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ABSTRACT

Ni-Co-Fe-based high-entropy superalloys (HESAs) are fabricated into microlattices via a three-step process: (i)
layer-by-layer extrusion of inks containing elemental powders (Ni, Co, Fe, Cr, Ti) and TiAlz powders; (ii) sin-
tering to densify and homogenize the struts; (iii) aging to achieve a y/y’ microstructure. The struts of the
microlattices show a nearly pore-free and fully-homogenized microstructure. Increasing the Ti concentration
from 4 at% (AlgCoyCryFeigNisgTis) to 9 at% (AlgCoasCrsFeisNiggTig) leads to a significant increase in the
volume fraction of strengthening y’ precipitates, from 51 to 78 %. Furthermore, in the Ti-rich composition, the y’
precipitates exhibit a sharp-edged cubic morphology with larger sizes and higher lattice misfit (0.63 %) with
respect to the y matrix. As a result, Ti-rich HESA microlattices show higher strength at ambient temperature than
Ti-poor ones, while retaining high compressive ductility (> 60 %). They also demonstrate superior specific
strengths when compared to bulk Inconel 617 and other representative bulk HESA, up to 1000 °C. The combi-
nation of low-density (2.29-3.15 g/cm?®), high strength at elevated temperatures, and high processability posi-
tions HESA microlattices from direct ink writing as promising candidates for structural components in extreme
operating conditions. The versatility of the process is demonstrated by printing and sintering three miniature

HESA objects with complex shapes (hollow turbine blade, gyroid heat exchanger, and compressor wheel).

1. Introduction

High-entropy alloys (HEAs) represent a large class of alloys consist-
ing of five or more principal elements with each concentration in a range
of 5-35 at% [1,2], with microstructures and phase components tailored
to achieve a desirable combination of enhanced strength, microstructure
stability, creep resistance, and oxidation resistance (for
high-temperature applications) [3-5]. Equiatomic CoCrFeMnNi (the
Cantor alloy) has a single face-centered-cubic (FCC) phase [6] and can
be modified: for example, adding V and decreasing the Co concentration
to 5 or 10 at% induces precipitation of the sigma phase during the post
annealing to increase high-temperature strengths [7,8]. Removing Mn
and adding Al lead to the Al,CoCrFeNi-based HEA family, which has
received considerable attention given their tunable phase compositions
which transition from face-centered cubic (FCC) to body-centered cubic
(BCC) dominant structure with increasing Al concentration [9,10]. By
adding Cu or Ti to AlyCoCrFeNi-based alloys (0 < x < 0.3) with a single
FCC phase [11-16], y/y’ microstructures similar to those achieved in Ni-
or Co-based superalloys are attained. High-entropy superalloys (HESAs)
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refer to multi-principal elemental compositions based on Co, Cr, Fe, and
Ni, with minor or no addition of refractory elements, which exhibit a
y/y’ microstructure and aim to achieve a balance between
high-temperature strength, creep resistance, and oxidation resistance,
thereby surpassing the performance of conventional superalloys [4,17].
In addition, HESAs also show enhanced microstructural stability at high
temperatures due to sluggish diffusion kinetics [18,19], as compared to
conventional Ni-based superalloys. In particular, the Al;(pCoas5CrgFe;s.
NiseTig alloy encompassing the dominant y/y’ microstructure and a
minor Heusler phase shows a combination of high strength, creep
resistance, and oxidation resistance at 1000 °C via tuning of the Al
concentration [20,21].

The rapid development of additive manufacturing (AM) facilitates
scalable manufacturing of superalloys [22,23], the Cantor alloy [24],
AlxCoCrFeNi-based alloys [25,26], and refractory HEAs [27-29]; most
AM research uses beam-based technologies where powders are melted,
e.g., laser powder bed fusion (L-PBF), electron-beam selective melting
(E-SM), and direct energy deposition (DED) [30]. These processes ach-
ieve rapid heating and cooling (e.g., 10*-10° K/s in L-PBF [31,32], 5 x
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10* K/s in E-SM [33,34], and 1 x 10® - 3 x 10* K/s in DED [35,36]),
often resulting in residual stresses and epitaxial growth of column grains
with anisotropic properties, which deteriorate strength, fatigue resis-
tance, and fracture toughness [37,38]. The deleterious effect of
columnar grains on strength is reduced in titanium alloys, e.g., Ti6Al4V,
which achieve high strengths due to the formation of fine martensitic
phase (a’) induced by rapid cooling during beam-based 3D printing [39,
40]. In addition, residual stresses can induce cracking, particularly in
hard and brittle metals. This issue can be mitigated by optimizing pro-
cessing parameters (e.g., during E-SM processing of y-TiAl intermetallic
compounds [41]), or by adding nanoparticles to control solidification
and alter grain structures in the Cantor alloy [42]. Nevertheless, many
superalloys and HESA are still prone to cracking in beam-based additive
manufacturing due to poor weldability given their highly alloyed nature
and the high volume fraction of strengthening y’ precipitates [22,43,
44].

