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This paper is inspired by Richards’ work on large gaps 
between sums of two squares [10]. It is shown in [10] that there 
exist arbitrarily large values of λ and μ, where μ ≥ C log λ, 
such that intervals [λ, λ + μ] do not contain any sums of 
two squares. Geometrically, these gaps between sums of two 
squares correspond to annuli in R2 that do not contain any 
integer lattice points. A major objective of this paper is to 
investigate the sparse distribution of integer lattice points 
within annular regions in R2. Specifically, we establish the 
existence of annuli {x ∈ R2 : λ ≤ |x|2 ≤ λ + κ} with 
arbitrarily large λ and κ ≥ Cλs for 0 < s < 1

4
, satisfying 

that any two integer lattice points within any one of these 
annuli must be sufficiently far apart. This result is sharp, as 
such a property ceases to hold at and beyond the threshold 
s = 1

4
. Furthermore, we extend our analysis to include the 

sparse distribution of lattice points in spherical shells in R3.
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1. Introduction

This article is inspired by Richards’ paper on large gaps between integers that can be 

expressed as sums of two squares [10]. It is proved in [10] that large gaps between sums 

of two squares increase at least logarithmically as an asymptotic rate. More precisely, let 

s1, s2, · · · be the sequence, arranged in increasing order, of sums of two squares x2 + y2, 

then

lim sup
n→∞

sn+1 − sn

log sn
≥ C > 0. (1.1)

In [10], C = 1
4 ; but this constant has been improved to C ≈ 0.87 in [4] by Dietmann et al. 

The logarithmic-type estimate (1.1), established by Richards, represents an improvement 

over a result by Erdös [5].

Note that, formula (1.1) can be interpreted as stating that there exist arbitrarily large 

values of n for which sn+1 −sn ≥ α log sn, where α > 0. In other words, the lower bound 

of large gaps between sums of two squares increases logarithmically. Geometrically, these 

gaps between sums of two squares correspond to annular regions in R2 that contain no 

integer lattice points. Therefore, Richards’ result [10] can be restated as follows: there 

exist arbitrarily large values of λ and μ, where μ ≥ α log λ, such that intervals [λ, λ + μ]

do not contain sums of two squares, meaning that there are no integer lattice points in 

annuli {x ∈ R2 : λ ≤ |x|2 ≤ λ + μ}.

On the other hand, there has been research in the literature regarding the upper 

bound of large gaps between sums of two squares. Bambah and Chowla [2] proved that if 

β > 2
√

2, then for all large integers k, there are integers u and v such that k ≤ u2 +v2 <

k + βk
1
4 . This implies that gaps between sums of two squares have an upper bound of 

polynomial growth rate. In particular, sn+1 − sn ≤ βs
1
4
n for sufficiently large n, where 

{sn} is the sequence of sums of two squares arranged in increasing order. Also, Shiu [11]

provided a very short proof of the Bambah-Chowla theorem.

By combining the results from [2] and [10], it can be concluded that large gaps be-

tween sums of two squares have both lower and upper bounds. Specifically, there exist 

arbitrarily large n for which:

α log sn ≤ sn+1 − sn ≤ βs
1
4
n , (1.2)

for some positive constants α and β.

Geometrically, gaps between sums of two squares correspond to annuli in R2 that 

contain no integer lattice points, and the size of the gap is related to the thickness of the 

annulus. Motivated by this geometric perspective on gaps between sums of two squares, 

our study focuses on the sparse distribution of integer lattice points within annular 

regions. Specifically, we aim to identify annuli in R2 where any two integer lattice points 

inside such an annulus are sufficiently distant from each other. We anticipate that an 

annulus containing sparsely distributed lattice points will have greater thickness than 
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one with no lattice points. To formalize this, we prove that, for any large distance d, 

there exist arbitrarily large λ and κ ≥ Cλs, where 0 < s < 1
4 , satisfying the condition 

that any two integer lattice points belonging to the annulus {x ∈ R2 : λ ≤ |x|2 ≤ λ + κ}
must be separated by a distance greater than d. It’s essential to note that the polynomial 

growth rate of the interval’s length, i.e., κ ≥ Cλs with 0 < s < 1
4 , is significantly larger 

than the logarithmic growth rate of large gaps between sums of two squares. Our result 

is sharp in the sense that such a property of sparse lattice point distribution ceases to 

hold, at and beyond the threshold s = 1
4 .

We also consider three dimensions. There are no large gaps between sums of three 

squares. Due to the representation of sums of three squares (as seen in, e.g., [6]), the 

gaps between sums of three squares can only be 1, 2 or 3. Consequently, if [m, m + δ]

does not contain sums of three squares, then 0 < δ < 3. In other words, if a spherical 

shell {x ∈ R3 : m ≤ |x|2 ≤ m + δ} does not contain any integer lattice points, then 

0 < δ < 3. This suggests that a spherical shell that contains no integer lattice points 

has small thickness. However, in this paper, we show that a spherical shell containing 

sparsely distributed lattice points can have a more substantial thickness. In particular, we 

establish that, for any large distance d, there exist arbitrarily large m and h ≥ Cd

√
log m, 

satisfying the condition that any two integer lattice points belonging to the spherical 

shell {x ∈ R3 : m ≤ |x|2 ≤ m + h} must be separated by a distance greater than d. 

