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ABSTRACT

Motivated by an exact mapping between equilibrium properties of a one-dimensional chain of quantum Ising spins in a transverse field (the
transverse field Ising (TFI) model) and a two-dimensional classical array of particles in double-well potentials (the “φ4 model”) with weak
inter-chain coupling, we explore connections between the driven variants of the two systems. We argue that coupling between the fundamen-
tal topological solitary waves in the form of kinks between neighboring chains in the classical φ4 system is the analog of the competing effect
of the transverse field on spin flips in the quantum TFI model. As an example application, we mimic simplified measurement protocols in
a closed quantum model system by studying the classical φ4 model subjected to periodic perturbations. This reveals memory/loss of mem-
ory and coherence/decoherence regimes, whose quantum analogs are essential in annealing phenomena. In particular, we examine regimes
where the topological excitations control the thermal equilibration following perturbations. This paves the way for further explorations of the
analogy between lower-dimensional linear quantum and higher-dimensional classical nonlinear systems.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0203120

The transverse field Ising (TFI) model is the basis for quantum
annealing architectures in, e.g., D-Wave machines so that the
mapping explored herein holds promise for a deeper under-
standing of such processes. On the other hand, the φ4 model
is a prototypical nonlinear classical field theory at the epi-
center of the analysis of solitary wave dynamics. It has also
been centrally impacted by the fundamental contributions of
David Campbell and his collaborators in connection with
the interactions of the principal (topological) solitary waves,
namely, the kink structures. Our aim herein is to exploit the
connection between the (lower-dimensional) TFI and the (higher-
dimensional) φ4 model in order to understand fundamental fea-
tures of the former (including memory and decoherence effects)
by studying the classical and more tractable (albeit higher-
dimensional and nonlinear) dynamics of the latter. This study
is an initial step toward understanding analogies between infor-
mation processing in quantum linear and classical nonlinear
systems.

I. INTRODUCTION

A distinctive feature of nonlinear science is the ubiquity
of phenomena and classes of nonlinear equations that exhibit
them—ubiquity in the spectrum of disciplines and physical scales.
From this perspective and in recognition of this celebratory vol-
ume for David K. Campbell (D.K.C.), we discuss here a journey
of over 50 years involving the double-well φ4 equation. One of
us (A.R.B.) shared an interest with D.K.C., although with differ-
ent discipline motivations, in this model nonlinear equation since
first meeting in the Aspen Physics Center, while another (P.G.K.)
worked with D.K.C. a few decades later on a variant of the φ4

model inspired by ultracold atomic gases in a book chapter within
Ref. 1. These snippets, as well as this chapter, underpin a journey
from modeling classical structural phase transitions in materials,
such as perovskites,2,3 to modern special purpose quantum systems
and computing architectures for studying quantum annealing, for
example, D-Wave machine based on Josephson junction (SQUID)
technology; see for a recent example, Ref. 4.
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The φ4 Hamiltonian was employed in the early 1970s to model
certain structural phase transitions because new generations of
inelastic neutron scattering experiments were becoming capable of
resolving much lower frequency scales.5 In particular, they suggested
the phenomena of “soft modes” (softening of phonon frequency
around a characteristic temperature Ts) and “central peaks” (scat-
tering centered around zero frequency).2,3,6 The excitations captured
by the φ4 model gave explanations for both of these phenomena.7

As temperature T increases, atomic oscillations (or unit cell rota-
tions) change from (non)linear vibrations in either of the double
wells to (non)linear oscillations centered around the maximum of
the double well with large amplitude vibrations visiting both wells.
The vibration frequency decreases as Ts is approached from above
or below. However, for T . Ts, φ

