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1. Introduction

This article is inspired by Richards’ paper on large gaps between integers that can be
expressed as sums of two squares [10]. It is proved in [10] that large gaps between sums
of two squares increase at least logarithmically as an asymptotic rate. More precisely, let
51, 52, - be the sequence, arranged in increasing order, of sums of two squares 2% + 32,
then

limsupm >C >0. (1.1)
n—00 log sy,
In [10], C = %; but this constant has been improved to C' & 0.87 in [4] by Dietmann et al.
The logarithmic-type estimate (1.1), established by Richards, represents an improvement
over a result by Erdés [5].

Note that, formula (1.1) can be interpreted as stating that there exist arbitrarily large
values of n for which s,11 —s, > alogs,, where a > 0. In other words, the lower bound
of large gaps between sums of two squares increases logarithmically. Geometrically, these
gaps between sums of two squares correspond to annular regions in R? that contain no
integer lattice points. Therefore, Richards’ result [10] can be restated as follows: there
exist arbitrarily large values of A and p, where p > alog A, such that intervals [A, A+ y]
do not contain sums of two squares, meaning that there are no integer lattice points in
annuli {z € R? : A < |z|? < A+ pu}.

On the other hand, there has been research in the literature regarding the upper
bound of large gaps between sums of two squares. Bambah and Chowla [2] proved that if
B > 24/2, then for all large integers k, there are integers u and v such that k < u?+v? <
k+ Bki. This implies that gaps between sums of two squares have an upper bound of
polynomial growth rate. In particular, s,1+1 — s, < ﬂs;% for sufficiently large n, where
{sn} is the sequence of sums of two squares arranged in increasing order. Also, Shiu [11]
provided a very short proof of the Bambah-Chowla theorem.

By combining the results from [2] and [10], it can be concluded that large gaps be-
tween sums of two squares have both lower and upper bounds. Specifically, there exist
arbitrarily large n for which:

O[lOgSn < Sn+1 — Sn S Bsga (12)

for some positive constants a and .

Geometrically, gaps between sums of two squares correspond to annuli in R? that
contain no integer lattice points, and the size of the gap is related to the thickness of the
annulus. Motivated by this geometric perspective on gaps between sums of two squares,
our study focuses on the sparse distribution of integer lattice points within annular
regions. Specifically, we aim to identify annuli in R? where any two integer lattice points
inside such an annulus are sufficiently distant from each other. We anticipate that an
annulus containing sparsely distributed lattice points will have greater thickness than
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one with no lattice points. To formalize this, we prove that, for any large distance d,

there exist arbitrarily large A and x > CA®, where 0 < s < i,

that any two integer lattice points belonging to the annulus {z € R? : A < |z|? < A+ &}

satisfying the condition

must be separated by a distance greater than d. It’s essential to note that the polynomial

growth rate of the interval’s length, i.e., kK > CA° with 0 < s < i,

than the logarithmic growth rate of large gaps between sums of two squares. Our result

is significantly larger

is sharp in the sense that such a property of sparse lattice point distribution ceases to
hold, at and beyond the threshold s = i.

We also consider three dimensions. There are no large gaps between sums of three
squares. Due to the representation of sums of three squares (as seen in, e.g., [6]), the
gaps between sums of three squares can only be 1, 2 or 3. Consequently, if [m, m + J]
does not contain sums of three squares, then 0 < § < 3. In other words, if a spherical
shell {z € R3 : m < |22 < m + §} does not contain any integer lattice points, then
0 < 6 < 3. This suggests that a spherical shell that contains no integer lattice points
has small thickness. However, in this paper, we show that a spherical shell containing
sparsely distributed lattice points can have a more substantial thickness. In particular, we
establish that, for any large distance d, there exist arbitrarily large m and h > Cy+/log m,
satisfying the condition that any two integer lattice points belonging to the spherical
shell {z € R® : m < |z|> < m + h} must be separated by a distance greater than d.

1/8 then the property of sparse

Moreover, we prove that if i reaches the order of h ~ C'm
distribution of lattice points in spherical shells ceases to hold.