Moreover, we prove that if h reaches the order of h ∼ Cm1/8, then the property of sparse 

distribution of lattice points in spherical shells ceases to hold.

Large gaps between sums of squares and the sparse distribution of integer lattice points 

in annular regions have significant applications in the study of the long-term behavior of 

dissipative dynamical systems. One example of a dissipative dynamical system, modeled 

by nonlinear partial differential equations, is the reaction-diffusion equation:

∂tu − ∆u + f(u) = 0, (1.3)

where f(u) is a nonlinear term, such as f(u) = u3. When studying this equation on a 

two-dimensional periodic physical domain, the solution u can be represented as a Fourier 

series: u(x, t) =
∑

k∈Z2 û(k, t)eik·x for x ∈ T 2 = [0, 2π]2, t ≥ 0. In the Hilbert space 

L2(T 2), the Laplace operator −∆ has eigenfunctions {eik·x} with corresponding eigen-

values {k2
1 + k2

2}, where k = (k1, k2) ∈ Z2. It’s important to note that these eigenvalues 

{k2
1 + k2

2} are sums of two squares.

In general, a PDE can be considered as a system of infinitely many ODEs with in-

finitely many unknowns û(k, t), where k ∈ Z2. Some nonlinear dissipative PDEs can be 

reduced to a system of finitely many ODEs as t → ∞. This type of finite-dimensional 

reduction often relies on the existence of large gaps between the eigenvalues of the Lapla-

cian. In fact, large gaps between sums of two squares, as demonstrated in Richards’ result 

[10], can lead to the finite-dimensional reduction for certain dissipative PDEs, such as 

the reaction-diffusion equation (1.3) in a 2D periodic domain.
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However, in some cases, large gaps between the eigenvalues of the Laplacian are not 

available. For instance, if one considers the Laplacian operator acting on functions defined 

in a 3D periodic domain, the eigenvalues are sums of three squares, which do not exhibit 

large gaps. In such scenarios, the sparse distribution of integer lattice points in spherical 

shells can be valuable in reducing a dissipative PDE to a finite-dimensional system 

at large times. For example, an important work by Mallet-Paret and Sell [9] shows 

a finite-dimensional simplification for 3D reaction-diffusion equations using the sparse 

distribution of lattice points in spherical shells.

2. Statements of main results

Our first result is concerned with the sparse distribution of lattice points in annuli in 

R2.

Theorem 2.1. Assume 0 < s < 1
4 . Given that d ≥ 1 and C > 0. There exist arbitrarily 

large λ ∈ R+ and κ ≥ Cλs, such that, any two lattice points k, 	 ∈ Z2 that belong to the 

annulus {x ∈ R2 : λ ≤ |x|2 ≤ λ + κ} must satisfy |k − 	| > d.

Remark 2.2. The annulus {x ∈ R2 : λ ≤ |x|2 ≤ λ + κ} described in the theorem 

may contain either no lattice points, only one lattice point, or multiple lattice points. 

However, when there are multiple lattice points within such an annulus, it is ensured 

that the distance between any two lattice points is sufficiently large.

The following result shows the optimality of Theorem 2.1.

Proposition 2.3. Let α > 4
√

2. For any sufficiently large λ ∈ R+, there exist two integer 

lattice points with a distance of 1, belonging to the annulus {x ∈ R2 : λ ≤ |x|2 ≤
λ + αλ1/4}.

Remark 2.4. In Theorem 2.1, the value κ reflects the “width” of the annulus where lattice 

points are sparsely distributed, with 
√

λ being the inner radius of the annulus. These 

parameters are related by the inequality κ ≥ Cλs for 0 < s < 1
4 . Theorem 2.1 is sharp 

because, if s reaches the threshold power of 1
4 , then the property of sparse distribution 

of lattice points in annuli ceases to hold. It can be seen from Proposition 2.3 that for any 

sufficiently large λ, an annulus {x ∈ R2 : λ ≤ |x|2 ≤ λ + αλ1/4}, with α > 4
√

2, must 

contain at least two integer lattice points separated by a small distance of 1. Furthermore, 

it is important to notice that the power 1/4 also appears in a classical result by Bambah 

and Chowla [2], regarding the upper bound of large gaps between sums of two squares. 

It fact, Bambah and Chowla’s result can be stated geometrically as follows: any annular 

region {x ∈ R2 : λ ≤ |x|2 ≤ λ + βλ1/4}, where β > 2
√

2, must contain at least one 

integer lattice point, for any large λ. By comparison, in Bambah and Chowla’s result, 

an annulus contains at least one lattice point, whereas, in Proposition 2.3, an annulus 

contains at least two lattice points separated by a distance of 1.
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Our next result is about the sparse distribution of lattice points in spherical shells 

in R3.

