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A B S T R A C T

Cells rely on their cytoskeleton for key processes including division and directed motility. Actin filaments
are a primary constituent of the cytoskeleton. Although actin filaments can create a variety of network
architectures linked to distinct cell functions, the microscale molecular interactions that give rise to these
macroscale structures are not well understood. In this work, we investigate the microscale mechanisms that
produce different branched actin network structures using an iterative classification approach. First, we employ
a simple yet comprehensive agent-based model that produces synthetic actin networks with precise control
over the microscale dynamics. Then we apply machine learning techniques to classify actin networks based
on measurable network density and geometry, identifying key mechanistic processes that lead to particular
branched actin network architectures. Extensive computational experiments reveal that the most accurate
method uses a combination of supervised learning based on network density and unsupervised learning based
on network symmetry. This framework can potentially serve as a powerful tool to discover the molecular
interactions that produce the wide variety of actin network configurations associated with normal development
as well as pathological conditions such as cancer.
1. Introduction

Actin, the most abundant protein in eukaryotic cells, is involved in
a wide range of key cellular functions including cell motility, cell dif-
ferentiation, muscle contraction, and cytokinesis (Schwarz and Gardel,
012; Svitkina, 2018). Actin monomers form rod-like actin polymers,
hich are constantly assembled, disassembled, and remodeled by ac-
essory proteins and molecular motors. Because of the noise-dominated
omplex dynamics, the resulting actin networks have a variety of archi-
ectures with distinguishable biochemical and mechanical properties.
ne notable actin meshwork is the branching protrusive network in
he lamellipodium, which is the thin, sheet-like extension used for
irected cell movement on flat surfaces (Theriot and Mitchison, 1991).
revious quantitative studies have demonstrated that the growth of the
ranching network must be primarily two-dimensional to maintain the
ntegrity of the lamellipodium (Atilgan et al., 2005). Abnormalities in
he structure and function of the lamellipodium have been implicated
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in a variety of diseases, including cancer metastasis, neurological disor-
ders, and immune disorders (Paterson and Courtneidge, 2018). Despite
the importance of the lamellipodium in cellular functions, a direct
and comprehensive link from local molecular dynamics to network
organization to cellular behavior has yet to be established.

Branched actin networks emerge as a result of the complex inter-
play between various known molecular processes as follows (Svitkina,
2018). Actin filaments grow or shrink through the addition or loss of
actin monomers from their pointed and barbed ends. Filament branch-
ing occurs when an Arp2/3 protein complex binds to a filament and
creates a nucleation site for a new filament to extend from the existing
one at a 70◦ angle (Svitkina and Borisy, 1999). Capping proteins pre-
vent the additional growth of an actin filament by binding to the barbed
end. Depending on the intracellular environment that actin networks
grow in, including the availability and distribution of resources (actin
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Fig. 1. Outline of the analysis pipeline for identifying the governing dynamics of observed architectures of synthetic branched actin networks. A detailed description of
the analysis, which combines agent-based modeling, machine learning methods, and image processing, is in Section 2.
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monomers) and regulators (capping proteins and Arp2/3 complexes),
branched actin structures can exhibit vastly different shapes and inter-
nal organizations. Our focus is on the inverse problem: given such a
network, what are the underlying growth conditions that gave rise to
the observed architecture? The power of such a technique lies in its
predictive nature; for example, we can predict that a ‘‘spiky’’ network
is due to limited availability of Arp2/3 complexes.

To address the need for an inverse mapping from macroscopic
networks to underlying microscopic formation dynamics, we present
a novel analysis pipeline. The pipeline is a two-pronged approach
based on synthetic networks with prescribed local dynamics, along with
machine learning and topological tools. The first prong is an agent-
based stochastic model that allows us to construct protrusive actin
structures in two dimensions. Building on our previously published
work, we create a stochastic model that generates actin structures
by tuning various interactions and parameters (Copos et al., 2021).
ith this in silico approach, networks are generated quickly and in-
xpensively while molecular processes and parameters are controlled
n a systematic way. The generation of synthetic data is an important
tep for our classification method since few experiments exist for
amellipodium-like network growth in controlled environments.
Synthetic branched actin networks are used in the second part of our

pproach, which applies machine learning techniques to identify the
overning principles that give rise to a network architecture. We formu-
ate this process as a classification problem in which we classify images
f networks with respect to the underlying local molecular interactions.
o solve this problem, we then leverage the data-processing power of
variety of machine learning algorithms including the convolutional
eural networks (CNNs), which specialize in processing data on a grid
2

nd have been successful at image classification. We perform both
ine-grained classification and coarse-grained classification; the former
ims to pinpoint the exact combination of molecular processes that
ive rise to a specific actin structure, whereas the latter uncovers the
istinct dominating mechanisms. The coarse-grained classification is
eveloped based on the observation that different mechanisms can lead
o very similar network architectures, making fine-grained classifica-
ion unreliable. Our improved approach combines supervised (CNN)
nd unsupervised (k-means clustering) learning methods, and utilizes
oth raw and symmetry-transformed data. Using simulated data, we
ind that the fine-grained classifier has an accuracy ranging between
6% and 90% depending on the network growth condition, while
he coarse-grained classifier boasts an accuracy of 87%–99%. The un-
upervised regrouping of the growth conditions into coarse-grained
lasses identifies limiting capping proteins and branching complexes as
rimary drivers of network architecture. The success of our method on
ynthetic networks is a promising step toward the ultimate discovery
nd analysis of regulatory mechanisms in experimentally obtained actin
etworks.

. Methods

.1. Generation of synthetic branching actin networks

In our previous work, we built an agent-based computational frame-
ork to capture the local microstructure of branching actin networks
nder various intracellular conditions (Copos et al., 2021) (top, Fig. 1).
The framework uses a molecular-level representation of dynamically
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assembling and disassembling polymers (actin filaments) in two dimen-
sions. In order to capture more of the biological complexity of branch-
ing networks, we extend this framework to include capping and limited
molecular resources in addition to polymerization, depolymerization,
and branching of polar actin filaments.