Large gaps between sums of squares and the sparse distribution of integer lattice points
in annular regions have significant applications in the study of the long-term behavior of
dissipative dynamical systems. One example of a dissipative dynamical system, modeled

by nonlinear partial differential equations, is the reaction-diffusion equation:

O — Au+ f(u) =0, (1.3)

where f(u) is a nonlinear term, such as f(u) = u®. When studying this equation on a
two-dimensional periodic physical domain, the solution u can be represented as a Fourier
series: u(z,t) = Y, cz2 U(k, t)e™* for z € T? = [0,27]%, t > 0. In the Hilbert space
L?(T?2), the Laplace operator —A has eigenfunctions {e?**} with corresponding eigen-
values {k? + k3}, where k = (k1,k2) € Z2. It’s important to note that these eigenvalues
{k? + k2} are sums of two squares.

In general, a PDE can be considered as a system of infinitely many ODEs with in-
finitely many unknowns 4(k,t), where k € Z2. Some nonlinear dissipative PDEs can be
reduced to a system of finitely many ODEs as t — oo. This type of finite-dimensional
reduction often relies on the existence of large gaps between the eigenvalues of the Lapla-
cian. In fact, large gaps between sums of two squares, as demonstrated in Richards’ result
[10], can lead to the finite-dimensional reduction for certain dissipative PDEs, such as
the reaction-diffusion equation (1.3) in a 2D periodic domain.
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However, in some cases, large gaps between the eigenvalues of the Laplacian are not
available. For instance, if one considers the Laplacian operator acting on functions defined
in a 3D periodic domain, the eigenvalues are sums of three squares, which do not exhibit
large gaps. In such scenarios, the sparse distribution of integer lattice points in spherical
shells can be valuable in reducing a dissipative PDE to a finite-dimensional system
at large times. For example, an important work by Mallet-Paret and Sell [9] shows
a finite-dimensional simplification for 3D reaction-diffusion equations using the sparse
distribution of lattice points in spherical shells.

2. Statements of main results

Our first result is concerned with the sparse distribution of lattice points in annuli in
R2.

Theorem 2.1. Assume 0 < s < %. Given that d > 1 and C > 0. There exist arbitrarily
large A € R and k > CN®, such that, any two lattice points k, £ € Z? that belong to the
annulus {x € R? : X\ < |2 < X\ + K} must satisfy |k — €] > d.

Remark 2.2. The annulus {z € R? : A < |z|? < X\ + k} described in the theorem
may contain either no lattice points, only one lattice point, or multiple lattice points.
However, when there are multiple lattice points within such an annulus, it is ensured
that the distance between any two lattice points is sufficiently large.

The following result shows the optimality of Theorem 2.1.

Proposition 2.3. Let o > 4+/2. For any sufficiently large X € R, there exist two integer
lattice points with a distance of 1, belonging to the annulus {x € R? : X < |z|*> <
A+ a4y,

Remark 2.4. In Theorem 2.1, the value « reflects the “width” of the annulus where lattice
points are sparsely distributed, with v/A being the inner radius of the annulus. These
parameters are related by the inequality k > CA® for 0 < s < %. Theorem 2.1 is sharp
because, if s reaches the threshold power of %, then the property of sparse distribution
of lattice points in annuli ceases to hold. It can be seen from Proposition 2.3 that for any
sufficiently large A, an annulus {2 € R? : X\ < |z|?> < XA + aAY/*}, with o > 44/2, must
contain at least two integer lattice points separated by a small distance of 1. Furthermore,
it is important to notice that the power 1/4 also appears in a classical result by Bambah
and Chowla [2], regarding the upper bound of large gaps between sums of two squares.
It fact, Bambah and Chowla’s result can be stated geometrically as follows: any annular
region {z € R? : X\ < |z < X + BAY4}, where 8 > 2v/2, must contain at least one
integer lattice point, for any large A. By comparison, in Bambah and Chowla’s result,
an annulus contains at least one lattice point, whereas, in Proposition 2.3, an annulus
contains at least two lattice points separated by a distance of 1.
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Our next result is about the sparse distribution of lattice points in spherical shells
in R3.

Theorem 2.5. Let d > 1. There exist arbitrarily large m € R™ and h > Cg\/logm for
some constant Cy depending only on d, such that, any two lattice points k,{ € Z3 that
belong to the spherical shell {x € R3 : m < |z|> < m + h} must satisfy |k — £| > d.