Theorem 2.5. Let d ≥ 1. There exist arbitrarily large m ∈ R+ and h ≥ Cd

√
log m for 

some constant Cd depending only on d, such that, any two lattice points k, 	 ∈ Z3 that 

belong to the spherical shell {x ∈ R3 : m ≤ |x|2 ≤ m + h} must satisfy |k − 	| > d.

The next result complements Theorem 2.5. It provides a sufficient condition under 

which the sparse distribution of lattice points in spherical shells does not occur.

Proposition 2.6. Let C > 4 4
√

8. For any sufficiently large m ∈ R+, there exist two integer 

lattice points with a distance of 1, belonging to the spherical shell {x ∈ R3 : m ≤ |x|2 ≤
m + Cm1/8}.

Remark 2.7.

(i) In Theorem 2.5, the value h exhibits the “thickness” of the spherical shell where 

the lattice points are sparsely distributed. Theorem 2.5 states that h has a lower 

bound Cd

√
log m. On the other hand, Proposition 2.6 provides that h has an upper 

bound Cm1/8 with C > 4 4
√

8. At and beyond this threshold, spherical shells no 

longer contain sparsely distributed lattice points. An open problem is to find an 

optimal asymptotic estimate for h, similar to what we have obtained for the 2D 

case. It is also worth mentioning that the upper and lower bounds of h, namely, 

Cd

√
log m ≤ h < Cm1/8, align with the upper and lower bounds of large gaps 

between sums of two squares specified in (1.2).

(ii) Because the gaps between sums of three squares are at most 3, there exists at least 

one integer lattice point belonging to the spherical shell {x ∈ R3 : m ≤ |x|2 ≤ m +3}
for any real number m ≥ 0. This fact complements Proposition 2.6.

3. Proof of Theorem 2.1 and Proposition 2.3

3.1. Proof of Theorem 2.1

We provide a proof of Theorem 2.1, which asserts the sparse distribution of lattice 

points in annuli in R2. Before presenting the proof, we introduce a notation for asymp-

totic equivalence: given functions f(x) and g(x), we denote

f(x) ∼ g(x) to mean lim
x→∞

f(x)

g(x)
= 1. (3.1)

Proof. We draw ideas from [9].

Assume the distance d ≥ 1. Also, we fix an arbitrary constant C > 0.
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Consider the family of disjoint annuli in R2:

Nμ
m = {x ∈ R2 : μ + mκ < |x|2 ≤ μ + (m + 1)κ},

where m ∈ Z with 0 ≤ m ≤ J = 
μ1/2�. We set

κ = Cμs, where 0 < s <
1

4
.

We aim to show that, for sufficiently large μ, there exists m ∈ [0, J ] such that Nμ
m

does not contain a pair of lattice points with a distance less than or equal to d.

The union of these annuli is denoted as

Nμ =

J
⋃

m=0

Nμ
m = {x ∈ R2 : μ < |x|2 ≤ μ + (J + 1)κ}.

Notice that Nμ is also an annulus.

We will estimate the thickness of the annulus Nμ:

thickness of Nμ =
√

μ + (J + 1)κ − √
μ. (3.2)

Using J = 
μ1/2� and κ = Cμs for 0 < s < 1
4 , a simple calculation shows that, as 

μ → ∞,

thickness of Nμ ∼ 1

2
Cμs, namely, lim

μ→∞
thickness of Nμ

1
2Cμs

= 1. (3.3)

Suppose there exist lattice points k, 	 ∈ Z2 such that

k, 	 ∈ Nμ
m with 0 < |k − 	| ≤ d,

for some m ∈ [0, J ]. Let j = 	 − k, then 0 < |j| ≤ d. Since

|	|2 = |k|2 + 2k · j + |j|2,

then

|k · j| ≤ 1

2

∣

∣|k|2 − |	|2
∣

∣ +
1

2
|j|2 <

1

2
κ +

1

2
d2,

because k, 	 ∈ Nμ
m. Since k and 	 are interchangeable, we have also |	 · j| < 1

2κ + 1
2d2. 

Therefore, the lattice points k and 	 belong to the strip

Sμ
j =

{

x ∈ R2 : |x · j| <
1

2
κ +

1

2
d2

}

, (3.4)
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for some j ∈ Z2 satisfying 0 < |j| ≤ d. The strip Sj is symmetric about the origin, and 

also symmetric about the straight line x · j = 0.

We denote Sμ as the finite union:

Sμ =
⋃

j∈Z
2

0<|j|≤d

Sμ
j .

Note that the set Sμ contains all pairs of lattice points (k, 	) with distance less than or 

equal to d belonging to an annulus Nμ
m for some m ∈ [0, J ]. In other words,

Sμ ⊃
{

k, 	 ∈ Z2 : 0 < |k − 	| ≤ d with k, 	 ∈ Nμ
m for some m ∈ [0, J ]

}

. (3.5)

We remark that constructing set Sμ is crucial for this proof.

