Figure S3 in Supporting Information S1 for corresponding radial motions. (b—d): Normalized surface
uplift velocities at the center (r = 0 km, blue) and shoulder (defined as r/r, = 1.6, orange), with normalized sinusoidal

source

pressure-time variation (black dashed lines); y-axis labels for (c—f) are as indicated on (b). (b) No CR (corresponds to model
in Figure 2c¢), (c) a uniform CR (model in Figure 2d), and (d) nested CR (model in Figure 2e). (e-f) Show decoupled center
and shoulder velocities for the (e) nested CR and (f) stacked CR driven by pressurization functions as indicated.

on the gradient of viscosity within the CR, we observe a circulatory pattern of motion in the mid-crust (e.g.,
Figure 2d,e) and a phase lag between vertical surface velocities above the sill (“center”) and outside of the source
radius (“shoulder”; Figures 3c—3f; see also Figure S2 in Supporting Information S1). The time interval when
vertical velocities at the center are positive and the shoulder regions are subsiding is the sombrero duration, Az,

(and vice versa, for a “reverse” sombrero, e.g., Figure 3d).

Spatial decoupling of the center and shoulder velocities during sombrero deformation depends on the rheologic
gradient within the CR: comparing uniform CR model versus models with horizontal (“nested”) and vertical
(“stacked”) viscosity gradients (Figure 2a). A larger CR viscosity gradient increases the phase lag compared to
the uniform CR models (Figures S2b and S2d in Supporting Information S1), with systematically higher phase
lags in the nested CR model than the stacked CR model (Figure S2 in Supporting Information S1). Horizontal
viscosity gradients are, therefore, more important than vertical ones for controlling sombrero-style deformation.

In addition to rheologic gradients, the phase lag in surface velocities is strongly controlled by the pressure-time
function. Sinusoidal pressure-time functions yield periodic motions where Az

som

corresponds to a fixed (phase-
and) time-lag for both the sombrero and the reverse sombrero (Figures 3c, 3d, and 3f). For sawtooth pressuriza-
tion, however, the duration of the sombrero may greatly exceed that of the reverse pattern (Figure 3e). Nested CR
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Figure 4. (a) Sombrero duration as a function of pressurization rate for the suite of models in this study. (b) Dimensionless sombrero duration (normalized by CR
relaxation time) versus dimensionless pressurization rate (normalized by background pressure and CR relaxation time). In (a and b), we see a general trend of increasing
sombrero duration with decreasing pressurization rate, up to a threshold. Nondimensionalization collapses all uniform CR runs into a single trend, and likewise with the
nested CR and stacked CR models. To normalize nested CR and stacked CR runs, ¢, was found by volumetrically averaging the relaxation times within the CR.

models driven by sawtooth pressurization (Figure 3e) exhibit near-constant surface velocities during a sombrero
event.

Decreasing the pressurization rate (e.g., dP/dt ~ 4AP/T for the sinusoidal function) leads to increased sombrero
duration, At

som

(Figure 4). The sombrero duration Az

som

for a given AP/T increases with the ambient background
pressure, P, and decreases with relaxation time ¢, (Figure 4a). For the uniform CR, the relation between Az,
and AP/T collapses into a single trend when the duration is normalized by the uniform relaxation time within the
CR, 1, and the pressurization rate is normalized by P/, (Figure 4b). Nested and stacked CR runs also collapse

onto similar trends showing an increase in Az, at low APt/PT, with systematically higher sombrero dura-

som
tions compared to the uniform CR models at the same dimensionless pressurization rate (Figure 4b). (We use a
volumetrically-averaged relaxation time to nondimensionalize in non-uniform CRs). For the uniform and stacked
CR models, there is a transition at low APt/P,T at which the sombrero duration is not as sensitive to the pressur-
ization rate. The slope of the trend is similar for nested CR models, but without a similar observed transition at
low rates. (Reaching a dimensionless pressurization rate of APr/PT = 10~ is computationally expensive for the
nested and stacked CR models due to the large volumetrically-averaged ¢,.) The uniform and stacked CR models
clearly reach a threshold at which Az appears to be nearly independent of APt,/P T, suggesting the threshold
depends on intra-CR rheology (APt/P,T ~ 10~ for uniform CR and 10~ for stacked CR; Figure 4b). Models
with the same pressurization rate but different pressure-time functions show little variation in sombrero duration,
demonstrating that the primary controlling factors for sombrero duration are the pressurization rate and model

geometry, and not pressure-time history (Figure 4).