The next result complements Theorem 2.5. It provides a sufficient condition under
which the sparse distribution of lattice points in spherical shells does not occur.

Proposition 2.6. Let C' > 4+/8. For any sufficiently large m € R, there exist two integer
lattice points with a distance of 1, belonging to the spherical shell {x € R® :m < |z|* <
m+ Cm!/8}.

Remark 2.7.

(i) In Theorem 2.5, the value h exhibits the “thickness” of the spherical shell where
the lattice points are sparsely distributed. Theorem 2.5 states that h has a lower
bound Cz+/log m. On the other hand, Proposition 2.6 provides that h has an upper
bound C'm!'/® with C' > 4+/8. At and beyond this threshold, spherical shells no
longer contain sparsely distributed lattice points. An open problem is to find an
optimal asymptotic estimate for h, similar to what we have obtained for the 2D
case. It is also worth mentioning that the upper and lower bounds of h, namely,
Cygy/logm < h < Cm!'/8 align with the upper and lower bounds of large gaps
between sums of two squares specified in (1.2).

(ii) Because the gaps between sums of three squares are at most 3, there exists at least
one integer lattice point belonging to the spherical shell {z € R? : m < |z|?> < m+3}
for any real number m > 0. This fact complements Proposition 2.6.

3. Proof of Theorem 2.1 and Proposition 2.3
3.1. Proof of Theorem 2.1
We provide a proof of Theorem 2.1, which asserts the sparse distribution of lattice

points in annuli in R2. Before presenting the proof, we introduce a notation for asymp-
totic equivalence: given functions f(x) and g(z), we denote

f(x) ~ g(z) to mean lim ——= =1. (3.1)

Proof. We draw ideas from [9].
Assume the distance d > 1. Also, we fix an arbitrary constant C' > 0.
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Consider the family of disjoint annuli in R?:
NE ={z e R*: p+mr < |z> < p+ (m + 1)k},

where m € Z with 0 < m < J = [u'/?]. We set

1
k = Cu®, where O<s<1.

We aim to show that, for sufficiently large p, there exists m € [0, J] such that N
does not contain a pair of lattice points with a distance less than or equal to d.
The union of these annuli is denoted as

J
NH = UNgL:{xeRQ: p<|z)® < p+ (J+ 1)k}

m=0

Notice that N* is also an annulus.
We will estimate the thickness of the annulus N*:

thickness of N* = /p+ (J + 1)k — /1. (3.2)

Using J = [p'/?] and k = Cp® for 0 < s < 1

1, a simple calculation shows that, as

= 00,

thickrlless of N# _ 1L (3.3)
SO

thickness of N ~ %Cﬂs, namely, [AILII;O
Suppose there exist lattice points k, ¢ € Z? such that
k, ¢ € NE with 0 < |k — ¢ <d,
for some m € [0, J]. Let j = ¢ — k, then 0 < |j| < d. Since
|02 = k] + 2k - 5+ |5,
then
k-31< 5 |62 = 102]+ Sl < 5w+ 3%

because k,{ € N/. Since k and ¢ are interchangeable, we have also |¢ - j| < 1 + 1d2.
Therefore, the lattice points k and ¢ belong to the strip

1 1
no__ 2, s - -2
S’ —{xe]R by ]\<2/<a+2d }7 (3.4)
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for some j € Z? satisfying 0 < |j| < d. The strip S; is symmetric about the origin, and
also symmetric about the straight line = - 5 = 0.
We denote S* as the finite union:

st=J s

jez?
0<|j|<d

Note that the set S* contains all pairs of lattice points (k,¥) with distance less than or
equal to d belonging to an annulus N¥ for some m € [0, J]. In other words,

Stk teZ?: 0< |k—¢ <dwithk, € N for somem € [0,J]}.  (3.5)

We remark that constructing set S* is crucial for this proof.
Using (3.4), we observe that, for sufficiently large p,

the width of S% < 2k = 20" (3.6)
Also, as u — 00, asymptotically,
meas(S5 N N*) ~ 2(width of S}')(thickness of N*'). (3.7)
Combining (3.3), (3.6) and (3.7), it follows that, for sufficiently large pu,
meas (S} N N*) < 30212, (3.8)