The dynamics used to generate synthetic actin networks are sum-
marized in Fig. 2A. Implementation of network dynamics and rates is
chosen to closely match biological measurements. A branching actin
network is formed from a single nucleation site in a two-dimensional
domain. By excluding the third spatial dimension, we assume the
branching actin network to be relatively flat as observed in lamellipo-
dia (Laurent et al., 2005). Filaments are represented as rigid rods with
a spatially fixed base and a barbed tip capable of growing or shrinking.
Changes in both actin filament length and overall network structure
are due to the addition or removal of single actin monomers and
branching via branching proteins (Arp2/3 nucleation complexes) at the
free end. Filament growth and shrinkage occur in discrete increments
corresponding to the length of an actin monomer, 0.0027 μm (Lodish
et al., 2000). Based on the known effect of the Arp2/3 complex, the
newly branched filament is assigned to grow in a direction that is 70◦
n either side of the preexisting filament tip (Goley and Welch, 2006).
apping proteins are incorporated and they regulate actin filament
ength by binding to the barbed end of a filament; this blocks the addi-
ion or loss of monomers from that filament (Edwards et al., 2014). The
oncentration of free monomers and branching proteins can be either
nlimited or limited; both cases are considered in our work. Additional
mplementation details are available in Appendix A.1, along with model
arameters and computational constants found in Table A.1 and ex-
lained in Appendix A.2. The simulation and classification analysis of
ctin networks are implemented in a custom Matlab code.1
The spatial domain of each simulation is a 10 μm × 10 μm square,

hich is comparable to the size of eukaryotic cells. To extrapolate a
orresponding density from a discrete actin network architecture, the
omputational domain is uniformly subdivided into a 49 × 49 grid of
ize 0.2 μm × 0.2 μm. The choice of grid resolution represents a balance
etween computational cost and underlying filament and monomer
izes. At the end of a given simulation, we calculate the total length of
ctin filaments contained in each discretized grid box. Since this length
s a scalar multiple of the number of actin monomers contained in a grid
ox, we take the length divided by the area of the grid box, 0.04 μm2,
o be the actin density at the center of that box. The result is a 49 × 49
rayscale image of actin densities, where the brighter a pixel is, the
igher the actin density is at that location (see the top panel of Fig. 1
nd Appendix A.3).
The data used to train and validate the classification algorithms

onsists of density images of actin networks generated under eight
ossible growth conditions labeled 0, 1, 2,… , 7. These eight categories
nclude all combinations of capping or no capping, limited or unlimited
rp2/3 branching complexes, and limited or unlimited actin monomers
Table 1). For each of the six capping probabilities considered (
able 2) and each of the eight growth conditions, 300 independent
imulations are run, totaling 2400 simulated actin networks to be
nalyzed and classified for their underlying molecular dynamics. The
etworks are divided into training, validation, and test sets as follows.
group of 75 networks for each growth condition (600 networks

otal) are randomly selected for the training data. From the remaining
etworks, we randomly select a group of 25 networks per condition
200 networks total) to be used for validation. The networks that have
ot been selected for either the training set or validation set (200 per
ondition, 1600 networks total) comprise the test data. The training,
alidation, and test sets are disjoint and produced by independent runs
f the microscale model.

1 https://github.com/bbannish/Synthetic-Branching-Actin-Network-
lassification.git
3

Table 1
Fine-grained labels. Eight possible fine-grained growth conditions for actin networks.
Label Capping Branching Monomers

0 ∙ ✕ Unlimited Unlimited
1 ∙ ✓ Unlimited Unlimited
2 ∙ ✕ Limited Unlimited
3 ∙ ✕ Unlimited Limited
4 ∙ ✓ Limited Unlimited
5 ∙ ✓ Unlimited Limited
6 ∙ ✕ Limited Limited
7 ∙ ✓ Limited Limited

2.2. ‘‘Fine-grained’’ actin network classification

To assign a class or label to a given actin network as resulting from
one of the eight growth conditions, we build classifiers using supervised
machine learning techniques based on the images of actin densities and
compare their performance. Foreshadowing the findings in the next
section, we refer to this type of classification as ‘‘fine-grained’’.

2.2.1. Classification based on density
The supervised machine learning algorithms considered are: convo-

lutional neural network (CNN) (LeCun, 1989), support-vector machine
(SVM) (Cristianini and Shawe-Taylor, 2000), 𝑘-nearest neighbors (k-
NN) (Altman, 1992), ensemble algorithms (Breiman, 1996; Seiffert
et al., 2008), and neural network (NN) (McCulloch and Pitts, 1943). We
se ‘‘non-CNN’’ to mean supervised machine learning methods other
han CNN. All classifiers are built for the two-dimensional actin density
lots taken at a fixed time point as described in Section 2.1. The CNN
lassifier uses the density data in its natural dimension, a 49 × 49
atrix (image), whereas the non-CNN classifiers use the same data
rranged into a 492 ×1 vector. For each of the six capping probabilities
onsidered (see Table 2), we proceed as follows:

tep 1 Generate training data: The training data is composed of den-
sity plots of 600 actin networks (75 networks per growth con-
dition) simulated by the same number of independent runs of
the microscale model and labeled by their classes 0, 1, 2,… , 7
according to their respective growth conditions.

tep 2 Train classifiers: We consider CNN and 22 non-CNN classifiers:

• six SVM variants: linear, quadratic, cubic, fine Gaussian,
medium Gaussian, and coarse Gaussian;

• six k-NN variants: fine, medium, coarse, cosine, cubic, and
weighted;

• five ensemble algorithms: boosted trees, bagged trees, sub-
space discriminant, subspace k-NN, and random under-
sampling boosted trees;

• five NN variants: narrow, medium, wide, bilayered, and
trilayered.

Matlab’s Classification Learner App2 is used for all non-CNN
classifiers and the CNN classifier is implemented using a cus-
tom code with built-in functions from Matlab’s Deep Learning
Toolbox3 and Statistics and Machine Learning Toolbox4. All 23
classifiers are trained on networks in the training set. Once
trained, each classifier is a function that maps the density image
(for the CNN classifier) or vector (for a non-CNN classifier) of a
network to its predicted label, an integer between 0 and 7.