Using (3.4), we observe that, for sufficiently large μ,

the width of Sμ
j ≤ 2κ = 2Cμs. (3.6)

Also, as μ → ∞, asymptotically,

meas(Sμ
j ∩ Nμ) ∼ 2(width of Sμ

j )(thickness of Nμ). (3.7)

Combining (3.3), (3.6) and (3.7), it follows that, for sufficiently large μ,

meas(Sμ
j ∩ Nμ) ≤ 3C2μ2s. (3.8)

Notice that the region Sμ
j ∩Nμ is the intersection of an annulus and a strip symmetric 

about the origin. As μ → ∞, both the thickness of the annulus and the width of the 

strip approach infinity. Therefore, as μ → ∞, the number of integer lattice points in the 

region Sμ
j ∩ Nμ is asymptotically equal to its area:

card(Sμ
j ∩ Nμ ∩ Z2) ∼ meas(Sμ

j ∩ Nμ). (3.9)

By (3.8) and (3.9), for sufficiently large μ,

card(Sμ
j ∩ Nμ ∩ Z2) ≤ 4C2μ2s. (3.10)

Moreover, since Sμ =
⋃

j∈Z
2

0<|j|≤d

Sμ
j is a finite union, then by (3.10), for sufficiently large μ,

card(Sμ ∩ Nμ ∩ Z2) ≤ 16d2C2μ2s. (3.11)

If each of the disjoint sets Sμ ∩ Nμ
m ∩ Z2 is not empty for every m ∈ [0, J ], where 

J = 
μ1/2�, then card(Sμ ∩ Nμ ∩ Z2) will grow at least as fast as μ1/2 as μ → ∞, which 

contradicts (3.11) because 0 < 2s < 1/2. Therefore, for sufficiently large μ, there exists 
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m0 ∈ [0, J ] such that the set Sμ ∩ Nμ
m0

∩ Z2 is empty. Then, we conclude from (3.5) that 

the annulus Nμ
m0

does not contain two lattice points with a distance less than or equal 

to d. Denote λ = μ + m0κ, then

Nμ
m0

= {x ∈ R2 : μ + m0κ < |x|2 ≤ μ + (m0 + 1)κ}

= {x ∈ R2 : λ < |x|2 ≤ λ + κ}. (3.12)

Notice that limμ→∞
λ
μ = 1 and κ = Cμs, and therefore, limλ→∞

Cλs

κ = 1, where 0 <

s < 1/4. Hence, we have κ ≥ 1
2Cλs, for sufficiently large λ. Also, the half open annulus 

given in (3.12) can be easily adjusted to a closed annulus. �

3.2. Proof of Proposition 2.3

Proof. Let α > 4
√

2. Consider an integer m = 
λ1/2�. For any sufficiently large λ, we 

claim that 
√

λ + αλ1/4 − m2 −
√

λ − m2 > 2. Indeed,

√

λ + αλ1/4 − m2 −
√

λ − m2 =
αλ1/4

√
λ + αλ1/4 − m2 +

√
λ − m2

≥ αλ1/4

√

λ + αλ1/4 − (λ1/2 − 1)2 +
√

λ − (λ1/2 − 1)2

=
αλ1/4

√
αλ1/4 + 2λ1/2 − 1 +

√
2λ1/2 − 1

∼ α

2
√

2
> 2, as λ → ∞. (3.13)

Thus, there exists a positive integer n such that

√

λ − m2 ≤ n < n + 1 ≤
√

λ + αλ1/4 − m2. (3.14)

It follows that the integer lattice points (m, n) and (m, n +1) both belong to the annulus 

{x ∈ R2 : λ ≤ |x|2 ≤ λ + αλ1/4}. �

4. Proof of Theorem 2.5 and Proposition 2.6

This section is devoted to the proof of Theorem 2.5. It is about the sparse distribution 

of lattice points in spherical shells in R3. Before presenting the proof, we introduce some 

concepts in number theory and state some lemmas.

4.1. Definitions and lemmas

Let us recall the definitions of the Legendre symbol and the Kronecker symbol. One 

may refer to classic books [7,8]. The notation p � m means that p does not divide m.
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Definition 4.1. Given an odd prime p > 0 and an integer m with p � m. The integer m

is called a quadratic residue mod p if m ≡ k2 (mod p) for some k ∈ Z. If the equation 

m ≡ k2 (mod p) has no solution k, then m is called a quadratic non-residue mod p. The 

Legendre symbol is defined as

(

m

p

)

=

{

1 if m is a quadratic residue mod p ,

−1 if m is a quadratic non-residue mod p .
(4.1)

In the theory of quadratic forms, the discriminant d = b2 − 4ac is considered, which 

implies d = 0 or 1 (mod 4). Under this scenario, we define the Kronecker symbol as 

follows.

Definition 4.2. Assume d ≡ 0 or 1 (mod 4) and d �= 0. Let n > 0 with the prime 

factorization n =
∏k

j=1 pj . Assume gcd(d, n) = 1. The Kronecker symbol
(

d
n

)

is defined 

as

(

d

n

)

=
k

∏

j=1

(

d

pj

)

, (4.2)

where 
(

d
p

)

is the Legendre symbol for odd prime p with p � d, and

(

d

2

)

=

{

1 if d ≡ 1 (mod 8),

−1 if d ≡ 5 (mod 8).
(4.3)

The Kronecker symbol 
(

d
n

)

can be extended to negative values of n by using 
(

d
−m

)

=
(

d
−1

)

(

d
m

)

with 
(

d
−1

)

= 1 when d > 0; 
(

d
−1

)

= −1 when d < 0.