4. Discussion

While idealized, the generic models above demonstrate that a weaker-than-ambient CR surrounding a
(de-)pressurizing sill can decouple surface deformation directly above the sill from points farther away. A key
finding is that, during pressurization, locations vertically above the sill may be uplifting while those outside
the surface projection of the sill may be subsiding, creating a sombrero pattern (Figure 3). (The pattern may be
reversed when transitioning to a period of de-pressurization.) This phase lag in the surface deformation pattern
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Figure 5. Summary of SMB-specific ellipsoidal source/hybrid CR model (Table S1 in Supporting Information S1) and
results. (a) Cartoon schematic illustrating the CR (200 km diameter), with both horizontal and vertical gradients in ¢,
(represented by the shading moving away from the pressure source (black); Table S1 in Supporting Information S1). (b)
Sketch of pressure-time function, with constant pressurization at dP/dt ~ 5 kPa/yr, leading to a nearly stationary sombrero
pattern over Az, > 100 years (sawtooth period T > 200 years). (c) Predicted surface velocity profiles (solid and dashed lines)

som

extracted along lines A-A’ and B-B’ in Figure 1b, projected onto the LOS and averaged over 30 years windows as indicated
(t = 0 is defined at the beginning of the sawtooth function in (b)). Lines extracted from the model are offset by 10.0 km west
and 0.5 km north and rotated by —22.55°. InSAR LOS velocities along profiles A-A" and B-B’ (black dots) and topography
(light gray dots) are plotted for comparison. The data were converted from degrees to km with the factor 1° ~ 93 km. The
misfit at the southern end of the B-B’ profile is likely due to groundwater extraction from local agricultural activity.

depends on the presence of the CR, but the duration of the sombrero depends primarily on pressurization rate:
increasing with decreasing pressurization rate, up to a threshold (Figure 4). Strong viscosity gradients paired
with asymmetric pressurization lead to long sombrero durations with nearly steady ground motions (Figures 3e
and 4b). Crucially, a long period of re-pressurization (with roughly constant dP/dt) followed by a sudden decrease
in pressure results in a sombrero that lasts longer than the reverse-sombrero, with slowly-varying surface veloc-
ities during the sombrero (Figure 3d). Although we lack contraints on SMB sill pressures, rheologic properties
of anatexites suggest that the bulk strength of partially-molten rocks in the middle or lower crust range from <1
to 5 MPa during cycles of melt production and drainage (Diener & Fagereng, 2014). The range of background
pressures, P, and pressure changes AP, in our models (Figure 4) is consistent with expectations for weakened
partially molten crustal mineralogies (Diener & Fagereng, 2014).

We now present an SMB-specific model constrained by seismic and geodetic observations discussed above: (a) a
sill-like body at ~19 km depth, elliptical in mapview, surrounded by anomalously low V_ in the mid-crust (Balch
et al., 1997; Rinehart & Sanford, 1981; West et al., 2004, Figure 1a); and (b) a long-lived (Az,,,, >100 years)
sombrero pattern of deformation, with nearly constant surface motions (Fialko et al., 2001; Finnegan &
Pritchard, 2009; Pearse & Fialko, 2010; Larsen et al., 1986, Figure 1). Assuming that the V, anomaly <-5%
at ~20 km depth region in West et al. (2004) is a proxy for a weaker-than-ambient CR (dashed yellow circle in
Figure 1b), we specify horizontal and vertical gradients in CR viscosity (see Table S1 in Supporting Informa-
tion S1). The 200 km diameter of the hybrid CR follows the extent of the low-velocity mid-crustal V, anomaly

and the sill-like ellipsoidal source has thickness 1 km and mapview radii of 24 and 38 km (Figure 5a). With this
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geophysically-informed SMB-model, we explore the background pressure P, needed to match the amplitude
of the InSAR LOS observations and the pressurization rate dP/dt needed to generate a long-lived (>100 years)
sombrero pattern.