2 https://www.mathworks.com/help/stats/classificationlearner-app.html
3 https://www.mathworks.com/help/deeplearning/index.html
4
 https://www.mathworks.com/help/stats/index.html

https://github.com/bbannish/Synthetic-Branching-Actin-Network-Classification.git
https://github.com/bbannish/Synthetic-Branching-Actin-Network-Classification.git
https://www.mathworks.com/help/stats/classificationlearner-app.html
https://www.mathworks.com/help/deeplearning/index.html
https://www.mathworks.com/help/stats/index.html
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Fig. 2. (A) Schematic of actin kinetics incorporated in our simulation framework. Actin filament growth begins at the initial nucleation site (blue) through polymerization.
Monomers have a polymerization probability of 𝑝0poly and a depolymerization probability of 𝑝0depoly. Attachment of Arp2/3 complex (red) to the filament facilitates Y-branching.
Association or disassociation of monomers to/from a filament can be halted by the binding of capping proteins (light blue) with probability 𝑝cap. (B) Sample actin network
architectures arising from various growth conditions. All networks are shown after 10 s with a simulation domain of a 10 μm × 10 μm square. For ease of comparison, the
initial angle of growth from the nucleation site was kept constant between all simulations.
Step 3 Evaluate performance: We calculate and compare the accuracy
of all classifiers on data not used in the training process. A classi-
fier is successful at labeling an actin density plot if its predicted
label agrees with the true label and unsuccessful otherwise. The
percentage accuracy of a classifier is defined as

# of actin density plots correctly labeled by classifier
total # of actin density plots ⋅ 100%.

(1)

First, we calculate the percentage accuracy of the 22 non-CNN
classifiers on the validation data composed of 200 images of
actin density (25 per growth condition). This allows us to iden-
tify the best non-CNN classifier as the one with the highest
percentage accuracy. Then, to compare the best performing
non-CNN classifier and the CNN classifier, we compute their
respective percentage accuracy on the test data, which consists
of 1600 actin density plots (200 per condition).

.2.2. Quantification of shape symmetry
To identify geometric properties of simulated actin networks, we

alculate the transformation information (TI) associated with each
etwork density plot as outlined in Gandhi et al. (2021). Broadly, the
TI function quantifies the amount of information lost by approximat-
ing the original image by the transformed image. More specifically,
the value of the TI function which is based on the Kullback-Liebler
divergence measures how approximate the symmetry is, with minima
of the TI function indicating the transformation that results in the
4

least change from the original image. Here, an affine transformation
corresponding to rotation is used to quantify the symmetry properties
in the actin network. The center for the transformation is calculated
for each individual image that minimizes the TI. While the TI has
limitations as outlined in Gandhi et al. (2021), key symmetry properties
of the generated actin networks are captured by this measure. The
function 𝜇(𝐱) is the actin density at location 𝐱 in each image. The steps
for calculating the TI curve are outlined below and shown graphically
in Fig. 3:

Step 1 Obtain TI measurements by:

𝑇 𝐼 = 1
|𝐷̃|

∫𝐷̃
𝜇(𝐱) ln

(

𝜇(𝐱)
𝑇𝜃𝜇(𝐱)

)

𝑑𝐴, (2)

where 𝑇𝜃 is the rotation of the image by angle 𝜃, 𝐷̃ is the domain
intersection of the original and transformed images, |𝐷̃| =
∫𝐷̃ 𝑑𝐴, and 𝑑𝐴 is the area element. We repeat the calculation
and compute the TI for each increment of the transformation
parameter, angle 𝜃, to obtain TI as a function of angle 𝜃.

Step 2 Identify approximate symmetries: Find and rank minima of the
TI curve in order to identify approximate symmetries of the actin
density plots. For example, a TI value of 0 indicates perfect
symmetry.

Further details of the TI calculation are in Gandhi et al. (2021) and
Matlab code is freely available5.

5 https://github.com/PunitGandhi/TransInfo.git

https://github.com/PunitGandhi/TransInfo.git
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Fig. 3. Schematic for quantification of approximate symmetries in the actin density images using transformation information (TI). The image is modified using an affine
transformation (in this case, rotation by angle 𝜃). The original and transformed images are compared to determine the amount of information lost by using the newly transformed
image to approximate the original. Minima of the TI curve indicate approximate symmetries in the actin network.
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2.2.3. Classification based on shape symmetry
For each plot of the actin network density, the TI calculation

produces a 361 × 1 vector (or a curve); the 𝑖th entry of the vector
is the TI measurement for the transformation parameter 𝜃𝑖 = (𝑖 − 1)
degrees for 𝑖 = 1, 2,… , 361. The non-CNN supervised classifiers can
also be applied to the TI curves extracted from the actin density plots.
The process is the same to the one described in Section 2.2.1 since the
I curves carry the same fine-grained labels 0, 1,… , 7 associated with
rowth conditions.

.3. ‘‘Coarse-grained’’ actin network classification

Different growth conditions may result in similar network architec-
ures. Therefore, fewer, more identifiable classes are sometimes desired.
n order to reveal governing motifs of emergent network architectures,
e propose a ‘‘coarse-grained’’ classification which results in fewer than
ight classes. Our approach combines supervised and unsupervised ma-
hine learning techniques; first, an unsupervised algorithm is applied to
dentify the new, fewer than eight, groupings in the dimension-reduced
I curves extracted from actin density plots, and then a supervised
earning algorithm is used to build a classifier that determines which
ew grouping (or label) to assign to a particular actin density plot. The
rocedure is outlined below.

tep 1 Identify new classes: To abstract away fine-level detail, we
use principle component analysis (PCA) to transform each TI
curve (a 361 × 1 vector) to a 2 × 1 vector referred to as the
‘‘reduced’’ TI curve. The reduced TI curve consists of the two
leading coefficients given by PCA. Next, we apply k-means, a
widely used unsupervised clustering algorithm, to identify the 𝑘
groupings (clusters) of the reduced TI curves (MacQueen, 1967).
We use Matlab’s built-in function for k-means6 and repeat it for
𝑘 between 1 and 12. The sum of distances between data points
and their group centroids is used to assess the ‘‘tightness’’ of a
grouping. Among the twelve values of 𝑘 considered, we choose a
relatively small 𝑘 < 8 that is still large enough for the 𝑘 clusters
to be identifiable. We then proceed to divide the original eight
growth conditions into 𝑘 groups. Growth condition 𝑖 is placed in
the 𝑗th group if the majority of the reduced TI curves originally
labeled with 𝑖 are placed in the 𝑗th group by k-means.

Step 2 We relabel each actin density plot according to the correspon-
dence between the original eight growth conditions and the new
𝑘 groups identified in Step 1. As an example, consider the case
where 𝑘 = 3 and the three groups are labeled A, B, C. If the
original label 4 is deemed a member of the group A in Step
1, then all the density plots previously labeled with 4 will be
relabeled with A.

6 https://www.mathworks.com/help/stats/index.html
5
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Step 3 Rebuild and re-evaluate the CNN classifier: Repeat Steps 2 to 3
in Section 2.2.1 using the relabeled data.

