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The applications of brain-computer interfaces (BCIs) for ideation scenarios in architectural design have not been
widely explored. In this paper, a BCI tool was developed and tested with the goal of enabling architectural
designers to manipulate the placement and dimensions of windows in a virtual-reality room through the use of
self-selected body movements. Usability tests, followed by semi-structured interviews, were conducted to
investigate the accuracy of the BCI, the cognitive loads experienced by users, and their subjective reactions to the

EEG tool. The findings revealed that a wide range of online binary accuracy (41%-86%) was observed among
different participants when the BCI was utilized. The tool was enthusiastically received by the participants, who
described it as a rewarding and creativity-enhancing approach. The main challenges reported were high mental
loads and confusing visual feedback, both of which may be addressed by future technological adjustments.

1. Introduction

Most computer-aided design (CAD) systems rely on interfaces that
use a Window, Icons, Menus, Pointer (WIMP) modality [1]. Empirical
research indicates that such interfaces can impede design creativity
when compared to traditional approaches such as sketching [2,3]. One
commonly noted concern is that WIMP interfaces can influence de-
signers to focus excessively on details and neglect the big picture [4,5].
Other researchers have noted that WIMP promotes premature design
idea fixation and may constrain designers’ capability for innovation [6].
Because of these constraints, CAD systems are often discouraged in
conceptual design and are instead reserved for the later stages of design
details and manufacturing [7].

Theories of design thinking and creativity often highlight the
importance of design iteration, which is to say, repeated cycles of idea
generation and evaluation [8-11]. In this process the time period be-
tween idea generation and idea evaluation is crucial. The WIMP-based
modality is susceptible to lengthy delays and distorted feedback dur-
ing this iterative cycle, as it can take a great deal of time to express a
design idea in such systems. Hutchins’s direct manipulation theory
suggests that tools for conceptual design should seek to minimize the
gulf of execution, which is the mental gap or delay that occurs when
computer users have to translate their intentions into linear and
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sequential machine-understandable commands [12]. A significant gulf
of execution will lead to high latency between idea-generation and
realization, interrupting the intuitive process of design feedback. An
additional concern in WIMP-based systems has been described as the
gulf of evaluation, which is the mismatch between computer-generated
visual feedback and reality. The 2D displays typically used in WIMP-
based design tools have a high gulf of evaluation compared to VR sys-
tems. This is particularly true in architectural design contexts, where
information about depth, scale, and first-person experience are impor-
tant and are often poorly relayed by two-dimensional representations
[13].

Virtual Reality (VR) technology has advantages in providing high-
fidelity and immersive visualization of space as well as rapid, intuitive
interactions, which could shorten the gulfs of evaluation and execution.
As a result, VR is increasingly being used in design prototyping, evalu-
ation, and education [14-16]. A recent review paper summarizing the
benefits of VR in the design process emphasized its ability to provide
more accurate spatial perception, an increase in creative motivation,
and a greater sense of presence [17]; and another recent study found
that VR was easier to use during early-stage design ideation compared to
current WIMP-based CAD tools when creating voxel-based models [18].
Those studies suggest that VR will continue to play an increasing role in
design over the upcoming decades, which motivated us to develop and
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test our BCI design tool in a VR context.

Recent developments in the area of brain—computer interfaces (BCIs)
have the potential to provide an alternative to the use of WIMP systems.
In BCIs, sensors measure users’ brain activity and thereby enable mental
control of the system’s output, either through voluntary commands or
through measuring involuntary neural reactions [19]. BCIs could
potentially benefit the architectural design process by enabling a more
natural and intuitive translation between designers’ intentions and CAD
outcomes, without the need for menus and pointers. The goal is to
shorten the iterative feedback loop and support more fluid and creative
design ideation. While BCIs have been developed for use in a variety of
applications, we found few studies exploring the possibilities of this
approach in design fields. Thus, in the current work, we develop a
prototype BCI for use by architectural designers. This early-stage system,
which we called MindOpen, allowed the user to adjust the shape, size,
and position of a window on the wall of a room by thinking. We con-
ducted a feasibility and usability study of the system with a focus on the
following questions:

e What are some of the challenges and concerns that arise when
developing a BCI tool for architectural design?

e Will designers who have no prior experience with BCI tools find this
approach amiable, and will they view it as potentially useful in their
practice?

e How effective will the tool be in allowing designers with no prior BCI
experience to accurately implement their design decisions?

e Which tasks within the design process are well-suited for the use of
BCIs, and how might these tools be positioned to best augment
existing CAD-based design workflows?

2. Related prior work

In evaluating the existing literature on BClIs relevant to architectural
design, we identified three broad categories of studies that seemed
highly relevant to the current research. First, classification research in-
cludes studies on brain activity features that have been previously used
to identify human experiences of shapes and colors and to manipulate
objects using BCIs. Second, application studies have explored the use of
BCIs in artistic and entertainment contexts adjacent to architectural
design. Finally, user studies provided insights into how we might
enhance the subjective experience of engaging with BCIs, and how such
outcomes can be measured. These categories of research are presented
respectively in the following sections.

