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ARTICLE INFO ABSTRACT

Keywords: Cells rely on their cytoskeleton for key processes including division and directed motility. Actin filaments
Actin are a primary constituent of the cytoskeleton. Although actin filaments can create a variety of network
Branched actin network architectures linked to distinct cell functions, the microscale molecular interactions that give rise to these
Lamel_lipodiun} macroscale structures are not well understood. In this work, we investigate the microscale mechanisms that
Machine learning . . . . . o . .
Agent-based model pro.duce different branche.d actin network structures using an iterative c1.a551f1<.:at10n approacl}. First, \./ve employ
Cell cytoskeleton a simple yet comprehensive agent-based model that produces synthetic actin networks with precise control
over the microscale dynamics. Then we apply machine learning techniques to classify actin networks based
on measurable network density and geometry, identifying key mechanistic processes that lead to particular
branched actin network architectures. Extensive computational experiments reveal that the most accurate
method uses a combination of supervised learning based on network density and unsupervised learning based
on network symmetry. This framework can potentially serve as a powerful tool to discover the molecular
interactions that produce the wide variety of actin network configurations associated with normal development
as well as pathological conditions such as cancer.

1. Introduction in a variety of diseases, including cancer metastasis, neurological disor-
ders, and immune disorders (Paterson and Courtneidge, 2018). Despite
the importance of the lamellipodium in cellular functions, a direct

and comprehensive link from local molecular dynamics to network

Actin, the most abundant protein in eukaryotic cells, is involved in
a wide range of key cellular functions including cell motility, cell dif-
ferentiation, muscle contraction, and cytokinesis (Schwarz and Gardel,
2012; Svitkina, 2018). Actin monomers form rod-like actin polymers,
which are constantly assembled, disassembled, and remodeled by ac-
cessory proteins and molecular motors. Because of the noise-dominated
complex dynamics, the resulting actin networks have a variety of archi-

organization to cellular behavior has yet to be established.

Branched actin networks emerge as a result of the complex inter-
play between various known molecular processes as follows (Svitkina,
2018). Actin filaments grow or shrink through the addition or loss of

tectures with distinguishable biochemical and mechanical properties.
One notable actin meshwork is the branching protrusive network in
the lamellipodium, which is the thin, sheet-like extension used for
directed cell movement on flat surfaces (Theriot and Mitchison, 1991).
Previous quantitative studies have demonstrated that the growth of the
branching network must be primarily two-dimensional to maintain the
integrity of the lamellipodium (Atilgan et al., 2005). Abnormalities in
the structure and function of the lamellipodium have been implicated

* Corresponding authors.

actin monomers from their pointed and barbed ends. Filament branch-
ing occurs when an Arp2/3 protein complex binds to a filament and
creates a nucleation site for a new filament to extend from the existing
one at a 70° angle (Svitkina and Borisy, 1999). Capping proteins pre-
vent the additional growth of an actin filament by binding to the barbed
end. Depending on the intracellular environment that actin networks
grow in, including the availability and distribution of resources (actin

E-mail addresses: mrostami@binghamton.edu (M.W. Rostami), BBannish@uco.edu (B.E. Bannish), kgasior2@nd.edu (K. Gasior), rpinals@mit.edu
(R.L. Pinals), c.copos@northeastern.edu (C. Copos), dawes.33@math.ohio-state.edu (A.T. Dawes).

https://doi.org/10.1016/j.jtbi.2023.111613

Received 15 May 2023; Received in revised form 14 August 2023; Accepted 29 August 2023

Available online 27 September 2023

0022-5193/Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


https://www.elsevier.com/locate/yjtbi
http://www.elsevier.com/locate/yjtbi
mailto:mrostami@binghamton.edu
mailto:BBannish@uco.edu
mailto:kgasior2@nd.edu
mailto:rpinals@mit.edu
mailto:c.copos@northeastern.edu
mailto:dawes.33@math.ohio-state.edu
https://doi.org/10.1016/j.jtbi.2023.111613
https://doi.org/10.1016/j.jtbi.2023.111613
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2023.111613&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

M.W. Rostami et al.

Journal of Theoretical Biology 575 (2023) 111613

Generate microscale actin networks

Image analysis

e
yal N\
Transformation
men- G GG Information (TT)
: Label B  Label Label
I_’ :_’ _’ > , \
@

Fine-grained classification

(Labels 0-7)

Coarse-grained classification

(Labels A-C, X-Y)

Clustering
< non-CNN :
<.~ CNN Relabel

data

Fig. 1. Outline of the analysis pipeline for identifying the governing dynamics of observed architectures of synthetic branched actin networks. A detailed description of
the analysis, which combines agent-based modeling, machine learning methods, and image processing, is in Section 2.

monomers) and regulators (capping proteins and Arp2/3 complexes),
branched actin structures can exhibit vastly different shapes and inter-
nal organizations. Our focus is on the inverse problem: given such a
network, what are the underlying growth conditions that gave rise to
the observed architecture? The power of such a technique lies in its
predictive nature; for example, we can predict that a “spiky” network
is due to limited availability of Arp2/3 complexes.

To address the need for an inverse mapping from macroscopic
networks to underlying microscopic formation dynamics, we present
a novel analysis pipeline. The pipeline is a two-pronged approach
based on synthetic networks with prescribed local dynamics, along with
machine learning and topological tools. The first prong is an agent-
based stochastic model that allows us to construct protrusive actin
structures in two dimensions. Building on our previously published
work, we create a stochastic model that generates actin structures
by tuning various interactions and parameters (Copos et al., 2021).
With this in silico approach, networks are generated quickly and in-
expensively while molecular processes and parameters are controlled
in a systematic way. The generation of synthetic data is an important
step for our classification method since few experiments exist for
lamellipodium-like network growth in controlled environments.