3. Results

We present a robust, rotation-invariant, and noise-insensitive com-
putational pipeline for the inverse mapping from a synthetic actin
network to its underlying molecular kinetics. In the pipeline, an actin
network is fed through the fine-grained classifier to identify molecular
growth conditions (Sections 2.2.1 and 2.2.3) or through the coarse-
grained classifier to identify primary dynamics (Section 2.3). Training
he supervised statistical methods for accurate classification may re-
uire a large set of networks labeled according to their underlying
olecular kinetics. To rapidly generate tens of thousands of actin net-
orks with known dynamics, we employ our molecular kinetics-based
odeling framework outlined in Section 2.1.

.1. Stochastic simulations produce synthetic actin networks with a variety
f architectures, particularly in the presence of limited resources

We adjust parameter values in the stochastic simulations to generate
iverse actin networks, some of which are shown in Fig. 2B. For
he networks presented here, the polymerization and depolymerization
robabilities are held constant across simulations, while the capping
robability is varied (see Appendix A.2 for details).
As expected, the addition of capping proteins and limited resources

o the actin kinetics modeling framework, individually or in com-
ination, changes the resulting network architecture (Fig. 2B). With
nlimited resources and no capping, a dense and highly branched
etwork forms (Fig. 2B.a). The network remains dense and branched
or low capping probabilities (𝑝cap = 0.00025 and 𝑝cap = 0.001), but
s the capping probability increases further, polymerization and de-
olymerization are halted, resulting in much smaller, sparser networks
Fig. 2B.m,q,u). In cases with low or no capping, the addition of limited
rp2/3 branching complexes (Fig. 2B.b,f,j) results in longer filaments
nce all the Arp2/3 complexes are used; with no additional Arp2/3
omplexes, no further branching can occur, so filaments only polymer-
ze and depolymerize. These longer filaments are not seen at higher
apping probabilities (Fig. 2B.n,r,v) because filaments are capped be-
ore they can grow too long. Regardless of the capping probability,
imulations with limited monomers result in significantly smaller net-
orks (Fig. 2B.c,g,k,o,s,w); this is because once all the actin monomers
re used, no further bulk growth can occur and only slight struc-
ural modifications to the network continue, as individual monomers
epolymerize and re-polymerize elsewhere in the network. Finally,
n cases with both limited Arp2/3 complexes and limited monomers
Fig. 2B.d,h,l,p,t,x), networks are spatially reduced, with emergence of
ome longer filaments at low capping probabilities (Fig. 2B.d,h,l,p) that
re not present at higher capping probabilities (Fig. 2B.t,x).

https://www.mathworks.com/help/stats/index.html
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Table 2
Accuracy of all tested machine learning classification algorithms of synthetic actin network architectures.
Capping Fine-grained Coarse-grained

probability non-CNN (best) CNN TI-based non-CNN (best) CNN

0.00025 69% (quadratic SVM) 82% 53% (trilayered NN) 99%
0.00050 84% (linear SVM) 90% 64% (linear SVM) 98%
0.00100 81% (quadratic SVM) 89% 66% (quadratic SVM) 96%
0.00150 77% (medium Gaussian SVM) 84% 63% (median NN) 87%
0.00250 67% (narrow NN) 74% 61% (narrow NN) 87%
0.00375 65% (medium Gaussian SVM) 66% 52% (quadratic SVM) 98%
Fig. 4. Randomly selected actin density plots and their corresponding fine-grained labels. A brighter pixel indicates a higher actin density and brightness is scaled across
an individual figure. Across all images, the capping probability is held fixed at an intermediate value (𝑝cap = 0.001). The 12 plots (left, gray) are part of the training set used for
tuning the classifiers. The 16 images (right, blue) are from the test set used for evaluating and comparing the classifiers. A check mark indicates that the CNN classifier accurately
predicts the true label. The density plots wrongly classified by CNN are outlined in red. For any incorrect CNN predictions, the true labels are listed in parentheses.
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3.2. Extreme capping rates obscure the role of other dynamics when classi-
fying network structures using standard machine learning techniques

Our first attempt at constructing a classifier relies on non-CNN
supervised machine learning algorithms: support-vector machines, k-
nearest neighbors, ensemble algorithms, and neural networks. For each
capping probability listed in Table 2, we generate 300 actin density
plots for each of the eight growth conditions with labels 𝑗 = 0, 1, 2,… , 7.
The generated data is partitioned into training, validation, and test
sets as described in Section 2.1. The leftmost three columns in Fig. 4
how 12 actin density plots, with their respective labels placed above
hem, randomly selected from the training set for an intermediate
apping probability, 0.001. The accuracy of each algorithm is evaluated
n the validation set to determine which classifier has the highest
ccuracy. The accuracy of this classifier for the test data is reported
n Table 2 for each of the six capping probabilities considered. We
ind that the accuracy of the best non-CNN classifier ranges between
5% and 84% depending on the capping probability. Interestingly,
he highest accuracy is obtained with mid-range capping probabilities
0.0005 − 0.0015). That is, at extreme capping rates, the underlying
ynamics are not fully uncovered by any of the non-CNN classifiers.
6

t

.3. Networks grown under widely varying conditions are distinguishable
hen both actin density and network geometry are evaluated

To improve the overall accuracy of the classification pipeline in the
revious section, we turn our attention to CNNs. This class of statistical
earning methods has been highly successful at detection of visual im-
gery (LeCun, 1989; Krizhevsky et al., 2017). We train and evaluate the
erformance of a CNN classifier as implemented in Section 2.2.1. The
alidation data is used to inform the choice of CNN hyper-parameters
uch as the number of network layers and network nodes. The accuracy
f the CNN classifier on the test set is summarized in Table 2. The
ccuracy ranges between 66% and 90%, with an improvement over
he best non-CNN classifier for every capping probability. The CNN
lassifier is more accurate when the capping probability is not too high.
n the rightmost four columns in Fig. 4, for a fixed capping probability
f 0.001, we show 16 actin density plots randomly selected from the
est set, along with their true labels and the labels predicted by the CNN
lassifier if the two are different. For visualization purposes, the raw
ata is re-scaled such that for an individual image, the highest density
s 1 and the lowest density is 0 (see Appendix A.3 for more details).
Importantly, we find that the CNN classifier is insensitive to rota-
ions (see Appendix A.4) or additive noises up to 10%see Appendix
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Appendix A.5). Specifically, when training and test sets are altered
with 10% salt and pepper noise, we find that the accuracy of the
classifier decreases to 82% (compared to 89% with the original, non-
noisy images) for capping probability 0.001. Due to the dynamical
growth of the network from a nucleation site, the observation time
does impact the accuracy of the classification (see Appendix A.6). We
observe that if the time at which the test data are collected deviates
from the time at which training data are collected by no more than 5%,
hen the accuracy of the classifier will hardly degrade, allowing room
or error in a lab setting where precise control of data collection time
s difficult to achieve. As the two times move further apart, however,
he accuracy of the classifier can decrease considerably.
Since the CNN classifier uses image data (rather than vectorized

ata) and hence preserves spatial information of the simulated actin
etworks, the better performance of the CNN classifier over the non-
NN classifiers suggests that the geometric properties of the network
ay be important for classification. For higher capping probabilities
uch as 0.00375, none of the classifiers, CNN or non-CNN, can uncover
he growth condition with high accuracy. We speculate that this is
ecause when the capping probability is high, actin networks generated
nder different growth conditions can approach a similar morphology.