Notice that the region SJ‘»‘ N N* is the intersection of an annulus and a strip symmetric
about the origin. As p — oo, both the thickness of the annulus and the width of the
strip approach infinity. Therefore, as u — oo, the number of integer lattice points in the
region S ;‘ N N* is asymptotically equal to its area:

card(S! N N* N Z*) ~ meas(S N N*). (3.9)

By (3.8) and (3.9), for sufficiently large p,

card(S} N N* N Z?) < 4C%p*. (3.10)

Moreover, since S* = J jcz2 5% is a finite union, then by (3.10), for sufficiently large p,
0<|j|<d

card(S* N N* N Z?) < 16d*C*u?*. (3.11)

If each of the disjoint sets S* N NX N Z? is not empty for every m € [0, J], where

J = |u'/?], then card(S* N N* N Z?) will grow at least as fast as u'/? as u — oo, which
contradicts (3.11) because 0 < 2s < 1/2. Therefore, for sufficiently large p, there exists
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mg € [0, J] such that the set S* NN/ NZ? is empty. Then, we conclude from (3.5) that
the annulus NJ, = does not contain two lattice points with a distance less than or equal
to d. Denote \ = u 4+ mgk, then

NE ={z € R?: p+mok < |z]> < p+ (mo + 1)k}
={reR?*: A< |z|> <A+ K} (3.12)
Notice that limuﬁm% =1 and kK = Cp®, and therefore, limy_, CTAS = 1, where 0 <

s < 1/4. Hence, we have k > %C)\S, for sufficiently large A. Also, the half open annulus
given in (3.12) can be easily adjusted to a closed annulus. O

3.2. Proof of Proposition 2.3

Proof. Let a > 4v/2. Consider an integer m = |\'/2]|. For any sufficiently large X, we
claim that VA + aA/4 —m2 — /A —m2 > 2. Indeed,

a/\1/4
VA + a4 —m2 4 /A —m2

VAt a /4 —m2 — /N —m? =

Oé)\l/4

- VA+ a4 — (A2 —1)2 4 /X — (A1/2 - 1)2
all/4 «

T Va1 T+ VNP -1 2V2

> 2, as A — oo. (3.13)

Thus, there exists a positive integer n such that

Vi—-m2<n<n+1<vVA+a\l/4—m2 (3.14)

It follows that the integer lattice points (m,n) and (m,n+1) both belong to the annulus
{reRZ: A< |z)2 <A+ a4} O

4. Proof of Theorem 2.5 and Proposition 2.6

This section is devoted to the proof of Theorem 2.5. It is about the sparse distribution
of lattice points in spherical shells in R3. Before presenting the proof, we introduce some
concepts in number theory and state some lemmas.

4.1. Definitions and lemmas

Let us recall the definitions of the Legendre symbol and the Kronecker symbol. One
may refer to classic books [7,8]. The notation p f m means that p does not divide m.
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Definition 4.1. Given an odd prime p > 0 and an integer m with p { m. The integer m
is called a quadratic residue mod p if m = k* (mod p) for some k € Z. If the equation
m = k? (mod p) has no solution k, then m is called a quadratic non-residue mod p. The
Legendre symbol is defined as

(m) ~J1 ifmis a quadratic residue mod p, (4.1)
p —1 if m is a quadratic non-residue mod p. .

In the theory of quadratic forms, the discriminant d = b?> — 4ac is considered, which
implies d = 0 or 1 (mod 4). Under this scenario, we define the Kronecker symbol as
follows.

Definition 4.2. Assume d = 0 or 1 (mod 4) and d # 0. Let n > 0 with the prime
factorization n = H;?:l pj. Assume ged(d, n) = 1. The Kronecker symbol (%) is defined

(©)-11:)

Jj=1

as

where (%) is the Legendre symbol for odd prime p with p{d, and

dy J1 ifd=1(modS8),
<5) - {—1 itd =5 (mod 8). (43)

The Kronecker symbol (%) can be extended to negative values of n by using (%) =

(i) (L) with (_il) — 1 when d > 0; (_il) — —1 when d < 0.

