To appear in Journal of Applied Mechanics (DOI: 10.1115/1.4066285)

Interplay between Nucleation and Kinetics in Dynamic Twinning

Janel Chua," * Vaibhav Agrawal,2 Noel Walkington,3 George Gazonas,4 and Kaushik Dayal“’6

'Los Alamos National Laboratory
2Apple Inc.

3 Center for Nonlinear Analysis, Department of Mathematical Sciences, Carnegie Mellon University
‘DEVCOM Army Research Laboratory, Attn: FCDD-RLW-MB, Aberdeen Proving Ground, MD 21005, USA
5Department of Civil and Environmental Engineering, Carnegie Mellon University
°Department of Mechanical Engineering, Carnegie Mellon University
(Dated: August 20, 2024)

In this work, we apply a phase-field modeling framework to elucidate the interplay between nucleation and
kinetics in the dynamic evolution of twinning interfaces. The key feature of this phase-field approach is the
ability to transparently and explicitly specity nucleation and kinetic behavior in the model, in contrast to other
regularized interface models. We use this to study 2 distinct problems where it is essential to explicitly specify
the kinetic and nucleation behavior governing twin evolution.

First, we study twinning interfaces in 2-d. When these interfaces are driven to move, we find that significant
levels of twin nucleation occur ahead of the moving interface. Essentially, the finite interface velocity and the
relaxation time of the stresses ahead of the interface allows for nucleation to occur before the interface is able to
propagate to that point. Second, we study the growth of needle twins in antiplane elasticity. We show that both
nucleation and anisotropic kinetics are essential to obtain predictions of needle twins. While standard regularized
interface approaches do not permit the transparent specification of anisotropic kinetics, this is readily possible
with the phase-field approach that we have used here.

1. Introduction

Twinning and structural phase transformations are important phenomena in materials science and solid-state physics due to
the significant role they play in influencing the properties and behavior of materials [38]. Some specific areas of applications
are in shape memory alloys (SMAs) where the reversible twinning and detwinning of SMAs are responsible for their unique
shape-changing behavior [4]. In other instances, structural phase transformations allow for tailoring material properties to specific
applications, for instance in nanotwinned metals [28, 29, 33, 43].

The microstructure of the materials in which twinning or phase transformations occur typically consists of homogeneously
deformed regions separated by interfaces across which the deformation varies extremely rapidly. Many interesting material
phenomena under extreme conditions are governed by the nucleation, motion and response of the interfaces [4, 21]. It is therefore
important to be able to accurately model propagating interfaces in a dynamic setting, particularly when inertia plays a significant
role since these interfaces move at velocities comparable to the sonic speeds.

Related prior work. Continuum models for dynamic twin interface nucleation and propagation fall into two broad classes: sharp
interface models [1, 3, 27, 40, 44, 45] and regularized interface models [2, 17, 24, 39, 48, 49]. In the case of the former, numerical
computations are extremely challenging as sharp interfaces require expensive tracking algorithm in a numerical discretization. This
is essentially infeasible when one expects numerous evolving and interacting interfaces, and thus the sharp interface approaches
are not widely applied.

Regularized interfaces on the other hand do not require explicit tracking of the interfaces, which makes the numerical methods
much simpler and enables application to complex settings. Phase-field models, wherein an additional regularized phase field
variable is introduced to account for material transformations, have been widely applied to problems such as structural phase
transformations, fracture, poromechanics, and dislocation dynamics, e.g. [7, 12, 14, 16, 18, 20, 26, 30-32, 37]. However, these
methods also have significant shortcomings. Particularly, the dependence of the kinetics and nucleation of interfaces on the
structure of the material model is completely opaque. Further, the range of material responses that can be obtained is highly
constrained. Furthermore, the nucleation and the kinetics of interfaces are physically distinct processes from the atomic perspective,
but standard phase-field models are unable to transparently distinguish these processes. One consequence of these shortcomings is
that even in the simplest 1-d case, the precise critical condition at which nucleation occurs is completely opaque. Consequently, it
is essentially impossible in practice to formulate a model to obtain a desired nucleation response. All of this is in sharp contrast to
sharp interface models wherein the nucleation and kinetics of interfaces can be transparently specified in the model.