2.1. Classification studies: shape and color identification from EEG

The architectural design process involves intense mental imagination
and manipulation of geometric shapes. BCI tools can thus potentially
benefit from the use of EEG signals to distinguish between different
mentally visualized shapes. A few prior studies have demonstrated that
such categorizations are possible. Starting with primitive shapes, Esfa-
hani and Sundararajan [20] asked participants to imagine a cube,
sphere, cylinder, pyramid, or cone. The BCI was able to correctly iden-
tify the imagined shape with an average of 44% validation accuracy
(range: 36-54%), much greater than the random chance of 20%. A
similar study by Llorella et al. [21] was able to classify seven shape-
s—circle, square, hexagon, straight line, parallelogram, triangle, and
pentagon—with validation accuracy of 35.14% (range: 25.23-44.06%),
with a chance level of 14.3%. When evaluating only two shapes, this
study reached a validation accuracy of 69.57% (range: 53.64-81.15%).
Combining shapes with color, Bang et al. [22] classified a red circle,
white cross, yellow horizontal line, blue triangle, cyan plus shape, and
green vertical line (chance level of 16.6%)—and were able to reach an
overall average decoding accuracy of 32.56% (range: 27-43%) using
convolutional networks. Bose and colleagues [23] used a BCI to identify
shape-analogous letters between pairs (p q b d, chance level of 50%) and
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achieved an average classification accuracy of 86.41 for all 2-class
problems. Kosmyna and colleagues [24] trained a BCI to distinguish
mental responses to more complex shapes: a flower vs. a hammer, with
an average accuracy of 55% (range: 48.06-71.53%), which is only
slightly better than 50% random chance. While these classification
studies demonstrated the potential of using mental visualizations of
shapes for BCI control, their accuracy is still fairly low, and few studies
have reported online (real-time) BCI performance based on the visuali-
zation of shapes, leaving its applicability in real-life scenarios a bit
uncertain.

A Dbetter-established approach to the control of BCIs, which we
adopted in the current study, involves the use of motor imagery. In this
technique, users are asked to visualize moving parts of their bodies (e.g.,
imagined hand or foot motions) [24] as a means of sending commands to
the interface. Accuracy rates in these interfaces are generally higher
compared to those based on the visualization of geometric shapes, and
there is more robust literature with positive findings for online perfor-
mance. For example, in a study conducted by Lafleur [25], participants
imagined motions of their left or right hands to control the direction of a
quadcopter drone. The classification accuracy in Lafleur’s study ranged
from 69 to 90%, and 82.6% of the participants successfully moved the
drone to the target. Other BCI studies using the motor imagery approach
have reported task completion rates as high as 94.2% [26]. Since this
literature has provided evidence of high reliability for motor-imagery-
based BCIs in real-world scenarios, we decided to pursue such an
approach for our design-related controls, rather than evaluating mental
imagery directly.

Some researchers have suggested that evaluating diverse mental
activities and applying user-centered training methods may have the
potential to further improve the performance of BCIs [27]. In the current
study, we took this approach by asking the users to define relevant
mental actions as their imagined motor engagement with a shape (for
example, crushing a tin can, or pulling a curtain to the side). While we
told the participants that their selected imagery should be related to
some form of body movement, we did not impose a specific pre-
determined motor image for each interface command. Allowing each
participant to define the mental tasks that they would associate with
each design action is a novel approach, which we believe can enhance
both the performance of the BCI and the overall user experience. We
theorized that such user-defined visualizations would be more
completely envisioned and more cognitively salient compared to
external, researcher-defined tasks, and would therefore lead to a greater
classification accuracy of the associated neurological signatures.

2.2. BCI applications in entertainment, art, and environmental control

In reviewing the prior literature, we found that there was little BCI
research specific to design workflows, but there were many applications
of BCIs in design-related areas such as creative expression and video
games. For example, in prior studies BCI users have been able to engage
in an electronic ping-pong game [28], in creating a painting [28], and in
a “Connect Four” game [29], using only EEG-measured brain activity as
the interface. While those prior applications have mostly been tailored
for users who have difficulty moving their limbs, the fun and motiva-
tional qualities of BCI interactions could potentially be beneficial for
non-disabled users as well [29]. Most especially for our research in-
terests, this prior work on BCIs in creative areas has shown the effec-
tiveness of such interfaces for the rapid and intuitive manipulation of
shapes, which can potentially be extended to decreasing gulfs of
execution and evaluation in design.

We also found interesting prior work on the use of BCIs for manip-
ulating responsive built environments, which has the potential to
improve the ability of our homes and workplaces to become more
adaptive to the ebb and flow of everyday human needs. For example,
Kovacevic and colleagues enabled participants to change the interior
atmosphere of a dome by voluntarily alternating between relaxation and
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concentration [30]. Other researchers have used brain activities to
adjust the heights of panels on a ceiling [31] and to introduce ambient
stimuli to modulate occupants’ alertness levels [27]. While these studies
may be considered tangentially related to design processes, we found
only two prior publications that directly investigated the application of
BCI in design work. Barsan-Pipu used the variable of neurological
arousal, operationalized by alpha band power, as a means of prompting
designers to explore innovative and unconventional ideas [32]. Shankar
developed a BCI design tool that enabled users to model 3D objects
through brain activities generated by different facial expressions [1].
Sharing the same basic concept as Shankar’s study, our research
expanded the BCI potential for fluid interaction with a design space and
located that interaction within an immersive VR environment.

2.3. User experiences of BCIs

While much of the current research in BCI development is focused on
improving the accuracy of the technology, it is also important to study
the related human factors, including how individuals may adapt to BCIs
over time (or vice-versa), and how the use of BCIs may fit into existing
workflows. Prior research has shown that psychological or affective
factors such as current mood, interest in the technology, or nervousness
about the technology can affect an individual’s accuracy when using
BCIs [33,34]. Some studies have also shown that long-term cognitive
features or personality traits, such as spatial abilities, feelings of self-
reliance, and learning styles, may have a significant correlation with
the ability to effectively use BCIs [35-37]. Other researchers have
examined learning curves during the sustained use of BCIs, generally
finding that accuracy improves over time, but at different rates for
different individuals [1]. While there has not been extensive research
into user experiences of BCIs, the findings of these prior studies suggest
that different users may have a wide range of positive or negative re-
actions. Botrel [38] is one of the few researchers who has developed a
system for rating BCI user experiences. This system includes self-
reported measures of cognitive task load, satisfaction, and feelings of
control. To the best of our knowledge, there have been no prior studies
entailing subjective feedback from designers about the experiences of
using BCIs as a design tool. In the current study we collected such
feedback, largely following Botrel’s measurement approach.