-1 m

The Kronecker symbol has the property

<i> = (i> , ifny =ng (mod d) and d=0or 1 (mod 4), (4.4)
ny U»)

provided d # 0, n; # 0, and ged (d,n;) =1, for j =1,2.
Lemma 4.3 and Lemma 4.4 have been proved by Mallet-Paret and Sell in [9].

Lemma 4.3. (Mallet-Paret and Sell [9]) Let D C Z be a finite nonempty set of integers
d =0 or 1 (mod 4), with the property that [, 4 d is not a perfect square whenever
A C D has odd cardinality. Then there exists an integer r # 0 such that

ged(d,r) =1 and (C—l> =-1

r

for each d € D.
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Before stating the next lemma, we introduce some notations. Let p > 0 be a prime.
We use notations p|.n and p|,n to represent that p divides n an even or odd number
of times, respectively. More precisely, we write

plen

to mean either n = p*m where « is even and p ¥ m, or else n = 0. Note that a = 0 is
permitted, so p|.n holds if p { n. Similarly, we write

plon

to mean n = p®m, where « is odd and p { m.

Lemma 4.4. (Mallet-Paret and Sell [9]) Consider a quadratic form T(kyi, ks) = ak? +
bkiky + ck3 with integer coefficients and discriminant d = b*> — 4ac, and let p be a prime

satisfying pt d and (%) = —1. Then

p |6T(k17 k2)
for any ki, ko € Z.

Remark 4.5. In [9], Lemma 4.4 was proved for odd prime p. The same conclusion holds
for the case p = 2, and we briefly show the proof as follows. Let p = 2. Since (%) = -1,
then d = 5 (mod 8) by (4.3). Then, d*> = 9 (mod 16). Since 2 { d and d = b? — 4ac, we
obtain that b is odd. Then, a and ¢ must both be odd. In fact, if either a or c is even,
then d* = (b? — 4ac)? = 1 (mod 16), contradicting that d> = 9 (mod 16). Therefore, we
conclude that all of a, b, ¢ are odd, namely, coefficients of quadratic form T'(ky, k2) are all
odd. Therefore, if 2 divides T'(k1, k2), then 2 divides both k; and ko, and thus 4 divides

T(k1, ko). Repeatedly factoring out 4 gives that 2|, T'(k1, k2).

The following lemma is motivated by the works in [10,9]. It’s essential to emphasize
that we present a logarithmic-type estimate for the length of an interval, satisfying the
condition that a family of quadratic forms does not take values within the interval. It is a
generalization of Richards’ result in [10] to a family of quadratic forms. This logarithmic-
type estimate plays a critical role in justifying Theorem 2.5, which concerns the thickness
of spherical shells containing sparsely distributed lattice points.

Lemma 4.6. Let D C Z be a finite nonempty set of integers d =0 or 1 (mod 4), with the
property that [[,c 4 d is not a perfect square whenever A C D has odd cardinality. There
exist arbitrarily large m and h > C'logm for some constant C' > 0 that depends solely
on D, satisfying: if T is any quadratic form

T(ky, ko) = aki + bkiks + ck3, a,b,c €7,
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with discriminant d = b — 4ac € D, then
T(ky,k2) & [m,m+ h] for each ki,ks € Z.

Remark 4.7. If D contains only negative integers, then obviously [ ], 4 d is not a perfect
square whenever A C D has odd cardinality.

Proof. The argument adopts ideas from [10,9]. Thanks to Lemma 4.3, there exists r # 0
such that

ged (d,r) =1 and (C—l> =—1, foreach deD. (4.5)
r
Define
0:= lem {|d| : d € D}. (4.6)

Note, (4.5) and (4.6) imply that ged (6,7) = 1. Let h > 0 and set

A:= sup |r+dj|. (4.7
0<j<h
Define P be the product
g AR (4.8)

where the product is taken over all primes p with
pfé and p* < A< p't® for some integer o« > 0. (4.9)

Because of (4.8) and (4.9), we have ged(P,d) = 1. Then, by Bezout’s identity, there
exists an integer m € [1, P| satisfying

om =r (mod P). (4.10)

We argue that h > C'logm, if h is sufficiently large. Indeed, the number of primes

p < A is asymptotic to @. Therefore, for A sufficiently large, the number of primes
p < A is less than %.
By (4.8) and (4.9), we obtain that
P=I]p+ <J]p* < J] A% < Avix = ', (4.11)

Due to (4.7), we have, for sufficiently large h,

A < |r| + 6h < 26h. (4.12)
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Because of (4.11) and (4.12) together with the fact m < P, we conclude that, for
sufficiently large h,

m < S, (4.13)

Inequality (4.13) can be written as h > g logm, for sufficiently large h.