The Kronecker symbol has the property

(

d

n1

)

=

(

d

n2

)

, if n1 ≡ n2 (mod d) and d ≡ 0 or 1 (mod 4), (4.4)

provided d �= 0, nj �= 0, and gcd (d, nj) = 1, for j = 1, 2.

Lemma 4.3 and Lemma 4.4 have been proved by Mallet-Paret and Sell in [9].

Lemma 4.3. (Mallet-Paret and Sell [9]) Let D ⊂ Z be a finite nonempty set of integers 

d ≡ 0 or 1 (mod 4), with the property that 
∏

d∈A d is not a perfect square whenever 

A ⊂ D has odd cardinality. Then there exists an integer r �= 0 such that

gcd(d, r) = 1 and

(

d

r

)

= −1

for each d ∈ D.
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Before stating the next lemma, we introduce some notations. Let p > 0 be a prime. 

We use notations p |e n and p |o n to represent that p divides n an even or odd number 

of times, respectively. More precisely, we write

p |e n

to mean either n = pαm where α is even and p � m, or else n = 0. Note that α = 0 is 

permitted, so p |e n holds if p � n. Similarly, we write

p |o n

to mean n = pαm, where α is odd and p � m.

Lemma 4.4. (Mallet-Paret and Sell [9]) Consider a quadratic form T (k1, k2) = ak2
1 +

bk1k2 + ck2
2 with integer coefficients and discriminant d = b2 − 4ac, and let p be a prime 

satisfying p � d and 
(

d
p

)

= −1. Then

p |e T (k1, k2)

for any k1, k2 ∈ Z.

Remark 4.5. In [9], Lemma 4.4 was proved for odd prime p. The same conclusion holds 

for the case p = 2, and we briefly show the proof as follows. Let p = 2. Since 
(

d
2

)

= −1, 

then d ≡ 5 (mod 8) by (4.3). Then, d2 ≡ 9 (mod 16). Since 2 � d and d = b2 − 4ac, we 

obtain that b is odd. Then, a and c must both be odd. In fact, if either a or c is even, 

then d2 = (b2 − 4ac)2 ≡ 1 (mod 16), contradicting that d2 ≡ 9 (mod 16). Therefore, we 

conclude that all of a, b, c are odd, namely, coefficients of quadratic form T (k1, k2) are all 

odd. Therefore, if 2 divides T (k1, k2), then 2 divides both k1 and k2, and thus 4 divides 

T (k1, k2). Repeatedly factoring out 4 gives that 2 |e T (k1, k2).

The following lemma is motivated by the works in [10,9]. It’s essential to emphasize 

that we present a logarithmic-type estimate for the length of an interval, satisfying the 

condition that a family of quadratic forms does not take values within the interval. It is a 

generalization of Richards’ result in [10] to a family of quadratic forms. This logarithmic-

type estimate plays a critical role in justifying Theorem 2.5, which concerns the thickness 

of spherical shells containing sparsely distributed lattice points.

Lemma 4.6. Let D ⊂ Z be a finite nonempty set of integers d ≡ 0 or 1 (mod 4), with the 

property that 
∏

d∈A d is not a perfect square whenever A ⊂ D has odd cardinality. There 

exist arbitrarily large m and h ≥ C log m for some constant C > 0 that depends solely 

on D, satisfying: if T is any quadratic form

T (k1, k2) = ak2
1 + bk1k2 + ck2

2, a, b, c ∈ Z,



Y. Guo, M. Ilyin / Journal of Number Theory 264 (2024) 277–294 287

with discriminant d = b2 − 4ac ∈ D, then

T (k1, k2) �∈ [m, m + h] for each k1, k2 ∈ Z.

Remark 4.7. If D contains only negative integers, then obviously 
∏

d∈A d is not a perfect 

square whenever A ⊂ D has odd cardinality.

Proof. The argument adopts ideas from [10,9]. Thanks to Lemma 4.3, there exists r �= 0

such that

gcd (d, r) = 1 and

(

d

r

)

= −1, for each d ∈ D. (4.5)

Define

δ := lcm {|d| : d ∈ D}. (4.6)

Note, (4.5) and (4.6) imply that gcd (δ, r) = 1. Let h > 0 and set

A := sup
0≤j≤h

|r + δj|. (4.7)

Define P be the product

P :=
∏

p1+α (4.8)

where the product is taken over all primes p with

p � δ and pα ≤ A < p1+α for some integer α > 0. (4.9)

Because of (4.8) and (4.9), we have gcd(P, δ) = 1. Then, by Bezout’s identity, there 

exists an integer m ∈ [1, P ] satisfying

δm ≡ r (mod P ). (4.10)

We argue that h ≥ C log m, if h is sufficiently large. Indeed, the number of primes 

p ≤ A is asymptotic to A
log A . Therefore, for A sufficiently large, the number of primes 

p ≤ A is less than 2A
log A .