2.4. Research opportunities

Non-invasive BCI applications have created intriguing external vi-
sualizations of brain signals, and they are increasingly incorporating the
means to customize the relationship between specific neural signals and
specific output. However, we argue that some of these BCI interactions
can be counterintuitive due to limited mental strategies for BCI control
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[24] and pre-determined, arbitrary associations between certain brain
activities and BCI outputs. For example, limited by the built-in pro-
gramming interface of EEG headsets, one common system maps motor
activities such as looking to the left to commands such as “draw an arc”
[1]. Another approach refines brain control by making graphic icons
flicker when the user intends to select the command [39]. Such BCI
modalities can have tremendous utility, particularly for disabled in-
dividuals, but they are still largely embedded within the point-and-click
paradigm of WIMP-based interaction, and they do not meet our research
goal of directly implementing design visualizations. The use of state-of-
the-art EEG classification approaches may open the door to more natural
and intuitive BCI interaction by linking design commands with cus-
tomizable, user-specific mental visualizations [13].

Furthermore, by integrating such approaches with virtual-reality
immersion, we hypothesize that designers may be able to work more
fluidly within the three-dimensional design space itself. This approach
to combining BCI with virtual immersion has the potential to provide
high-fidelity feedback to architectural designers while shrinking both
the gulf of evaluation and the gulf of execution (Fig. 1). Recent studies
support the use of VR as a design development and research tool,
showing that human behaviors and responses in such environments are
reasonably comparable to how people react to design factors in real-
world contexts, especially when contrasted against traditional 2D visu-
alizations [40,41,42]. Architectural design is distinguished from other
scenarios such as industrial design because it centers human perceptual
reactions to space [43]. In this context, we believe that research into a
streamlined BCI-VR approach to architectural design will enable fluid
spatial feedback to enhance creativity and innovation.

The current study contributes to the development of this vision and
the overall CAD community in several important ways. First, it dem-
onstrates the novel approach of mapping individual users’ preferred BCI
imagery to corresponding design implementations. This creates a much
more fluid experience for designers compared to existing BCI systems;
for example, the design action of “move up” will be triggered by motor
imagery thought related to “moving up” rather than by a certain pattern
of eye blinks. Second, the use of a closed-loop BCI allows users to receive
immediate, high-fidelity visual feedback on their design decisions
within a three-dimensional virtual workspace, which is a vast
improvement over 2D workflows. Finally, our interview feedback pro-
vides insights into user-experience concerns in the ongoing pragmatic
development of BCI-based tools in the field, along with suggestions
about how the use of BCI may best be integrated into design practice.

3. Designing the BCI design tool

Our goal in developing the BCI tool was to focus on a simple yet
pragmatically important architectural design task. This task should

Feedback

Fig. 1. Shortening the feedback loop of WIMP-based CAD tools by using BCI-VR.
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require complicated steps to implement using WIMP-based CAD in-
terfaces. It should cover a diverse array of CAD commands, while also
being precise in its scope. Based on those considerations, we decided to
start with the task of “adding a window to a room” as an initial repre-
sentation of the architectural design process. Window designs can have
highly consequential impacts on the atmosphere of architectural spaces,
and they have been correlated with human health, work performance,
and energy consumption, among other important outcomes [44,45].
Thus, fitting a window to a space is a non-trivial design endeavor. In
addition, the process of adding a window using traditional CAD tools is
rather complex, and the full effects of the window design and its related
lighting impacts may be difficult to discern from traditional 2D plans,
elevation views, or renderings. Considering these limitations of tradi-
tional CAD approaches, we designed MindOpen, a BCI-VR tool to create
windows.

We further simplified the context by considering only three param-
eters of the window: its geometrical shape, its size, and its position on
the wall. MindOpen allows users to manipulate these parameters by
simply thinking about customized visualizations while immersed in a VR
environment from a first-person perspective (Fig. 2). There are a total of
ten actions that can be taken through the BCI to adjust the window; these
actions are: create a rectangular window, create a circular window,
move the window up, move the window down, move the window left,
move the window right, stretch the shape horizontally, compress the
shape horizontally, stretch the shape vertically, and compress the shape
vertically (Fig. 3). Those ten actions overlap with three standard cate-
gories of commands (creation, navigation, and manipulation) in CAD
software [46]. In MindOpen, the users were able to select their own
customized mental visualizations for each action, with the instruction
that these visualizations should include imagined motor action. For
example, one user chose to imagine “crushing a can with both hands
vertically” to compress the window vertically. To classify the neural
signals associated with each of these visualizations, MindOpen used a
machine-learning process tailored to each participant, as discussed in
the following section.

4. Methods
4.1. Hardware and software setup

MindOpen consists of an EEG headset, a VR headset, and a combi-
nation of commercial, open-source, and custom software. EEG data were

collected using a non-invasive, 128-channel, gel-based Actiview System
(BioSemi Inc., Amsterdam, Netherlands) with Ag/AgCl active

128 chanri‘@l Actiview
EEG system

HTC Vive Pro
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electrodes. An HTC Vive virtual-reality display headset was worn on top
of the EEG system (Fig. 2). We used an open-source BCI platform called
Openvibe [47] to acquire real-time EEG data and transfer the results to
Matlab through the Lab Streaming Layer [48]. Matlab was used to pre-
process the EEG data and train the participant-specific machine-learning
model. Once the classification model was established, Matlab was used
to analyze neural signals associated with users’ motor imagery and send
those results to the Unreal Engine in User Datagram Protocol (UDP)
format. The Unreal Engine v.4 enabled us to create a high-fidelity,
immersive virtual environment to display the design outcomes in real
time.