Synthetic branched actin networks are used in the second part of our
approach, which applies machine learning techniques to identify the
governing principles that give rise to a network architecture. We formu-
late this process as a classification problem in which we classify images
of networks with respect to the underlying local molecular interactions.
To solve this problem, we then leverage the data-processing power of
a variety of machine learning algorithms including the convolutional
neural networks (CNNs), which specialize in processing data on a grid

and have been successful at image classification. We perform both
fine-grained classification and coarse-grained classification; the former
aims to pinpoint the exact combination of molecular processes that
give rise to a specific actin structure, whereas the latter uncovers the
distinct dominating mechanisms. The coarse-grained classification is
developed based on the observation that different mechanisms can lead
to very similar network architectures, making fine-grained classifica-
tion unreliable. Our improved approach combines supervised (CNN)
and unsupervised (k-means clustering) learning methods, and utilizes
both raw and symmetry-transformed data. Using simulated data, we
find that the fine-grained classifier has an accuracy ranging between
66% and 90% depending on the network growth condition, while
the coarse-grained classifier boasts an accuracy of 87%-99%. The un-
supervised regrouping of the growth conditions into coarse-grained
classes identifies limiting capping proteins and branching complexes as
primary drivers of network architecture. The success of our method on
synthetic networks is a promising step toward the ultimate discovery
and analysis of regulatory mechanisms in experimentally obtained actin
networks.

2. Methods
2.1. Generation of synthetic branching actin networks

In our previous work, we built an agent-based computational frame-
work to capture the local microstructure of branching actin networks
under various intracellular conditions (Copos et al., 2021) (top, Fig. 1).
The framework uses a molecular-level representation of dynamically
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assembling and disassembling polymers (actin filaments) in two dimen-
sions. In order to capture more of the biological complexity of branch-
ing networks, we extend this framework to include capping and limited
molecular resources in addition to polymerization, depolymerization,
and branching of polar actin filaments.

The dynamics used to generate synthetic actin networks are sum-
marized in Fig. 2A. Implementation of network dynamics and rates is
chosen to closely match biological measurements. A branching actin
network is formed from a single nucleation site in a two-dimensional
domain. By excluding the third spatial dimension, we assume the
branching actin network to be relatively flat as observed in lamellipo-
dia (Laurent et al., 2005). Filaments are represented as rigid rods with
a spatially fixed base and a barbed tip capable of growing or shrinking.
Changes in both actin filament length and overall network structure
are due to the addition or removal of single actin monomers and
branching via branching proteins (Arp2/3 nucleation complexes) at the
free end. Filament growth and shrinkage occur in discrete increments
corresponding to the length of an actin monomer, 0.0027 pm (Lodish
et al., 2000). Based on the known effect of the Arp2/3 complex, the
newly branched filament is assigned to grow in a direction that is 70°
on either side of the preexisting filament tip (Goley and Welch, 2006).
Capping proteins are incorporated and they regulate actin filament
length by binding to the barbed end of a filament; this blocks the addi-
tion or loss of monomers from that filament (Edwards et al., 2014). The
concentration of free monomers and branching proteins can be either
unlimited or limited; both cases are considered in our work. Additional
implementation details are available in Appendix A.1, along with model
parameters and computational constants found in Table A.1 and ex-
plained in Appendix A.2. The simulation and classification analysis of
actin networks are implemented in a custom MariaB code.'

The spatial domain of each simulation is a 10 pm x 10 pm square,
which is comparable to the size of eukaryotic cells. To extrapolate a
corresponding density from a discrete actin network architecture, the
computational domain is uniformly subdivided into a 49 x 49 grid of
size 0.2 pm X 0.2 pm. The choice of grid resolution represents a balance
between computational cost and underlying filament and monomer
sizes. At the end of a given simulation, we calculate the total length of
actin filaments contained in each discretized grid box. Since this length
is a scalar multiple of the number of actin monomers contained in a grid
box, we take the length divided by the area of the grid box, 0.04 pm?,
to be the actin density at the center of that box. The result is a 49 x 49
grayscale image of actin densities, where the brighter a pixel is, the
higher the actin density is at that location (see the top panel of Fig. 1
and Appendix A.3).

The data used to train and validate the classification algorithms
consists of density images of actin networks generated under eight
possible growth conditions labeled 0, 1, 2, ..., 7. These eight categories
include all combinations of capping or no capping, limited or unlimited
Arp2/3 branching complexes, and limited or unlimited actin monomers
( Table 1). For each of the six capping probabilities considered (
Table 2) and each of the eight growth conditions, 300 independent
simulations are run, totaling 2400 simulated actin networks to be
analyzed and classified for their underlying molecular dynamics. The
networks are divided into training, validation, and test sets as follows.
A group of 75 networks for each growth condition (600 networks
total) are randomly selected for the training data. From the remaining
networks, we randomly select a group of 25 networks per condition
(200 networks total) to be used for validation. The networks that have
not been selected for either the training set or validation set (200 per
condition, 1600 networks total) comprise the test data. The training,
validation, and test sets are disjoint and produced by independent runs
of the microscale model.

1 https://github.com/bbannish/Synthetic-Branching-Actin-Network-
Classification.git

Journal of Theoretical Biology 575 (2023) 111613

Table 1

Fine-grained labels. Eight possible fine-grained growth conditions for actin networks.
Label Capping Branching Monomers
oe X Unlimited Unlimited
1 v Unlimited Unlimited
2@ X Limited Unlimited
3 X Unlimited Limited
4@ v Limited Unlimited
5 v Unlimited Limited
6® X Limited Limited
7@ v Limited Limited

2.2. “Fine-grained” actin network classification

To assign a class or label to a given actin network as resulting from
one of the eight growth conditions, we build classifiers using supervised
machine learning techniques based on the images of actin densities and
compare their performance. Foreshadowing the findings in the next
section, we refer to this type of classification as “fine-grained”.

2.2.1. Classification based on density

The supervised machine learning algorithms considered are: convo-
lutional neural network (CNN) (LeCun, 1989), support-vector machine
(SVM) (Cristianini and Shawe-Taylor, 2000), k-nearest neighbors (k-
NN) (Altman, 1992), ensemble algorithms (Breiman, 1996; Seiffert
et al., 2008), and neural network (NN) (McCulloch and Pitts, 1943). We
use “non-CNN” to mean supervised machine learning methods other
than CNN. All classifiers are built for the two-dimensional actin density
plots taken at a fixed time point as described in Section 2.1. The CNN
classifier uses the density data in its natural dimension, a 49 x 49
matrix (image), whereas the non-CNN classifiers use the same data
arranged into a 492 x 1 vector. For each of the six capping probabilities
considered (see Table 2), we proceed as follows:

Step 1 Generate training data: The training data is composed of den-
sity plots of 600 actin networks (75 networks per growth con-
dition) simulated by the same number of independent runs of
the microscale model and labeled by their classes 0,1,2,...,7
according to their respective growth conditions.