By (4.8) and (4.9), we obtain that

P =
∏

p1+α ≤
∏

p2α ≤
∏

A2 ≤ A
4A

log A = e4A. (4.11)

Due to (4.7), we have, for sufficiently large h,

A ≤ |r| + δh ≤ 2δh. (4.12)
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Because of (4.11) and (4.12) together with the fact m ≤ P , we conclude that, for 

sufficiently large h,

m ≤ e8δh. (4.13)

Inequality (4.13) can be written as h ≥ 1
8δ log m, for sufficiently large h.

We claim that T (k1, k2) �∈ [m, m + h] for any k1, k2 ∈ Z.

Indeed, thanks to Lemma 4.4, it is sufficient to show that whenever 0 ≤ j ≤ h and 

d = b2 − 4ac ∈ D, there exists a prime number p satisfying

p � d,

(

d

p

)

= −1, and p |o (m + j). (4.14)

We take an arbitrary integer j ∈ [0, h]. Note, r + δj ≡ r (mod d) due to (4.6). Thus, 

we obtain from (4.4) and (4.5) that

(

d

r + δj

)

=

(

d

r

)

= −1. (4.15)

Since gcd(d, r) = 1 and d divides δ, we see that gcd(d, r + δj) = 1.

We write the prime factorization for r + δj =
∏

pa and use (4.2) to obtain that 
(

d
r+δj

)

=
∏

(

d
p

)a

= −1. It follows that there exists a prime p � d with 
(

d
p

)

= −1

satisfying

p |o (r + δj), (4.16)

namely, p divides r + δj an odd number of times.

Since gcd (δ, r) = 1 and using (4.16), we have p � δ. Then, because of (4.7), (4.8) and 

(4.9), we see that p, as a factor of P , occurs with a greater multiplicity than as a factor 

of r + δj. Moreover, by (4.10),

δ(m + j) ≡ r + δj (mod P ).

As a result, p divides δ(m + j) and r + δj the same number of times. Then, due to (4.16)

and p � δ, it follows that p |o (m + j) as claimed in (4.14). �

Proposition 4.8. Consider a quadratic function T (k1, k2) = ak2
1+bk1k2+ck2

2+sk1+tk2+u

for k1, k2 ∈ Z, where coefficients a, b, c, s, t, u ∈ Q such that b2 − 4ac �= 0. Then there 

exist ξ1, ξ2, ξ3 ∈ Q such that T (x1+ξ1, x2+ξ2) −ξ3 = ax2
1+bx1x2+cx2

2 for all x1, x2 ∈ Q.

Proof. Let us explicitly find ξ1, ξ2, ξ3 ∈ Q such that the following equality holds for all 

x1, x2 ∈ Q. Consider
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T (x1 + ξ1, x2 + ξ2) − ξ3 = ax2
1 + bx1x2 + cx2

2 + x1(2aξ1 + bξ2 + s) + x2(2cξ2 + bξ1 + t)

+ (aξ2
1 + bξ1ξ2 + cξ2

2 + sξ1 + tξ2 + u − ξ3) = ax2
1 + bx1x2 + cx2

2.

Therefore,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2aξ1 + bξ2 + s = 0

2cξ2 + bξ1 + t = 0

aξ2
1 + bξ1ξ2 + cξ2

2 + sξ1 + tξ2 + u − ξ3 = 0 .

Hence,

(

ξ1

ξ2

)

=

(

2a b
b 2c

)−1 (

−s
−t

)

=
1

4ac − b2

(

2c −b
−b 2a

) (

−s
−t

)

=
1

4ac − b2

(

−2cs + bt
bs − 2at

)

.

It follows that

ξ1 =
bt − 2cs

4ac − b2
, ξ2 =

bs − 2at

4ac − b2
. (4.17)

With values of ξ1 and ξ2, we can find the value of ξ3:

ξ3 = aξ2
1 + bξ1ξ2 + cξ2

2 + sξ1 + tξ2 + u. � (4.18)

4.2. Proof of Theorem 2.5

With the preparations above, now we are ready to prove Theorem 2.5.

Proof. We adopt ideas from [9]. Let us fix a distance d ≥ 1. Consider a spherical shell 

in R3:

N = {x ∈ R3 : m ≤ |x|2 ≤ m + h}.

Suppose there exist lattice points k, 	 ∈ Z3 such that

k, 	 ∈ N with 0 < |k − 	| ≤ d. (4.19)

Let j = 	 − k, then 0 < |j| ≤ d. Thus, |	|2 = |k|2 + |j|2 + 2k · j. It follows that

|k · j| ≤ 1

2

∣

∣|k|2 − |	|2
∣

∣ +
1

2
|j|2 ≤ 1

2
h +

1

2
d2,

because k, 	 ∈ N .