4.2. Participants

To evaluate the performance of the MindOpen system and the ex-
periences of its users, 21 healthy human adults with normal or
corrected-to-normal vision were recruited using a convenience sampling
method (word-of-mouth and announcements on departmental e-mail
lists). Nine of the participants reported as male and 12 as female. The
participants’ ages ranged from 18 to 32 (M = 22.43, SD = 3.87). Since
BCI could potentially help to democratize design by lowering techno-
logical training barriers, we were interested in evaluating the use of the
tool by individuals with a range of professional experience. Our sample
included 13 participants who reported no professional design experi-
ence, 5 participants who reported having one to three years of profes-
sional design experience, and 3 who reported having more than three
years of professional design experience. Fourteen of the participants
indicated that they had no prior experience using BCI interfaces, while 5
reported having used BCIs one to three times, and 2 reported having
used BCIs more than three times.

We did not measure the BCI online accuracy of the first eight par-
ticipants, because at the time we believed that the system would need
additional fine-tuning. However, the informal feedback during this stage
was positive, so we decided to continue with the testing without any
changes to the system. Thus, the results reported for online accuracy are
based on the final 13 participants, while the results of the user experi-
ence metrics and interviews include all 21 participants. Among the 13
participants whose data were used to evaluate online accuracy, 10 re-
ported having no design experience, 2 reported having one to three
years of design experience, and 1 reported having more than three years
of design experience.

Each participant gave informed written consent before participating
in the experiment, and the overall study protocol was approved by the
Institutional Review Board at [Deleted for blind review] before the

Window

Participant View to Nature

B. Plan View of the Virtual Experiment Setting

C. Participant’s Perspective in Virtual Reality

Fig. 2. Physical and virtual setting of the experiment.
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Fig. 3. The ten design actions of the MindOpen BCI tool.

start of research activities. All of the experiment sessions took place at
the same physical location in [Deleted for blind review] .

4.3. Experiment procedure

Sessions were conducted with one participant at a time and involved
a three-stage process (Fig. 4). In the initial setup stage, participants filled
out the consent form and a demographic survey. They were then fitted
with the EEG cap, followed by the VR headset (worn on top of the EEG
cap). After mounting the VR headset, the researcher examined the signal
quality to confirm that there were no bad channels. The participants
were aware of the goal of the experiment and were told that they would
be attempting to design a window using their thoughts alone, via non-
invasive EEG technology that responded to their neural activity. A
researcher assisted with the equipment setup process and ensured that
each participant was comfortable.

The second stage involved exposing participants to the VR environ-
ment and completing the machine-learning process so that the BCI could
evaluate their neurological responses. The attending researcher first
explained to the participants the ten window transformations they
would use their brains to control, and participants were instructed to
create mental visualizations to associate with these ten transformations.
The researcher also provided some common examples of motor imagery
and visualization and gave instructions about how to create effective
motor imagery (consistency, duration of the imagery, and embodiment)

[49]. After receiving these instructions, the participants were placed
into a white VR preparation room and asked to sit quietly for one minute
with eyes open so that the system could collect baseline EEG data.

To complete the BCI training, the participants were then moved into
another virtual room facing a solid wall with a rectangular window,
overlooking a nature scene. Their position in the environment was fixed;
that is, the participants could not move around the virtual room. The
researchers verbally confirmed that participants had finished conceiving
their mental visualizations (described in the supplementary material),
and then asked them to attend to the window as the BCI learned about
their mental responses. During the training, the window spontaneously
moved through a series of transformations, in a pseudo-randomized
sequence, and the participants were asked to perform their self-
conceived mental visualization associated with each transformation.
(The sequence of transformations was randomly intermixed to avoid
block-level temporal correlations [50].) This process continued until
each of the ten transformations had been shown three times, followed by
a one-minute rest session with eyes closed. Then the training continued
until each of the ten transformations had been shown additional two
times. Finally, we asked the participants to rest in the virtual white
preparation room while we completed the machine-learning process in
Matlab, which will be discussed in more detail below. The total duration
of the training stage was about 20 min for each participant.

Five two-class machine-learning models (two for navigation, two for
manipulation, and one for creation) were trained from this EEG data.

Preparation 40 min Training 20 min Realtime Experiments in VR 50 min (randomized order)
| Consent form | (" Navigation ) ( Manipulation  (  Creation
VR Tralmng ’ up/down [ :_, | |\\'ide:‘narr E :' |
| Demographic survey | € 15 min - = - —
| | [ ‘ left/right e | tall/short JTET | ‘ ' — Exit-survey
| Headsets setup | : up/down " widemarrt 21
Machine = | ; -
‘ L . Hleft/right =i tall/short F v @
carnin; e Bk
| VR setup | Tt
@ 5 min e [ Taskload&UEQ-s \( [ Taskload&UEQ-s | J \\[ Taskload&UEQ-s Y,

€ VR Training @ Machine Learning
512 time window Dr_“ 16
10 sec for each action, %0 length — 25 ‘_- mRMR
Test 5 sec in between N N overlap = 0.5s
4 up 1-40 Hz band pass v lineer SVM
nmi % 3 classifier
{ y < select
rest with rest with I o —» | remove bad channels || _ o At :CI:; a bota | v
Shed loee | == o i m ASR - I rclalivé band : OWers Sbld cross
1 min 1 min d 128 channel e P i validation
e — e 384 ’
\J \) FEG data a —— flatten loop to find best D
3 times 2 times FasinreSeieriibmn
. I i7e . : AL
randomized randomized Record Pre-processing Feature Construction ; :
and Classification

Fig. 4. Experiment protocol and machine learning pipeline.
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The two-class models included: (1) navigation up vs. down, (2) navi-
gation left vs. right, (3) manipulation wide vs. narrow, (4) manipulation
tall vs. short, and (5) creation rectangle vs. circle.

Finally, in the third stage of the experiment, the participants were
asked to experience each of the seven models in a randomized sequence
and to use each of the commands in that model. This “online” stage took
place in the same overall virtual room as the training sessions. During
the “navigate” and “manipulate” sessions, we started with a pre-existing
window, and the participants were asked to adjust it using the available
commands via motor imagery. In the “creation” sessions, we started in
the same room without any windows, and the participants were asked to
create a rectangular or circular window. Between each session, the
participants were asked to complete measures of cognitive task load and
interaction quality.