We find that a sill pressurized to a background pressure of P, = 1.0 MPa, with a constant pressure increase of dP/
dt =4AP/T = 5 kPa/yr (implemented as a sawtooth pressure-time function with AP = 250 kPa and T = 200 years;
Figure 5b), produces a reasonable fit to the InSAR observations (A-A’ and B-B’ in Figure 5c). The modeled
sombrero duration of Az, = 148 years is characterized by persistent, nearly steady surface motions for over
100 years, comparable to long-term observations at the SMB (Figure 5c). The width of the modeled deformation
depends on the seismically-constrained geometry, and no further adjustment was used to fit the width of the

surface pattern in Figure 5c.

The inferred pressurization rate of dP/dt ~ 5 kPa/yr (comparable to Pearse & Fialko, 2010) may be interpreted
as due to injection of magma, or to pressurization due to volatile degassing. If driven by magma injection alone,
we infer a volumetric rate dV/dt = pV,(dP/dt) where f is the magma compressibility and V|, is an initial volume.
Compressibility of a gas-poor, basaltic magma at 19 km depth is likely lower than compressibility above 10 km
depth (e.g., f ~ 0.4 — 2 x 10719 Pa~!; Rivalta and Segall (2008)), so # = 0.4 x 107! Pa~! is a reasonable upper
bound. Following pressurization to P, ~ 1 MPa, the initial volume of the ellipsoidal source (Table S1 in Support-
ing Information S1) is ~ 1,940 km?, so dV/dt ~ 3.88 x 10~* km3/yr. On the other hand, if the source of pressur-
ization includes exsolved volatiles, this inferred volumetric injection rate is likely an overestimate. A dry (<0.2
wt % H,0) basaltic magma (e.g., expected in a rift-setting) with >4,000 ppm CO, at >1,000°C is likely to reach
saturation at pressures above 500 MPa, comparable to conditions at 19 km depth within the Rio Grande Rift. We
lack direct constraints on the CO, content of the SMB, however, mantle xenoliths from the nearby Rio Puerco
and Kilbourne Hole Volcanic Fields have undergone metasomatism by carbonatitic fluids (Harvey et al., 2012;
Porreca & Selverstone, 2006), suggesting that CO,-rich fluids may be abundant in the SMB. Therefore, the
inferred pressurization above may be due to a combination of gas exsolution together with magma injection, but
we lack constraints on the relative roles of these processes.

Observations at the APMB span a shorter timeframe than the SMB, and suggest a peak uplift rate at Uturuncu
Volcano of ~0.5-1 cm/yr (Fialko & Pearse, 2012; Gottsmann et al., 2018; Henderson & Pritchard, 2017).
Here, 50 years of geodetic observations suggest transient sombrero deformation (Eiden et al., 2023; Fialko &
Pearse, 2012; Gottsmann et al., 2018), and our models provide an explanation for this transience. The inferred
pressurization rate at the SMB (x5 kPa/yr) is smaller than modeled beneath Uturuncu if all of the deformation
is ascribed to upper crustal processes (Gottsmann et al., 2017). As we have demonstrated, for a given pressur-
ization rate the duration of the sombrero pattern is controlled by decoupling between surface motions within
r<1.5r and r > 1.5r,

source source’

and this decoupling and phase lag depends on intra-CR viscosity gradients (Figure
S2 in Supporting Information S1). Specifically, sombrero durations will be smaller (and therefore manifest their
transience over shorter timescales) if the mid-crustal CR is uniform in rheology versus if it has significant rheo-
logic gradients within it (Figure 4; S2). Our models raise the possibility that at least part of the transient sombrero
pattern in the APMB may indeed be attributed to lateral heterogeneity in the mid-crust, with perhaps a more
rheologically uniform CR than in the SMB.