We denote n = k · j. Then n ∈ Z satisfying

|n| = |k · j| ≤ 1

2
h +

1

2
d2. (4.20)
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Since j = (j1, j2, j3) �= 0, without loss of generality, we assume j3 �= 0. For k =

(k1, k2, k3), solving n = k · j = k1j1 + k2j2 + k3j3, we obtain

k3 = j−1
3 (n − k1j1 − k2j2).

Thus,

|k|2 = k2
1 + k2

2 + j−2
3 (k1j1 + k2j2 − n)2

= j−2
3

[

(j2
1 + j2

3)k2
1 + (2j1j2)k1k2 + (j2

2 + j2
3)k2

2 − 2nj1k1 − 2nj2k2 + n2)
]

=: Tj,n(k1, k2), (4.21)

where j ∈ Z3, n ∈ Z such that 0 < |j| ≤ d and |n| ≤ 1
2h + 1

2d2. Since k ∈ N , we know 

that

Tj,n(k1, k2) ∈ [m, m + h]. (4.22)

We remark that the function Tj,n defined in (4.21) is a function of the form 

Tj,n(k1, k2) = ak2
1 + bk1k2 + ck2

2 + sk1 + tk2 + u where coefficients a, b, c, s, t, u ∈ Q

and b2 − 4ac < 0. Thanks to Proposition 4.8, there exist rational numbers ξ1, ξ2 and ξ3

such that

Tj,n(x1 + ξ1, x2 + ξ2) − ξ3 = j−2
3 (j2

1 + j2
3)x2

1 + (2j−2
3 j1j2)x1x2 + j−2

3 (j2
2 + j2

3)x2
2,

(4.23)

for all rational numbers x1 and x2. Moreover, due to (4.17) and (4.18) and straightforward 

calculation, we obtain

ξ1 =
nj1

|j|2 , ξ2 =
nj2

|j|2 , ξ3 =
n2

|j|2 . (4.24)

Without loss of generality, we assume d is an integer. We set

β = lcm{12, 22, 33, · · · , d2}. (4.25)

Consider arguments of the form x1 = i1

β and x2 = i2

β . Then, by (4.23), we obtain

[

Tj,n

( i1

β
+ ξ1,

i2

β
+ ξ2

)

− ξ3

]

β3

= βj−2
3 (j2

1 + j2
3)i2

1 + (2βj−2
3 j1j2)i1i2 + βj−2

3 (j2
2 + j2

3)i2
2

=: T̃j(i1, i2). (4.26)

Because of (4.25), i1

β + ξ1 and i2

β + ξ2 can take any integer values by adjusting i1 and 

i2. Also due to (4.25) and (4.26), T̃j(i1, i2) is a quadratic form with integer coefficients 
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and negative discriminant. Note, j belongs to a finite set. Thanks to Lemma 4.6 and 

Remark 4.7, there exist arbitrary large m0 and h0 ≥ C log m0 such that

T̃j(i1, i2) �∈ [m0, m0 + h0], for any i1, i2 ∈ Z, and for any j ∈ Z3 with 0 < |j| ≤ d.

(4.27)

For sufficiently large h0, we can find h > 0 satisfying

h0 =

(

h +
1

4
(h + d2)2

)

β3. (4.28)

Then, we set

m =
m0

β3
+

1

4
(h + d2)2. (4.29)

Due to (4.24) and (4.20), we have

ξ3 =
n2

|j|2 ≤ 1

4
(h + d2)2. (4.30)

Using (4.26)-(4.30), we obtain

Tj,n

( i1

β
+ ξ1,

i2

β
+ ξ2

)

�∈
[

m − 1

4
(h + d2)2 + ξ3, m + h + ξ3

]

⊃ [m, m + h], (4.31)

for any i1, i2 ∈ Z. In particular, there exist i1, i2 ∈ Z such that k1 = i1

β + ξ1 and 

k2 = i2

β + ξ2, and thus (4.31) shows that Tj,n(k1, k2) �∈ [m, m + h], which contradicts 

(4.22). Therefore, for these pairs of m and h, (4.19) cannot happen. Thus, for any one 

of these pairs of m and h, if there exist two lattice points k, 	 ∈ Z3 that belong to the 

spherical shell {x ∈ R3 : m ≤ |x|2 ≤ m + h}, then |k − 	| > d.

Recall that we fix d at the beginning. Then, due to (4.28) and (4.29), asymptotically,

h0 ∼ 1

4
β3h2, m ∼ 1

β3
m0.

Thus, along with the fact that h0 ≥ C log m0, we conclude that

h ≥ C̃
√

log m,

for sufficiently large m, where the constant C̃ depends on d. �
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4.3. Proof of Proposition 2.6

Proof. Let C > 4 4
√

8. For any sufficiently large real number m > 0, it is easy to verify 

that 
√

m + Cm1/8 − s −
√

m − s > 2, for any s ∈ N satisfying m − βm1/4 < s < m, 

where 2
√

2 < β < C2

16 . Therefore, there exists a positive integer n such that

√
m − s ≤ n < n + 1 ≤

√

m + Cm1/8 − s. (4.32)

By Bambah and Chowla [2], for any large m ∈ R, there exists s = k2 + l2, k, l ∈ Z, 

such that m − βm1/4 < s < m, since β > 2
√

2. Consequently, the spherical shell {x ∈
R3 : m ≤ |x|2 ≤ m + Cm1/8} contains lattice points (k, l, n) and (k, l, n + 1). �

4.4. Remarks

Theorem 2.5 shows the existence of spherical shells {x ∈ R3 : m ≤ |x|2 ≤ m + h}
in which lattice points are sparsely distributed. Here, m can be arbitrarily large, and 

h ≥ C
√

log m. The optimality of the order 
√

log m is unknown, but it is closely connected 

to the logarithmic size of large gaps between sums of two squares due to Richards [10]. 