.4. Symmetric properties of actin networks alone are insufficient to distin-
uish underlying generating mechanisms

To test whether geometric properties of the actin networks alone
ay accurately classify networks, we use a novel and robust measure
f symmetry that is grounded in concepts of entropy and information
heory called transformation information (TI) (Gandhi et al., 2021).
e apply this method to quantify asymmetries of actin density plots
nder image transformations parameterized by the rotation angle 𝜃 as
utlined in Section 2.2.3 (Fig. 3). The outcome is a TI curve associated
ith each network as a function of angular rotation of the network.
Next, we apply the same standard non-CNN machine learning tech-

iques from Section 3.2 to the TI curves extracted from the same
ata. That is, we train and evaluate the performance of 22 non-CNN
lassifiers on TI curves of actin networks grown under the six capping
robabilities considered previously. For each capping probability, we
dentify the best non-CNN classifier as in Section 3.2 and report its
ccuracy in Table 2. The accuracy ranges between 52% and 66%, lower
han density-based classification. Like the density-based classifiers, it
erforms worse for the extremes of the capping probability range. The
est symmetry-based non-CNN classifier is always less accurate than the
est density-based non-CNN classifier, indicating that symmetry of the
etwork alone is insufficient to identify the distinct growth condition
f an actin network.
To investigate the potential role of network symmetry, we would

ike to visualize the TI curves but cannot easily do so due to the
arge dimension, 361, of the data (see Section 2.2.3). A dimension
eduction by linear principal component analysis (PCA) is performed
n the TI curves. The first two principal components of the linear
CA of the TI curves are calculated, and they account for at least
3% of the variance in the TI data. The visualization of the symmetry
nformation in a reduced two-dimensional space in Fig. 5 leads us to
ypothesize that the symmetry information can be used to identify
oarser level categorization of the data. For example, for the case of
ow capping probability in Fig. 5A, networks with labels 2 (blue) and
(magenta) appear to have a similar ‘‘vascular‘‘ topology. Likewise,
etworks with labels 0 (red) and 1 (green) share a similar ‘‘round’’
opology, while networks with label 6 (black) are relatively small.
imilar conclusions can be drawn for cases with intermediate and high
7

apping probabilities in Fig. 5B and 5C respectively.
Table 3
Coarse-grained labels. Three coarse-grained groups for actin networks with low and
intermediate capping probability.
New label Old label Capping Branching Monomers

A 0 ✕ Unlimited Unlimited
A 1 ✓ Unlimited Unlimited

B 2 ✕ Limited Unlimited
B 4 ✓ Limited Unlimited

C 3 ✕ Unlimited Limited
C 5 ✓ Unlimited Limited
C 6 ✕ Limited Limited
C 7 ✓ Limited Limited

3.5. Symmetry-informed unsupervised clustering reveals three dominant
network architecture groupings

Based on the visualization of the dimensionally reduced TI curves
of actin density plots, we postulate that there exists a smaller set of
dominant dynamics contributing to a given network architecture. We
apply the k-means unsupervised clustering algorithm to the reduced
TI vectors extracted from the training set to identify a partitioning of
the data into 𝑘 groups, where 𝑘 is an integer between 1 and 12. In
Fig. 6A, for three representative capping probabilities (0.00025, 0.001,
and 0.00375), we show the sum of distances between each reduced TI
vector and the centroid of the group that it belongs to as the number
of groups increases from 𝑘 = 1 to 𝑘 = 12. These plots suggest that
𝑘 = 3 achieves a good balance between the tightness of the groups
and the number of groups. The subplots in Fig. 6B show the three
groups of reduced TI vectors partitioned by k-means for each capping
probability. The grouping appears to be predominantly along the first
principal component. For capping probabilities of 0.00025 and 0.001,
we label the three clusters as ‘‘A’’, ‘‘B’’, and ‘‘C’’ and the correspondence
between the eight original labels and the three new labels is in Table 3.
For low and intermediate capping probabilities, whether and which
resources are limited are the main factors in determining the network
architecture. Growth conditions with unlimited resources are labeled
‘‘A‘‘, growth conditions with limited Arp2/3 complexes and unlimited
monomers are labeled ‘‘B’’, and growth conditions with limited actin
monomers are labeled ‘‘C’’.

In the case of high capping probability, we label the three clusters
as ‘‘X’’, ‘‘Y’’, and ‘‘Z’’ and Table 4 gives the correspondence between the
ight fine-grained labels and these three new labels. Whether capping
s present and whether branching is limited are the main contributors
o the network architecture. Growth conditions that do not include
apping are labeled ‘‘X’’ or ‘‘Z’’, while growth conditions that do include
apping are all labeled ‘‘Y’’. As only one growth condition without cap-
ing (the condition which has limited Arp2/3 complexes and unlimited
ctin monomers) is labeled by ‘‘Z’’, we can conclude that while capping
s the biggest determinant in labeling the data, limited branching is also
feature in distinguishing network architecture.