To retain the computational ease of phase-field models and at the same time obtaining the transparent physical structure of
sharp-interface models, we recently proposed a phase-field modeling approach that enables the transparent specification of
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interface nucleation and kinetics as input to the model [5, 6, 11]. The key elements of this approach are, first, formulating an
energy density that separates nucleation from kinetics; and, second, formulating a geometrically-motivated interface conservation
principle to govern the nucleation and kinetics of interface. In this conservation principle, the kinetics of interfaces is governed by
a transport term and the nucleation of interfaces is governed by a source term, and each of these contribution can be transparently
and independently specified.

Contributions of this paper. In this paper, we use the phase-field approach described above to study the interplay between kinetics
and nucleation in dynamic twinning. Specifically, we study 2 distinct problems where it is essential to be able to explicitly specify
the kinetic and nucleation behavior governing twin evolution.

First, we study twinning interfaces in 2-d. When these interfaces are driven to move, we find that significant levels of twin
nucleation occur ahead of the moving interface. Essentially, the finite interface velocity and the relaxation time of the stresses
ahead of the interface allows for nucleation to occur before the interface is able to propagate to that point. Second, we study
the growth of needle twins in antiplane elasticity. We show that both nucleation and anisotropic kinetics are essential to obtain
predictions of needle twins. While standard regularized interface approaches do not permit the transparent specification of
anisotropic kinetics, this is readily possible with the phase-field approach that we have used here.

2. Model Formulation
2.A. Notation

We use x( and x(x() to denote the reference and deformed configurations, and the displacement is denoted u(xg) := x(xo) — x.
We work completely in the Lagrangian setting for simplicity, while noting that there can be several advantages to an Eulerian
approach in the large deformation setting [13, 23, 35, 36]. We use V and div to denote the gradient and divergence with
respect to &g, and superposed dots to denote time derivatives. The deformation gradient is denoted by F' := Vz, the strain
by E = % (FTF —-TI ) the spatial velocity gradient by L = FF 1, and the first Piola-Kirchoff stress by P. We define

D:=1(L+ LT), J := det F, and use ¢ to denote the phase field.
We define a regularized indicator function H;(-) that smoothly transitions — over an interval of order [ — from 0 to 1 when the

argument changes from negative to positive. For specificity, we use the form H; (z) = % (1 + tanh (%)) and [ = 0.1.
The domain and its boundary are denoted by {2 and 92 respectively.

2.B. Governing Equations
We use the standard free energy of the form:

E[u7¢]:/Q(W(F,¢)+%|V</>|2) an @2.1)

where W is the elastic energy density and « is the phase-field regularization parameter. We use a = 1.2 x 10~ m.
We follow [5, 6] in setting W to have the general form:

W(F,¢) = H, (0.5 — ¢) Wi (F) + H; (¢ — 0.5) Wy(F) 22

where W7 and W, correspond to the elastic energy density in phase 1 (¢ < 0.5) and phase 2 (¢ > 0.5) respectively. As
described in [5, 6], this form contributes to a transparent separation between kinetics and nucleation. For specificity, we choose
Wi(F)=3(E—E;):C;: (E—E;),ic {1,2}, where C; is the 4-th order elastic modulus tensor.

The evolution equations associated with this energy are [5, 6]:

Momentum balance: pu = div P (2.3a)
Phase evolution: ¢ = |V¢|0 (f) + G(E, ¢) (2.3b)

The evolution equation for ¢ was proposed in [8], and was shown to correspond to a balance law for interfaces [6, 25]. G
originates as a source term in that balance law, and in this work is used to induce the nucleation of an appropriate phase when the
system evolves to access nonphysical regions of the energy landscape [11]. The specific forms of G will be described in later
sections.