Direct ink writing (DIW) based 3D printing represents an alternative
AM method to produce objects with intricate structures in three steps
[45]: (i) green specimens are fabricated at ambient temperature
layer-by-layer, by depositing extruded inks containing metallic powders
(in elemental or pre-alloyed form); (ii) the green specimens are ther-
mally treated to remove organic solvents and binders; and (iii) the
powders are densified by sintering while also achieving homogenization
by interdiffusion. The alloy is never melted, thus avoiding texture and
segregation associated with the fusion-solidification process prevalent in
beam-based AM. Also, the isothermal sintering and homogenization
conditions and the slow, uniform subsequent cooling minimize residual
stresses which often lead to cracking in beam-based AM processes sub-
jected to very high thermal gradients [46,47]. Moreover, various pow-
der precursors (e.g., metals, oxides, and hydrides) can be utilized for ink
preparation, with a wide range of diameters (from tenths to tens of
microns) and irregular shapes, which are unsuitable for powder bed
methods where good flowability is necessary [19,48-53]. Using
elemental powders, DIW was performed for metals (e.g., Mg [54], Cu
[55], and Ti [56]), binary alloys (e.g., Fe-Ni [19] and NiTi [57]), and
multi-element alloys: Heusler and half-Heusler alloys (e.g., Ni-Mn-Ga
[58] and Ti-Ni-Sn [59]) and Co-Ni-W-Al superalloys [60]. Pre-alloyed
metallic powders were used to fabricate alloyed steels [61,62],
half-Heusler alloys NbCoSb [63], and HEA CoCrFeMnNi microlattices
[64]. However, the synthesis of pre-alloyed powders is an
energy-intensive and high-cost process, particularly for HEAs with
multiple principal elements and designed compositions. To reduce cost,
and time and simplify precursors preparation, oxide powders were uti-
lized in DIW and then reduced by H, to synthesize elemental metals (e.
g., Ag [65], Fe, and Ni [45,50]), steels [66], and equiatomic HEA
(CoCrFeNi [67], CoCrCuFeNi [68], and CoCrFeMnNi [69,70]).

In this study, we fabricate HESA microlattices with nominal
Al;Coy5CrgFe 5NisgTig composition and y/y’ microstructures to ach-
ieve high strengths at elevated temperatures, using 3D extrusion and
sintering of inks containing a blend of elemental powders (Cr, Ti, Fe, Ni,
and Co) and binary TiAl; powders. This method sidesteps the gas at-
omization of fully pre-alloyed powders, allowing a very wide range of
HESA compositions. The Ti concentration of the above alloy is raised to
increase the volume fraction of y’ precipitates and to modify their
morphology. Compressive strength and microhardness at ambient tem-
peratures are measured for lattices with various compositions and mi-
crostructures. Also, the strength of HESA lattices is measured up to 1000
°C and compared with other HEAs and superalloys. Finally, miniature
objects with complex architectures (turbine blades, gyroid heat
exchanger, and compressor wheels) are printed and sintered to
demonstrate the versatility of this manufacturing method.

Acta Materialia 275 (2024) 120055

2. Materials and methods
2.1. Ink preparation, direct ink writing (DIW), and sintering

The process, from ink preparation to DIW and sintering, is depicted
schematically in Fig. 1a. Six powders with spherical and irregular shapes
(Supplementary Fig. S1) were used: TiAlz (44 pm, >99.5 %, Thermo-
Fisher Scientific), Co (2 pm, 99.8 %, Sigma-Aldrich), Cr (10 pm, 99.98
%, Nanografi Nano Technology), Fe (5 pm, 99.99 %, Nanografi Nano
Technology), Ni (5 pm, 99.5 %, US Nano) and Ti powders (0-25 pm,
99.79 %, AP&C Powder Metallurgy). The irregular morphologies of
some of the powders are expected to enhance the interlocking between
particles and prevent fracture of the green bodies after the debinding
process [71]. Inks were prepared by combining the powders with dibutyl
phthalate (DBP, 0.45 g/cm3, Sigma-Aldrich) as a plasticizer to improve
the flow of the slurry, ethylene glycol butyl ether (EGBE, 0.9 g/cm?,
Sigma-Aldrich) as a surfactant to promote particles dispersion in the
slurry, polystyrene (PS, Sigma-Aldrich) as binder, and anhydrous
dichloromethane (DCM, Sigma-Aldrich) as solvent, in two steps. In the
first step, the metallic powders (with a total volume of 4 cm®) mixed
with 1.8 g of EGBE and 12 mL of DCM, were loaded within an Ar glo-
vebox into an air-tight PET bottle for wet milling in a roller mixer with a
rotational speed of 80 rpm for 4 h, using 60 g of yttria-stabilized zirconia
balls. In the second step, 0.3 g of DBP, 1.32 g of PS, and 18 mL of DCM
were added into the bottle in an Ar glovebox, and mixing in a roller
mixer (80 rpm) was performed again for 4 h. TiAl; powders (melting
point: T,=1340 °C [72]) were utilized instead of Al powders (T,,=662
°C), to suppress Al loss due to evaporation during high-temperature
sintering.