4 excitations in the form of thermal
transitions from one well to the other also become thermodynami-
cally relevant. In one dimension (1D), these are soliton-like domain
walls, i.e., kinks (K) and antikinks (K̄). The diffusive dynamics
of the kinks and antikinks (see, e.g., Ref. 8) produces a central
scattering intensity peak, with decreasing frequency width as T
decreases and the density of K and K̄ decreases. The kink diffusion
has been analyzed extensively in the context of nonlinear science,
including KK̄ nucleation, annihilation,8,9 and bound states (transient
breathers).10–13 In 1D, there is an Ising symmetry breaking critical
temperature Tc only at T = 0; for T > Tc, the average displacement
is zero. Previous mean-field (self-consistent phonon) approxima-
tions predicted Tc and Ts were the same, but nonlinear analysis was
able to clarify the difference; indeed, central peaks have appeared
subsequently in more exotic many-body scenarios but with similar
origins. A closely related potential to the φ4, the double-Gaussian,
explicitly separates the Ising criticality as T → Tc from the Gaussian
fluctuations for T < Ts.14

Here, we return to an example of the above scenario where
Tc is finite but well-separated from the higher temperature Ts.
Namely, we consider a 2D system of weakly coupled φ4 chains.
This situation is directly relevant to structural transitions in certain
low-dimensional materials.14 However, our interest here is that the
equilibrium 2D classical Hamiltonian, when the chain-chain cou-
pling is weak, can be exactly mapped to a quantum 1D model, the
transverse field Ising (TFI) model.15 This classical D-dimensional
nonlinear to quantum, linear (D-1)-dimensional model mapping
is interesting as an early example of supersymmetry and quan-
tum phase transitions, whose studies have become extensive more
recently.16 However, for our specific interest here, the TFI has been
central during the last decade as the basis for “quantum computing”
architectures, such as D-Wave, designed to accelerate annealing.17

Proposed quantum computing advantages over classical computing
are based on linear quantum evolution. However, it is important
to note that classical, but nonlinear, systems can avoid some of the
disadvantages of classical linear computing. Indeed, there are classi-
cal analogs of many phenomena of quantum linear systems, such
as entanglement, (de)coherence, memory, superposition, interac-
tion at a distance, a timely theme that we have also considered in
earlier work; see, e.g., Refs. 18 and 19 and also references therein.
In some respects, this is not surprising since most classical non-
linear equations arise from slaving between two or more fields—as
in semiclassical Bardeen–Cooper–Schrieffer (BCS) or Bose–Einstein
condensation (BEC) models. At a deeper level, the D-dimensional

(classical, nonlinear) to (D-1)-dimensional (quantum, linear) model
connection motivating our study here is of course linked to the
enduring issues of classical to quantum transitions, but the latter
more general theme is beyond the scope of the present study.

Among the many phenomena shared by the classical weakly
coupled φ4 chains and the quantum TFI, we focus here on the φ4

regime where slow relaxation is prevalent because this is most rel-
evant to annealing protocols. This regime (Tc . Ts/3) is where the
topological structure, i.e., KK̄ (kink–antikink) dynamics is respon-
sible for the relaxation after the perturbations emulating (for our
purposes) the process of measurement. In our 2D setting, the cou-
pling between 1D chains impedes the 1D chain kink diffusion by
the effects of kinks (or antikinks) interacting and aligning between
chains.20,21 For structural phase transitions, this is the mechanism
by which 2D cluster boundaries form between clusters of par-
ticles residing in one well inside and in the other well outside
the cluster. Kink–kink coupling between chains introduces a new
timescale by transiently pinning a kink (analogous to thermal trap-
ping/detrapping by disorder) and allows time for kink alignment
across multiple chains. Scaling theory, in the form of real-space
(block) Renormalization Group analysis, can predict the probability
distribution of cluster sizes asymptotically as T → Tc, for example,
two delta functions (the two wells) in 1D. However, the dynamics
of the clusters for Tc < T < Ts is intricate—inter-chain kink align-
ment is a dynamic process of binding and unbinding, clusters can
move and change shape by secondary K and K̄ nucleating on cluster
boundaries and propagating around the boundary, etc. In terms of
the mapping to a 1D quantum TFI situation, the inter-chain cou-
pling maps to the transverse field frustrating the pure Ising spin
flips (analogous to the classical K, K̄). In both cases, the topolog-
ical K, K̄ excitations control the annealing regimes. This role of
topological excitations is, in fact, a feature of many nonlinear sys-
tems. For example, similar phenomena were earlier identified18 in
studies of the far-reaching (in terms of its applications) complex
Ginzburg–Landau model.22 In the latter, both vortices and domain
walls are the relevant topological excitations. More generally, topo-
logical defect-controlled dynamics and relaxation commonly arise
in such diverse systems as frustrated Josephson junction arrays,20