.6. Actin networks with defined microscale dynamics can be grouped into
hree classes with high accuracy even for extreme capping rates

A CNN classifier for coarse-grained classification is constructed,
hich labels actin networks according to their dominant mechanisms
ather than their original growth conditions. The classifier still takes
mages of actin density and produces predicted labels; the difference
s that the labels now correspond to the clusters found by k-means for
= 3. The same training and testing data sets are used as previously. In
able 2, the accuracy of the new TI-informed CNN classifier on the test
et is reported for the six capping probabilities. We note that the dom-
nant mechanisms can vary with the capping probability, as shown in
ection 3.5. For every capping probability considered, the TI-informed
NN classifier is more accurate at the coarse-grained classification
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Fig. 5. Visualization of the reduced TI curves. Principal components capture key shapes corresponding to ‘‘round‘‘ versus ‘‘spiked-edge’’ networks. Each dot represents an
individual image, and representative images are indicated. Label 0: red; label 1: green; label 2: blue; label 3: cyan; label 4: magenta; label 5: yellow; label 6: black; label 7: purple.
(A) Low capping probability, 𝑝cap = 0.00025. (B) Intermediate capping probability, 𝑝cap = 0.001. (C) High capping probability, 𝑝cap = 0.00375.
Fig. 6. Identification of coarse-grained labels through unsupervised clustering of the reduced TI curves. (A) The sum of the distances between the reduced TI vectors and
their respective group centroid, as a function of the number of groups used in the k-means algorithm. (B) Partition of the reduced TI vectors into three groups by k-means. Each
triangle or star represents the reduced TI vector extracted from an actin density plot. Label A: red triangle; label B: blue triangle; label C: black triangle; label X: purple star; label
Y: gray star; label Z: light blue star. Low, intermediate, and high capping probabilities correspond to 𝑝cap = 0.00025, 0.001, and 0.00375, respectively.
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Table 4
Coarse-grained labels at high capping probability. Three coarse-grained groups for
actin networks with high capping probability.
New label Old label Capping Branching Monomers

X 8 0 ✕ Unlimited Unlimited
X 8 3 ✕ Unlimited Limited
X 8 6 ✕ Limited Limited

Y 8 1 ✓ Unlimited Unlimited
Y 8 4 ✓ Limited Unlimited
Y 8 5 ✓ Unlimited Limited
Y 8 7 ✓ Limited Limited

Z 8 2 ✕ Limited Unlimited

than the original CNN classifier is at the fine-grained classification.
Now, its accuracy ranges between 87% and 99%, and interestingly, it
performs exceedingly well for extreme capping probabilities, a regime
where the original CNN classifier has lower accuracy for fine-grained
classification. Lastly, in Fig. 7, for intermediate capping probability of
.001, we re-plot the 12 actin networks from the training set and 16
ctin networks from the test set shown previously in Fig. 4 but now with
heir coarse-grained labels. The labels predicted by the TI-informed
NN classifier are also included if they are different from the correct
oarse-grained labels.

. Conclusions & discussion

Actin is an abundant protein that organizes into network structures
hat play critical roles in cellular processes, including division and
8

0

irected cell migration. Defects in actin networks, such as the branching
rotrusive network in the lamellipodium, are correlated with disease
tates (Clarkson et al., 2004), and studies of actin-related primary
mmunodeficiencies have also pointed to the mounting evidence of the
ole of actin structures in a successful immune response (Moulding
t al., 2013). Despite the importance of actin network organization, the
ignificance of particular microscale interactions in shaping branched
ctin networks is not yet clear. Part of the challenge is due to the
ifficulty of growing branched networks in vitro under controlled con-
itions. Toward this end, we develop an iterative process for network
lassification: starting with a stochastic model that allows us to ‘‘grow’’
ctin networks in a wide variety of settings, we then classify the
esulting networks using machine learning techniques informed by net-
ork theory-inspired measures. These techniques identify the dominant
echanisms leading to a given actin network, providing mechanistic
nformation and testable hypotheses.
Our stochastic model is able to effectively and efficiently produce a

arge number of actin networks with known, diverse growth conditions,
hich are necessary to train our classifiers. The machine learning
lgorithms in turn identify a small number of meaningful categories
idden in the vast amount of training data, and allow us to extract
nformation about the dominant microscale dynamics responsible for
given actin network whose growth condition is unknown. Further,
e find the method is invariant to rotations and not sensitive to up
o 10% additive noise as possible in experimental images. Specifically,
hen training and test sets are altered with 10% salt and pepper noise,
e find that the accuracy of the classifier decreases to 82% (compared
o 89% with the original, non-noisy images) for capping probability
.001. By incorporating information from multiple sources (network
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Fig. 7. Networks from Fig. 4,with their corresponding coarse-grained labels. The images from the test set misclassified by the TI-informed CNN classifier are outlined in red.
heir labels predicted by the CNN are listed in parentheses. A check mark indicates that the CNN-predicted label matches the true label. The plots shown are for an intermediate
apping probability, 𝑝cap = 0.001.
Fig. 8. Schematic of the integration of mathematical, computational, and biological techniques. Iteration of these techniques yields insights into mechanisms underlying
branched actin network growth.
density and geometry) and focusing on dominant dynamics, we are
able to improve classification performance when compared to the same
algorithm that uses a single information source (density) and aims to
identify detailed dynamics.

We consider a variety of machine learning algorithms based on
network density and/or network symmetry and find that the most
successful approach is the following: first use an unsupervised clus-
tering algorithm of the approximate network symmetries to identify
a few, significant groups of molecular processes, and then use a CNN
classifier that has been trained on density data re-labeled according to
the groups emerging from unsupervised clustering to classify synthetic
networks. CNN has been successfully applied to image analysis, and
since actin density is sampled on a two-dimensional grid, CNN is a
9

sensible method to use. Indeed, we observe that CNN is more accu-
rate at network classification than other non-CNN methods considered
including the SVMs. This implies that the geometry of actin networks,
not just the density, is important in identifying their growth conditions.
However, we also find that even with CNN, classifying actin networks
according to their precise growth conditions is still challenging since
multiple growth conditions can lead to similar actin networks. The
importance of network geometry and the desire to accurately iden-
tify dominant molecular dynamics motivate our approach of coupling
TI-based clustering and CNN classification based on density data.