The proof of Theorem 2.5 relies on Lemma 4.6, which extends Richards’ result to a family 

of quadratic forms. An important element of the proof is the prime number theorem.

Suppose Theorem 2.5 holds true for a higher order h = h(m) with h(m)√
log m

→ ∞ as 

m → ∞. Let’s take d = 1. If m is sufficiently large, then 
√

m + h − s −
√

m − s > 2, 

for any s ∈ N satisfying m − ch2 < s < m, where 0 < c < 1
16 . Thus, there exists a 

positive integer n such that 
√

m − s ≤ n < n + 1 ≤
√

m + h − s. If s = k2 + l2, then 

the spherical shell {x ∈ R3 : m ≤ |x|2 ≤ m + h} contains lattice points (k, l, n) and 

(k, l, n + 1). However, according to our assumption, there exist arbitrarily large values 

of m such that any two lattice points in the spherical shell {x ∈ R3 : m ≤ |x|2 ≤ m + h}
must be separated by a distance strictly greater than d = 1. Therefore, for these values 

of m, any s ∈ (m − ch2, m) cannot be expressed as a sum of two squares. This would 

improve the logarithmic size of large gaps between sums of two squares, since we assume 
h(m)√
log m

→ ∞ as m → ∞. However, as of now, there have been no advancements that 

surpass the logarithmic order discovered by Richards in [10].

5. Discussion

In this section, we discuss some related problems and future work.

The original motivation of this project was to find an optimal estimate for large gaps 

between sums of two squares, and this remains its long-term goal. It is an important 

open problem whether one can improve the logarithmic growth rate of the lower bound 

for large gaps between sums of two squares presented in (1.2). Also, it is interesting to 

ask whether one can reduce the polynomial growth rate (the power of 1/4) of the upper 

bound in (1.2).
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We would like to draw some naive comparisons with a related problem: gaps between 

primes. It is well-known that the number of primes less than x is approximately x
log x , 

whereas the number of sums of two squares less than x behaves asymptotically as bx√
log x

, 

where b is the Landau–Ramanujan constant. Therefore, there are fewer primes than sums 

of two squares in [0, x] for large x. Thus, on average, sums of two squares are distributed 

more densely than primes throughout the natural numbers. It is a classical result of 

Westzynthius [12] that

lim sup
n→∞

pn+1 − pn

log pn
= ∞, (5.1)

where pn is the sequence of primes. By comparing (5.1) and (1.1), we see that large 

gaps between primes might grow faster than large gaps between sums of two squares 

asymptotically. Also, it is worth mentioning that gaps between primes have an upper 

bound

pn+1 − pn ≤ pθ
n, (5.2)

with an estimate θ = 0.525, for sufficiently large n (see [1]). One can compare θ = 0.525

in (5.2) with the exponent 1/4 in (1.2) concerning the upper bound of gaps between 

sums of two squares. Furthermore, we would like to mention the twin prime conjecture 

regarding small gaps between primes; however, small gaps between sums of two squares 

are always 1, which is trivial. All of the above observations show that, in general, sums 

of two squares appear more frequently than primes within the set of positive integers. 

See [11] for more discussion on this topic.

Regarding the sparse distribution of lattice points in annuli in R2, we have already 

achieved an optimal asymptotic result concerning the width of these annuli in this paper. 

However, in three dimensions, the optimality of our estimates remains unknown, making 

it interesting to explore the possibility of refining the thickness of these spherical shells 

provided in Theorem 2.5. This inquiry is closely related to the study of large gaps between 

sums of two squares. Furthermore, our proofs contain deep geometric perspectives that 

can be explored further to generate other useful results. Most importantly, our findings 

on the sparse distribution of lattice points in annuli have the potential for applications 

in simplifying infinite-dimensional dissipative dynamical systems to finite-dimensional 

counterparts, particularly in solving the inertial manifold problem for the Navier-Stokes 

equations. For an example of such applications, please refer to [9].

Sums of squares are eigenvalues of the Laplacian on a periodic domain. Likewise, we 

can consider gaps between eigenvalues of the Dirichlet Laplacian on a bounded domain 

in Rn, or more generally, on an n-dimensional Riemannian manifold. In these cases, 

explicit expressions of eigenvalues are usually not available. An important problem is 

to find sharp estimates for the upper and lower bounds of the size of the gaps between 

eigenvalues of the Dirichlet Laplacian. Please refer to [3] for an estimate of the upper 

bound.
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