Because humans can’t voluntarily stop generating brain activity,
when participants needed to take a break and didn’t intend to control
the windows, the model would continue to output chaotic results. This is
commonly known as the “Midas touch problem” in BCI research [51]. To
avoid it, the participants in our study held a controller on which they
could press a single button to pause or resume the BCI input.

After the completion of the experiment, the researchers assisted the
participants with removing the VR headset and EEG cap, and then
immediately conducted an exit interview to discuss experiences with
using the BCI. The total duration of this third stage was approximately
50 min for each participant.

4.4. Evaluation of the online BCI classification accuracy

Online classification accuracy is an important metric for determining
the effectiveness of BCI applications. During the online sessions, par-
ticipants engaged in each instruction task for 30 s, attempting to modify
the window using a predetermined mental command. The BCI refresh
rate was 2 Hz, that is, two refreshes per second, which created a total of
60 possible classification outcomes for each instruction task. Outcomes
that corresponded to the intended command were identified as suc-
cesses, and the accuracy was determined by the ratio of successes to total
attempts. After each 30-s task, participants were instructed to move on
to another command regardless of success or failure (Fig. 4).

4.5. Machine learning classifier

Raw EEG data were recorded at 256 Hz during the training session.
At the end of the training session, these data were preprocessed and put
through the machine-learning pipeline in Matlab. The preprocessing was
conducted to bandpass the preferred frequency band (1-40 Hz), and
remove bad channels that had poor contact with the scalp. We applied
Artifact Subspace Reconstruction (ASR) [52] to remove noisy channels
and artifactual power bursts (SD-threshold = 15). We also visually
inspected the data to remove EEG spikes caused by motion artifacts such
as blinking, clenching, and body movements, to help further reduce the
impact of these actions on the machine-learning model. During the
subsequent stage of the experiment when participants attempted to use
the BCI to adjust the window design, the EEG data were filtered between
1 and 40 Hz. The ASR algorithm was not used during these online ses-
sions because it introduced excessive lagging in the online performance.

For each of the 128 EEG channels, we extracted the power in three
frequency bands: theta (4-7 Hz), alpha (7-15 Hz), and beta (15-30 Hz),
yielding a total of 384 frequency band-power features. These features
were collected in time windows of 2.0 s, with 0.5 s overlap. Since the
duration of each visual transformation was fixed during the training
session, the time segments used were identical for all participants.

For analysis purposes, we used five trials, each of which compared
two different visualization commands: (1) up vs. down, (2) left vs. right,
(3) wide vs. narrow, (4) tall vs. short, and (5) rectangle vs. circle. For
each of these trials, we used the Minimum Redundancy Maximum Rel-
evancy (mRMR) algorithm [53] to select the most salient features out of
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the 384 that we collected. We defined the minimum number of selected
features as 16; this relatively large minimum helps to increase the
robustness of the subsequent real-time performance as the data of any
single channel could be affected by unpredicted events such as body
movements from the user. The optimal number of features (above 16) to
make each classification was selected by 5-fold cross-validation, looping
iteratively using 4 trials to train a Linear SVM classifier and 1 trial as the
validation set. As described in the previous sections, this machine-
learning process was conducted separately for each participant,
thereby allowing them to choose their visualizations and optimize the
BCI for individual cognitive factors [27,54,55].

4.6. Rationale for machine learning model selection and time-window
length

A classical machine learning classifier such as the linear SVM is a
good candidate for the automatic identification of predefined EEG fre-
quency band-power features. SVMs have been extensively used for EEG
classification [56-58], often outperforming other machine learning al-
gorithms. Preliminary trials with training and validation sets from the
first few participants showed that both a kernel-SVM with the poly-
nomial kernel of degree two, and the linear SVM performed well. We
decided to continue with the simpler algorithm, the linear SVM, to
improve potential generalizability.

The time window of data to analyze is a hyper-parameter to opti-
mize. Time windows of 2 s have been used successfully to decode EEG
data in prior motor imagery studies [59-63]. Often in BCI paradigms, a
time window of 1 s is preferred [56,64,65], but this window is contin-
gent upon the specific type of experimental task. Longer time windows
of 4-6 s are often implemented to identify creative action planning and
execution, especially when using functional connectivity features in
conjunction with band-power features [31,66,67]. Such longer periods
are also common when studying navigation in an environment under
different design conditions [68,69], and in motor imagery classification
paradigms with complex features [70,71]. In this study, a 2-s time
window was selected to optimize the number of data points to obtain for
online classification, minimize the delay between intended command
and execution, and have enough data to achieve accurate performance.

4.7. Outcome measures

BCI performance was measured by offline 5-fold validation accuracy,
as well as by online performance accuracy as discussed in section 4.4. To
obtain quantitative measures of user experience, we relied on the NASA
Task Load Index (NASA-TLX) [72] and the short version of the User
Experience Questionnaire (UEQ—S) [73]. The NASA-TLX assesses sub-
jective workload associated with human-machine interfaces; it contains
six subscales: mental demand, physical demand, temporal demand,
performance, effort, and frustration. The UEQ-S assesses the quality of
interactive products; it is divided into three “pragmatic” subscales
(dependability, efficiency, and perspicuity), along with two “hedonic”
subscales (stimulation and novelty). We used the short version of the
UEQ-S since it has been found to approximate the full version relatively
well and is preferred when participants have to complete the scale
multiple times, as is the case in our experiment [73]. In addition to
providing a quantitative overview of participants’ responses to the BCI,
using these scales multiple times allowed us to compare responses after
each category of design commands (move, manipulate, and create) to
determine if any of these three types imposed a higher task load or a
different user experience.