We use relatively standard algorithms for classification such as
CNN, and do not rely on state-of-the-art algorithms for image detec-
tion (Pham et al., 2021), demonstrating that the impact of microscale
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growth conditions can be distinguished from macroscale images. While
it is conceivable that the performance of our methodology could be
improved with more sophisticated algorithms, we achieve high ac-
curacy results with CNN. Although we employ synthetic networks,
our classification workflow can have broader applications: an experi-
mentalist imaging in vitro actin network formation may observe very
ifferent network architectures and may wish to identify the biological
rowth dynamics that led to the given architecture (Fig. 8). The tools
escribed here serve as an important step toward that goal. Even in
ur limited case of a single nucleating site, the discovered labels can
rovide insight into the growth condition of the network, for example,
hether Arp2/3 branching complexes are limited. This prediction can
e used in conjunction with perturbations and other data to elucidate
he dynamics of the system. In some disease states like cancer, actin
etwork growth is disrupted, and the method described here would be
way to use images of the network architecture to diagnose possible
auses of the disrupted growth (Dugina et al., 2019). The analysis
ramework developed here can be applied more broadly to understand
nalogous network-forming biological systems, including extensions of
ungal hyphae or blood vessels networks. A number of extensions of
he methodology presented here ought to be considered in order to suc-
essfully apply it to experimental images including multiple nucleation
ites, the dynamics of additional accessory proteins, bending of actin
ilaments, and training without knowledge of the ground truth.
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ppendix

.1. Detailed description of stochastic simulation of actin networks

In our previous work, we built a tractable agent-based stochastic
odel to capture the local microstructure of branching actin networks
nder various intracellular conditions (Copos et al., 2021). The model
ncludes the actin dynamics of polymerization, depolymerization, and
ranching of filaments initiated from a single nucleation site. The actin
ilaments are represented as rigid rods with a spatially fixed base and
barbed tip capable of growing or shrinking. Changes in both actin
ilament length and overall network structure are due to the addition
r removal of actin monomers and branching via the Arp2/3 complex.
n the initial model, we assume that there is an unlimited pool of free
onomers and Arp2/3 complexes available to enable filament growth
nd branching, respectively. For simplicity, other dynamics of actin
etworks such as capping, sliding, bundling, etc. are not considered in
10

he original model.
Briefly, each simulation starts with an actin filament of length zero
ocated at the ‘‘nucleation site’’ placed at the origin. The filament is
ssigned an angle of growth which is drawn from a static uniform
istribution; the angle of growth prescribes the direction of growth for
hat particular filament. At each time step, there are four possibilities
or filament dynamics: (1) the filament grows with probability 𝑝0poly; (2)
he filament shrinks with probability 𝑝0depoly, provided that the filament
has a nonzero length at the start of the time step; (3) the filament
remains the same length; or (4) the filament branches with probability
𝑝0branch to create a new filament, provided that the original filament is
at least some critical length 𝐿branch (measured from the closest branch
point). Filament growth and shrinkage occur in discrete increments
corresponding to the length of an actin monomer, 𝛥𝑥 = 0.0027 μm.
Based on the known biological interaction of the Arp2/3 complex with
actin, the newly branched filament is assigned to grow in a direction
that is ±70◦ from the preexisting filament tip.

To determine which of the four outcomes happens at a time step,
two independent uniformly distributed random numbers are generated
for each filament in the simulation. If the first random number is
less than 𝑝0poly, then polymerization occurs, and if it is greater than
1 − 𝑝0depoly, then depolymerization occurs. If the first random number
simultaneously satisfies both inequalities, then the filament length is
unchanged since both polymerization and depolymerization occur in
the same time step. Likewise, filament length is unchanged if neither
inequality is satisfied, since this means neither polymerization nor
depolymerization occur in the given time step. If the second random
number is less than 𝑝0branch, and the filament is at least length 𝐿branch,
then the filament branches to form a new filament, capable of au-
tonomous growth and branching. This step-wise process is repeated
until the final simulation time is reached. Ultimately, this stochastic
model captured molecular-level effects within the network and sensi-
tivity analysis revealed that the biological parameters responsible for
filament growth and branching kinetics impacted resulting network
dynamics and morphology in a complementary manner. Simulations of
branching actin networks were implemented in a custom Matlab code,
with additional implementation details available in Copos et al. (2021).

In the current study, to capture more biologically relevant
branching actin networks, we include capping proteins, limited actin
monomers, and limited Arp2/3 branching complexes as follows
(schematic in Fig. 2A; the full algorithm flow chart is shown in
Appendix Fig. A.1). The capping protein regulates actin polymerization
by binding to the barbed end of an actin filament, which blocks the
addition and loss of monomers from that filament. In our simulation,
capping dynamics are modeled as follows. At each time step, a third
uniform random number is generated for each uncapped filament. If
the capping probability (𝑝cap = rate of capping × time step) is greater
than the random number, then the filament can no longer polymerize
or depolymerize. Capping is irreversible; once a filament is capped, it is
capped for the remainder of the simulation. In simulations that include
limited resources, we start with a fixed number of actin monomers
(𝑀0 = 10,000) and/or a fixed number of Arp2/3 complexes (𝐴0 = 24).
A polymerization (or branching) event can only occur if there are
available actin monomers (Arp2/3 complexes), and the probability of
polymerization (branching) depends on how many actin monomers
(Arp2/3 complexes) remain. In our initial model with unlimited re-
sources, the polymerization rate was fixed: 𝑝0poly = 0.324𝛥𝑡∕𝛥𝑥, where
𝛥𝑡 is the constant time step, 𝛥𝑥 is the constant space step. Now, with
limited resources, we assume that the polymerization rate depends on
the number of actin monomers: 𝑝poly = 𝑀

𝑀0
𝑒(𝑀−𝑀0)∕𝑀0 𝑝0poly, where 𝑀

is the number of available actin monomers at the given time step.
Similarly, the branching probability is modified by the number of
available Arp2/3 complexes: 𝑝branch = 𝐴

𝐴0
𝑝0branch, where 𝑝0branch is the

branching probability from the unlimited resources case (chosen from
a cumulative distribution function of the standard normal distribution
with mean 2 and standard deviation 1), and 𝐴 is the number of available
Arp2/3 complexes at the given time step. Values for parameters are

listed in Appendix Table A.1, and explained in detail in the next section.
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.2. Stochastic simulation parameters

Wherever possible, model parameters are based on experimental
alues. The probability of polymerization is calculated from Pollard and
orisy (2003), which states that actin monomers elongate the barbed
nds of actin filaments at a velocity of 0.3 μm/s (Pollard and Borisy,
003). Using the formula

assem-
bly
speed

= poly-
meriza-
tion
proba-
bility

× length
added
to
filament

× # time
steps
per
second

e calculate that

.3
μm
s = 𝑝poly × 0.0027 μm × 1

0.005 s ,

which implies that 𝑝poly = 0.56 ≈ 0.6. Similarly, Pollard and Borisy
(2003) give a range of dissociation rates of actin monomers from 1.4−8
s−1 (Pollard and Borisy, 2003). We choose an intermediate value of 5.0
s−1 and then calculate
11
disas-
sembly
speed

= depoly-
meriza-
tion
proba-
bility

× length
re-
moved
from
filament

× # time
steps
per
second

where disassembly speed is obtained via

5.0 subunits × 0.0027
μm

subunit = 0.0135
μm
s .