We claim that T'(k1, k2) & [m,m + h] for any k1, ke € Z.

Indeed, thanks to Lemma 4.4, it is sufficient to show that whenever 0 < j < h and
d = b — 4ac € D, there exists a prime number p satisfying

d

p1d, (p) =—1, and pl, (m+j). (4.14)

We take an arbitrary integer j € [0, h]. Note, r 4+ 65 = r (mod d) due to (4.6). Thus,
we obtain from (4.4) and (4.5) that

()= (D) - s

Since ged(d,r) = 1 and d divides §, we see that ged(d,r + §j) = 1.
We write the prime factorization for r + dj = [[p® and use (4.2) to obtain that

(ﬁ) =11 (%) = —1. It follows that there exists a prime p { d with (%) = -1

satisfying

plo(r+67), (4.16)

namely, p divides r + 7 an odd number of times.

Since ged (6,7) = 1 and using (4.16), we have p 1 §. Then, because of (4.7), (4.8) and
(4.9), we see that p, as a factor of P, occurs with a greater multiplicity than as a factor
of r + 07. Moreover, by (4.10),

d(m+j) =r+ 47 (mod P).

As a result, p divides 6(m + j) and r + 65 the same number of times. Then, due to (4.16)
and p 19, it follows that p|, (m + j) as claimed in (4.14). O

Proposition 4.8. Consider a quadratic function T(ky, ka) = ak3+bkyka—+ck3+sky+tke+u
for ki, ks € Z, where coefficients a,b,c,s,t,u € Q such that b*> — 4ac # 0. Then there
exist &1, &2, &3 € Q such that T(x1+&1, 2o+E&) — &3 = ax? +bxyxo+cad for all xy, 19 € Q.

Proof. Let us explicitly find &, &2,&3 € Q such that the following equality holds for all
r1, Ty € Q. Consider
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T(z1 + &, 72 + &) — & = az + br1mo + cas + x1(2a&; + by + 8) + o(2c€2 + b1 +t)
+ (aff + b€1&0 + cf% +8& +t&a+u—E&) = ax% + brixo + cm%.

Therefore,

2a§1—|—b£2+820

2C£2+b€1 +t=0

a&f + 0616 + &3 + &+t +u— & =0.
Hence,

&Y (22 b s _ 1 2¢ =b\ [—-s\ _ 1 —2c¢s + bt
EQ - b 2c —t B 4dac — b2 —-b 2a —t - dac — b2 bs — 2at ’

It follows that

bt — 2¢s bs — 2at
_ -z - 4.1
& 4dac — b2’ & dac — b2 (4.17)
With values of &1 and &3, we can find the value of 5:
&3 = aly +bi1&o + &3 + s& +t& +u. O (4.18)

4.2. Proof of Theorem 2.5

With the preparations above, now we are ready to prove Theorem 2.5.

Proof. We adopt ideas from [9]. Let us fix a distance d > 1. Consider a spherical shell
in R3:

N={zecR®: m<|z|> <m+h}.
Suppose there exist lattice points k, ¢ € Z3 such that
k¢ e N with 0< |k -/ <d. (4.19)
Let j = — k, then 0 < |j| < d. Thus, |£|> = |k|* + |j|* + 2k - j. It follows that
1 1
]{i"<—k2—£2 _-2<
k-1 < 5 |IkIP = 17| + 5131° <

1,1
“h+ -d?
3" Tt

because k,f € N.
We denote n = k - j. Then n € Z satisfying

11
Inl =1k j| < Sh+ 5d?. (4.20)
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Since j = (j1,J2,J3) # 0, without loss of generality, we assume j3 # 0. For k =
(K1, ka, ks), solving n =k - j = k1j1 + kaja + ksjs, we obtain
ks = j3 ' (n — kiji — kaja).
Thus,
|6 = k3 + k3 + 55 (kajn + kzjz — n)?
= J5 2 [T + 33)kT + (25172 kiks + (33 + J3)K3 — 2njiks — 2njaks + n?)]
== Tj,n(klv ]{52), (421)

where j € Z*, n € Z such that 0 < [j| < d and |n| < 1h + 3d?. Since k € N, we know
that