dislocation patterns controlling stress–strain relationships,23 and
monopoles in spin ice.24

II. THE MODEL: WEAKLY COUPLED φ4 CHAINS

We consider the two-dimensional (2D) weakly coupled φ4

chains given by the Hamiltonian,7,10,11,25,26

H =
L

∑

l=1

M
∑

m=1

[

p2
l,m

2
+ V(ql,m) + W||

(

ql+1,m − ql,m

)

+ W⊥
(

ql,m+1 − ql,m

)

]

, (1)

where ql,m represents the displacement of a particle at the lth posi-
tion along the mth chain, pl,m denotes the conjugate variable, i.e., the
momentum of a particle, and

V(q) = A
q2

2
+ B

q4

4
(2)
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FIG. 1. The non-interacting potential energy function V(q) as a function of the
particle displacement q for the fixed parameters A = −1, B = 1.

denotes the non-interacting potential energy function. Additionally,

W||(q) =
C||

2
q2 and W⊥(q) =

C⊥

2
q2, (3)

respectively. The Hamiltonian equation (1) can be rewritten as

H = HK + HV, (4)

where

HK =
L

∑

l=1

M
∑

m=1

p2
l,m

2
(5)

and

HV =
L

∑

l=1

M
∑

m=1

[

A

2
q2

l,m +
B

4
q4

l,m +
C||

2

(

ql+1,m − ql,m

)2

+
C⊥

2

(

ql,m+1 − ql,m

)2

]

. (6)

In Eq. (2), A < 0 and B > 0 are the parameters of the double-
well potential, shown in Fig. 1, while C|| and C⊥ are the intra-chain
and inter-chain coupling constants. We fix A = −1, B = 1 for the
numerical simulation of the model equation (4). Moreover, we con-
sider that the interaction within each chain is much stronger than
the inter-chain interaction (i.e., C|| � C⊥)

The double well of the potential energy function, Eq. (2), shown
in Fig. 1, has two minima positioned at ±1 with magnitude −1/4.
We derive the following equations of motion from the Hamiltonian
of Eq. (4):

q̈l,m = ql,m − q3
l,m + C⊥

(

ql+1,m − 2ql,m + ql−1,m)

+ C||
(

ql,m+1 − 2ql,m + ql,m−1

)

. (7)

Equation (7) possesses one conserved quantity, the total energy
H . Corresponding to the conserved quantity, we define energy per
particle (energy density) h = H

L×M
.

III. NUMERICAL ANALYSIS OF THE MODEL

We study the dynamical evolution of the system for the ini-
tial condition q0

l,m = 1, where the superscript 0 stands for t = 0.

We select p0
l,m from a uniform random distribution [−0.5, 0.5] and

rescale it to preserve the conservation of H . This rescaling is done

by considering pl,m =
√

H −HV

H
0

K
p0

l,m, where

H
0

K =
L

∑

l=1

M
∑

m=1

(p0
l,m)

2

2
. (8)

We then evolve the system for a pre-relaxation time t = 2000 before
starting to measure the observables considered below. Unless other-
wise mentioned, we consider L = 256 and M = 10. We should note
here that the use of different random distributions, such as a normal
one, for the p0

l,m was checked to lead to qualitatively similar results.
It is well known that for C⊥ = 0, Eq. (7) represents the

one-dimensional lattice setting. When approaching the continuum
φ4-limit of C|| → ∞, the φ4 model supports both the kink and
antikink solutions, where the energy of a kink is estimated to be

EK =
2
√

2

3

√

C||

|A|
|A|2

B
.