Step 2 Train classifiers: We consider CNN and 22 non-CNN classifiers:

six SVM variants: linear, quadratic, cubic, fine Gaussian,
medium Gaussian, and coarse Gaussian;

six k-NN variants: fine, medium, coarse, cosine, cubic, and
weighted;

five ensemble algorithms: boosted trees, bagged trees, sub-
space discriminant, subspace k-NN, and random under-
sampling boosted trees;

five NN variants: narrow, medium, wide, bilayered, and
trilayered.

MartiaB’s Classification Learner App? is used for all non-CNN
classifiers and the CNN classifier is implemented using a cus-
tom code with built-in functions from Matrap’s Deep Learning
Toolbox® and Statistics and Machine Learning Toolbox*. All 23
classifiers are trained on networks in the training set. Once
trained, each classifier is a function that maps the density image
(for the CNN classifier) or vector (for a non-CNN classifier) of a
network to its predicted label, an integer between 0 and 7.

2 https://www.mathworks.com/help/stats/classificationlearner-app.html
3 https://www.mathworks.com/help/deeplearning/index.html
4 https://www.mathworks.com/help/stats/index.html
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Fig. 2. (A) Schematic of actin kinetics incorporated in our simulation framework. Actin filament growth begins at the initial nucleation site (blue) through polymerization.

Monomers have a polymerization probability of pgoly and a depolymerization probability of pgepoly.

Attachment of Arp2/3 complex (red) to the filament facilitates Y-branching.

Association or disassociation of monomers to/from a filament can be halted by the binding of capping proteins (light blue) with probability p.,,. (B) Sample actin network
architectures arising from various growth conditions. All networks are shown after 10 s with a simulation domain of a 10 pm x 10 pm square. For ease of comparison, the
initial angle of growth from the nucleation site was kept constant between all simulations.

Step 3 Evaluate performance: We calculate and compare the accuracy
of all classifiers on data not used in the training process. A classi-
fier is successful at labeling an actin density plot if its predicted
label agrees with the true label and unsuccessful otherwise. The
percentage accuracy of a classifier is defined as

# of actin density plots correctly labeled by classifier

100%.
total # of actin density plots ’

@

First, we calculate the percentage accuracy of the 22 non-CNN
classifiers on the validation data composed of 200 images of
actin density (25 per growth condition). This allows us to iden-
tify the best non-CNN classifier as the one with the highest
percentage accuracy. Then, to compare the best performing
non-CNN classifier and the CNN classifier, we compute their
respective percentage accuracy on the test data, which consists
of 1600 actin density plots (200 per condition).

2.2.2. Quantification of shape symmetry

To identify geometric properties of simulated actin networks, we
calculate the transformation information (TI) associated with each
network density plot as outlined in Gandhi et al. (2021). Broadly, the
TI function quantifies the amount of information lost by approximat-
ing the original image by the transformed image. More specifically,
the value of the TI function which is based on the Kullback-Liebler
divergence measures how approximate the symmetry is, with minima
of the TI function indicating the transformation that results in the

least change from the original image. Here, an affine transformation
corresponding to rotation is used to quantify the symmetry properties
in the actin network. The center for the transformation is calculated
for each individual image that minimizes the TI. While the TI has
limitations as outlined in Gandhi et al. (2021), key symmetry properties
of the generated actin networks are captured by this measure. The
function u(x) is the actin density at location x in each image. The steps
for calculating the TI curve are outlined below and shown graphically
in Fig. 3:

Step 1 Obtain TI measurements by:

1 ux)
TI = — In( == )da,
|D| /5 #eO I (%MX))

where T is the rotation of the image by angle 6, D is the domain
intersection of the original and transformed images, |ID| =
/5 dA, and dA is the area element. We repeat the calculation
and compute the TI for each increment of the transformation
parameter, angle 0, to obtain TI as a function of angle 6.

@

Step 2 Identify approximate symmetries: Find and rank minima of the
TI curve in order to identify approximate symmetries of the actin
density plots. For example, a TI value of O indicates perfect
symmetry.

Further details of the TI calculation are in Gandhi et al. (2021) and
MartiaB code is freely available®.

5 https://github.com/PunitGandhi/TransInfo.git
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Fig. 3. Schematic for quantification of approximate symmetries in the actin density images using transformation information (TI). The image is modified using an affine
transformation (in this case, rotation by angle 0). The original and transformed images are compared to determine the amount of information lost by using the newly transformed
image to approximate the original. Minima of the TI curve indicate approximate symmetries in the actin network.

2.2.3. Classification based on shape symmetry

For each plot of the actin network density, the TI calculation
produces a 361 x 1 vector (or a curve); the ith entry of the vector
is the TI measurement for the transformation parameter 6, = (i — 1)
degrees for i = 1,2,...,361. The non-CNN supervised classifiers can
also be applied to the TI curves extracted from the actin density plots.
The process is the same to the one described in Section 2.2.1 since the
TI curves carry the same fine-grained labels 0, 1, ...,7 associated with
growth conditions.

2.3. “Coarse-grained” actin network classification

Different growth conditions may result in similar network architec-
tures. Therefore, fewer, more identifiable classes are sometimes desired.
In order to reveal governing motifs of emergent network architectures,
we propose a “coarse-grained” classification which results in fewer than
eight classes. Our approach combines supervised and unsupervised ma-
chine learning techniques; first, an unsupervised algorithm is applied to
identify the new, fewer than eight, groupings in the dimension-reduced
TI curves extracted from actin density plots, and then a supervised
learning algorithm is used to build a classifier that determines which
new grouping (or label) to assign to a particular actin density plot. The
procedure is outlined below.

Step 1 Identify new classes: To abstract away fine-level detail, we
use principle component analysis (PCA) to transform each TI
curve (a 361 x 1 vector) to a 2 x 1 vector referred to as the
“reduced” TI curve. The reduced TI curve consists of the two
leading coefficients given by PCA. Next, we apply k-means, a
widely used unsupervised clustering algorithm, to identify the k
groupings (clusters) of the reduced TI curves (MacQueen, 1967).
We use Martiap’s built-in function for k-means® and repeat it for
k between 1 and 12. The sum of distances between data points
and their group centroids is used to assess the “tightness” of a
grouping. Among the twelve values of k considered, we choose a
relatively small k < 8 that is still large enough for the k clusters
to be identifiable. We then proceed to divide the original eight
growth conditions into k groups. Growth condition i is placed in
the jth group if the majority of the reduced TI curves originally
labeled with i are placed in the jth group by k-means.