Qualitative data were gathered during semi-structured exit in-
terviews based on the following five questions: “[Q1] Could you
describe your BCI experience just then?” “[Q2] What is the greatest
challenge you faced in the experiment when using BCI as a design tool?”
“[Q3] Would you prefer to use BCI-based design tools rather than
standard computer design tools in your daily life? Why or why not?”
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“[Q4] Based on your knowledge and the experiment, to what other
design scenarios do you think BCIs can be applied?” “[Q5] If you had
magic, what changes would you wish to make in BCI-based tools for
designers, considering the overall experience?” The interview data were
analyzed using the Naturalistic Inquiry Method, which involves sorting
text segments into emerging themes [74].

5. Results
5.1. Validation accuracy and performance accuracy

The mean offline validation accuracy of all two-class models was
above the chance level (50%). Among the tested participants the Up vs.
Down model achieved 75.1% (SD = 6.6%); the Left vs. Right model
achieved 74.2% (SD = 5.6%); the Tall vs. Short model achieved 73.8%
(SD = 6.6%); the Wide vs. Narrow model achieved 69.5% (SD = 6.4%);
and the Circle vs. Rectangle model achieved 72.4% (SD = 7.0%). These
are all robust outcomes that indicate a good ability to distinguish be-
tween neural features in these two-way comparisons.

Regarding the online performance accuracy of the two-class models,
the 13 participants’ commands for Up vs. Down were correctly identified
by the BCI 53.0% of the time (SD = 8.9%, range = 43.4%-78.1%). The
Left vs. Right commands achieved 53.5% accuracy (SD = 6.1%, range =
41.0%-62.9%); the Tall vs. Short commands achieved 57.8% accuracy
(SD = 10.9%, range = 45.1%-85.9%); the Wide vs. Narrow commands
achieved 51.8% accuracy (SD = 6.6%, range = 42.6%-64.2%); and the
Circle vs. Rectangle commands achieved 50.0% accuracy (SD = 0.041,
range = 59.5%-44.0%).

The online performance accuracy on these tests showed a wide range
of outcomes among different participants (Fig. 5). Six of the 13 partic-
ipants were able to achieve online accuracy above 60% on at least one of
the two-way comparisons, and a few outliers were extremely successful
on one or more of the tests. Overall, however, the average accuracy
outcomes in these two-way comparisons were only slightly better than
random chance (50%). The performance rates were particularly poor for
the window-creation commands Circle vs. Rectangle, in which none of
the participants achieved greater than 60% accuracy. Data for one of the
most successful participants are shown in Fig. 6.

5.2. User experience

Overall scores on the NASA-TLX were calculated from all 21 par-
ticipants (Fig. 7). These scores were moderate-to-low for Physical De-
mand (M = 4.52, SD = 2.72), Temporal Demand (M = 3.14, SD = 1.76),
and Performance (M = 4.10, SD = 2.35). However, the participants
indicated relatively high levels of Mental Demand (M = 7.43, SD = 2.34),
Effort (M = 7.05, SD = 2.56), and Frustration (M = 5.90, SD = 2.59). An
ANOVA test showed no significant differences in these scores between
the different types of design commands (navigation, manipulation, and
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creation).

For UEQ—S, overall scores for the 21 participants on the Hedonic
subscales (combined Stimulation and Novelty) were within the range
that the scale classifies as “good” (M = 1.38, SD = 0.89). However, the
overall scores on the Pragmatic subscales (combined Dependability, Ef-
ficiency, and Perspicuity) were in the range defined as “below average”
(M =-0.37,SD =1.49) [75]. When comparing UEQ-S scores between the
different design commands (navigation, manipulation, and creation), an
ANOVA showed no significant differences (Fig. 8). A T-Test indicated
that the Hedonic scores for the BCI were significantly higher than the
Pragmatic scores (p < 0.001) (Fig. 9).

5.3. Qualitative analysis

Interviews with all 21 participants were recorded and transcribed,
broken down into text segments, and ultimately categorized into six
themes. Applications (30 mentions) were a major topic in the replies
when participants discussed potential uses of BCI in design fields. Devices
(3 mentions) included comments about the BCI and VR hardware. Ex-
periences (5 mentions) focused on emotional feelings about the BCI.
Feedback (12 mentions) included comments about how the BCI gave
visual feedback on design commands. Learning (9 mentions) was an
unanticipated theme, as multiple participants spontaneously discussed
how they explored and adapted to the BCI. Finally, Limitations (19
mentions) were a concern as users mentioned potential drawbacks of
using BCI in design.

We identified three central topics in these responses that are worth
consideration by developers of BCI design tools in the future. One
particular concern that emerged in the interviews was the presence of
Opposite Visual Feedback, referring to an unintended visualization
caused by classification error. For example, if the window moved left
when the participant intended to move it right. When this error phe-
nomenon occurred it tended to confuse the participants and derail their
mental visualization. One participant stated that “Opposite visual
feedback makes me feel confused, overcorrect myself, and makes it more
difficult to switch classes.” Another participant stated, “I wish there was
some feedback telling me how good I have been doing.” Overall, 11 out
of the 21 participants commented on this aspect of the BCI feedback,
indicating that the opposing visuals created confusion and distraction
when trying to control through mental visualizations.

Despite the complaints about opposite feedback and other difficulties
in engaging with the BCI, six participants indicated that it was a
Rewarding Interaction. For example, one participant stated that “I was
actively exploring how to think and learn the tricks during the experi-
ment,” and another indicated that “the BCI experience was very intui-
tive.” Two participants indicated that they were intrigued by the novelty
of the idea and felt that it would improve the experience of intellectual
and artistic reward in design as well as their ability to intuitively explore
new design ideas.

t4de] s o

i i" ; .

g e i *training

- +validation
sonline

x o
{ 5
.
}:
o

w0

Wide vs. Narrow Tall vs. Short Circle vs. Rect

Fig. 5. Training, validation, and online classification accuracy of the five 2-class scenarios.
Note: The black dot represents the mean value. The error bar represents a 95% confidence interval. The horizontal dotted line represents the chance level (50%).
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Note: Each hollow point represents a participant’s response to a design sce-
nario. The solid black dot represents the mean value. The error bar represents a
95% confidence interval.