Tjn(k1, k2) € [m,m + h]. (4.22)

We remark that the function Tj, defined in (4.21) is a function of the form
Tjn(k1, ko) = ak} + bkiks + ck3 + sky + tks + u where coefficients a,b,c, s, t,u € Q
and b? — 4ac < 0. Thanks to Proposition 4.8, there exist rational numbers &1, & and &3
such that

Tjn(21 + &1, 20 + &) — &3 = j3 2(57 + 32)a? + (245 2grje) 122 + j3 2(43 + j2)x,
(4.23)

for all rational numbers z1 and 5. Moreover, due to (4.17) and (4.18) and straightforward
calculation, we obtain

. . 2
nj1 nj2 n
S =rn =75 S=13 (4.24)
vk vk Mk
Without loss of generality, we assume d is an integer. We set
B =lem{1%22,3% ... d*}. (4.25)

Consider arguments of the form x; = % and x5 = % Then, by (4.23), we obtain

[Tj,n(i—l ra,216) - sg] g

3 3
= B3 231 + 33)iT + (2843 *rj2)ivia + Biz (J3 + 43)i3
=: T (i1, 12). (4.26)

Because of (4.25), & + ¢ and 2 + & can take any integer values by adjusting i; and
3 3T

i2. Also due to (4.25) and (4.26), T}(i1,42) is a quadratic form with integer coefficients
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and negative discriminant. Note, j belongs to a finite set. Thanks to Lemma 4.6 and
Remark 4.7, there exist arbitrary large mg and hg > C'log mg such that

T;(i1,i2) & [mo, mo + ho, for any iy,iy € Z, and for any j € Z* with 0 < |j| < d.

(4.27)
For sufficiently large hg, we can find h > 0 satisfying
1
ho = (h + Z(h + d2)2) B3. (4.28)
Then, we set
Mo Ly ay (4.29)
p3 4
Due to (4.24) and (4.20), we have
n? 1 o2
gszwgz(h—kd). (4.30)

Using (4.26)-(4.30), we obtain

Tj,n(% Le, % +6) ¢ [m- %(h+d2)2 & mAh+&| O mym b, (4.31)

for any iy,i5 € Z. In particular, there exist 41,73 € Z such that k1 = % + & and
ky = % + &2, and thus (4.31) shows that T}, (k1,k2) & [m,m + h], which contradicts
(4.22). Therefore, for these pairs of m and h, (4.19) cannot happen. Thus, for any one
of these pairs of m and h, if there exist two lattice points k, ¢ € Z3 that belong to the
spherical shell {z € R3 :m < |z|?> < m + h}, then |k — ¢| > d.

Recall that we fix d at the beginning. Then, due to (4.28) and (4.29), asymptotically,

1. 1
ho ~ Zﬂ%z, m e~ —=mg.

B

Thus, along with the fact that hg > C'logmg, we conclude that

h > C’\/logm,

for sufficiently large m, where the constant C' depends on d. O
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4.8. Proof of Proposition 2.6

Proof. Let C' > 4+/8. For any sufficiently large real number m > 0, it is easy to verify
that vVm +Cml/8 —s — \/m —s > 2, for any s € N satisfying m — gm'/* < s < m,

where 2v/2 < f < (17—;. Therefore, there exists a positive integer n such that

vVm—s<n<n+1<vVm+Cmb/®—s, (4.32)

By Bambah and Chowla [2], for any large m € R, there exists s = k% + 12, k,l € Z,
such that m — fm'/* < s < m, since § > 2v/2. Consequently, the spherical shell {z €
R3 :m < |z|?2 < m + Cm!/8} contains lattice points (k,1,n) and (k,I,n+1). O

4.4. Remarks

Theorem 2.5 shows the existence of spherical shells {z € R : m < |z]> < m + h}
in which lattice points are sparsely distributed. Here, m can be arbitrarily large, and
h > C+/logm. The optimality of the order v/log m is unknown, but it is closely connected
to the logarithmic size of large gaps between sums of two squares due to Richards [10].
The proof of Theorem 2.5 relies on Lemma 4.6, which extends Richards’ result to a family
of quadratic forms. An important element of the proof is the prime number theorem.