Step 2 We relabel each actin density plot according to the correspon-
dence between the original eight growth conditions and the new
k groups identified in Step 1. As an example, consider the case
where k = 3 and the three groups are labeled A, B, C. If the
original label 4 is deemed a member of the group A in Step
1, then all the density plots previously labeled with 4 will be
relabeled with A.

6 https://www.mathworks.com/help/stats/index.html

Step 3 Rebuild and re-evaluate the CNN classifier: Repeat Steps 2 to 3
in Section 2.2.1 using the relabeled data.

3. Results

We present a robust, rotation-invariant, and noise-insensitive com-
putational pipeline for the inverse mapping from a synthetic actin
network to its underlying molecular kinetics. In the pipeline, an actin
network is fed through the fine-grained classifier to identify molecular
growth conditions (Sections 2.2.1 and 2.2.3) or through the coarse-
grained classifier to identify primary dynamics (Section 2.3). Training
the supervised statistical methods for accurate classification may re-
quire a large set of networks labeled according to their underlying
molecular kinetics. To rapidly generate tens of thousands of actin net-
works with known dynamics, we employ our molecular kinetics-based
modeling framework outlined in Section 2.1.

3.1. Stochastic simulations produce synthetic actin networks with a variety
of architectures, particularly in the presence of limited resources

We adjust parameter values in the stochastic simulations to generate
diverse actin networks, some of which are shown in Fig. 2B. For
the networks presented here, the polymerization and depolymerization
probabilities are held constant across simulations, while the capping
probability is varied (see Appendix A.2 for details).

As expected, the addition of capping proteins and limited resources
to the actin kinetics modeling framework, individually or in com-
bination, changes the resulting network architecture (Fig. 2B). With
unlimited resources and no capping, a dense and highly branched
network forms (Fig. 2B.a). The network remains dense and branched
for low capping probabilities (peop = 0.00025 and pee, = 0.001), but
as the capping probability increases further, polymerization and de-
polymerization are halted, resulting in much smaller, sparser networks
(Fig. 2B.m,q,u). In cases with low or no capping, the addition of limited
Arp2/3 branching complexes (Fig. 2B.b,f,j) results in longer filaments
once all the Arp2/3 complexes are used; with no additional Arp2/3
complexes, no further branching can occur, so filaments only polymer-
ize and depolymerize. These longer filaments are not seen at higher
capping probabilities (Fig. 2B.n,r,v) because filaments are capped be-
fore they can grow too long. Regardless of the capping probability,
simulations with limited monomers result in significantly smaller net-
works (Fig. 2B.c,g,k,0,s,w); this is because once all the actin monomers
are used, no further bulk growth can occur and only slight struc-
tural modifications to the network continue, as individual monomers
depolymerize and re-polymerize elsewhere in the network. Finally,
in cases with both limited Arp2/3 complexes and limited monomers
(Fig. 2B.d,h,],p,t,x), networks are spatially reduced, with emergence of
some longer filaments at low capping probabilities (Fig. 2B.d,h,l,p) that
are not present at higher capping probabilities (Fig. 2B.t,x).
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Accuracy of all tested machine learning classification algorithms of synthetic actin network architectures.

Capping Fine-grained Coarse-grained
probability non-CNN (best) CNN TI-based non-CNN (best) CNN
0.00025 69% (quadratic SVM) 82% 53% (trilayered NN) 99%
0.00050 84% (linear SVM) 90% 64% (linear SVM) 98%
0.00100 81% (quadratic SVM) 89% 66% (quadratic SVM) 96%
0.00150 77% (medium Gaussian SVM) 84% 63% (median NN) 87%
0.00250 67% (narrow NN) 74% 61% (narrow NN) 87%
0.00375 65% (medium Gaussian SVM) 66% 52% (quadratic SVM) 98%

Sample training data

4

Sample test data

Fig. 4. Randomly selected actin density plots and their corresponding fine-grained labels. A brighter pixel indicates a higher actin density and brightness is scaled across
an individual figure. Across all images, the capping probability is held fixed at an intermediate value (p,, = 0.001). The 12 plots (left, gray) are part of the training set used for
tuning the classifiers. The 16 images (right, blue) are from the test set used for evaluating and comparing the classifiers. A check mark indicates that the CNN classifier accurately
predicts the true label. The density plots wrongly classified by CNN are outlined in red. For any incorrect CNN predictions, the true labels are listed in parentheses.

3.2. Extreme capping rates obscure the role of other dynamics when classi-
fying network structures using standard machine learning techniques

Our first attempt at constructing a classifier relies on non-CNN
supervised machine learning algorithms: support-vector machines, k-
nearest neighbors, ensemble algorithms, and neural networks. For each
capping probability listed in Table 2, we generate 300 actin density
plots for each of the eight growth conditions with labels j =0, 1,2,...,7.
The generated data is partitioned into training, validation, and test
sets as described in Section 2.1. The leftmost three columns in Fig. 4
show 12 actin density plots, with their respective labels placed above
them, randomly selected from the training set for an intermediate
capping probability, 0.001. The accuracy of each algorithm is evaluated
on the validation set to determine which classifier has the highest
accuracy. The accuracy of this classifier for the test data is reported
in Table 2 for each of the six capping probabilities considered. We
find that the accuracy of the best non-CNN classifier ranges between
65% and 84% depending on the capping probability. Interestingly,
the highest accuracy is obtained with mid-range capping probabilities
(0.0005 — 0.0015). That is, at extreme capping rates, the underlying
dynamics are not fully uncovered by any of the non-CNN classifiers.

3.3. Networks grown under widely varying conditions are distinguishable
when both actin density and network geometry are evaluated

To improve the overall accuracy of the classification pipeline in the
previous section, we turn our attention to CNNs. This class of statistical
learning methods has been highly successful at detection of visual im-
agery (LeCun, 1989; Krizhevsky et al., 2017). We train and evaluate the
performance of a CNN classifier as implemented in Section 2.2.1. The
validation data is used to inform the choice of CNN hyper-parameters
such as the number of network layers and network nodes. The accuracy
of the CNN classifier on the test set is summarized in Table 2. The
accuracy ranges between 66% and 90%, with an improvement over
the best non-CNN classifier for every capping probability. The CNN
classifier is more accurate when the capping probability is not too high.
In the rightmost four columns in Fig. 4, for a fixed capping probability
of 0.001, we show 16 actin density plots randomly selected from the
test set, along with their true labels and the labels predicted by the CNN
classifier if the two are different. For visualization purposes, the raw
data is re-scaled such that for an individual image, the highest density
is 1 and the lowest density is 0 (see Appendix A.3 for more details).