The phase velocity 9( f) is a function of the driving force f, which is the negative of the functional derivative of E with respect
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[5, 6, 11] provide conditions that G and ¥ ( f) must satisfy for consistency with the 2-nd law of thermodynamics [30, 37].
The Piola-Kirchoff stress is composed of an elastic part and a viscous dissipative part: P = P45 + P,;s. The elastic part

OW(F
is given by P, = M) . The viscous stress is assumed to follow a frame-invariant Newtonian model with a linear
relation between the Cauchy stress and D [42]:

Opis =nD = L (L+ LT) = Py, = Jo . F T = gJ (FF—1 n F—TFT) FT 2.5)

2

where 7 is the viscosity.

2.C. Finite Element Implementation

Weuse the finite element method (FEM) to solve numerically using the using the open-source FEM package FEniCS [9, 34]. We
use a mixed finite element formulation and discretize (2.3a), (2.4), and (2.3b). The mixed formulation is required because the
higher derivatives in f from (2.4) cannot be treated in the usual way using integration-by-parts, because f appears inside the
response function ¢( f). The weak form is then:

df = — P :Vudf? Pn)-udS 2.6
/puu / (n +/(m(n)u (2.62)
oW\ 5 o
/ffd() /Q( (%)f—aw-Vf) d!2+/anafV¢-ndS (2.6b)
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where u and the corresponding test function u belong to the space of vector-valued functions that are piecewise linear; and f and
¢, with the corresponding test functions fand ¢, belong to the space of scalar-valued functions that are piecewise linear.

The boundary conditions for momentum balance (2.6a) are the standard displacement or traction prescribed, and the boundary
condition for phase evolution (2.6¢) is the standard variational condition V¢ - 1o = 0 [49] on the entire boundary.

The momentum balance and the phase evolution are evolved in time using the implicit Newmark method and the implicit Euler
method respectively.

3. Nucleation Ahead of the Twin Interface at High Rates

We apply the model described in Section 2 to predict the motion of a flat twin interface in a 2-d nonlinear elastic setting, and
specifically study the role of phase nucleation when inertial effects are significant.

3.A. Elasticity and Geometry of Twinning

Following [6], we consider twinning defined by the following transformation stretch tensors:

M=Bﬂ,%=ﬁﬂ,mwwwb:w%9 G.D

1 1
The stress-free strains are defined by E; = 3 (U7 —1I) and E, = 3 (U3 — I). This twinning system admits stress-free

compatible twinning interfaces with (referential) normal given by

1
V2

directions [4, 15, 19].

We assume that the elasticity tensor C'is isotropic and identical in both phases, and set the extensional modulus to 206GPa and
the Poisson ratio to 0.3.

To set up the initial condition for dynamic calculations described later on, we obtain a stress-free compatible interfaces by
setting ¢ = 1 on the right of the domain and ¢ = 0 on the left side, and then minimize the energy in (2.1). The resulting static
twin interface is shown in Figure 1.

(e1 £ es) where eq, es are the unit vectors in the Cartesian

3.B. Nucleation Model

We first find the hyperplane in strain space that separates the twinning phases. Considering strains corresponding to the stretch
tensors given in (3.1), the hyperplane that is the set of points that are of equal distance from E; and E> has the equation
|E* — E5| = |E* — E4]. Solving for E* gives E}; = E3, as the equation of the hyperplane. On one side of the hyperplane, we
are closer to F/; and ¢ should be less than 0.5; on the other side, we are closer to E5 and require that ¢ is greater than 0.5 (Fig. 2).
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Figure 1. The deformed configuration of a rectangular block of size 2 x 1 with ¢ overlaid, after energy minimization with traction-free boundary
conditions all around except for the horizontal displacement set to 0 on the left edge.
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Figure 2. Schematic depiction of the correspondence between the strain E and the phase ¢. We need ¢ < 0.5 when Fa2 > F11 and ¢ > 0.5
when Fao < Fhi.