It has been found that the dynamical equations, Eq. (7), also exhibit
kink and transient breather excitations.7

The structural transition associated with the model resulting
from the underlying double well potential can be assessed with the
observable time-averaged displacement 〈QD〉 defined as

〈QD〉 =
1

T̃

∫ T̃

0

QD(t) dt, (9)

FIG. 2. The average displacement 〈QD〉 for inter-chain coupling strengths
C⊥ = 0 (green circles) and C⊥ = 0.1 (red diamonds) as a function of tem-
perature T for the fixed intra-chain coupling strength C|| = 1. The inset shows
the critical temperature Tc associated with the structural phase transition for
different C⊥.
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FIG. 3. (a) and (b) The spectral function D(k = 0,ω) for different values of C⊥
at different temperatures and (c) square of the soft-mode frequency ω2

s(k = 0)
at different temperatures (c).

FIG. 5. Time-averaged displacement 〈QD〉 for C⊥ = 0.05. The other parameters
are L = 256 and M = 10.

where QD = 1
L×M

∑

l,m ql,m(t) and T̃ denotes the time horizon
of the numerical simulation (the latter is not to be confused
with the kinetic temperature definition provided below). This
structural transition is led by the (kinetic) temperature T = 1

L×M

1

T̃

∫ T̃

0

∑

l,m v2
l,m dt, where vl,m represents the velocity of the (l, m)th

particle. Notice that here we are following the definition of Ref. 7
(where the customary factor of 2 in the denominator is not
included). Figure 2 shows the time-averaged displacement as a func-
tion of temperature for two different inter-chain coupling strengths.
The results are consistent with the analytical estimation that the crit-
ical temperature Tc → 0 as C⊥ → 0 and moreover the existence of a
finite Tc for C⊥ > 0 (Ref. 26), where Tc is defined as the temperature
at which the averaged displacement 〈QD〉 deviates from 0.

We now examine the dynamical properties of the system by
using spectral functions, while also reproducing the results discussed

FIG. 4. Average displacement QD for C⊥ = (0, 0.05, 0.1) (a)–(c) of the single kick case that changes the initial temperature from Ti to the final value Tf > Tc. The other
parameters are L = 256 and M = 10.
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FIG. 6. Soliton detector: The triplets represent the cases of C⊥ = 0.05 for two
different kick strengths: (a) P0 = 8 and (b) P0 = 11. Each of the triplets contains
three chains. The other parameters are C|| = 1, L = 256, and M = 10.

FIG. 8. Average displacement QD for (a) C⊥ = 0 and (b) C⊥ = 0.05. The lines of different final temperatures Tf , see Fig. 4, fit well with the function ∼ e−αt , and the inset
represents the values of α. The other parameters are L = 256 and M = 10.

FIG. 7. Soliton detector: The triplets represent the cases of C⊥ = 0 for the
kick strength P0 = 4. Each of the triplets contains three chains. The specific
parameters are C|| = 1, L = 256, and M = 10.

in the earlier work of Ref. 7. The spectral function is defined as

D(k, ω) = lim
tmax→∞

1

2tmax

1

L × M
|q(k, ω)|2, (10)

where q(k, ω) =
∫ tmax

−tmax
dt e−iωtq(k, t) and q(k, t) =

∑

r e−ik.rq(r, t).

The spectral function is expected to show a peak corresponding to
the frequency of particle motion across the double-well potential at
relatively high temperatures.25,27,28 On the other hand, at relatively
low temperatures, this spectral function exhibits a peak correspond-
ing to the frequency of the particle motion in a single well and an
additional peak resulting from K and K̄ diffusion. Figures 3(a)–3(b)
show the spectral function D(k = 0, ω) for different values of C⊥
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FIG. 9. Mean domain size 〈DS〉 of ql,m > 0 for (a) C⊥ = 0.05 and (b) C⊥ = 0. Dashed lines represent the fit ∼ t−β , and the inset represents the values of β . The other
parameters are L = 256 and M = 10.