Based on the original (nominal) Al;gCoy5CrgFe;5NigeTig composition
of the first HESA, a second alloy with a higher Ti concentration (9 vs. 4 at
%) was printed by adjusting the amounts of powder feedstocks in the
ink. The compositions of the low- and high-Ti HESA are listed in Table 1,
as measured by EDS on several regions of a large cross-section of
microlattices and then averaged for each sample.

The inks were heated to 55 °C to evaporate DCM and achieve a
viscosity sufficiently low to allow ink extrusion from the conical nozzle
at high shear rates, but sufficiently high to prevent sagging at low shear
rates under gravity after deposition [48] (the rheological properties of
the DCM-DBP-PS ink system were characterized and reported in Ref
[73]. The DIW-based 3D printing was conducted with a 3D-Bioplotter
(Envision TEC, Germany) with tapered polyethylene nozzles (with 410
pm tip opening, Nordson EFD). The orthogonal microlattices, with
overall dimensions 9 x 9 x 13.5 mm?®, were printed with a vertical layer
thickness of 330 pm, a horizontal spacing of 1.125 mm between each
strut, and a rotation angle of 90° between layers, as shown in Fig. 1a.
This lattice structure is suitable for continuous extrusion of a single
filament creating a 3D structure without support structures. To further
demonstrate the capability of DIW, three miniature objects with com-
plex geometries were printed, as shown in Fig. 1b. Green bodies were
dried overnight and then sintered in three steps: (i) evaporation of re-
sidual DCM and decomposition of PS at 400 °C for 1.5 h and at 550 °C for
4 h under flowing ultra-high purity (UHP) Ar (99.999 %) to remove
organic materials in inks; (ii) sintering at 1220 °C for 20 h in quartz
capsules (20 kPa, UHP Ar) and; (iii) aging at 850 °C for 50 h in the same
quartz capsules to precipitate the y* phase.

To smooth their surfaces, the sintered demonstration objects were
blasted for 15 or 60 s with glass beads (74-177 um, Potters) in a sand-
blaster (Media Blast & Abrasive) using a pressure of 345 kPa. After
sandblasting, the surface roughness, Ra (arithmetic mean deviation),
was measured at three different regions on struts, using a 3D laser
confocal microscope (LEXT OLS5100, Olympus) equipped with a
MPLAPONS50XLEXT objective. A 200 pm threshold was set between
roughness and waviness components.
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Fig. 1. (a) Schematics of 3D direct ink writing of microlattices. (b) Photographs of miniature turbine blade (with hollow core containing a lattice), double-walled-
gyroid cube (for heat exchanger), and compressor wheel after 3D ink printing: (top row) before sintering, in the green state; (bottom row) after sintering, in the

densified state, illustrating uniform shrinkage without warping or cracking.

Table 1
. Chemical composition of low-Ti and high-Ti alloys.
Composition Ni Co Fe Cr Al Ti
Nominal Wt% 39.1 27.3 155 7.7 5.0 5.3
Al CossCraFe; sNisTiq at% 36.0 25.0 15.0 8.0 10.0 6.0
Low-Ti alloy wt% 41.241.7 27.6+1.3 16.4+3.1 6.8+1.3 4.4£1.0 3.7£1.9
AlyConsCrFe;NisgTis at% 38.3+1.6 25.5+1.2 16.0+3.0 7.141.4 8.9+2.1 4.3+2.2
High-Ti alloy wit% 38.4+0.9 26.9+1.2 15.74+2.3 6.94+2.7 3.940.6 8.2+1.4
AlgCoy5CryFe;sNiseTig at% 35.6+0.8 24.9+1.1 15.3+£2.2 7.2+£2.8 7.8£1.3 9.3£1.6

2.2. Materials characterization

Sintered samples were cold-mounted with epoxy resin (Epothin 2
Resin, Buehler), cured for 24 h, and polished with a diamond suspension
(MetaDi, Buehler) down to 0.25 pm. The polished surface was then
etched with Carapella’s reagent for 10-15 s to help image the y’ pre-
cipitates. Specimens were coated with a 6 nm thick osmium conductive
layer and examined by scanning electron microscopy (SEM) using a
Quanta 650 ESEM (ThermoFisher Scientific) instrument equipped with
an Oxford AZtec detector for energy dispersive X-ray spectroscopy
(EDS). Phases of sintered lattices were identified via X-ray diffraction
(XRD) in reflection mode with pure Cu Kal radiation source in Smartlab
3 kW Gen2. The 26 reflection angles were scanned in the range of 25-70°
at a scanning speed of 2°/min.