While these results make a compelling case for the role of a weaker-than-ambient CR in the SMB geodetic
signal, our models cannot differentiate between thermal weakening and the presence of mush within the CR.
Thermoelastic effects have been inferred for driving deformation at active volcanoes (Furuya, 2005; Masterlark
& Lu, 2004; Wang & Aoki, 2019). A simple inversion for thermoelastic drivers requires both heating and cooling
sources deeper than the SMB (see Text S3 in Supporting Information S1). We suggest therefore that thermoelas-
ticity is unlikely to be a primary driver of surface uplift in the region. Additionally, we acknowledge important
complexities are ignored in our models, for example, near-surface hydrology and groundwater extraction (likely
due to agriculture is evident at the southern end of profile B-B’ in Figure Sc, which crosses from the Socorro Basin
into the Jornada del Muerto Basin). We also ignore extensional stress and material heterogeneity associated with
the Rio Grande Rift. In future work, we hope to include heat transfer and poro(visco)-elastic effects to more fully
explore CR heterogeneity and implications for magma-mush interactions. During time-variable pressurization in
the sill, as magma is either sourced from deeper levels or drained from a mush, we might expect time-dependent
rheology in the CR as explored in Liao et al. (2021), Liao et al. (2018), Mullet and Segall (2022), and Alshembari
et al. (2023). These studies explore interactions in a single melt injection/withdrawal event, however, our models

BLOCK ET AL.

8of 11

0d ‘0T “€T0T ‘LO08KT61

:sdiy woxy papeoy

2SULIIT suowwoy) dANEeaI1) a[quarjdde oy £q pauroAod are sajonie YO fasn Jo sa[ni 10j K1eiqi auruQ A3[IA\ UO (SUONIPUOI-PUE-SULI)/WOI" Ka[Im AIeIqrjaur|uo,/:sdny) suonipuo)) pue swia |, ay1 23S *[£Z0z/01/5z] uo Areiqiy aurjuQ A3[iA\ ‘09IXa MAN JO ANSIOAIUN AQ 689501 TDETOT/6TO1 01 /10p/wi0d" Ka[1m" AIRIQI[AUI[UO"Sq]



A7oN |
MN\\JI
ADVANCING EARTH
AND SPACE SCIENCES

Geophysical Research Letters 10.1029/2023GL105689

Acknowledgments

GB and MR thank: the UNM Center

for Advanced Research Computing,
supported in part by the National Science
Foundation, for resources used in this
work; Eric Lindsey for fruitful InSAR
discussions; and David Wilson and Mike
West for information regarding the La
Ristra seismic experiment. MR thanks
Emmanuel Codillo for discussions on
the magma saturation pressures during
the CIDER 2023 workshop. This work
was completed while GB was partly
supported by NSF EAR-2120812; GB
also thanks the CONVERSE network
for discussions which helped inform and
contextualize this project. EG and RG
acknowledge NASA funding through
LNIP 80NSSC20K0073. Copernicus
Sentinel data 2016-2020. Retrieved from
ASF DAAC, processed by ESA.

highlight the importance of cyclic pressure-time variations, especially when a CR is present, in decoupled surface
deformation. As shown by Liao et al. (2021), two important time scales for controlling stress transfer and surface
deformation include a short time scale driven by poroelastic diffusion, and a longer viscoelastic relaxation time
scale. Indeed, the fast depressurization in the sawtooth function may be a proxy for porous diffusion of magma
into the surrounding CR mush zone, causing depressurization at a significantly faster rate than allowed by viscous
relaxation. Over longer timescales, however, poroviscoelastic effects may be less important than the viscous
relaxation behavior captured in our models (Text S3 in Supporting Information S1). Specifically, viscous creep
within a weaker-than-ambient mid-crustal CR (e.g., a regionally-extensive partial melt-rich mush) and intra-CR
rheologic gradients drive transient surface deformations as seen in the sombrero pattern.

Data Availability Statement

All PyLith input files and InSAR data will be made available at the following github repository: https://github.
com/Grant-Block/SMB_FiniteElementModels.git and Zenodo (Block, 2023). The PyLith software is freely avail-
able at (Aagaard et al., 2019).
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