Importantly, we find that the CNN classifier is insensitive to rota-
tions (see Appendix A.4) or additive noises up to 10%see Appendix
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Appendix A.5). Specifically, when training and test sets are altered
with 10% salt and pepper noise, we find that the accuracy of the
classifier decreases to 82% (compared to 89% with the original, non-
noisy images) for capping probability 0.001. Due to the dynamical
growth of the network from a nucleation site, the observation time
does impact the accuracy of the classification (see Appendix A.6). We
observe that if the time at which the test data are collected deviates
from the time at which training data are collected by no more than 5%,
then the accuracy of the classifier will hardly degrade, allowing room
for error in a lab setting where precise control of data collection time
is difficult to achieve. As the two times move further apart, however,
the accuracy of the classifier can decrease considerably.

Since the CNN classifier uses image data (rather than vectorized
data) and hence preserves spatial information of the simulated actin
networks, the better performance of the CNN classifier over the non-
CNN classifiers suggests that the geometric properties of the network
may be important for classification. For higher capping probabilities
such as 0.00375, none of the classifiers, CNN or non-CNN, can uncover
the growth condition with high accuracy. We speculate that this is
because when the capping probability is high, actin networks generated
under different growth conditions can approach a similar morphology.

3.4. Symmetric properties of actin networks alone are insufficient to distin-
guish underlying generating mechanisms

To test whether geometric properties of the actin networks alone
may accurately classify networks, we use a novel and robust measure
of symmetry that is grounded in concepts of entropy and information
theory called transformation information (TI) (Gandhi et al., 2021).
We apply this method to quantify asymmetries of actin density plots
under image transformations parameterized by the rotation angle 6 as
outlined in Section 2.2.3 (Fig. 3). The outcome is a TI curve associated
with each network as a function of angular rotation of the network.

Next, we apply the same standard non-CNN machine learning tech-
niques from Section 3.2 to the TI curves extracted from the same
data. That is, we train and evaluate the performance of 22 non-CNN
classifiers on TI curves of actin networks grown under the six capping
probabilities considered previously. For each capping probability, we
identify the best non-CNN classifier as in Section 3.2 and report its
accuracy in Table 2. The accuracy ranges between 52% and 66%, lower
than density-based classification. Like the density-based classifiers, it
performs worse for the extremes of the capping probability range. The
best symmetry-based non-CNN classifier is always less accurate than the
best density-based non-CNN classifier, indicating that symmetry of the
network alone is insufficient to identify the distinct growth condition
of an actin network.

To investigate the potential role of network symmetry, we would
like to visualize the TI curves but cannot easily do so due to the
large dimension, 361, of the data (see Section 2.2.3). A dimension
reduction by linear principal component analysis (PCA) is performed
on the TI curves. The first two principal components of the linear
PCA of the TI curves are calculated, and they account for at least
93% of the variance in the TI data. The visualization of the symmetry
information in a reduced two-dimensional space in Fig. 5 leads us to
hypothesize that the symmetry information can be used to identify
coarser level categorization of the data. For example, for the case of
low capping probability in Fig. 5A, networks with labels 2 (blue) and
5 (magenta) appear to have a similar “vascular” topology. Likewise,
networks with labels 0 (red) and 1 (green) share a similar “round”
topology, while networks with label 6 (black) are relatively small.
Similar conclusions can be drawn for cases with intermediate and high
capping probabilities in Fig. 5B and 5C respectively.
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Table 3
Coarse-grained labels. Three coarse-grained groups for actin networks with low and
intermediate capping probability.

New label Old label Capping Branching Monomers
AA 0 X Unlimited Unlimited
AA 1 v Unlimited Unlimited
BA 2 X Limited Unlimited
BA 4 v Limited Unlimited
CA 3 X Unlimited Limited
CA 5 v Unlimited Limited
CA 6 X Limited Limited
CA 7 v Limited Limited

3.5. Symmetry-informed unsupervised clustering reveals three dominant
network architecture groupings

Based on the visualization of the dimensionally reduced TI curves
of actin density plots, we postulate that there exists a smaller set of
dominant dynamics contributing to a given network architecture. We
apply the k-means unsupervised clustering algorithm to the reduced
TI vectors extracted from the training set to identify a partitioning of
the data into k groups, where k is an integer between 1 and 12. In
Fig. 6A, for three representative capping probabilities (0.00025, 0.001,
and 0.00375), we show the sum of distances between each reduced TI
vector and the centroid of the group that it belongs to as the number
of groups increases from k = 1 to k = 12. These plots suggest that
k = 3 achieves a good balance between the tightness of the groups
and the number of groups. The subplots in Fig. 6B show the three
groups of reduced TI vectors partitioned by k-means for each capping
probability. The grouping appears to be predominantly along the first
principal component. For capping probabilities of 0.00025 and 0.001,
we label the three clusters as “A”, “B”, and “C” and the correspondence
between the eight original labels and the three new labels is in Table 3.
For low and intermediate capping probabilities, whether and which
resources are limited are the main factors in determining the network
architecture. Growth conditions with unlimited resources are labeled
“A*, growth conditions with limited Arp2/3 complexes and unlimited
monomers are labeled “B”, and growth conditions with limited actin
monomers are labeled “C”.

In the case of high capping probability, we label the three clusters
as “X”, “Y”, and “Z” and Table 4 gives the correspondence between the
eight fine-grained labels and these three new labels. Whether capping
is present and whether branching is limited are the main contributors
to the network architecture. Growth conditions that do not include
capping are labeled “X” or “Z”, while growth conditions that do include
capping are all labeled “Y”. As only one growth condition without cap-
ping (the condition which has limited Arp2/3 complexes and unlimited
actin monomers) is labeled by “Z”, we can conclude that while capping
is the biggest determinant in labeling the data, limited branching is also
a feature in distinguishing network architecture.