We set up the nucleation criterion to enforce this correspondence, i.e., if we cross the hyperplane in strain space, we ensure that
¢ evolves appropriately. Specifically, the nucleation process must drive ¢ to below 0.5 when E23 — E11 > 0, and drive ¢ to above
0.5 when E5y — F4q1 < 0, which results in constructing a nucleation term of the form:

G(E,$) = Go(H; (0.5 — ¢) Hy (Evy — Eag) — Hy (¢ — 0.5) Hy (Eaz — Eny)) (3.2)

Since the role of kinetics is not the central focus here, we use the simple linear form ¢ (f) = xf. We use x = 1 for the
numerical calculations.

3.C. Results
We perform dynamic calculations using the boundary conditions shown in Figure 3. The boundary conditions are set up to
minimally constrain the deformation of the body, and this allows a rigid vertical translation mode, but this mode does not interfere
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Figure 3. Boundary conditions, where ¢, t2 refer to Cartesian components of traction, and w1, us refer to Cartesian components of the
displacement. The prescribed time-dependent loading is u (¥).

with our observation of the twinning deformation. We use the static equilibrium interface as the initial conditions (Fig. 1).

Figure 4 provides a representative example that highlights the effect of the nucleation term. The highlight of the calculations
shown in Figure 4 is that even at subsonic velocities, it is apparent that accounting for nucleation has a very significant effect
and dominates over interface kinetics. Further, it shows that nonphysical regions in the energy landscape were accessed when
nucleation is not accounted for.

We also note that the calculations in Figure 4 do not have viscosity, but the calculations with viscosity (7 = 1 x 10™%s) are
essentially identical. This overall conclusion holds for all the calculations described in this section.

For greater insight into the role of nucleation, Figure 5 plots the strain fields in a specimen where the nucleation term is inactive,
i.e., the twinning transformation occurs exclusively due to interface motion and not nucleation. Looking at a time at which the
calculation in Figure 4 that allows nucleation had nucleated several new domains, Figure 5 shows clearly that F/1; > FEss in the
right part of the specimen. We would thus expect the ¢ = 1 phase to nucleate in that region.

Figure 6 shows the driving force for nucleation GG as a function of position, at a time when nucleation is active. We observe the
value of GG is very high in the lower right part of the specimen.

Comparing systems with and without nucleation, we observe in Figure 7 that the driving force for nucleation G drove the
nucleation of the ¢ = 1 phase in the right of the specimen, which corresponds to the position where the value of G was very high
several timesteps ago. This suggests that the driving force for nucleation has driven the system to a physical region of the energy
landscape.

A final point is that when we attempt to drive the interface to propagate faster (via higher loading rates), we encounter pinning —
essentially, very slow evolution — of the interface where it meets the boundary of the specimen. As the twin phases are related by
a shear, the driving force for the interface to propagate is related to the shear traction on the plane that is parallel to the interface.
The boundaries are traction-free on the top and bottom of the domain, resulting in zero shear stress at the twin interface on the top
and bottom boundary. This effectively pins the interface at the boundaries by causing it to evolve very slowly compared to the
interior. This is further discussed in [5].

4. Anisotropic Kinetics Drives Needle Twin Growth

When twins initially nucleate, they grow in a characteristic needle-like geometry, e.g. the experimental observations in [10]. The
growth of needle twins was studied using a sharp-interface model using theoretical approaches in several works by P. Rosakis
[41, 46, 47]. A key finding in that body of work was that anisotropic kinetics is essential to capture needle-like twins. As discussed
in [47], the incompatible direction should have more twinning dislocations then the compatible directions to accommodate the
deformation, and hence the kinetics will be significantly different for twin motion along compatible and incompatible directions.
This micromechanical effect gives rise to mesoscale anisotropy in the kinetics.

We aim to develop a phase-field description that can capture the phenomenon of needle twin growth. A key challenge for
standard phase-field models is the inability to incorporate anisotropic kinetics. We develop a phase-field model here that has
anisotropic kinetics and show that it is able to capture needle-like twin growth, but also show that incorporating nucleation is
essential to prevent nonphysical broadening. Following [27], we work in the antiplane elastic setting for simplicity.