FIG. 10. Histogram of domain size DS of ql,m > 0 for (a) C⊥ = 0 and (b) C⊥ = 0.05 at a fixed time before the kick. The other parameters are L = 256 and M = 10.

FIG. 11. Histogram of domain size DS of ql,m > 0 for (a) C⊥ = 0 and (b) C⊥ = 0.05 at a fixed time after the kick. The other parameters are L = 256 and M = 10.
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at different temperatures T. We follow the peak that corresponds
to the particle motion across the double-well potential and observe
the decrease in frequency as T approaches Ts: this is called the soft-
mode frequency ωs [see Fig. 3(c)]. As T decreases below Ts, the
frequency corresponds to oscillations in a single well and hardens
again. Note the near-linear T dependence of the squared frequency
ω2

s (k = 0) as T → Ts from above and below, as predicted by mean-
field (self-consistent phonon) theory. We see that Tc, the critical
phase transition temperature, is indeed smaller than Ts, the dynam-
ical crossover temperature.

We now focus on the dynamical processes in the regime
Tc . Ts/3, where the topological K, K̄ excitations dominate the
relaxation. In what follows, we will either once or periodically per-
turb the system by imparting energy with instantaneous kicks and
will subsequently seek to measure relevant observables. A drive
to the system with an amplitude P0 with period tp leads to the
modification of the equations of motion, according to

q̈l,m = ql,m − q3
l,m + C⊥

(

ql+1,m − 2ql,m + ql−1,m)

+ C||
(

ql,m+1 − 2ql,m + ql,m−1

)

+ P0δ(t − [t0 + ntp]), n = 0, 1, 2, . . . , (11)

where t0 is the initial offset time (not the pre-thermalization time).
This offset time does not play any role in the system dynamics, and
we fix t0 = 100 for our analysis, unless otherwise mentioned, to see
the difference in initial and final dynamics.

Having identified the critical temperature Tc for weakly cou-
pled chains and the temperature regime (T <∼ Ts/3) where topo-
logical (kink/antikink) excitations are dominant, we could now
explore many perturbation scenarios. Here, we limit our study
to simple cases of pulsed and periodically pulsed applied fields
intended to mimic measurement protocols in the analogous quan-
tum context. We interrogate the resulting classical dynamics with
several diagnostics chosen to explore both global and local (includ-
ing kink) properties. These diagnostics demonstrate clear differ-
ences between uncoupled and weakly coupled φ4 chains, as antic-
ipated in our discussion above. However, they also motivate the
need to develop more topology-sensitive probes, both numerical and
experimental.

IV. SINGLE KICK DRIVING: n =0

A single kick at t0 changes the initial temperature Ti of the sys-
tem to the final temperature Tf > Tc. Recall that in both cases, we
refer to kinetic temperatures in this statement. The amplitude of kick
strength P0 determines the imparted energy and accordingly affects
the resulting kinetic temperature Tf. Figure 4 shows the evolution
of the average displacement QD(t) for different values of C⊥. For a
finite C⊥ > 0, the slow equilibration time of QD from a finite ini-
tial value to the final value of QD decreases with the increase in kick
strength since stronger kicks produce higher T and the equilibration
is then controlled by spatially extended vibrations and large kink
densities. Weaker kicks produce lower amplitude oscillations and
associated kink densities. The relaxation process is evident in the
measurement of time-averaged displacement 〈QD〉 shown in Fig. 5.
We introduce a kink detector that detects the transition between
wells in the double-well potential; see also the definition in Ref. 7.

This diagnostic is used to facilitate an understanding of the slow
relaxation.