2.3. Mechanical testing

Vickers microhardness was measured with a Wilson VH3100 Auto-
mated Micro-hardness Tester (Buehler) by averaging values for 10 in-
dents, applying a 0.98 N force for 10 s. The compression tests were
performed on lattices at a strain rate of 1.2 x 10> s~ on a MTS-5 servo-
hydraulic tester with a 100 kN load cell, using oil-lubricated platens;
tests were carried out at ambient temperature in air, and also at 700,
800, 900, and 1000 °C under UHP Ar (99.999 %), using titanium shim
stock as an oxygen getter. For each temperature, three microlattices
were tested. These mechanical experiments were carried out on micro-
lattices which were lightly ground with SiC sandpaper to flatten their
top and bottom surfaces.
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3. Results and discussion
3.1. Direct ink writing and sintering

Given the excellent mechanical properties of superalloys at elevated
temperatures, three printed and sintered miniature objects were chosen
to be relevant to high-temperature applications, as shown in Fig. 1b: (i) a
turbine blade with 18.7+0.1 mm height and 2.44+0.1 mm blade thick-
ness (hollow with an inner lattice) [74], (ii) a double-walled-gyroid cube
for a heat exchanger [75], with 12.4+0.2 mm edge length and 1.0+0.1
mm wall thickness, and (iii) a turbo compressor wheel with 20.0+0.1
mm diameter and 0.84+0.1 mm wall thickness. The objects show high
volumetric shrinkage after sintering, as expected, but they maintain
their original shape and architecture without any visible distortion or
cracks.

To shed light on the microstructural evolution during processing, the
microlattices were imaged via SEM at different stages of the process.
After debinding and pre-sintering, a homogeneous distribution of
porosity was observed in the struts, as illustrated on a cross-section of a
lattice shown in Fig. 2a. The magnified view in Fig. 2b displays a highly
porous structure, as expected from the limited interdiffusion between
particles at a relatively low temperature (550 °C) as compared to the
melting point of the powders. The EDS maps (Fig. 2c-h) show a uniform
distribution of the six elements, without local particle agglomeration or
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settling, indicating a homogenous mixture of the six powders after wet
milling and printing. This uniform distribution of powder is essential for
the homogenization of the alloy during the subsequent sintering step,
especially given the slow atomic diffusion in high-entropy alloys [76,
77]. Since TiAls particles were used as powder precursors, the distri-
bution of Al is correlated with Ti in EDS maps (marked with yellow
arrows).

The heat treatments used here to homogenize elements and precip-
itate the y’ phase were adopted from the literature [20] for bulk speci-
mens with a nominal composition of Al;(Coz5CrgFe;sNiggTig. This also
provides a direct comparison of mechanical properties between bulk and
microlattice specimens. The microlattices were sintered at 1220 °C for
20 h to densify their struts, and subsequently aged at 850 °C for 50 h to
precipitate the y’ strengthening phase. A low-magnification view of a
lattice cross-section (Fig. 3a) shows that struts are nearly fully dense,
with an average density of 98+1 % as measured at ten different areas
using ImageJ analysis. Compared to the green bodies, sintered lattices
exhibit a volumetric shrinkage of 57+2 % overall. This volumetric
shrinkage may vary somewhat between objects with different shapes
and geometries. The specific values of volumetric shrinkage in each
specimen could be determined accurately by measuring the geometries
before and after heat treatments, enabling precise control of the final
specimens after the annealing step to achieve the designed geometries.
Densification of the struts is critical to achieve high lattice strengths and

Fig. 2. Cross-sections of a microlattice after debinding (400 °C/1.5 h) and pre-sintering (550 °C/4 h). (a) Secondary electron (SE) micrograph at a low-magnification
showing struts and channels (filled with black epoxy). (b) Higher-magnification view of particles in a strut. (c-h) Energy-dispersive X-ray spectroscopy (EDS) maps of
elemental distributions in magnified view (b). TiAl; particles are marked with yellow arrows.
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Fig. 3. Cross-sections of a microlattice after sintering at 1220 °C for 20 h and subsequent aging at 850 °C for 50 h. (a) SE micrograph at low magnification showing
struts and channels (black epoxy). (b) Higher-magnification view of a strut showing micropores and Al,O3 particles (c-i) EDS maps of elemental distributions of the
magnified view (b), scale bar: 10 um.
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Fig. 4. Effect of sandblasting on surface quality of a sintered microlattice. (left column) SE micrographs of the side surface of lattices (a) before sandblasting, (b) after
15 s sandblasting and (c) after 60 s sandblasting; (right column) corresponding roughness profiles (waviness component subtracted) measured on the struts (along

black arrows) at the side of the microlattice.