4.A. Model Formulation

We work in the 2-d anti-plane setting. The independent space variable is denoted = (x1, z2) in Cartesian coordinates; and the
displacement has a single non-zero component in the out-of-plane 3-direction, denoted u(x, t) where t is the time. The strain is
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Figure 4. Plots of the deformed configuration overlaid with the phase evolution given by H;(¢ — 0.5). The left column is without nucleation
and the right column considers nucleation. The first row depicts the initial condition, and the second and third rows depict the evolution in
time. The imposed loading corresponds to u,(t) = (1 x 10°mm sfl) t. We see that accounting for nucleation has a very significant impact on
twinning transformation, with large regions well ahead of the moving interface transforming due to nucleation. That is, nucleation significantly
dominates kinetics.

denoted e, and has only two non-zero components: €1 = %Bxlu and g9 = %&czu.

We use displacement boundary conditions all around and use this to simulate dynamic loading. We start with a single phase and
have a small nucleus (of size 0.05) of the second phase near one of the vertical edges to drive the growth of a single needle twin in
a convenient location.

4.A.1. Elasticity
We set each phase to have the quadratic form:

Wi(e) = Lule — ol 4.1)

The material is isotropic in the antiplane setting; see [46] for discussion on the anisotropic case. We use pu = 1.
The stress-free strains are €9; = 0 and €92 = {0.0,1.0}. Consequently, the compatible direction is n = ez = {0, 1}.
For viscous dissipation, we use ne with 7 = 0.005.
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Figure 5. Plots of E11 and Es; at u, = 0.18mm with a loading rate u-(t) = (1 x 10°mm sfl) t, with nucleation suppressed. The system
reaches nonphysical regimes in the energy landscape, i.e., the strain and ¢ are not consistent with Figure 2, and this would drive nucleation.
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Figure 7. Plots of H;(¢ — 0.5) for a system (a) without nucleation and (b) with nucleation, with a loading rate u, (t) = (1 x 10°mm s_l) t.
Comparing against the line plot in Figure 5(c), we see that nucleation has driven twinning through much of the right side of the specimen.

4.A.2. Anisotropic kinetics
We use isotropic kinetics and anisotropic kinetics with the respective forms below:

b=rKf 4.2)

Vo - al
o (0.1 N W) 43)

In the anisotropic form, there are two terms in the parentheses: the first is isotropic, and the second introduces anisotropy by its
dependence on the interface normal V¢. It models faster kinetics for portions of the interface that have normal closer to the a
direction; we set a = e; for the numerical calculations. Further, we use k = 5.0.

0

4.A.3. Nucleation
The nucleation term has the following form:

G(e, ) =Go (H (¢ —0.5) (Hy(ea —&)— 1)+ (1 — H; (¢ — 0.5)) H; (e2 — &) “4.4)
where £ = 0.5.

4.B. Comparing Isotropic and Anisotropic Kinetics
We begin by examining effect of anisotropic kinetics, but do not account for nucleation to enable us to precisely understand their
separate roles.

Figure 8 shows the evolution of the twin needle in time, comparing isotropic kinetics to anisotropic kinetics. We see that
anisotropy is essential to obtain needle-like twin growth, consistent with the work of [47]. However, we also notice that the twin
slowly gets wider in the thin direction beginning at the base.

4.C. Effect of Nucleation and Viscous Stress
Building on the observation that anisotropic kinetics appears essential to predict realistic needle twins, we next consider the effect
of further accounting for viscous stress and nucleation. Figure 9 compares the effect of accounting for nucleation and viscous
stresses in addition to anisotropic kinetics. We see that viscous stresses attenuate the leading elastic waves but do not significantly
affect the needle twin microstructure. In contrast, the nucleation term serves the important purpose of suppressing the nonphysical
broadening of the twin.

We further plot the driving forces for kinetics and nucleation in Figure 10. First, we notice that both driving forces are of
comparable magnitude. Second, we highlight that the nucleation term is active at the growing tip as expected, but also at the base
of the needle twin where it acts to prevent nonphysical twin broadening.