Ten participants recommended the use of Multi-modality Interac-
tion, for example indicating that “the WIMP interface is more reliable”
and “we should use both WIMP and BCL.” Two participants were skep-
tical about the possibility of matching the full variety of CAD commands
to specific mental visualizations and suggested that other modalities of
interaction would always need to be retained. Four participants strongly
believed that WIMP-based interfaces would continue to be necessary for
detailed design.

6. Discussion

The design tool developed in this study and the outcomes of the user
testing provide a variety of insights about the potential applications of
BCIs in design fields. The study demonstrates that it is feasible to let
participants define their mental visualizations to associate with BCI
commands, provided that they are given adequate instruction in this
process and can understand the types of visualizations that are effective.
This has important implications for the fluidity and intuitiveness of BCI
use, which is vital for the goal of reducing the gulf of evaluation and the
gulf of execution in the design process. The technological ability to
combine BCI with VR immersion was successfully demonstrated in this
study; this combination may be particularly useful for decreasing the
gaps between design conceptualization and high-fidelity feedback.

For our best 2-class online classification model, we achieved an
average of 57.8% performance accuracy, and in our least successful
model, we achieved an accuracy of 50%. Notably, there was a wide
range of accuracy across the participants, ranging from as high as 86% to
as low as 41% for different commands and different individuals. Despite
the wide range of performance, the participants, who were mostly first-
time BCI users, reported that they felt they were able to control the tool
well and that they found it enjoyable. It is notable that while the results
of our machine-learning validation accuracy are in the same range as
other BCI classification studies [21,24,76], the performance accuracy of
MindOpen was relatively low, never rising above an average of 60% for
our two-command tests (where random chance would have yielded 50%
accuracy).

The drop in accuracy in the test set, compared to the validation set, is
probably due to the overfitting of the machine learning models to the
training and validation data. In addition, when the online experiment
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took place, the participants had already been exposed to the VR setting
for a prolonged period, which may have resulted in mental fatigue.
Notably, our training and test tasks were somewhat different from each
other—while the training consisted of watching videos of the shape
change and attaching specific motor imagery to those movements, the
test set had the shape directly responsive and manipulated by the user.
In addition, during the online test, there was a greater possibility of EEG
artifacts, while the training set had most of them removed with ASR
(only those over 15 standard deviations). As noted above, we found it
impossible to use ASR during real-time sessions due to the response lag
that it created, though this might be improved with future technological
development.

The interview results also indicate that technological adjustments
might help to improve online accuracy, for example by limiting the
distracting effects of opposite visual feedback (this might be done by
having the display resist movement in an opposite direction from the
prior movement). More research will be needed to determine if such
adjustments can increase the effectiveness and usability of the system.
The participants’ emphasis on a learning curve in the interviews is also
very notable, as it indicates that performance might improve with more
extensive practice sessions, a view that is supported by some of the prior
BCI literature [36,49].

Another consideration is effective instruction or practice to help
users understand what visualizations are most effective with the BCI
system. While we did not investigate this as a study variable, evidence
from the interviews suggested that some participants were uncertain
about their visualizations and might wish to change or adjust them in
future encounters with the technology. Some participants stated that
they had the most trouble thinking of an appropriate mental visualiza-
tion for the “create a window” tasks, which in turn had the lowest
performance accuracy. This can only be considered anecdotal evidence,
but in future work, the researchers plan to investigate the use of
MindOpen over time and with greater personalized instruction, to
determine how participants adapt to the system and if they can develop
greater performance accuracy during multiple sessions.

The wide range of performance findings for different participants in
our study suggests that specific BCIs may not be suitable for use by all
individuals, even when they include options for customization. The re-
searchers suspect that this may be an aspect of natural human diversity,
operating in combination with the limited range of BCI research that has
so far been conducted in this field. As BCI technology continues to
expand and improve, we will likely discover additional customization
options and modalities for issuing mental commands through these
systems, some of which may rely on alternative neural processes besides
motor or geometric visualization. At the same time, researchers and
practitioners should be aware that BCI usability may vary among
different individuals, and we should ensure that a broad range of design
tools remain in play so that diverse designers can leverage their
strengths.

Our findings from the NASA-TLX and UEQ-S surveys were intuitive
and relatively unexceptional. The use of MindOpen was associated with
significant mental load and effort on the NASA-TLX, and the UEQ-S scores
were high on novelty and stimulation while rating lower on pragmatic
utility. These findings are similar to Botrel’s original study (in the
context of using BCIs for painting) on which we based our user-
experience evaluation strategy [38]. One finding that is of particular
concern in our results is the moderately high frustration level reported by
participants on the NASA-TLX. The interviews suggest that this frus-
tration may be an outcome of the low performance accuracy of the
system, as participants commonly expressed exasperation and even a
sense of personal failure when the BCI’s output did not reflect their
visualized commands. These experiences of frustration need to be
contextualized within the high hedonic ratings of the BCI, which indi-
cate that the overall experience remained enjoyable. It is likely to
become even more so if the system’s performance accuracy can be
improved, or if the system is adjusted so that binary accuracy is not such
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an essential feature.

6.1. Broader implications: the use of BCIs in the design process

Design can be seen as a problem-solving process with ill-defined
variables, and as an embodied creative activity involving both the
body and the mind [78]. The value of BCIs in design is to increase the
efficiency of this process, and thus reduce the latency of the design
feedback loop, encourage exploration and experimentation, and alle-
viate design fixation. An ideal BCI would be able to directly map user
intentions and ideas to corresponding expressions. However, this tech-
nology is still in the early stages of development, and there is no cer-
tainty that it will ever improve to the point of becoming a true “mind-
reader.” For the time being, designers should consider how best to
incorporate imperfect BCIs into existing creative workflows, and how to
enable switching between BCIs and WIMP-based tools smoothly.