3.6. Actin networks with defined microscale dynamics can be grouped into
three classes with high accuracy even for extreme capping rates

A CNN classifier for coarse-grained classification is constructed,
which labels actin networks according to their dominant mechanisms
rather than their original growth conditions. The classifier still takes
images of actin density and produces predicted labels; the difference
is that the labels now correspond to the clusters found by k-means for
k = 3. The same training and testing data sets are used as previously. In
Table 2, the accuracy of the new TI-informed CNN classifier on the test
set is reported for the six capping probabilities. We note that the dom-
inant mechanisms can vary with the capping probability, as shown in
Section 3.5. For every capping probability considered, the TI-informed
CNN classifier is more accurate at the coarse-grained classification
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Fig. 5. Visualization of the reduced TI curves. Principal components capture key shapes corresponding to “round“ versus “spiked-edge” networks. Each dot represents an
individual image, and representative images are indicated. Label O: red; label 1: green; label 2: blue; label 3: cyan; label 4: magenta; label 5: yellow; label 6: black; label 7: purple.
(A) Low capping probability, p.,, = 0.00025. (B) Intermediate capping probability, p,, = 0.001. (C) High capping probability, p,, = 0.00375.
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Fig. 6. Identification of coarse-grained labels through unsupervised clustering of the reduced TI curves. (A) The sum of the distances between the reduced TI vectors and
their respective group centroid, as a function of the number of groups used in the k-means algorithm. (B) Partition of the reduced TI vectors into three groups by k-means. Each
triangle or star represents the reduced TI vector extracted from an actin density plot. Label A: red triangle; label B: blue triangle; label C: black triangle; label X: purple star; label
Y: gray star; label Z: light blue star. Low, intermediate, and high capping probabilities correspond to p,, = 0.00025, 0.001, and 0.00375, respectively.

Table 4
Coarse-grained labels at high capping probability. Three coarse-grained groups for
actin networks with high capping probability.

New label Old label Capping Branching Monomers
X X 0 Unlimited Unlimited
X X 3 X Unlimited Limited
X X 6 X Limited Limited
y * 1 v Unlimited Unlimited
Yy * 4 v Limited Unlimited
Yy * 5 v Unlimited Limited
Yy * 7 v Limited Limited
Z 2 X Limited Unlimited

than the original CNN classifier is at the fine-grained classification.
Now, its accuracy ranges between 87% and 99%, and interestingly, it
performs exceedingly well for extreme capping probabilities, a regime
where the original CNN classifier has lower accuracy for fine-grained
classification. Lastly, in Fig. 7, for intermediate capping probability of
0.001, we re-plot the 12 actin networks from the training set and 16
actin networks from the test set shown previously in Fig. 4 but now with
their coarse-grained labels. The labels predicted by the TI-informed
CNN classifier are also included if they are different from the correct
coarse-grained labels.

4. Conclusions & discussion

Actin is an abundant protein that organizes into network structures
that play critical roles in cellular processes, including division and

directed cell migration. Defects in actin networks, such as the branching
protrusive network in the lamellipodium, are correlated with disease
states (Clarkson et al., 2004), and studies of actin-related primary
immunodeficiencies have also pointed to the mounting evidence of the
role of actin structures in a successful immune response (Moulding
et al., 2013). Despite the importance of actin network organization, the
significance of particular microscale interactions in shaping branched
actin networks is not yet clear. Part of the challenge is due to the
difficulty of growing branched networks in vitro under controlled con-
ditions. Toward this end, we develop an iterative process for network
classification: starting with a stochastic model that allows us to “grow”
actin networks in a wide variety of settings, we then classify the
resulting networks using machine learning techniques informed by net-
work theory-inspired measures. These techniques identify the dominant
mechanisms leading to a given actin network, providing mechanistic
information and testable hypotheses.

Our stochastic model is able to effectively and efficiently produce a
large number of actin networks with known, diverse growth conditions,
which are necessary to train our classifiers. The machine learning
algorithms in turn identify a small number of meaningful categories
hidden in the vast amount of training data, and allow us to extract
information about the dominant microscale dynamics responsible for
a given actin network whose growth condition is unknown. Further,
we find the method is invariant to rotations and not sensitive to up
to 10% additive noise as possible in experimental images. Specifically,
when training and test sets are altered with 10% salt and pepper noise,
we find that the accuracy of the classifier decreases to 82% (compared
to 89% with the original, non-noisy images) for capping probability
0.001. By incorporating information from multiple sources (network
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Fig. 7. Networks from Fig. 4,with their corresponding coarse-grained labels. The images from the test set misclassified by the TI-informed CNN classifier are outlined in red.
Their labels predicted by the CNN are listed in parentheses. A check mark indicates that the CNN-predicted label matches the true label. The plots shown are for an intermediate
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Fig. 8. Schematic of the integration of mathematical, computational, and biological techniques. Iteration of these techniques yields insights into mechanisms underlying

branched actin network growth.

density and geometry) and focusing on dominant dynamics, we are
able to improve classification performance when compared to the same
algorithm that uses a single information source (density) and aims to
identify detailed dynamics.

We consider a variety of machine learning algorithms based on
network density and/or network symmetry and find that the most
successful approach is the following: first use an unsupervised clus-
tering algorithm of the approximate network symmetries to identify
a few, significant groups of molecular processes, and then use a CNN
classifier that has been trained on density data re-labeled according to
the groups emerging from unsupervised clustering to classify synthetic
networks. CNN has been successfully applied to image analysis, and
since actin density is sampled on a two-dimensional grid, CNN is a

sensible method to use. Indeed, we observe that CNN is more accu-
rate at network classification than other non-CNN methods considered
including the SVMs. This implies that the geometry of actin networks,
not just the density, is important in identifying their growth conditions.
However, we also find that even with CNN, classifying actin networks
according to their precise growth conditions is still challenging since
multiple growth conditions can lead to similar actin networks. The
importance of network geometry and the desire to accurately iden-
tify dominant molecular dynamics motivate our approach of coupling
TI-based clustering and CNN classification based on density data.