prevent premature failure during mechanical loading [78]. In the
densest region of struts (white box, Fig. 3a), only micropores with sizes
of ~1-3 um are present, (yellow arrows, Fig. 3b). Occasional larger
pores with 10-15 pm sizes are visible in the less dense regions (blue box,
Fig. 3a). These large pores were most probably induced by heteroge-
neous powders packing and a locally lower packing of powders, and they
are difficult to sinter [79]. Atomic interdiffusion during solid-state sin-
tering is extensive, and it leads to both densification and homogeniza-
tion, as seen from the uniform distribution of the six elements after
sintering (EDS maps, Fig. 3c-h and Supplementary Fig. S6b-g).
Although the specimens were protected by flowing ultra-high purity Ar
during the entire sintering process, several Al,Og3 particles (white arrows
in Fig. 3b, ¢, i) are observed, reflecting the high affinity of Al to oxygen at
high temperatures, despite using TiAls precursor powders rather than
elemental Al. The oxide pre-existing on TiAls powder surfaces may also
have coarsened into these particles.

As shown in Table 1, the compositions of the two alloys differ
somewhat from the original, nominal composition (Al;¢pCoas5CrgFe;s.
NiseTie). Besides its lower Ti content, the low-Ti alloy (AlgCoz6Cry.
Fe16NisgTis) is also slightly poorer in Al and Cr, and conversely a bit
richer in Co, Fe, and Ni (but these differences are mostly within the error
bars of the composition measurements). The high-Ti alloy (AlgCoz5Cry.
Fe;5NiseTio) is also somewhat poorer in Al and Cr, while Co, Fe, and Ni
are at nominal values.

3.2. Surface treatment

Materials processed by beam-based powder fusion have poor surface
finish with high roughness due to contamination, porosities, and
unmelted particles; for instance, laser-printed Ti-6Al-4 V was reported to
have a roughness average, Ra ~ 17 um [68],80-82]. By comparison, for
our as-sintered HESA, struts on the side of the microlattices have a
diameter of 247+13 um, and a roughness Ra = 5.04+1.3 um, as shown in

Fig. 4a. Given the intricate architecture of the microlattices and many
other printed objects, it is challenging to apply subtractive machining
methods, such as milling and grinding, to improve surface finish. Here,
we select sandblasting to remove contamination/oxidation from, and
smoothen the surface of, the struts. After 15 sec blasting, the strut sur-
face roughness decreases to Ra=1.3+0.1 um; the surface has visibly
changed color (from grey to metallic), with a few surface pores (black
spots) shown in Fig. 4b. After sandblasting for 60 sec, the strut surface is
much smoother, with a lower roughness of 0.8+0.1 um (Fig. 4c). In
addition to the straight struts in this microlattice, sandblasting also
smoothens the surface of curved struts in a sintered gyroid cube and
turbine blade, as shown in Supplementary Fig. S2. It is important to
improve the surface finish of additively manufactured objects by either
mechanical or chemical treatments during post-processing [81,83], as
reducing surface roughness can effectively improve fatigue performance
[81,84,85] as well as wear and corrosion resistance [86]. The surface
waviness (Rc, mean height of profile elements) induced by the
layer-by-layer deposition was measured as Rc=60.94+16.3 um shown in
Supplementary Fig. S3. This waviness could be reduced by longer
sandblasting time. As demonstrated here, sandblasting is a simple and
fast method to improve the surface finish for sintered HESA objects with
intricate structures. Future work will study the effect of sandblasting on
the mechanical properties of HESA lattices, probing the effects of
blasting pressure, particle sizes, and treatment time on static and fatigue
mechanical properties, as well as surface properties (corrosion and
oxidation resistance).

3.3. Effect of Ti concentration on microstructures

Phase evolution of the nominal Al;(Coy5CrgFe;5NiseTig composition,
was predicted upon cooling from the melt as a function of temperature,
at thermal equilibrium condition by the CALPHAD approach (Thermo-
Cal with database: TCHEA5_ High entropy alloys v5.1). As shown in
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Fig. 5. (a) Phase evolution of Al;(CossCrgFe;sNiseTig alloy as a function of
temperature on solidification, as determined from CALPHAD-based calculations
in Thermo-Cal software. (b) X-ray diffraction (XRD) patterns of low-Ti and
high-Ti HESA lattices after homogenization and aging treatments, showing y
and y’ as the dominant phases, with small amounts of Heusler phase.