Suppose Theorem 2.5 holds true for a higher order h = h(m) with ;% — 00 as

m — oo. Let’s take d = 1. If m is sufficiently large, then vVm +h —s — /m —s > 2,
for any s € N satisfying m — ch? < s < m, where 0 < ¢ < %. Thus, there exists a
positive integer n such that vm —s <n <n+1<+vVm+h—s. If s = k%412, then
the spherical shell {z € R® : m < |z|> < m + h} contains lattice points (k,l,n) and
(k,1,n + 1). However, according to our assumption, there exist arbitrarily large values

of m such that any two lattice points in the spherical shell {z € R? : m < |z|? < m+ h}
must be separated by a distance strictly greater than d = 1. Therefore, for these values
of m, any s € (m — ch?,m) cannot be expressed as a sum of two squares. This would

improve the logarithmic size of large gaps between sums of two squares, since we assume
h(m)
V1ogm

surpass the logarithmic order discovered by Richards in [10].

— o0 as m — oo. However, as of now, there have been no advancements that

5. Discussion

In this section, we discuss some related problems and future work.

The original motivation of this project was to find an optimal estimate for large gaps
between sums of two squares, and this remains its long-term goal. It is an important
open problem whether one can improve the logarithmic growth rate of the lower bound
for large gaps between sums of two squares presented in (1.2). Also, it is interesting to
ask whether one can reduce the polynomial growth rate (the power of 1/4) of the upper
bound in (1.2).
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We would like to draw some naive comparisons with a related problem: gaps between

T
logz?

primes. It is well-known that the number of primes less than x is approximately
whereas the number of sums of two squares less than = behaves asymptotically as %,
where b is the Landau—Ramanujan constant. Therefore, there are fewer primes than sums
of two squares in [0, 2] for large x. Thus, on average, sums of two squares are distributed
more densely than primes throughout the natural numbers. It is a classical result of
Westzynthius [12] that

limsuplM = 00, (5.1)

n—o0 log pn,

where p,, is the sequence of primes. By comparing (5.1) and (1.1), we see that large
gaps between primes might grow faster than large gaps between sums of two squares

asymptotically. Also, it is worth mentioning that gaps between primes have an upper
bound

Pn+1 — Pn S pfm (52)

with an estimate 6 = 0.525, for sufficiently large n (see [1]). One can compare § = 0.525
in (5.2) with the exponent 1/4 in (1.2) concerning the upper bound of gaps between
sums of two squares. Furthermore, we would like to mention the twin prime conjecture
regarding small gaps between primes; however, small gaps between sums of two squares
are always 1, which is trivial. All of the above observations show that, in general, sums
of two squares appear more frequently than primes within the set of positive integers.
See [11] for more discussion on this topic.

Regarding the sparse distribution of lattice points in annuli in R?, we have already
achieved an optimal asymptotic result concerning the width of these annuli in this paper.
However, in three dimensions, the optimality of our estimates remains unknown, making
it interesting to explore the possibility of refining the thickness of these spherical shells
provided in Theorem 2.5. This inquiry is closely related to the study of large gaps between
sums of two squares. Furthermore, our proofs contain deep geometric perspectives that
can be explored further to generate other useful results. Most importantly, our findings
on the sparse distribution of lattice points in annuli have the potential for applications
in simplifying infinite-dimensional dissipative dynamical systems to finite-dimensional
counterparts, particularly in solving the inertial manifold problem for the Navier-Stokes
equations. For an example of such applications, please refer to [9].

Sums of squares are eigenvalues of the Laplacian on a periodic domain. Likewise, we
can consider gaps between eigenvalues of the Dirichlet Laplacian on a bounded domain
in R™, or more generally, on an n-dimensional Riemannian manifold. In these cases,
explicit expressions of eigenvalues are usually not available. An important problem is
to find sharp estimates for the upper and lower bounds of the size of the gaps between
eigenvalues of the Dirichlet Laplacian. Please refer to [3] for an estimate of the upper
bound.
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