WIMP-based design tools might be viewed as loyal agents that do
exactly what they are asked and nothing more, and that work predict-
ably so long as they are given precise instructions. In contrast, BCI-based
tools might be viewed as opinionated agents that are likely to offer some
resistance to the designer’s plans and may even suggest unexpected
solutions. This process makes BCIs most useful as a creativity-enhancing
tool that can be engaged during the initial brainstorming and
conceptual-design stages of a project when designers can afford uncer-
tainty and benefit from novel insights. In this role, it will be important to
separate the basic technological capacities of the system (such as “save
the file”) from the amorphous and uncertain realm of the human crea-
tive process. Overly enthusiastic interpretation of basic commands is
likely to lead to frustration, anxiety, and distrust; whereas greater au-
tonomy in the system for interpreting creative decisions and displaying
alternative design variations may prompt users to more fully explore the
possibility space and alleviate design fixation, perhaps leading toward
collaborative AI design approaches [78].

Design decisions are not always a binary “yes” or “no,” and it is
common for designers (as well as other creative practitioners) to work
with a certain amount of randomness and serendipity in developing
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novel solutions. In one prior study focused on form generation through
BCI, the researchers included a chance of combining uncertain neural
classifications to generate a hybrid form, which can be regarded as an in-
between or unexpected solution [79]. We think that future BCI design
tools for ideation scenarios should consider this approach and provide
continuous or fuzzy visual feedback so that designers can use them to
explore a wide spectrum of options rather than a discrete choice of
commands. Furthermore, in addition to active BCI that requires users to
voluntarily manipulate certain brain activities, other BCI paradigms for
design may include passive and reactive interpretations that respond to
broad aspects of the designer’s experience and mental/emotional states
[19]. In both passive and active BCI, there is much room to explore the
numerous types of neurological signals that could potentially be incor-
porated into the system’s responses.

Thus, the applications of BCI in the context of design should pri-
marily be evaluated not in terms of their predictable and precise
response to commands, but rather in terms of their potential for
enhancing the creative process and empowering the designer to explore
new perspectives. To better adapt broad BCI research into the specific
real-world application of design ideation, functionalities such as im-
mediate high-fidelity responsiveness and the representation of complex,
non-binary mental states are often more important than complete ac-
curacy in implementing precise commands. We advocate that future
work in this area should focus on conducting performance tests of
design-oriented BCIs in the context of their creative utility rather than
relying purely on the training set accuracy measurements that are
common in other types of BCI applications [24,50]. Adapted from Zei-
sel’s diagram of the design process that shows the spiral flow of image,
present, and test [11], Fig. 10 indicates a potential vision of how such
BCIs can be integrated into key design processes.

6.2. Limitations and future work

Most of the participants in the current study were college students
with limited design experience. Additional insights about the potential
integration of BCIs into professional design practice could be obtained
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Fig. 10. How BCI design tools can change and benefit the design process.
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by testing the system with a broader population of experienced de-
signers. It should also be noted that the design activity of placing and
adjusting a window is a very small part of the overall integrated design
process and that much additional technological development will be
needed before BCIs are capable of reflecting more complex design in-
tentions and instructions. Mapping additional mental imageries to a
wide range of design actions, and integrating these actions into a single,
fluid system, is a daunting task that will have to contend with longer
training sessions, increased mental loads during use, and a likely
decrease in the system’s reliability and usability. There are likely upper
limits of mental imagery capacity that a user can effectively retain
without experiencing confusion. In our experiment, some participants
found it hard to decide on appropriate and intuitive motor imagery for
the “create a window” commands, and such problems are only likely to
increase at higher levels of abstraction (such as “group items together”
or “change the lattice pattern™).

The researchers propose two potential approaches to explore this
question further. The first approach involves dividing mental imageries
into smaller groups based on different design scenarios so that each
scenario contains an appropriate quantity of mental imageries. This may
be most effective when combined with generative and/or Al-assisted
design techniques. The second approach involves considering multi-
modal interaction. We think it is doubtful that near-future designers
will rely solely on BCI technologies. Instead, we anticipate that designers
will use BCI commands for high-level control while integrating other
modalities for more nuanced operations. More work is needed in this
context to examine the viability of the BCI design tool, the scope of its
applicability, and the practical value of integrating it into actual design
workflows. The ongoing development of this tool into a viable design
application may need to take novel directions as its scope expands, such
as integrating Al helper utilities to generate options for design details.
The researchers also recommend that future research in this area em-
phasizes longer practice sessions and longitudinal studies to better un-
derstand how designers might put BCI tools into practice.

7. Conclusions

In this article, we described the development and the user-testing of
MindOpen, a design tool that applies an EEG-based brain—computer
interface in combination with virtual-reality immersion. The goal of the
study was to make progress toward a more natural and intuitive design
feedback loop using BCI and to evaluate the prospects of such technol-
ogies in the design field. The study monitored participants’ brain ac-
tivities using a 128-channel EEG headset and applied a machine-
learning approach to map user-selected mental imageries to design
commands, which were then realized within the VR workspace.

A feasibility study for the use of this tool was conducted with 21
participants. The average performance accuracy of the BCI was rela-
tively low, and it varied widely among different individual participants.
Users reported high mental load and effort when using MindOpen for all
design commands, but they also reported that the tool was pleasurable
and rewarding to use. The BCI design tool received significantly higher
“hedonic” (Stimulation and Novelty) scores compared to “pragmatic”
(Dependability, Efficiency, and Perspicuity) scores on the UEQ-S survey
instrument. Participants noted that some aspects of the system, such as
the use of opposite visual feedback, tended to create frustration and
make the BCI harder to use. Such aspects of the system will likely be
altered in future work.

The researchers argue that BCI technology has the greatest potential
for impact in the design field in the context of early creative design
ideation processes, where it may alleviate design fixation and encourage
exploration. In the future, such approaches may be combined with
collaborative Al tools. The current exploratory and proof-of-concept
study demonstrated the feasibility of using BCIs in the architectural
design process, and we hope that it will prompt greater discussion and
interest in this emerging technology among design researchers.
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