Fig. 5a, for an alloy undergoing solidification, the ordered FCC-L15 (#1)
phase first forms (liquidus: 1317 °C; solidus: 1221 °C), and it is then
predicted to transform into a mixture of y> (FCC-L1, #2) and BCC-B2
ordered phases as temperature drops from 1221 to 640 °C. The speci-
mens were annealed at 1220 °C, very close to the predicted solidus
temperature of FCC-L1, (#1) phase, to homogenize all elements.
Nevertheless, no evidence of liquid phase forming during sintering was
observed in our samples. Between 640 °C and ambient temperature, the
brittle sigma phase is also predicted to form, consuming the last of the
FCC-L13 (#1) phase [87]. In disagreement with these predictions, the
XRD patterns (Fig. 5b) of microlattices with low-Ti and high-Ti com-
positions, after homogenization (1220 °C for 20 h) and aging (850 °C for
50 h), exhibit FCC-y and L12-y’ as the dominant phases, as in Ni-based
[88,89] and Co-based superalloys [90], with small quantities of the
Al-Ni-Co-rich Heusler phase [91] shown in Supplementary Fig. S4. Our
observations are consistent with experimental results for Al;(Coy5Crg.
Fe1sNiseTie solidified via the Bridgeman method after similar heat
treatments, as reported in Refs. [20,92].

When comparing the low-Ti and high-Ti alloys (Table 1), it is
apparent that Ti concentration strongly affects the y’ precipitates, as
illustrated in Fig. 6. In shallow-etched micrographs (Fig. 6a and c), the
high-Ti alloy exhibits larger y’ precipitates with sharper-edged shapes,
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as compared to the low-Ti alloy. This morphology change in the high-Ti
alloy implies a higher level of elastic anisotropy in the y’ precipitates
which is also expected to influence mechanical properties [89].
Furthermore, the y’ volume fraction increases from 51 to 78 % as the Ti
concentration increases from 4 to 9 at%, as measured in several different
areas of deep-etched cross-sections (Fig. 6b and d). The 51 % y’ volume
fraction for the low-Ti alloy is comparable to that reported by Daoud
et al. [20] on a cast alloy of the same composition, Al;(yCoas5CrgFe;s.
NiseTig, with the same homogenization treatment (1220 °C/20 h) and
similar aging treatment (900 °C/50 h vs. our 850 °C/50 h). In our alloys,
Yy’ precipitates are also observed at grain boundaries (yellow stripe,
Fig. 6a) after aging; this implies that the y’ phase has high stability, as
otherwise other phases might have formed at grain boundaries. EDS line
scans across y’ precipitates within the y matrix exhibit a similar profile in
both alloys (Fig. 7): Ni, Ti, and Al are enriched in the ordered y’ phase,
while Co, Fe, and Cr are enriched in the disordered y matrix. Elemental
distribution and corresponding partitioning ratios in the y’ and y phases
of both alloys are listed in Table 2: in particular, the Ti partitioning in
the y’ phase is sharper in the Ti-rich alloy. Elemental concentrations for
both phases were obtained by averaging the results from EDS line scans
on four different regions in each sample. Moreover, the higher Ti con-
centrations in both phases (as compared to the Ti-poor alloy) also
indicate an enhanced solid solution strengthening effect in both phases,
in addition to the precipitation strengthening enhancement from larger
v’ volume fraction. Nevertheless, all partitioning ratios are quite close to
unity, indicating that the two phases have relatively close compositions;
this implies a narrow y+y’ two-phase region in these HESAs.

The lattice misfit (8) in superalloys is defined as the difference in
lattice constants a between the y (FCC) and y’ (L1, structure) phases,
divided by their mean value [93]:

S = (a}’/ - aV) (1)
(ay +a,)/2

By fitting the XRD patterns with two Pseudo-Voigt functions and a
sum of baseline[95], the peak positions (20) of the {111} reflection,
having the highest intensity, are determined for y (green curve) and y’
(red curve) phases respectively, as shown in Fig. 8. The lattice constants
(a, and a,) for both phases are calculated using Bragg’s law for cubic
symmetry:

Wi+ P
=T s 2
where 1 is the X-ray wavelength (Cu K1, 4=1.542 A), h, k, and [ are the
Miller indices of the investigated lattice plane. The calculated values of
lattice constants and the misfits between y/y’ phases in both low-Ti and
high-Ti compositions are listed in Table 3. As shown in Fig. 8, the misfit
increases from 0.23 to 0.63 % observed as a larger separation between
{111} reflection of y (green curve) and y’ (red curve) phases when the Ti
concentration increases from 4 to 9 at%. Bramfitt’s two-dimensional
lattice mismatch theory [95] is also used to calculate the misfit (5p)
between y’ precipitate and y matrix as a comparison. Since both phases
share a similar crystalline structure with cubic symmetry, Bramfitt’s
misfit equation is simplified for {111} reflection:

am), dioy — d[llo]_, _ \/§/2a/ - \/Q/Za,
5(111) = V2/2a,

= 3
/ di119) @)

where d[llo]/ and d[no]y are the interatomic spacing along [110] direc-
tion for the y’ and y phases. The calculated &g is quite similar to the &
listed in Table 3 as well. A larger misfit helps inhibit dislocation glide
through coherent interface boundaries between the y’ and y phases, thus
increasing strength [92,96]. Positive misfits are also observed in some
Ni-based superalloys such as CMSX-4 [93], most Co-based superalloys
[94], and a Ni-Co-Fe-based HESA (Ni4gCo17FegAl;oCr;TigMoiNby
Wo.4Co.4) [4].
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Fig. 6. SE micrographs of y/y’ microstructures of (a-b) low-Ti alloy and (c-d) high-Tialloy after (left column) shallow etching and (right column) deep etching. Grain
boundaries are highlighted with a yellow band.