The kink detector results depicted in Fig. 6 highlight the motion
of the boundaries of black-white regions, namely, kink solitary
waves. When this “detector” switches from −1 to 1, it signals the
presence of coherent structures. This scenario is to be contrasted
with some of the cases shown below, where one color (black or

FIG. 12. Evolution of domain of ql,m > 0 for C⊥ = 0.05 [triplets of (a) and (b)]
and C⊥ = 0 [triplets of (c)] before the kick. The other parameters are L = 256
and M = 10.
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FIG. 13. Average displacement QD of the multi-kick case for C⊥ = 0.05, for three different kick intervals, (a) 5, (b) 10, and (c) 20 time units, where Tf represents the final
temperature. The other parameters are L = 256 and M = 10.

white) predominates, signaling the presence of a (chiefly) uniform
phase. It is noticeable that, as compared with the plot of C⊥ = 0
case of Fig. 7, the kink detector at finite C⊥ = 0.05 shows more
traveling small black spots—these are large amplitude breather-like
excitations, i.e., kink–antikink bound states.7 We notice that, fol-
lowing a kick, the average displacement QD relaxes exponentially;
i.e., QD ∼ e−αt, where α increases with increase in kick strength,
see Fig. 8. We attribute this increase in α to an increase in large
amplitude excitations.

The observable average displacement quantifies the relaxation
in the regime Tc < T . Ts/3. Nevertheless, this observable is less
effective in characterizing the local dynamics of the system. Hence,
we now consider another observable, the mean domain size 〈DS〉
that quantifies the number of nearest neighbor particles in either
left or right wells of the double-well potential: i.e., ql,m > 0 or
ql,m < 0. We focus on the case ql,m > 0 since on average, the mean
domain size of ql,m > 0 is expected to be equal to that of ql,m < 0 for
T > Tc. The maximum of the mean domain size 〈DS〉max = L × M.
Figure 9 shows the evolution of mean domain size of ql,m > 0 for
two different values of C⊥.

Unlike the case of the average displacement QD, the mean
domain size exhibits an algebraic decay for a finite C⊥ > 0. The his-
togram of a mean domain size shows that for C⊥ > 0, the probability
of a larger domain size is higher before a kick (Fig. 10) as compared
to the probability after the kick (Fig. 11). This is because the kick
gives it a higher T, hence smaller domains, QD. On the other hand,
for uncoupled chains, C⊥ = 0, the probability of a larger domain size
is smaller (in comparison with the coupled case) before and after
kicking. For a finite inter-chain coupling, we see the kink movement
across the chains, corresponding to the evolution of 2D domains
through kink motion along their boundaries (Fig. 12).

V. MULTI-KICK DRIVING: n >0

A central aim of our study is to mimic a simplified informa-
tion measurement protocol by pulsing the system periodically to

FIG. 14. Soliton detector for a multi-kick case: The triplets represent the cases of
C⊥ = 0.05 for two different kick strengths (a) P0 = 1 and (b) P0 = 3 for a fixed
kick interval of 20. Each of the triplets contains three chains. The other parameters
are C|| = 1, L = 256, and M = 10.
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FIG. 15. Mean domain size of the multi-kick case forC⊥ = 0.05, for four different
kick strengths for a fixed kick interval 20, where Tf represents the final temperature
at the time t = 500. The other parameters are L = 256 and M = 10.

examine memory and decoherence effects. To avoid additional com-
plications of driving the system through the phase transition, in this
case, we start with Ti > Tc but limit the amplitude and number,
n, of kicks so that Tf remains in the topological (kink) dominated
regime T . Ts/3. Specifically, we restrict Tf < Ts by fixing n = 4
and considering a smaller strength of P0. The final temperature Tf