We use relatively standard algorithms for classification such as
CNN, and do not rely on state-of-the-art algorithms for image detec-
tion (Pham et al., 2021), demonstrating that the impact of microscale
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growth conditions can be distinguished from macroscale images. While
it is conceivable that the performance of our methodology could be
improved with more sophisticated algorithms, we achieve high ac-
curacy results with CNN. Although we employ synthetic networks,
our classification workflow can have broader applications: an experi-
mentalist imaging in vitro actin network formation may observe very
different network architectures and may wish to identify the biological
growth dynamics that led to the given architecture (Fig. 8). The tools
described here serve as an important step toward that goal. Even in
our limited case of a single nucleating site, the discovered labels can
provide insight into the growth condition of the network, for example,
whether Arp2/3 branching complexes are limited. This prediction can
be used in conjunction with perturbations and other data to elucidate
the dynamics of the system. In some disease states like cancer, actin
network growth is disrupted, and the method described here would be
a way to use images of the network architecture to diagnose possible
causes of the disrupted growth (Dugina et al.,, 2019). The analysis
framework developed here can be applied more broadly to understand
analogous network-forming biological systems, including extensions of
fungal hyphae or blood vessels networks. A number of extensions of
the methodology presented here ought to be considered in order to suc-
cessfully apply it to experimental images including multiple nucleation
sites, the dynamics of additional accessory proteins, bending of actin
filaments, and training without knowledge of the ground truth.
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Appendix
A.1. Detailed description of stochastic simulation of actin networks

In our previous work, we built a tractable agent-based stochastic
model to capture the local microstructure of branching actin networks
under various intracellular conditions (Copos et al., 2021). The model
includes the actin dynamics of polymerization, depolymerization, and
branching of filaments initiated from a single nucleation site. The actin
filaments are represented as rigid rods with a spatially fixed base and
a barbed tip capable of growing or shrinking. Changes in both actin
filament length and overall network structure are due to the addition
or removal of actin monomers and branching via the Arp2/3 complex.
In the initial model, we assume that there is an unlimited pool of free
monomers and Arp2/3 complexes available to enable filament growth
and branching, respectively. For simplicity, other dynamics of actin
networks such as capping, sliding, bundling, etc. are not considered in
the original model.
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Briefly, each simulation starts with an actin filament of length zero
located at the “nucleation site” placed at the origin. The filament is
assigned an angle of growth which is drawn from a static uniform
distribution; the angle of growth prescribes the direction of growth for
that particular filament. At each time step, there are four possibilities
for filament dynamics: (1) the filament grows with probability pgoly; 2)
the filament shrinks with probability pgepoly, provided that the filament
has a nonzero length at the start of the time step; (3) the filament
remains the same length; or (4) the filament branches with probability
pgrmch to create a new filament, provided that the original filament is
at least some critical length L, (measured from the closest branch
point). Filament growth and shrinkage occur in discrete increments
corresponding to the length of an actin monomer, Ax = 0.0027 pm.
Based on the known biological interaction of the Arp2/3 complex with
actin, the newly branched filament is assigned to grow in a direction
that is +70° from the preexisting filament tip.

To determine which of the four outcomes happens at a time step,
two independent uniformly distributed random numbers are generated
for each filament in the simulation. If the first random number is
less than pgoly, then polymerization occurs, and if it is greater than
1- pgepoly, then depolymerization occurs. If the first random number
simultaneously satisfies both inequalities, then the filament length is
unchanged since both polymerization and depolymerization occur in
the same time step. Likewise, filament length is unchanged if neither
inequality is satisfied, since this means neither polymerization nor
depolymerization occur in the given time step. If the second random
number is less than pgramh, and the filament is at least length Ly .nch»
then the filament branches to form a new filament, capable of au-
tonomous growth and branching. This step-wise process is repeated
until the final simulation time is reached. Ultimately, this stochastic
model captured molecular-level effects within the network and sensi-
tivity analysis revealed that the biological parameters responsible for
filament growth and branching kinetics impacted resulting network
dynamics and morphology in a complementary manner. Simulations of
branching actin networks were implemented in a custom MaTLAB code,
with additional implementation details available in Copos et al. (2021).

In the current study, to capture more biologically relevant
branching actin networks, we include capping proteins, limited actin
monomers, and limited Arp2/3 branching complexes as follows
(schematic in Fig. 2A; the full algorithm flow chart is shown in
Appendix Fig. A.1). The capping protein regulates actin polymerization
by binding to the barbed end of an actin filament, which blocks the
addition and loss of monomers from that filament. In our simulation,
capping dynamics are modeled as follows. At each time step, a third
uniform random number is generated for each uncapped filament. If
the capping probability (p.,, = rate of capping X time step) is greater
than the random number, then the filament can no longer polymerize
or depolymerize. Capping is irreversible; once a filament is capped, it is
capped for the remainder of the simulation. In simulations that include
limited resources, we start with a fixed number of actin monomers
(M, =10,000) and/or a fixed number of Arp2/3 complexes (A4, = 24).
A polymerization (or branching) event can only occur if there are
available actin monomers (Arp2/3 complexes), and the probability of
polymerization (branching) depends on how many actin monomers
(Arp2/3 complexes) remain. In our initial model with unlimited re-
sources, the polymerization rate was fixed: pgoly = 0.324 At/ Ax, where
At is the constant time step, Ax is the constant space step. Now, with
limited resources, we assume that the polymerization rate depends on
the number of actin monomers: pp,j, = % e(M—My)/M pgoly, where M
is the number of available actin monomers at the given time step.
Similarly, the branching probability is modified by the number of
available Arp2/3 complexes: ppanch = Aio Py e Where p) s the
branching probability from the unlimited resources case (chosen from
a cumulative distribution function of the standard normal distribution
with mean 2 and standard deviation 1), and A is the number of available
Arp2/3 complexes at the given time step. Values for parameters are
listed in Appendix Table A.1, and explained in detail in the next section.
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Fig. A.1. Microscale model flow diagram.

A.2. Stochastic simulation parameters

Wherever possible, model parameters are based on experimental
values. The probability of polymerization is calculated from Pollard and
Borisy (2003), which states that actin monomers elongate the barbed
ends of actin filaments at a velocity of 0.3 pm/s (Pollard and Borisy,
2003). Using the formula

disas- = depoly- X length X # time

sembly meriza- re- steps

speed tion moved per
proba- from second
bility filament

where disassembly speed is obtained via

i m m
. 5.0SUPUNIE 00027 B _ g o135 M
assem- = poly- X length X # time s subunit s
bly n}eriza- added steps Therefore,
speed tion to per
roba- filament second 0.0135 pm_ x 0.0027 X _
Eﬂity s Pdepoly M 5005 5°

we calculate that

1
0.005 s’
which implies that pp,, = 0.56 ~ 0.6. Similarly, Pollard and Borisy
(2003) give a range of dissociation rates of actin monomers from 1.4—-8
s~! (Pollard and Borisy, 2003). We choose an intermediate value of 5.0
s! and then calculate