4.D. Supersonic Twin Growth

‘We next look at the role of nucleation and viscous stress in supersonic twinning. To prevent the use of overly large stresses, we
achieve supersonic twinning by increasing the kinetic coefficient x by a factor of 10. Figure 11 compares the twin microstructure
in a model with only anisotropic kinetics to a model that also accounts for nucleation and viscous stress. As can be inferred from
the Mach cone structure, both twins grow supersonically, with the model with viscous damping showing faster twin growth.



]
0.6
' 0.5
0.6
0.4
0.4 03
0.2 0-2
0
0 02 04 06 08 1
@t=1 byt=1
1 0.7
0.6
. 0.6
0.5
0.6 0.5
0.4
0.4 0.4
0.3
0.2 0.3
0.2
0 0.2
0 02 04 06 08 1
©t=5 @t=5

0.8

0.6

0.4

0.2

07 . : Sl ‘;_ 2 07
0.6 . .
0.6
0.5
’ 0.5
0.4
. 0.4
0.3
_ ’ 0.3
0.2 > =
0 0 ! S 0.2
0 02 04 06 0.8 1 0 02 04 06 0.8 1

(e)t =10 ()t =10

Figure 8. Time evolution of €2 (¢ = 1,5,10). The left and right columns are respectively isotropic and anisotropic kinetics, with faster
propagation when the local interface normal is closer to being aligned with e;.
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appears to suppress the nonphysical broadening of the twin as it grows.
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Figure 10. The driving force for nucleation (left) and kinetics (right) at ¢ = 40. Both driving forces have comparable magnitudes, and the
nucleation driving force acts at the base of the needle twin to prevent nonphysical broadening.

We next plot the kinetic driving force for both models in Figure 12, and notice that there are no significant differences. As
expected in our class of models, the driving force is localized around the moving interface [5, 11].

Figure 13 shows the nucleation driving force and the viscous stress. We notice that both are highly localized at the tip of the
growing twin, and that the largest value of the nucleation driving force is comparable to the kinetic driving force.

Remark 4.1 (Supersonic Twinning with Unequal Moduli). We have performed similar supersonic twinning calculations for the



11

1.0 1.0 0.6

0.8 0.6 0.8 0.5

0.6 0.6 0.4
0.4

0.4 0.4 0.3
0.2

0.2 0.2 0.2

0.0 0.0 0.0 0.1

0.00 025 050 075 1.00 125 150 175 2.00 000 025 050 075 100 125 150 175 2.00

Figure 11. Supersonic twin growth needles visualized through plotting 2 (¢ = 40). The left figure accounts only for anisotropic kinetics and
predicts a somewhat-rounded twin growing at Mach 1.06. The right figure accounts further for nucleation and viscous stress, and predicts a
more needle-like twin that grows slightly faster at Mach 1.13.
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Figure 12. The kinetic driving force in the model without (left) and with (right) nucleation and viscous stress.
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Figure 13. Left: the driving force for nucleation, which has magnitude comparable to the kinetic driving force (Fig. 12). Right: the viscous
stress. Both are highly localized at the growing tip of the needle twin.

case where the moduli are unequal with the ratio 1 : 4. When the twin propagates into the soft phase, the results are qualitatively
similar to the discussion above. When the twin propagates into the stiff phase, the needle twin appears unstable and splits up into a
more complex microstructure. O

S. Discussion
We have used a recent phase-field modeling framework proposed in [5, 6, 11] to study the interplay between kinetics and nucleation
in the dynamic evolution of twins. The ability of this framework to explicitly and transparently specify nucleation and kinetic
behavior is essential to model phenomena such as needle twin growth. For instance, anisotropic interface kinetics is essential to
model needle twin growth, but it is unclear how — or if it is even possible — to specify anisotropic kinetics in standard phase-field
approaches or alternatives such as peridynamics.

For the problems studied in this paper, we find that viscous stresses do not play an important role. This is a significant difference
compared to studies in other settings, e.g., [11, 22]. In contrast to those works, the process of twinning in higher dimensions is
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dominated by geometric compatibility, which leads to this significant difference.

Software and Data Availability. The code developed for this work and the associated data are available at
https://github.com/janelchua/Phase-field_Twin-interface
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