is measured at the (n + 1)th kick. Figure 13 shows the average dis-
placement QD of a multi-kick case for three different values of kick
periods. For a fixed C⊥, we see a more rapid relaxation of QD for
a higher kick strength. Moreover, in this case, the energy equili-
brates in the system before the relaxation for weaker kick strengths.
This scenario is quite evident from the kink picture given in Fig. 14.
Indeed, for higher kick strengths, we see large numbers of both K, K̄,
and kink–antikink bound states (i.e., large amplitude breather exci-
tations). A further characterization, based on the mean domain size,
exhibits a monotonic increase for all final temperatures Tf beyond
T0 as shown in Fig. 15. The characteristics of a mean domain size
further show the more rapid equilibration of the system for higher
final temperatures. The overall picture is that, for large kick periods
or weak kick strengths, the system equilibrates to a new T before the
next kick. However, for small periods or higher kick strengths, the
system cannot equilibrate between the kicks. One quantification of
this is the difference between the temperature following a kick and
just before the next kick and the equilibrated T for that kick strength
(see Fig. 13). This suggests a crossover in periodicity-kick strength
space from decoherence/loss of memory to finite coherence/some
memory. It will be important to monitor this with information-
theoretic measures (as in the complex Ginzburg–Landau (CGL)
equation case18); since we expect the topological kink dynamics to
primarily control this behavior, more detailed kink-following meth-
ods will be required. We believe that this is an important direction
for further exploration.

VI. CONCLUSIONS AND FUTURE CHALLENGES

We have explored how weakly coupled classical φ4 chains
mimic relaxation and memory regimes exploited in quantum
annealing architectures, such as the one utilized for D-Wave based
on TFI interactions through an analogy between the two classes of
models. Indeed, this was motivated by an exact D-dimension to
(D-1)-dimension model mapping between these two settings for
equilibrium properties. Our considerations exemplify the impor-
tance for information processing of recognizing similarities between
key phenomena exhibited by appropriate classical nonlinear equa-
tions and quantum linear ones. In particular, we emphasized the
fundamental role of topological excitations (kinks and antikinks
here). These are the analogs of Ising spin domain walls in the quan-
tum TFI. In general, the topic of statistics of topological defects, their
relationship to information-theoretic measures, such as entropy,
and their response to perturbations are important frontiers.29 Our
findings pave the way for an understanding of the regimes where
these analogies can be explored and the impact of the intensity
and the time-duration of the (measurement-emulating) perturba-
tion toward the potential loss of information (effective decoherence)
of the systems at hand.

Our results can be extended in several directions. For exam-
ple, using different kick profiles (analogous to general Kibble–Zurek
regimes as Tc is crossed30), introducing kink defects (analogous to bit
errors), studying weakly coupled chains in higher dimensions, other
topologies, geometries, or inter-chain connectivities. The exact D
to (D-1)-dimensional mapping leveraged above no longer exists in
such cases, but we anticipate similar roles of topological excitations
and their interplay with disorder. Finally, we have not included
any dissipation mechanisms here, thus modeling a closed system.
Including dissipation would extend the study to open systems, a
topic of particular interest in its own right. A related connection is
that of placing the system in contact with a heat bath to lower its
temperature and the corresponding examination of potential hys-
teresis loops between raising (e.g., through the kicks considered
herein) and lowering the system’s temperature. The D-Wave quan-
tum simulation of the 1D TFI model has been reported in Ref. 31
(see also Ref. 17). From the perspective of the mapping to weakly
coupled classical φ4 chains discussed here, it would be interest-
ing to experimentally study quasi-1D ferro-distortive materials.32

For example, subjecting them to periodic pulsing and monitoring
displacements, dynamic structure factors and, even more impor-
tantly, local (atomic displacements and electronic) properties could
be monitored, e.g., with scanning tunneling probes or indirectly
through nonlinear susceptibilities. Since the inter-chain coupling
maps to the transverse field in the 1D TFI, that could be mim-
icked with a transverse stress field. These are some among the
many possible directions for nonlinear-to-quantum connections
that are worthwhile considering in future work. Given the analogy
of kink–kink coupling between two chains and electron diffusion
in disordered systems (“trapping/detrapping”), analytical progress
might be possible by just considering two weakly coupled chains.
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