pm
0.3 T = Ppoly X 0.0027 pm X
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which yields pgepory = 0.025. Literature measurements of actin filament
length per branch vary from 0.02 to 5 pm (Mogilner, 2009; Svitkina and
Borisy, 1999; Amann and Pollard, 2001; Jensen et al., 2012; Vinzenz
et al., 2012; Smith et al., 2013), so we choose Ly ,ne, = 0.2 pm, which
is similar to the values from Vinzenz et al. (2012), Smith et al. (2013)
and is an intermediate value between the orders-of-magnitude-different
literature values. The probability of capping is calculated using the
formula
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Table A.1
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Microscale model parameter values. Values flagged with one star (*) were calculated from Pollard and Borisy
(2003). For the value flagged with a dagger (*): literature measurements of actin filament length per branch
vary from 0.02-5 pm (Mogilner, 2009; Svitkina and Borisy, 1999; Amann and Pollard, 2001; Jensen et al.,

2012; Vinzenz et al., 2012; Smith et al.,

2013). We choose Ly, = 0.2 pm as an intermediate estimate

between these orders-of-magnitude-different values from the literature, similar to the values from Vinzenz
et al. (2012), Smith et al. (2013). pgmmh is chosen from a Gaussian distribution with mean y = 2 and
standard deviation ¢ = 1. A range of p,, values from 0 to 0.00375 are investigated.

Parameter Meaning Value

pgoly Probability of polymerizing 0.6*

pgepoly Probability of depolymerizing 0.025*

Peap Probability of capping 0—0.00375

Liranch Critical length before branching can occur 0.2 pm?

pgranch Probability of branching normal CDF (u =2, 6=1)
end Computational run time 10's

At Computational time step 0.005 s

Ay Initial number of branching complexes 24

M, Initial number of actin monomers 10,000

Actin density
(growth condition 0)
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300
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0
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Fig. A.2. Comparison of the grayscale images of the density of two actin networks, generated under growth condition 0 and growth condition 7 respectively, when the capping

probability is 0.001.

capping =  capping X time X concen-

proba- rate step t tration

bility of
capping
protein

which gives

63 XOOOSSXXpM.

Pcap =
The capping rate of 6.3 uM~1s~! is from Wear et al. (2003), and X,
the concentration of capping protein, can take on values up to 0.168
pM (Akin and Mullins, 2008), which corresponds to p.,, = 0.0053.
Hence, we look at a range of capping probabilities from 0 to 0.00375;
capping probabilities greater than this do not result in appreciable actin
network growth.

A.3. Scaling

For visualization purposes, a grayscale image can be created for
each actin network based on its filament density. More precisely, the
location with the highest density is assigned a 1 (brightest), and the
location with the lowest density is assigned a 0 (darkest). As the
density varies considerably among networks generated under the eight
different growth conditions, this re-scaling is performed network by
network instead of across all networks to ensure that networks of lower
densities are still visible. Fig. A.2 shows the re-scaled density plots of
two networks generated under Condition 0 (no capping with unlimited
Arp2/3 complexes and actin monomers) and Condition 7 (capping with
limited Arp2/3 complexes and actin monomers). These two conditions
produce the densest and sparsest networks. By comparing the two plots,
we see that the same level of brightness can indicate vastly different
densities.
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A.4. Sensitivity to rotation

To determine if the density-based, fine-grained CNN classifier is
sensitive to rotation of images, we rotate all density plots in the
training and test data sets for capping probability 0.001 clockwise by
uniformly random degrees between 0 and 360. Sample rotated density
plots (corresponding to the density plots from main text Figure 4) are
shown in Fig. A.3. We retrain the fine-grain CNN classifier based on
this rotated training set, and then classify the rotated test set. The
accuracy of the fine-grained CNN classifier on the rotated images is
89%, identical to the accuracy of the method on the original images.
Hence, we conclude that our method is not sensitive to rotation.

A.5. Sensitivity to salt and pepper noises

To determine if the density-based, fine-grained CNN classifier is
sensitive to noisy data, we “pollute” with salt and pepper noise the
density plots in the training and test sets for capping probability 0.001.
In our first experiment, we randomly select 1% of pixels and randomly
change each one to white or black. We then retrain the fine-grain CNN
classifier on the noisy training set, and then classify the noisy test set.
The accuracy of our method with 1% of pixels randomly changed is
85% (compared to 89% with the original, non-noisy images). We repeat
this process with 5% and 10% of pixels randomly set to white or black
and obtain 85% and 82% accuracy, respectively. Sample density plots
(corresponding to the density plots from main text Fig. 4) with 10% of
salt and pepper noise added are shown in Fig. A.4. We conclude that
our method is not very sensitive to noise.

A.6. Sensitivity to time of data collection

To determine if the density-based, fine-grained CNN classifier is
sensitive to the time of data collection, for capping probability 0.001
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Fig. A.3. Samples of rotated density plots from the training and test sets.

Fig. A.4. Samples of density plots from the training and test sets with 10% of salt and pepper noise added.

we generate test sets at final simulation times T = 5, 7, 8, 9, 9.5,
9.8, 10.5, 11, and 12 s and classify them using the fine-grain CNN
classifier obtained based on training set data collected at time 7" = 10 s.
Snapshots of a single actin network at the different times are shown in
Fig. A.5. Our method is somewhat sensitive to time of data collection
(Fig. A.6). The accuracy of the method is best (89%) when both the
training and test sets are collected at time 7' = 10. The method is
reasonably accurate for test sets collected at T = 9.5, 9.8, 10.5, 11, and
12 s (87%, 89%, 89%, 86%, 79%, respectively), but not very accurate

13

(accuracy < 75%) for test sets collected at T values less than or equal to
9 s. The value of 9 s is based on the rates used in the model and the time
point at which the training data was collected (7" = 10). Regardless of
what parameters and training data we use, there will always be a range
of times for which our method is less accurate, since the networks at
those times will be at a different stage of formation compared to the
training data networks. Despite the sensitivity of the method at early
time points, we conclude that the classifier is robust enough for some
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Fig. A.5. Snapshots of an actin network from the test set at various times.
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Fig. A.6. Accuracy of the fine-grained CNN classifier for time 7 = 10 on test sets
obtained at various time points.

human error, since it gives accurate classifications for test sets collected
between 9.5-12 s.
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