Fig. 7. Upper row: SE images of EDS line scan across y’ precipitates and y matrix in microlattices with low-Ti and high-Ti compositions; Bottom row: corresponding
elemental concentrations curves for each EDS measurement. The y and y’ phases on scanned lines and their elemental concentrations are correlated by
dashed arrows.
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Table 2

Elemental concentrations ¢ (at%) and partitioning ratios (-) between the y* and y
phases for the low-Ti and high-Ti compositions. Estimated error on composition
is 1.5 at% (calculated from the standard deviation of multiple EDS
measurements).

Al Co Cr Fe Ni Ti
c, 6.9 25.5 6.5 14.8 36.9 3.8
Low-Ti alloy ¢, 8.2 22.9 5.7 12.8 41.1 4.1
¢/c, 12 09 08 08 1.1 1.1
c, 5.4 26.1 9.2 17.9 30.1 8.0
High-Ti alloy ¢, 7.2 22.4 5.3 11.3 39.0 11.7
¢/ c, 1.3 0.86 0.58 0.63 1.3 1.5

In high- and medium-entropy superalloys, refractory elements such
as Hf, W, Mo, and Zr have been added to promote the y’ phase formation,
increase lattice misfits, and enhance high-temperature properties [21,
97]. However, refractory element addition in the Al;pCogsCrgFe;s.
NiseTig alloy may increase the amount of needle-shaped Heusler phase
[98], whose brittleness can reduce ductility and creep resistance [21,
99]. Conversely, Ti additions used here increase the size, volume frac-
tion, and lattice constant of the strengthening y’ precipitates effectively,
without introducing detrimental phases and adding costly refractory
elements.

3.4. Mechanical properties of HESA microlattices

3.4.1. Ambient temperature

Fig. 9a shows compressive stress-strain curves for the low-Ti and
high-Ti lattices; the Ti addition has a marked effect on strength, with a
2.5-fold increase in yield strength, from 53+3 to 127+6 MPa respec-
tively. The Vickers microhardness of struts also increases with Ti con-
centration, by a factor ~1.25, as shown in Fig. 9b. Increasing Ti
concentration not only increases the y’ volume fraction, it also con-
tributes to solid-solution strengthening in both precipitates and matrix,
as measured by higher Ti concentrations in both phases (especially in
the y’ precipitates) in the high-Ti alloy (Fig. 7b and Table 2). The stress-
strain curves reveal that both lattices are ductile and deform steadily
until 60 % compressive strain, without catastrophic failures. Serrations
on the stress-strain curves (orange arrows) of the low-Ti lattice are
visible in Fig. 9a: they are attributed to cracking of struts at stress con-
centrations, inducing plastic instability during compression, as
confirmed by observation of deformed lattices (Supplementary Fig. S5).
According to a previous finite-elements modeling (FEM) study of
compressive deformation on an orthogonal lattice with identical
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Table 3

Peak positions (20) of the {111} reflection, lattice constants of y and y’ phases
and calculated misfits (5 and ) between two phases for the low-Ti and high-Ti
compositions.

Composition Phase 20 (°) Lattice constant a ) [
& (CONCD)
Low-Ti alloy ¥ 4393 3.57
, 0.23 0.23
AlgCogCr Fe ¢NisgTis ¥ 43.82  3.58
High-Ti alloy o Y 43.70  3.59 0.63 0.63
AlgCoy5CrFesNigeTig v’ 43.41 3.61

geometry, stress, and strain are concentrated at notches between the
upper and lower struts of two consecutive layers [48,68]. A tensile strain
is predicted to exist on the horizontal struts, induced by lateral expan-
sion of the lattice, observed as the notable expansion of microlattices
along the horizontal direction after compression (Supplementary
Fig. S5a and c). Also observed here on a cross-section of the deformed
microlattice with the high-Ti composition shown in Fig. 10a, the
resulting tensile stress concentration leads to the opening of cracks
(black arrow) in the region close to notches. The horizontal strust is then
bent away from its original position (dashed white lines) under shear
deformation (Fig. 10a). A magnified view at a plastic hinge, in a region
with high local bending strain, displays a shear zone in which the y’
precipitates are heavily deformed from their original cuboidal shape by
shearing, as shown in Fig. 10b. In the shear zone, the y’ precipitates
elongated along the shear direction have an average aspect ratio of 2.65
+0.50, much higher than the y’ precipitates (aspect ratio of 1.23+0.14)
outside the shear zone, according to ImageJ calculation. This result in-
dicates severe plastic deformation at the plastic hinge with high local
shear (tensile/compressive) ductility able to accommodate large plastic
strains.