Therefore,

0.0135
μm
s = 𝑝depoly × 0.0027 μm × 1

0.005 s ,

which yields 𝑝depoly = 0.025. Literature measurements of actin filament
length per branch vary from 0.02 to 5 μm (Mogilner, 2009; Svitkina and
orisy, 1999; Amann and Pollard, 2001; Jensen et al., 2012; Vinzenz
t al., 2012; Smith et al., 2013), so we choose 𝐿branch = 0.2 μm, which
is similar to the values from Vinzenz et al. (2012), Smith et al. (2013)
and is an intermediate value between the orders-of-magnitude-different
literature values. The probability of capping is calculated using the
formula
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Table A.1
Microscale model parameter values. Values flagged with one star (∗) were calculated from Pollard and Borisy
(2003). For the value flagged with a dagger (†): literature measurements of actin filament length per branch
vary from 0.02–5 μm (Mogilner, 2009; Svitkina and Borisy, 1999; Amann and Pollard, 2001; Jensen et al.,
2012; Vinzenz et al., 2012; Smith et al., 2013). We choose 𝐿branch = 0.2 μm as an intermediate estimate
between these orders-of-magnitude-different values from the literature, similar to the values from Vinzenz
et al. (2012), Smith et al. (2013). 𝑝0branch is chosen from a Gaussian distribution with mean 𝜇 = 2 and
standard deviation 𝜎 = 1. A range of 𝑝cap values from 0 to 0.00375 are investigated.

Parameter Meaning Value

𝑝0poly Probability of polymerizing 0.6∗

𝑝0depoly Probability of depolymerizing 0.025∗

𝑝cap Probability of capping 0 − 0.00375
𝐿branch Critical length before branching can occur 0.2 μm†

𝑝0branch Probability of branching normal CDF (𝜇 = 2, 𝜎 = 1)
𝑇end Computational run time 10 s
𝛥𝑡 Computational time step 0.005 s
𝐴0 Initial number of branching complexes 24
𝑀0 Initial number of actin monomers 10,000
Fig. A.2. Comparison of the grayscale images of the density of two actin networks, generated under growth condition 0 and growth condition 7 respectively, when the capping
probability is 0.001.
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capping
proba-
bility

= capping
rate

× time
step t

× concen-
tration
of
capping
protein

hich gives

cap = 6.3 1
μM ⋅ s × 0.005 s ×𝑋 μM.

he capping rate of 6.3 μM−1s−1 is from Wear et al. (2003), and 𝑋,
he concentration of capping protein, can take on values up to 0.168
M (Akin and Mullins, 2008), which corresponds to 𝑝cap = 0.0053.
ence, we look at a range of capping probabilities from 0 to 0.00375;
apping probabilities greater than this do not result in appreciable actin
etwork growth.

.3. Scaling

For visualization purposes, a grayscale image can be created for
ach actin network based on its filament density. More precisely, the
ocation with the highest density is assigned a 1 (brightest), and the
ocation with the lowest density is assigned a 0 (darkest). As the
ensity varies considerably among networks generated under the eight
ifferent growth conditions, this re-scaling is performed network by
etwork instead of across all networks to ensure that networks of lower
ensities are still visible. Fig. A.2 shows the re-scaled density plots of
wo networks generated under Condition 0 (no capping with unlimited
rp2/3 complexes and actin monomers) and Condition 7 (capping with
imited Arp2/3 complexes and actin monomers). These two conditions
roduce the densest and sparsest networks. By comparing the two plots,
e see that the same level of brightness can indicate vastly different
12

ensities. s
A.4. Sensitivity to rotation

To determine if the density-based, fine-grained CNN classifier is
sensitive to rotation of images, we rotate all density plots in the
training and test data sets for capping probability 0.001 clockwise by
uniformly random degrees between 0 and 360. Sample rotated density
plots (corresponding to the density plots from main text Figure 4) are
shown in Fig. A.3. We retrain the fine-grain CNN classifier based on
his rotated training set, and then classify the rotated test set. The
ccuracy of the fine-grained CNN classifier on the rotated images is
9%, identical to the accuracy of the method on the original images.
ence, we conclude that our method is not sensitive to rotation.

.5. Sensitivity to salt and pepper noises

To determine if the density-based, fine-grained CNN classifier is
ensitive to noisy data, we ‘‘pollute’’ with salt and pepper noise the
ensity plots in the training and test sets for capping probability 0.001.
n our first experiment, we randomly select 1% of pixels and randomly
hange each one to white or black. We then retrain the fine-grain CNN
lassifier on the noisy training set, and then classify the noisy test set.
he accuracy of our method with 1% of pixels randomly changed is
5% (compared to 89% with the original, non-noisy images). We repeat
his process with 5% and 10% of pixels randomly set to white or black
nd obtain 85% and 82% accuracy, respectively. Sample density plots
corresponding to the density plots from main text Fig. 4) with 10% of
alt and pepper noise added are shown in Fig. A.4. We conclude that
ur method is not very sensitive to noise.

.6. Sensitivity to time of data collection

To determine if the density-based, fine-grained CNN classifier is

ensitive to the time of data collection, for capping probability 0.001
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Fig. A.3. Samples of rotated density plots from the training and test sets.
Fig. A.4. Samples of density plots from the training and test sets with 10% of salt and pepper noise added.
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we generate test sets at final simulation times 𝑇 = 5, 7, 8, 9, 9.5,
9.8, 10.5, 11, and 12 s and classify them using the fine-grain CNN
classifier obtained based on training set data collected at time 𝑇 = 10 s.
napshots of a single actin network at the different times are shown in
ig. A.5. Our method is somewhat sensitive to time of data collection
Fig. A.6). The accuracy of the method is best (89%) when both the
raining and test sets are collected at time 𝑇 = 10. The method is
easonably accurate for test sets collected at 𝑇 = 9.5, 9.8, 10.5, 11, and
2 s (87%, 89%, 89%, 86%, 79%, respectively), but not very accurate
13

t

accuracy < 75%) for test sets collected at 𝑇 values less than or equal to
s. The value of 9 s is based on the rates used in the model and the time
oint at which the training data was collected (𝑇 = 10). Regardless of
hat parameters and training data we use, there will always be a range
f times for which our method is less accurate, since the networks at
hose times will be at a different stage of formation compared to the
raining data networks. Despite the sensitivity of the method at early
ime points, we conclude that the classifier is robust enough for some
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