3.4.2. Elevated temperatures

Given their higher strength and better ductility at ambient temper-
ature, the high-Ti lattices were further tested in uniaxial compression at
elevated temperatures, between 700 and 1000 °C. They were deformed
at a strain rate of 1.2 x 1072 s™! up to 60 % strain, as illustrated in
Fig. 11a. As expected, the lattice strength decreases with increasing
temperatures, while their compressive ductility remains high, without
large stress drops on the stress-strain curve which would be indicative of
extensive strut fracture. The specific strengths are plotted in Fig. 11basa
function of the temperature for representative bulk HEAs without re-
fractory elements; it is calculated as the ultimate strength (measured
during compressive or tensile testing) divided by the density [20,

Fig. 8. Peak fittings and deconvolution of the {111} XRD reflection for the y’ and y phases in (a) low-Ti and (b) high-Ti alloys.
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Fig. 9. (a) Compressive engineering stress-strain curves of microlattices with low- and high-Ti compositions at ambient temperature. (b) Yield stress of lattices and

Vickers microhardness of struts for both compositions.

Fig. 10. (a) SEM micrograph of a cross-section of a high-Ti HESA microlattice after compressive deformation to 61 % strain at ambient temperature. (b) A magnified
view of the green box marked in (a), at a region with a large bending strain, with a yellow arrow showing sheared y’ precipitates within a shear zone in the heavily

deformed plastic hinge region.

100-104]; for our lattice samples, the stress at 20 % strain is used. The
relative density, denoted as p/ps, of our sintered HESA lattices falls be-
tween 30 and 42 %, with p=7.37 g/cm? representing the bulk density
calculated from elemental density. It is apparent from Fig. 11b that our
lattices exhibit a higher specific strength as compared to bulk Inconel
617 and other HEAs over a wide range of temperatures, and a somewhat
lower specific strength than bulk Al;(CoosCrgFesNisgTig, except at
1000 °C. Lattices are inherently weaker, even after density compensa-
tion, than the corresponding bulk alloy [105]. However, in the bulk, our
high-Ti composition (AlgCo5CryFe s5NisgTig) is expected to be stronger
than the literature Al;oCog5CrgFe;5NissTig HESA [20], due to a higher y’
phase fraction (78 vs. 46 %)[20]. Also, the strengthening effect of the
harder y’ phase is more notable at high temperatures. Thus, it is
apparent that the overall mechanical properties of HESA lattices can be
further enhanced, particularly at high temperatures, by optimal alloying
additions (such as Ti studied here) and by eliminating defects leading to
stress concentrations.

4. Conclusions

Inks containing a blend of six metallic powders (Cr, Ti, Fe, Ni, Co,
and TiAl3) were 3D-extruded to print high-entropy superalloys with low-
Ti (A19C026CF7F€16N138Ti4) and hlgh-Tl (A18C025Cr7Fe15Ni36Ti9) com-
positions. Five main conclusions can be drawn:

10

(1) Printed green bodies were first heated up to 400 °C to remove

(2

3

4

5

—

)

-

-

solvent and binder, sintered at 1220 °C to densify struts and
homogenize elements by interdiffusion, and finally aged at 850
°C to achieve a y/y’ microstructures.

Miniature objects with intricate architectures were created with a
high uniform shrinkage, but without cracks or warpage: 0-90°
lattices (for sandwich structures), turbine blades (with hollow
lattice core), double-walled gyroid cubes (for heat exchangers),
and turbo compressor wheels.

By increasing Ti concentrations from 4 to 9 at%, the y’ pre-
cipitates increase in volume fraction from 51 to 78 %, and their
shape evolves to sharper-edged cube with larger elastic
anisotropy.

Titanium additions increase the strength of the microlattices at
ambient temperature, while maintaining high compressive
ductility (achieving 60% strain without catastrophic failure). The
HESA microlattices display a low density, between 2.29 and 3.15
g/cm®, but with high specific strength as compared to other
HEAs, especially at high temperatures.

Sandblasting of sintered objects for a short time removes surface
oxidation and smooths the surface of struts effectively. The sur-
face roughness (Ra) of struts decreases from 5.0+1.3 pym in the as-
sintered state to 0.8+0.1 um after blasting for 60 sec.
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Fig. 11. (a) Compressive engineering stress-strain curves of high-Ti HESA
microlattices at various temperatures. (b) Comparison of the specific strength of
present high-Ti AlgCo,5Cr;Fe;sNizeTig HESA microlattices (compressive), with
tensile or compressive specific strength of bulk Al;¢CossCrgFe;sNisgTig [20],
bulk Ti-free HESA (equiatomic AlCoCrFeNi [101], CoCrFeMnNi [102], CoCr-
FeNi [103], and AlCrCuNiFeCo [104]), and bulk Inconel 617 superalloy [100].
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